JP4854075B2 - Method for producing ultra-low sulfur gas oil base and ultra-low sulfur gas oil composition comprising the ultra-low sulfur gas oil base - Google Patents
Method for producing ultra-low sulfur gas oil base and ultra-low sulfur gas oil composition comprising the ultra-low sulfur gas oil base Download PDFInfo
- Publication number
- JP4854075B2 JP4854075B2 JP2006177418A JP2006177418A JP4854075B2 JP 4854075 B2 JP4854075 B2 JP 4854075B2 JP 2006177418 A JP2006177418 A JP 2006177418A JP 2006177418 A JP2006177418 A JP 2006177418A JP 4854075 B2 JP4854075 B2 JP 4854075B2
- Authority
- JP
- Japan
- Prior art keywords
- sulfur
- gas oil
- ultra
- low sulfur
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
本発明は、硫黄分を1質量ppm以下に低減した超低硫黄軽油基材の製造方法及び超低硫黄軽油組成物に関する。 The present invention relates to a method for producing an ultra-low sulfur gas oil base material having a sulfur content reduced to 1 mass ppm or less and an ultra-low sulfur gas oil composition.
近年、大気環境改善のために、軽油の品質規制値が世界的に厳しくなる傾向にある。特に、軽油中の硫黄分はディーゼル車の排気ガス対策として期待されている酸化触媒、窒素酸化物(NOx)還元触媒、連続再生式ディーゼル排気微粒子除去フィルター等の後処理装置の耐久性に影響を及ぼす懸念があり、軽油の低硫黄化が要請されている。したがって、軽油中の硫黄分は低減すればするほど、排気ガス中の硫酸塩の生成を抑え、窒素酸化物還元触媒の劣化を抑制し、また後処理触媒上での粒子状物質の生成を低減して窒素酸化物及び粒子状物質の排出抑制が期待できる。 In recent years, the quality regulation value of light oil tends to be stricter worldwide in order to improve the air environment. In particular, the sulfur content in diesel oil has an impact on the durability of post-treatment devices such as oxidation catalysts, nitrogen oxide (NOx) reduction catalysts, and continuously regenerating diesel exhaust particulate removal filters that are expected as countermeasures for diesel vehicle exhaust gases. As a result, there is a demand for reducing the sulfur content of diesel oil. Therefore, the lower the sulfur content in light oil, the lower the generation of sulfate in the exhaust gas, the deterioration of the nitrogen oxide reduction catalyst, and the reduction in the generation of particulate matter on the aftertreatment catalyst. Therefore, it can be expected that nitrogen oxides and particulate matter are prevented from being discharged.
このような状況下で、軽油中の硫黄分を大幅に除去する超深度脱硫技術の開発が進められている。軽油中の硫黄分の低減化技術としては、通常、水素化脱硫の運転条件をより脱硫が進みやすい条件にすること、例えば、反応温度を上げることや液空間速度(LHSV)を下げること等が考えられる。しかし、反応温度を上げると、触媒上に炭素質が析出して触媒の活性が急速に低下し、またLHSVを下げると、脱硫能は向上するものの、精製処理能力が低下するため設備の規模を拡張する必要が生じる。さらに、運転条件を過酷にすると芳香族の水素化反応が過度に進行し、多量の水素消費を伴い、製造コストが高くなるため好ましくない。 Under such circumstances, development of an ultra-deep desulfurization technology that significantly removes sulfur content in light oil is being promoted. As a technology for reducing the sulfur content in light oil, usually, the operating conditions for hydrodesulfurization are made conditions that facilitate desulfurization, for example, raising the reaction temperature or lowering the liquid space velocity (LHSV). Conceivable. However, when the reaction temperature is raised, carbonaceous matter is deposited on the catalyst, and the activity of the catalyst is rapidly reduced. When LHSV is lowered, the desulfurization ability is improved, but the refining capacity is lowered, so the scale of the equipment is reduced. There is a need to expand. Furthermore, if the operating conditions are severe, the aromatic hydrogenation reaction proceeds excessively, and a large amount of hydrogen is consumed, resulting in an increase in production cost.
