JP4868534B2 - Method for depositing a high melting point metal carbide layer - Google Patents
Method for depositing a high melting point metal carbide layer Download PDFInfo
- Publication number
- JP4868534B2 JP4868534B2 JP2007508741A JP2007508741A JP4868534B2 JP 4868534 B2 JP4868534 B2 JP 4868534B2 JP 2007508741 A JP2007508741 A JP 2007508741A JP 2007508741 A JP2007508741 A JP 2007508741A JP 4868534 B2 JP4868534 B2 JP 4868534B2
- Authority
- JP
- Japan
- Prior art keywords
- vacuum chamber
- melting point
- metal
- electron beam
- depositing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 27
- 238000000151 deposition Methods 0.000 title claims description 19
- 229910052751 metal Inorganic materials 0.000 title claims description 14
- 239000002184 metal Substances 0.000 title claims description 14
- 230000008018 melting Effects 0.000 title claims description 12
- 238000002844 melting Methods 0.000 title claims description 12
- 238000001704 evaporation Methods 0.000 claims description 17
- 239000007789 gas Substances 0.000 claims description 16
- 238000010894 electron beam technology Methods 0.000 claims description 14
- 230000008020 evaporation Effects 0.000 claims description 13
- 230000008021 deposition Effects 0.000 claims description 10
- 238000010891 electric arc Methods 0.000 claims description 10
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 7
- 238000009792 diffusion process Methods 0.000 claims description 7
- 239000003870 refractory metal Substances 0.000 claims description 7
- 239000010936 titanium Substances 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 4
- 238000001556 precipitation Methods 0.000 claims description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 3
- 238000005566 electron beam evaporation Methods 0.000 claims description 3
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 239000001273 butane Substances 0.000 claims description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 claims description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 238000000678 plasma activation Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 description 22
- 238000001755 magnetron sputter deposition Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0635—Carbides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32321—Discharge generated by other radiation
- H01J37/3233—Discharge generated by other radiation using charged particles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/28—Vacuum evaporation by wave energy or particle radiation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
- C23C14/325—Electric arc evaporation
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Physical Vapour Deposition (AREA)
Description
本発明は、高融点の金属、たとえばチタン、タングステン、ジルコニウムまたは主に高融点の元素から成る合金の炭化物から成る硬質物質層を析出するための方法に関する。本発明の意味での高融点とは、1400℃以上の融点を備えた元素である。このような硬質物質層を備えた対象物は、有利には、摩擦および/または圧力によって摩耗を受ける切断工具またはプレスエレメントに使用されるかまたは防食性の特性を実現したい場合に使用される。高融点の金属の炭化物から成る硬質物質層に課せられる主要求は、高い硬さおよび耐摩滅性ならびに各基体に対する良好な固着である。 The present invention relates to a method for depositing a hard material layer comprising a carbide of a refractory metal such as titanium, tungsten, zirconium or an alloy composed mainly of a refractory element. The high melting point in the meaning of the present invention is an element having a melting point of 1400 ° C. or higher. Objects with such a hard material layer are advantageously used for cutting tools or press elements that are subject to wear by friction and / or pressure or when it is desired to achieve anticorrosive properties. The main requirements imposed on a hard material layer made of a carbide of high melting point metal are high hardness and wear resistance and good adhesion to each substrate.
たとえば炭化チタン層または炭化タングステン層をプラズマ溶射法によって対象物に被着することが知られている(A.Haefer著 「Oberflaechen− und Duennschicht−Technologie, Teil 1 Beschichtungen von Oberflaechen」 Springer出版 1987年 第291頁以下参照)。しかし、この方法によって製造された層は、大きな粗さ、高い多孔性および制限された摩耗防護しか有していない。 For example, it is known to deposit a titanium carbide layer or a tungsten carbide layer on an object by plasma spraying (A. Haefer, “Overflachen-und Dunnschich-Technology, Tail 1 Beschichengen von Oberchen, 1st publishing, 29th year, 1987, Spr. See page below). However, the layers produced by this method have only high roughness, high porosity and limited wear protection.