また、硫黄分が5〜10質量ppmの水素化精製油を水素化触媒の存在下で深度水素化処理して、硫黄分を5質量ppm以下の深度水素化精製軽油を得、この深度水素化精製軽油と未精製油及び/又は水素化精製油を原料とし、水素化精製触媒の存在下に硫黄分5質量ppm以下、全芳香族分が3〜12容量%或いは10容量%以下の軽油組成物を製造する方法が、開示されている(特許文献1及び2)。しかし、この方法は深度水素化処理において、2〜10MPaという高圧水素存在下で反応を行うことや、0.1〜2hr−1という低いLHSVが必要であるため大きな反応器を要することや、芳香族分をほとんど水素化してしまうため水素消費量がかなり大きいことから、経済的な製造といった観点からは問題がある。また、全芳香族分が12容量%以下まで低減されているために密度が低下し、発熱量が低減するため燃費の悪化や出力低下が起こり、さらには、燃料噴射系で使用しているシールゴム部材等への影響により、燃料の漏れ(リーク)等も懸念される。 Further, the hydrorefined oil having a sulfur content of 5 to 10 mass ppm is subjected to deep hydrotreating in the presence of a hydrogenation catalyst to obtain a deep hydrorefined gas oil having a sulfur content of 5 mass ppm or less. Gas oil composition using refined light oil and unrefined oil and / or hydrorefined oil as raw materials, and sulfur content of 5 mass ppm or less and total aromatic content of 3 to 12 vol% or 10 vol% or less in the presence of a hydrorefining catalyst A method for manufacturing a product is disclosed (Patent Documents 1 and 2). However, in this method, in the deep hydrogenation treatment, the reaction is performed in the presence of high-pressure hydrogen of 2 to 10 MPa, or a low LHSV of 0.1 to 2 hr −1 is required. From the viewpoint of economical production, there is a problem because the hydrogen consumption is considerably large because the group is almost hydrogenated. Moreover, since the total aromatic content is reduced to 12% by volume or less, the density is lowered, the calorific value is reduced, the fuel consumption is deteriorated and the output is reduced, and further, the seal rubber used in the fuel injection system There is also concern about fuel leakage (leakage) due to the influence on the members.
これに対して、本出願人は、先に吸着脱硫によって芳香族分をほとんど減らすことなく軽油中の硫黄分を10質量ppm以下に低減する方法を提案した(特許文献3)。しかし、この吸着脱硫では硫黄を取り込む能力が低く、長期間にわたって運転を行う場合には頻繁に再生処理を行う必要があり経済的ではない。
縮合環のヘテロ化合物を含む石油又は化学ストリームから選択されるストリームを、水素化脱硫触媒を含む反応域と硫化水素吸収剤物質を含む反応域によって芳香族飽和に好ましい条件で脱硫する方法が開示されている(特許文献4)。しかしこの方法では芳香族飽和に伴う水素消費が著しく、製造コストが高くなり好ましくない。
Disclosed is a method of desulfurizing a stream selected from petroleum or chemical streams containing heterocycles of fused rings under conditions favorable for aromatic saturation by a reaction zone containing a hydrodesulfurization catalyst and a reaction zone containing a hydrogen sulfide absorbent material. (Patent Document 4). However, this method is not preferable because hydrogen consumption accompanying aromatic saturation is remarkably high, and the production cost is increased.
本発明は、上記問題を解決するもので、比較的マイルドな条件で水素の消費を大きく増やすことなく、しかも芳香族分を著しく減少させることなく、硫黄分1質量ppm以下の超低硫黄軽油基材を製造する方法を提供し、さらに発熱量が高く、燃費や出力に優れ、燃料噴射系で使用しているシールゴム部材等への影響がなく、燃料の漏れを生じない、硫黄分1質量ppm以下の超低硫黄軽油組成物を提供することを課題とする。 The present invention solves the above problems, and does not significantly increase the consumption of hydrogen under relatively mild conditions, and does not significantly reduce the aromatic content, and has an ultra-low sulfur gas oil base having a sulfur content of 1 mass ppm or less. Provides a method of manufacturing the material, has a high calorific value, excellent fuel economy and output, does not affect the seal rubber member used in the fuel injection system, and does not cause fuel leakage, 1 mass ppm of sulfur It is an object to provide the following ultra-low sulfur gas oil composition.