2004年3月30日のインタネットページ「http://www.balzer−technik.ch/TechnischeHinweise/oberflaechenbehandlung.htm」には、炭化チタンまたは炭窒化チタンをCVD(化学的気相成長)法によって析出する方法が開示されている。層の析出は1000℃の温度で行われる。これによって、被覆したいボディの材料が制限される。さらに、この方法は僅かな析出率しか保証しない。 Titanium carbide or titanium carbonitride is deposited by CVD (Chemical Vapor Deposition) on the Internet page “ https://www.balzer-technik.ch/Technische Hinweise / overflachenchenhandling.htm” on March 30, 2004 A method is disclosed. The deposition of the layer takes place at a temperature of 1000 ° C. This limits the body material that one wishes to coat. Furthermore, this method guarantees only a small precipitation rate.
たとえば炭窒化チタンを析出するための別の可能性はアーク蒸発である(METAPLAS IONON社のUebersichtsinformation Nr.4 01/2003参照)。しかし、この方法でも、小さな被覆面に対する僅かな析出率しか得ることができない。同刊行物には、炭化タングステンをPVD(物理的気相成長)マグネトロンスパッタリング技術によって非晶質の炭素マトリックスに堆積させ、いわゆる「W−C:H層」を形成する方法が開示されている。マグネトロンスパッタリングによって、良好な摩耗特性を備えた硬質物質層が析出可能となるものの、ここでも、最大約10nm/sを備えた析出率は経済的な観点から満足のいくものではない。 For example, another possibility for depositing titanium carbonitride is arc evaporation (see Ueberschism information Nr. 401/2003 of METAPLAS IONON). However, even with this method, only a small precipitation rate can be obtained for a small coated surface. The publication discloses a method of depositing tungsten carbide on an amorphous carbon matrix by PVD (physical vapor deposition) magnetron sputtering technique to form a so-called “WC: H layer”. Although magnetron sputtering makes it possible to deposit a hard material layer with good wear properties, here again the deposition rate with a maximum of about 10 nm / s is not satisfactory from an economic point of view.
したがって、本発明の技術的な問題は、高融点の金属の炭化物から成る硬質物質層を少なくとも20nm/sの析出率で析出することができる方法を提供することである。析出された層が、高い硬さ、耐摩耗性および耐摩滅性を有していることが望ましい。 Therefore, a technical problem of the present invention is to provide a method capable of depositing a hard material layer made of a carbide of a high melting point metal at a deposition rate of at least 20 nm / s. It is desirable for the deposited layer to have high hardness, abrasion resistance and abrasion resistance.
この技術的な問題の解決手段は、請求項1の特徴を備えた対象によって得られる。本発明の別の有利な実施態様は従属請求項から得られる。 The solution to this technical problem is obtained by an object with the features of claim 1. Further advantageous embodiments of the invention result from the dependent claims.
本発明によれば、真空チャンバ内に反応性ガスの流入によって炭素含有の雰囲気を発生させ;高融点の金属を電子ビームによって蒸発させ;析出をプラズマによって助成し、この場合、該プラズマを拡散アーク放電によって、蒸発させたい高融点の金属の表面に発生させ;被覆率が、少なくとも20nm/sであり、析出の間の対象物温度を50℃〜500℃の間に保持することによって、少なくとも一種類の高融点の金属の炭化物から成る層が、少なくとも1つの対象物に高率電子ビーム蒸着によって真空チャンバ内で析出される。 According to the present invention, a carbon-containing atmosphere is generated by inflow of a reactive gas into a vacuum chamber; a refractory metal is evaporated by an electron beam; precipitation is aided by a plasma, in which case the plasma is diffused into a diffusion arc Generated on the surface of the high melting point metal to be evaporated by discharge; the coverage is at least 20 nm / s and at least one is maintained by keeping the object temperature between 50 ° C. and 500 ° C. during the deposition. A layer of a kind of refractory metal carbide is deposited on the at least one object in a vacuum chamber by high rate electron beam evaporation.