本発明者は、前記の課題を解決すべく鋭意研究を進めたところ、硫黄収着機能をもった脱硫剤による脱硫処理(単に収着脱硫ということもある)において、得られる超低硫黄軽油中の硫黄分は、収着脱硫の原料である低硫黄軽油留分の性状、特に硫黄や多環芳香族の含有量に影響されることを見出し、本発明に想到した。すなわち本発明は、次のとおりの超低硫黄軽油基材の製造方法、あるいはかかる方法によって製造された超低硫黄軽油基材を含む超低硫黄軽油組成物である。 The present inventor has conducted extensive research to solve the above-mentioned problems. As a result, in the desulfurization treatment using a desulfurization agent having a sulfur sorption function (sometimes simply referred to as sorption / removal sulfur), The present inventors have found that the sulfur content is influenced by the properties of the low sulfur gas oil fraction that is the raw material for the detachable sulfur, particularly the content of sulfur and polycyclic aromatics. That is, the present invention is a method for producing an ultra-low sulfur gas oil base as follows, or an ultra-low sulfur gas oil composition comprising an ultra-low sulfur gas oil base produced by such a method.
本発明は、硫黄分が2〜50質量ppm、多環芳香族の含有量が4容量%以下の低硫黄軽油留分を、水素共存下で硫黄収着機能を持った多孔質脱硫剤と接触させて脱硫処理し、硫黄分1質量ppm以下の超低硫黄軽油基材を得る超低硫黄軽油基材の製造方法であり、該超低硫黄軽油基材中の多環芳香族の含有量が3容量%以下であること、前記低硫黄軽油留分中のアルキルジベンゾチオフェン類の全硫黄分に占める割合が70質量%以上であることが好ましい。
さらに、前記硫黄収着機能を持った多孔質脱硫剤が、亜鉛と他の金属を含み、他の金属が、銅、ニッケル、コバルト及び鉄から選ばれる少なくとも1種の金属であること、特に、硫黄収着機能を持った多孔質脱硫剤が、亜鉛及びニッケルを含むことが好ましい。
また、本発明は、このような方法によって製造された超低硫黄軽油基材を含む硫黄分1質量ppm以下の超低硫黄軽油組成物であり、特には、多環芳香族の含有量が3容量%以下であることが好ましい。
In the present invention, a low sulfur gas oil fraction having a sulfur content of 2 to 50 mass ppm and a polycyclic aromatic content of 4% by volume or less is contacted with a porous desulfurization agent having a sulfur sorption function in the presence of hydrogen. The ultra-low sulfur gas oil base material is obtained by desulfurizing and obtaining an ultra-low sulfur gas oil base material having a sulfur content of 1 mass ppm or less, and the content of polycyclic aromatics in the ultra-low sulfur gas oil base material is It is preferable that it is 3 volume% or less, and the ratio which occupies for the total sulfur content of the alkyl dibenzothiophenes in the said low sulfur gas oil fraction is 70 mass% or more.
Furthermore, the porous desulfurization agent having the sulfur sorption function contains zinc and another metal, and the other metal is at least one metal selected from copper, nickel, cobalt and iron, in particular, The porous desulfurization agent having a sulfur sorption function preferably contains zinc and nickel.
Further, the present invention is an ultra-low sulfur gas oil composition having a sulfur content of 1 mass ppm or less including an ultra-low sulfur gas oil base material produced by such a method, and in particular, the polycyclic aromatic content is 3 It is preferable that it is below volume%.