高融点の金属として、たとえばタングステン、ジルコニウムまたは有利にはチタンが使用されてよい。これらの元素は、良好な摩耗特性を備えた硬質物質層を形成するために適している。しかし、本発明の意味での高融点の金属とは、前述した金属の1つが割合的に勝っている合金も意味している。 As refractory metal, for example tungsten, zirconium or preferably titanium may be used. These elements are suitable for forming hard material layers with good wear properties. However, a high melting point metal in the sense of the present invention also means an alloy in which one of the aforementioned metals is preferentially superior.
本発明による方法の主要なステップは、拡散アーク放電によるプラズマの発生である。この場合、蒸発材料の表面に衝突する高エネルギの電子ビームが迅速にかつ高周波で周期的に逸らされ、これによって、蒸発させたい材料の表面の少なくとも一部が、いわば均一に加熱され、最終的に蒸発させられる。同時に、たとえば坩堝内に位置する蒸発させたい材料は、電流強のアーク放電の陰極として接続される。主として、蒸発材料の、電子ビームによって加熱される表面の領域で燃焼する、いわゆる「拡散アーク」が形成される。極端に高い電流密度を備えたルートを形成する通常のアーク放電に比べて、拡散アーク放電は、蒸発物における拡散的なかつ面状の拡がりを有している。この拡がりは、蒸発物の、いわば均一に加熱された表面にほぼ相当している。これによって、発生させられた金属蒸気の主要な割合がイオン化され、したがって、全体的に高いイオン化度が達成される。このことは、高い硬さを備えた密な層の形成に寄与する。さらに、拡散アーク放電の使用は、この拡散アーク放電がスパッタを放出せず、したがって、大きな面にわたるプラズマ活性化された蒸着のために特に適しているという利点を有している。 The main step of the method according to the invention is the generation of a plasma by a diffuse arc discharge. In this case, the high-energy electron beam impinging on the surface of the evaporating material is deflected rapidly and periodically at high frequencies, so that at least a part of the surface of the material to be evaporated is heated, so to speak, finally. Is evaporated. At the same time, the material to be evaporated, for example located in the crucible, is connected as the cathode of a strong arc discharge. A so-called “diffusion arc” is formed which burns mainly in the area of the surface of the evaporated material heated by the electron beam. Compared to normal arc discharges that form routes with extremely high current densities, diffuse arc discharges have a diffusive and planar spread in the evaporate. This spread substantially corresponds to the surface of the evaporant, which is so uniformly heated. This ionizes a major proportion of the generated metal vapor, thus achieving a high degree of ionization overall. This contributes to the formation of a dense layer with high hardness. Furthermore, the use of a diffusion arc discharge has the advantage that this diffusion arc discharge does not sputter and is therefore particularly suitable for plasma activated deposition over large surfaces.
1つの実施態様では、アセチレン(C2H2)が反応性ガスとして真空チャンバ内に流入させられ、したがって、炭素含有の雰囲気を真空チャンバ内に発生させる。両炭素原子の間の三重結合によって、このガスは特に高い反応性を有している。しかし、炭素含有の雰囲気を真空チャンバ内に発生させるためには、たとえばメタンまたはブタンが真空チャンバ内に流入させられてもよい。 In one embodiment, acetylene (C 2 H 2 ) is flowed into the vacuum chamber as a reactive gas, thus creating a carbon-containing atmosphere in the vacuum chamber. Due to the triple bond between both carbon atoms, this gas has a particularly high reactivity. However, in order to generate a carbon-containing atmosphere in the vacuum chamber, for example, methane or butane may be flowed into the vacuum chamber.
反応性ガスを真空チャンバ内に流入させ、これによって、化学量論的な層を析出しても有利である。なぜならば、この層が高い硬さ値を有しているからである。このためには、真空チャンバ内の1×10−3mbar〜5×10−2mbarの反応性ガス圧が適している。 It is also advantageous to allow a reactive gas to flow into the vacuum chamber, thereby depositing a stoichiometric layer. This is because this layer has a high hardness value. For this purpose, a reactive gas pressure in the vacuum chamber of 1 × 10 −3 mbar to 5 × 10 −2 mbar is suitable.
本発明により析出される炭化物層の硬さは、付加的な反応性ガスとして、窒素含有のまたは/かつ酸素含有のガスが真空チャンバ内に流入させられることによって高めることもできる。イオン化された蒸気ガス粒子もしくは反応性ガス粒子を対象物の表面に向かって加速させる、50V〜300Vの範囲内の負のバイアス電圧を、被覆したい対象物に印加することも、層特性、たとえば層の耐摩耗性、硬さおよび密度に有利に影響を与える。この負のバイアス電圧は、たとえば蒸発物が位置する坩堝または陽極に対して切り換えられてよい。バイアス電圧として、直流電圧もしくは中間周波にまたは高周波にパルス化された電圧が、被覆したい対象物に印加されてよい。パルスバイアスの使用は、特に劣導電性の炭化物層の析出時のプロセスガイドの安定性に対して特に有利に影響を与える。 The hardness of the carbide layer deposited according to the invention can also be increased by flowing a nitrogen-containing and / or oxygen-containing gas into the vacuum chamber as an additional reactive gas. Applying a negative bias voltage in the range of 50V to 300V to the object to be coated, which accelerates the ionized vapor or reactive gas particles towards the surface of the object, can also be applied to the layer properties, eg layer It advantageously affects the wear resistance, hardness and density of the steel. This negative bias voltage may be switched, for example with respect to the crucible or anode where the evaporant is located. As a bias voltage, a DC voltage or a voltage pulsed to an intermediate frequency or to a high frequency may be applied to an object to be coated. The use of a pulse bias has a particularly advantageous effect on the stability of the process guide, particularly during the deposition of poorly conductive carbide layers.
最小量のプラズマ活性化を実現するためには、蒸発材料の表面に対する拡散アーク放電の少なくとも100Aのアーク電流が形成されなければならない。たとえばマグネトロンスパッタリングによる炭化物硬質物質層の析出時には、約10nm/sの最大の析出率が獲得可能であるのに対して、本発明による方法によって、数百nm/sの析出率が可能となる。極めて良好な層特性は、50nm/s〜250nm/sの範囲内の析出率でかつ10nm〜10μm、有利には1μm〜5μmの層厚さで得られる。 In order to achieve a minimum amount of plasma activation, an arc current of at least 100 A of diffuse arc discharge to the surface of the evaporated material must be formed. For example, when a carbide hard material layer is deposited by magnetron sputtering, a maximum deposition rate of about 10 nm / s can be obtained, whereas the method according to the present invention enables a deposition rate of several hundred nm / s. Very good layer properties are obtained with a deposition rate in the range of 50 nm / s to 250 nm / s and a layer thickness of 10 nm to 10 μm, preferably 1 μm to 5 μm.
別の実施態様では、炭化物硬質物質層と、被覆したい対象物との間に少なくとも1つの下側層が被着される。これによって、生ぜしめられる機械的な応力が補償され、したがって、硬質物質層のより良好な固着が実現される。 In another embodiment, at least one lower layer is deposited between the carbide hard material layer and the object to be coated. This compensates for the mechanical stresses that are generated, and thus a better anchoring of the hard material layer is achieved.