本発明の超低硫黄軽油基材の製造方法によれば、比較的マイルドな条件で、芳香族分を著しく減少させることなく、長期間にわたって硫黄分が1質量ppm以下の超低硫黄軽油基材を製造することができ、しかも、水素の消費が少なくて済み、製造コストを低く押さえることができる等の格別の効果を奏する。
また、本発明の超低硫黄軽油組成物は、硫黄分が1質量ppm以下であるので、排気ガス中の硫黄酸化物の排出量を低減でき、また窒素酸化物還元触媒の劣化を抑制し、後処理触媒上での粒子状物質の生成を低減して窒素酸化物及び粒子状物質の排出抑制ができる等の環境負荷を低減できるとともに、芳香族分が適度に残存されていることから、発熱量が高く、自動車等の燃費や運転出力に優れ、燃料噴射系で使用しているシールゴム部材等への影響がなく、燃料の漏れを生じないという格別の効果を奏する。
According to the method for producing an ultra-low sulfur gas oil base material of the present invention, an ultra-low sulfur gas oil base material having a sulfur content of 1 ppm by mass or less over a long period of time under a relatively mild condition without significantly reducing the aromatic content. In addition, the consumption of hydrogen can be reduced, and the production cost can be kept low.
Moreover, since the ultra-low sulfur gas oil composition of the present invention has a sulfur content of 1 ppm by mass or less, it can reduce the amount of sulfur oxide emissions in the exhaust gas, and suppress the deterioration of the nitrogen oxide reduction catalyst. The generation of particulate matter on the post-treatment catalyst can be reduced to reduce the environmental burden such as the suppression of nitrogen oxides and particulate matter emissions, and the aromatics remain at a moderate level. The amount is high, the fuel consumption and driving output of an automobile is excellent, the seal rubber member used in the fuel injection system is not affected, and the fuel leakage does not occur.
〔硫黄収着機能をもった脱硫剤による脱硫工程〕
本発明の超低硫黄軽油基材の製造方法においては、低硫黄軽油留分を水素の共存下で硫黄収着機能を持った多孔質脱硫剤と接触させる方法(収着脱硫)を用いる。本発明に用いる上記硫黄収着機能を持った多孔質脱硫剤とは、有機硫黄化合物(特にアルキルジベンゾチオフェン類)中の硫黄原子を脱硫剤に固定化するとともに、有機硫黄化合物中の硫黄原子以外の炭化水素残基については、有機硫黄化合物中の炭素−硫黄結合を開裂させることによって脱硫剤から脱離させる機能をもった多孔質脱硫剤をいう。この炭化水素残基が脱離する際には、硫黄との結合が開裂した炭素に、系内に存在する水素が付加する。したがって、有機硫黄化合物から硫黄原子が除かれた炭化水素化合物が生成物として得られることになる。ただし、硫黄原子が除かれた炭化水素化合物は、さらに水素化、異性化、分解等の反応を受けた生成物を与えることがある。一方、硫黄は脱硫剤に固定化されるため、水素化精製とは異なり、生成物として硫化水素などの硫黄化合物を発生しない。
[Desulfurization process with desulfurization agent with sulfur sorption function]
In the method for producing an ultra-low sulfur gas oil base material according to the present invention, a method of contacting a low sulfur gas oil fraction with a porous desulfurization agent having a sulfur sorption function in the presence of hydrogen (removable sulfur) is used. The porous desulfurization agent having sulfur sorption function used in the present invention is to fix sulfur atoms in organic sulfur compounds (especially alkyldibenzothiophenes) to the desulfurization agent, and other than sulfur atoms in organic sulfur compounds. Is a porous desulfurization agent having a function of desorbing from the desulfurization agent by cleaving a carbon-sulfur bond in the organic sulfur compound. When this hydrocarbon residue is eliminated, hydrogen present in the system is added to carbon whose bond with sulfur has been cleaved. Therefore, a hydrocarbon compound obtained by removing sulfur atoms from the organic sulfur compound is obtained as a product. However, hydrocarbon compounds from which sulfur atoms have been removed may give products that have undergone reactions such as hydrogenation, isomerization, and decomposition. On the other hand, since sulfur is fixed to the desulfurization agent, unlike hydrorefining, sulfur compounds such as hydrogen sulfide are not generated as products.
この多孔質脱硫剤は、有機硫黄化合物に対する収着機能を有するものであれば特に限定はないが、多孔質脱硫剤に含まれる金属が、亜鉛等のみでは硫化水素しか除去できず、銅、ニッケル等の他の金属でも1種だけでは有機硫黄化合物を十分に脱硫することはできない。脱硫剤への硫黄取込容量を大きくするためには第1の金属として亜鉛、第2の金属として銅、ニッケル、コバルト及び鉄から選ばれる金属が好ましい。特に好ましくは、第1の金属が亜鉛で、第2の金属がニッケルの組み合わせである。好ましい脱硫剤は、ニッケル、亜鉛などの金属成分を金属成分の合計で50〜85質量%、特には60〜80質量%含有する。これらの金属成分は通常酸化物または硫化物の形態で脱硫剤に含まれる。脱硫性能を向上させるためや工業的に使用するためには、さらに他の成分を添加して成形することが好ましい。また、成形、焼成された脱硫剤にさらに金属成分を含浸、担持して、焼成してもよい。脱硫剤は、水素雰囲気下で還元処理して用いるのが好ましい。脱硫剤の比表面積は、好ましくは30〜200m2/g、特には50〜150m2/g、さらには50〜100m2/gである。 The porous desulfurization agent is not particularly limited as long as it has a sorption function for organic sulfur compounds, but the metal contained in the porous desulfurization agent can remove only hydrogen sulfide only with zinc or the like, and copper, nickel The organic sulfur compound cannot be sufficiently desulfurized by using only one kind of other metals. In order to increase the capacity of sulfur incorporation into the desulfurizing agent, a metal selected from zinc as the first metal and copper, nickel, cobalt and iron as the second metal is preferable. Particularly preferably, the first metal is zinc and the second metal is a combination of nickel. A preferable desulfurizing agent contains metal components such as nickel and zinc in a total amount of 50 to 85% by mass, particularly 60 to 80% by mass of the metal components. These metal components are usually contained in the desulfurizing agent in the form of oxides or sulfides. In order to improve the desulfurization performance or to use it industrially, it is preferable to mold by adding other components. Alternatively, the molded and fired desulfurizing agent may be further impregnated and supported with a metal component and fired. The desulfurizing agent is preferably used after being reduced in a hydrogen atmosphere. The specific surface area of the desulfurizing agent is preferably 30 to 200 m 2 / g, especially 50 to 150 m 2 / g, still more 50 to 100 m 2 / g.
第1の金属に対する第2の金属含有量の比率(質量)は50%以下、好ましくは35%以下、特には2〜20%である。第1の金属の含有量に対する第2の金属の含有量の比(質量)が50%を超えると多孔質脱硫剤の寿命が著しく短くなり好ましくない。脱硫剤総量に対する第1の金属の含有量は好ましくは30質量%以上であり、さらに好ましくは50質量%以上であり、特に好ましくは60〜80質量%である。脱硫剤総量に対する第2の金属の含有量は好ましくは33質量%以下であり、さらに好ましくは20質量%以下、特に好ましくは1〜10質量%である。第1の金属の含有量が30質量%未満であったり、第2の金属の含有量が33質量%を超えたりすると、多孔質脱硫剤の寿命が短くなり好ましくない。 The ratio (mass) of the second metal content to the first metal is 50% or less, preferably 35% or less, particularly 2 to 20%. When the ratio (mass) of the content of the second metal to the content of the first metal exceeds 50%, the life of the porous desulfurizing agent is remarkably shortened, which is not preferable. The content of the first metal with respect to the total amount of the desulfurizing agent is preferably 30% by mass or more, more preferably 50% by mass or more, and particularly preferably 60 to 80% by mass. The content of the second metal with respect to the total amount of the desulfurizing agent is preferably 33% by mass or less, more preferably 20% by mass or less, and particularly preferably 1 to 10% by mass. When the content of the first metal is less than 30% by mass or the content of the second metal exceeds 33% by mass, the life of the porous desulfurizing agent is shortened, which is not preferable.
さらに、本発明に用いる脱硫剤は、ナトリウムを初めとするアルカリ金属含有量が脱硫剤総量に対して1.0質量%以下であることが好ましく、より好ましくは0.5質量%以下、さらには0.2質量%以下である。アルカリ金属が脱硫剤総量に対して1.0質量%を超えて含まれると脱硫性能が著しく低下するため好ましくない。 Further, the desulfurization agent used in the present invention preferably has an alkali metal content including sodium of 1.0% by mass or less, more preferably 0.5% by mass or less, and more preferably It is 0.2 mass% or less. If the alkali metal is contained in an amount exceeding 1.0 mass% with respect to the total amount of the desulfurizing agent, the desulfurization performance is remarkably lowered, which is not preferable.