以下に、本発明を有利な実施例につき詳しく説明する。図1には、本発明による方法を実施することができる装置が概略的に示してある。真空チャンバ1内には、蒸発坩堝2が配置されている。この蒸発坩堝2内では、蒸発材料3としてチタンが蒸発させられるようになっている。真空チャンバには、高出力軸方向電子ビーム銃4が接続されている。この高出力軸方向電子ビーム銃4は電子ビーム5を発生させる。この電子ビーム5は電磁式の変向装置(図示せず)によって、蒸発坩堝2内に位置する蒸発材料3の表面に逸らされ、したがって、蒸発材料3を加熱し、最終的に蒸発させる。蒸発坩堝2の上方には、電極6が配置されている。この電極6は蒸気室を取り囲んでいて、蒸発坩堝2に対して正の電圧に調整され得る。電極6の上方で搬送装置7において運動させられる鋼製の対象物8は、蒸発させられた材料で被覆される。
In the following, the invention will be described in detail with reference to advantageous embodiments. FIG. 1 schematically shows an apparatus in which the method according to the invention can be carried out. An
電子ビーム銃4によって、約50kwの出力を備えた高エネルギの電子ビーム5が迅速に高周波でかつ周期的に逸らされ、これによって、蒸発材料3の表面の少なくとも一部が、いわば均一に加熱され、蒸発させられる。電極6と蒸発坩堝2との間で給電装置9によって印加された約30Vの直流電圧は、約300Aの電流を備えた、いわゆる「拡散アーク放電」の形成を生ぜしめる。この拡散アーク放電は、主として、電子ビーム5によって蒸発材料3の、いわば均一に加熱された表面を燃焼する。これによって、蒸気の高いイオン化度が得られる。給電装置10によって対象物8に印加される−100Vのバイアス電圧は、対象物8の表面への、イオン化された蒸気粒子の加速を生ぜしめる。
The electron beam gun 4 quickly deflects the high-
チタン蒸発の間の真空チャンバ1内へのガス流入システム11によるアセチレンガスの流入によって、3μmの厚さの化学量論的なTiC層が対象物8に約100nm/sの一定の被覆率で析出される。この場合、対象物8は200℃の温度に保持される。試験してみて、このように製造されたTiC層が、33GPaの高い硬さと、高い耐摩耗性とを有していることが分かった。
The inflow of acetylene gas by the
1 真空チャンバ、 2 蒸発坩堝、 3 蒸発材料、 4 高出力軸方向電子ビーム銃、 5 電子ビーム、 6 電極、 7 搬送装置、 8 対象物、 9 給電装置、 10 給電装置、 11 ガス流入システム DESCRIPTION OF SYMBOLS 1 Vacuum chamber, 2 Evaporation crucible, 3 Evaporation material, 4 High output axial electron beam gun, 5 Electron beam, 6 Electrode, 7 Conveyance apparatus, 8 Object, 9 Power supply apparatus, 10 Power supply apparatus, 11 Gas inflow system
Claims (12)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004019169A DE102004019169A1 (en) | 2004-04-20 | 2004-04-20 | Process for depositing carbide layers of refractory metals |
DE102004019169.7 | 2004-04-20 | ||
PCT/EP2005/001851 WO2005109466A1 (en) | 2004-04-20 | 2005-02-23 | Method for depositing carbide coatings of high-fusion metals |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007533853A JP2007533853A (en) | 2007-11-22 |
JP4868534B2 true JP4868534B2 (en) | 2012-02-01 |
Family
ID=34960529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007508741A Expired - Fee Related JP4868534B2 (en) | 2004-04-20 | 2005-02-23 | Method for depositing a high melting point metal carbide layer |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1738395A1 (en) |
JP (1) | JP4868534B2 (en) |
KR (1) | KR20060134994A (en) |
CN (1) | CN1922708A (en) |
DE (1) | DE102004019169A1 (en) |
WO (1) | WO2005109466A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6096754A (en) * | 1983-10-28 | 1985-05-30 | Japan Atom Energy Res Inst | Coating method of titanium carbide thick film |
JPS63105960A (en) * | 1986-06-07 | 1988-05-11 | Kawasaki Steel Corp | Production of metallic strip provided with ion plating film having excellent adhesiveness and ion plating device |
JPH03232957A (en) * | 1990-02-09 | 1991-10-16 | Nippon Steel Corp | Production of wear resistant member |
JPH05239630A (en) * | 1992-02-28 | 1993-09-17 | Nkk Corp | Ion plating method and device therefor |
JPH06264213A (en) * | 1993-03-12 | 1994-09-20 | Sekisui Chem Co Ltd | Titanium-based thin-film-coated metallic member |
US5614273A (en) * | 1993-10-27 | 1997-03-25 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung, E.V. | Process and apparatus for plasma-activated electron beam vaporization |
JP2000064028A (en) * | 1998-06-09 | 2000-02-29 | Sumitomo Heavy Ind Ltd | FORMATION OF Cu FILM |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5227203A (en) * | 1992-02-24 | 1993-07-13 | Nkk Corporation | Ion-plating method and apparatus therefor |
DE4336680C2 (en) * | 1993-10-27 | 1998-05-14 | Fraunhofer Ges Forschung | Process for electron beam evaporation |
-
2004
- 2004-04-20 DE DE102004019169A patent/DE102004019169A1/en not_active Ceased
-
2005
- 2005-02-23 EP EP05707580A patent/EP1738395A1/en not_active Ceased
- 2005-02-23 KR KR1020067019342A patent/KR20060134994A/en not_active Application Discontinuation
- 2005-02-23 JP JP2007508741A patent/JP4868534B2/en not_active Expired - Fee Related
- 2005-02-23 WO PCT/EP2005/001851 patent/WO2005109466A1/en not_active Application Discontinuation