亜鉛とニッケルを含む多孔質脱硫剤の場合、有機硫黄化合物はニッケル上で分解され、硫黄原子はまずニッケルに取り込まれる。ニッケルに取り込まれた硫黄原子は水素の存在下で亜鉛に移動する。この硫黄原子は亜鉛酸化物中の酸素原子と置き換わるため、最初ほとんど酸化物の状態であった亜鉛は反応時間が経つにつれて硫化物になっていく。亜鉛原子は必ずしもすべて脱硫剤の表面に露出しているわけではないが、表面に露出していない亜鉛酸化物中の酸素も順次硫黄に置き換わるため、亜鉛が完全に硫化物となるまで硫黄を取り込むことができる。すなわち、有機硫黄化合物が脱硫剤の表面のみに吸着する吸着脱硫の場合と比較して、収着脱硫は硫黄の取込能力が非常に高く、長寿命である。 In the case of a porous desulfurization agent containing zinc and nickel, the organic sulfur compound is decomposed on nickel, and sulfur atoms are first taken into nickel. Sulfur atoms incorporated into nickel move to zinc in the presence of hydrogen. Since this sulfur atom replaces the oxygen atom in the zinc oxide, the zinc, which was almost in the state of oxide at first, becomes a sulfide as the reaction time elapses. Not all zinc atoms are exposed on the surface of the desulfurization agent, but oxygen in zinc oxide that is not exposed on the surface is also replaced by sulfur in order, so that sulfur is taken in until zinc is completely sulfided. be able to. That is, as compared with the case of adsorptive desulfurization in which the organic sulfur compound is adsorbed only on the surface of the desulfurizing agent, the storage and desorption sulfur has a very high sulfur uptake capability and a long life.
上記の多孔質脱硫剤を用いる収着脱硫処理は、固定床流通式反応装置に充填された硫黄収着機能をもった多孔質脱硫剤に水素と原料油とを連続的に供給して接触させる形式が好ましい。具体的な脱硫処理条件としては、温度は100〜500℃が好ましく、さらには200〜400℃、特には250〜350℃である。反応温度が100℃未満だと、脱硫がほとんど進行しない。反応温度が500℃を超えると、多孔質脱硫剤中の金属成分がシンタリングして、脱硫活性が大きく低下してしまう。脱硫処理する際の水素圧力は好ましくは0.5〜10MPa、さらには1〜5MPa、特には2〜3MPaがよい。水素圧力が0.5MPa未満だと、脱水素反応によって多環芳香族が増加する場合があり、脱硫が進行しにくくなってしまう。また、水素圧力が10MPaを超えると、多環芳香族だけではなく1環芳香族もかなり水素化され、水素消費量が非常に大きくなってしまう。 The above-described sorption / removal sulfur treatment using the porous desulfurizing agent continuously supplies hydrogen and raw material oil to the porous desulfurization agent having a sulfur sorption function packed in the fixed bed flow type reactor. The format is preferred. As specific desulfurization treatment conditions, the temperature is preferably from 100 to 500 ° C, more preferably from 200 to 400 ° C, particularly from 250 to 350 ° C. When the reaction temperature is less than 100 ° C., desulfurization hardly proceeds. When the reaction temperature exceeds 500 ° C., the metal component in the porous desulfurization agent is sintered, and the desulfurization activity is greatly reduced. The hydrogen pressure during the desulfurization treatment is preferably 0.5 to 10 MPa, more preferably 1 to 5 MPa, and particularly preferably 2 to 3 MPa. If the hydrogen pressure is less than 0.5 MPa, polycyclic aromatics may increase due to the dehydrogenation reaction, and desulfurization will not proceed easily. When the hydrogen pressure exceeds 10 MPa, not only polycyclic aromatics but also monocyclic aromatics are considerably hydrogenated, resulting in a very large hydrogen consumption.
固定床流通式で多孔質脱硫剤と低硫黄軽油留分を接触させて収着脱硫処理を行う場合、LHSVは好ましくは1〜50hr−1の範囲、さらには2〜40hr−1の範囲、特には3〜10hr−1の範囲から選ぶことが好ましい。LHSVが1hr−1未満だと、収着脱硫の反応器が大きくなりすぎてしまう。LHSVが50hr−1を超えると、収着脱硫するのに十分な時間が得られない。水素/油供給比は、好ましくは10〜1,000NL/Lの範囲、さらには50〜600NL/Lの範囲、特には100〜500NL/Lの範囲から選ぶことが好ましい。水素/油供給比が10NL/L未満だと、多環芳香族がほとんど減少せず、脱硫が進行しにくくなってしまう。水素/油供給比が1,000NL/Lを超えると、水素を供給するコンプレッサーの容量が大きくなりすぎてしまう。 In the fixed bed flow type, when the collection / removal sulfur treatment is performed by contacting the porous desulfurizing agent and the low sulfur gas oil fraction, LHSV is preferably in the range of 1 to 50 hr −1 , more preferably in the range of 2 to 40 hr −1 , especially Is preferably selected from the range of 3 to 10 hr −1 . When LHSV is less than 1 hr −1 , the reactor for collecting and removing sulfur becomes too large. When the LHSV exceeds 50 hr −1 , sufficient time cannot be obtained for collecting / removing sulfur. The hydrogen / oil supply ratio is preferably selected from the range of 10 to 1,000 NL / L, more preferably 50 to 600 NL / L, and particularly preferably 100 to 500 NL / L. When the hydrogen / oil supply ratio is less than 10 NL / L, polycyclic aromatics are hardly reduced, and desulfurization is difficult to proceed. When the hydrogen / oil supply ratio exceeds 1,000 NL / L, the capacity of the compressor that supplies hydrogen becomes too large.
多孔質脱硫剤による収着脱硫処理の際、共存させる水素の純度は50容量%以上、さらには80容量%以上、特には95容量%以上が好ましい。水素純度が50容量%未満であると、水素を供給する水素コンプレッサーが大きくなって好ましくない。多孔質脱硫剤による脱硫処理の際、共存させる水素中の不純物として、硫化水素や硫化カルボニル等の硫黄化合物は、多孔質脱硫剤の収着容量を低下させるので極力含まない方がよい。好ましくは、水素中の硫黄化合物の濃度は1容量%以下、さらには0.1容量%以下、特には0.01容量%以下である。 The purity of the coexisting hydrogen during the detachable sulfur treatment with the porous desulfurizing agent is preferably 50% by volume or more, more preferably 80% by volume or more, and particularly preferably 95% by volume or more. When the hydrogen purity is less than 50% by volume, the hydrogen compressor supplying hydrogen is undesirably large. In the desulfurization treatment with the porous desulfurization agent, sulfur compounds such as hydrogen sulfide and carbonyl sulfide as impurities in the coexisting hydrogen should be contained as little as possible because they reduce the sorption capacity of the porous desulfurization agent. Preferably, the concentration of the sulfur compound in the hydrogen is 1% by volume or less, further 0.1% by volume or less, particularly 0.01% by volume or less.
前述の通り、本発明における硫黄収着機能を持った脱硫剤による収着脱硫処理では、水素化脱硫触媒による水素化脱硫処理とは異なり、生成物として硫化水素などの硫黄化合物を発生しない。したがって、反応後の水素中の硫化水素濃度が増加することはないので、硫化水素を除去せずにそのまま再び収着脱硫処理するために共存させる水素として使用することもできるし、収着脱硫処理の前工程として好ましい水素化脱硫触媒による水素化脱硫処理における水素としても使用することができる。 As described above, the sorption / removal sulfur treatment using a desulfurization agent having a sulfur sorption function in the present invention does not generate sulfur compounds such as hydrogen sulfide as a product, unlike the hydrodesulfurization treatment using a hydrodesulfurization catalyst. Therefore, since the hydrogen sulfide concentration in