- 2005-02-23 CN CNA2005800053031A patent/CN1922708A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6096754A (en) * | 1983-10-28 | 1985-05-30 | Japan Atom Energy Res Inst | Coating method of titanium carbide thick film |
JPS63105960A (en) * | 1986-06-07 | 1988-05-11 | Kawasaki Steel Corp | Production of metallic strip provided with ion plating film having excellent adhesiveness and ion plating device |
JPH03232957A (en) * | 1990-02-09 | 1991-10-16 | Nippon Steel Corp | Production of wear resistant member |
JPH05239630A (en) * | 1992-02-28 | 1993-09-17 | Nkk Corp | Ion plating method and device therefor |
JPH06264213A (en) * | 1993-03-12 | 1994-09-20 | Sekisui Chem Co Ltd | Titanium-based thin-film-coated metallic member |
US5614273A (en) * | 1993-10-27 | 1997-03-25 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung, E.V. | Process and apparatus for plasma-activated electron beam vaporization |
JP2000064028A (en) * | 1998-06-09 | 2000-02-29 | Sumitomo Heavy Ind Ltd | FORMATION OF Cu FILM |
Also Published As
Publication number | Publication date |
---|---|
DE102004019169A1 (en) | 2005-11-17 |
WO2005109466A1 (en) | 2005-11-17 |
EP1738395A1 (en) | 2007-01-03 |
JP2007533853A (en) | 2007-11-22 |
KR20060134994A (en) | 2006-12-28 |
CN1922708A (en) | 2007-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Vetter | 60 years of DLC coatings: historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications | |
JP5694642B2 (en) | How to operate a pulsed arc source | |
JP4431386B2 (en) | Method for forming nanostructured functional layer and coating layer produced thereby | |
CN101743338B (en) | Vacuum treatment unit and vacuum treatment process | |
JP4849759B2 (en) | DLC layer system with improved sliding properties and process for producing such a layer system | |
JP5306198B2 (en) | Electrical insulation film deposition method | |
US20050287296A1 (en) | Method and apparatus for dispersion strengthened bond coats for thermal barrier coatings | |
JPS6319590B2 (en) | ||
BR122012006619A2 (en) | Workpiece coating method and production method of a multilayer system | |
Ehrich et al. | Adhesive metal films obtained by thermionic vacuum arc (TVA) deposition | |
US20060016914A1 (en) | Coated nozzle for laser cutting | |
JP2007126754A (en) | Vacuum arc vapor deposition system | |
JPH0356675A (en) | Coating of ultrahard alloy base and ultrahard tool manufactured by means of said coating | |
JP4868534B2 (en) | Method for depositing a high melting point metal carbide layer | |
JPH07108404A (en) | Surface coated cutting tool | |
JP2006169614A (en) | Metal-diamond-like-carbon (dlc) composite film, forming method therefor and sliding member | |
JP2590349B2 (en) | Wear-resistant coating method | |
JP4210141B2 (en) | Method for forming hard carbon nitride film | |
JP2005307288A (en) | Carbon based film and carbon based film forming apparatus | |
JPH1068070A (en) | Formation of compound coating | |
JPS6224501B2 (en) | ||
JP4259899B2 (en) | Carbon-based thin film forming method and carbon-based thin film forming apparatus | |
JP6569900B2 (en) | Sputtering apparatus and film forming method | |
JP2667309B2 (en) | Abrasion resistant film formation method by HCD ion plating | |
JPH1068069A (en) | Formation of metallic boride coating film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071113 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20101227 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20101228 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110210 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20110510 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20110517 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20110610 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20110617 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110705 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110930 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111005 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111104 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111111 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141125 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |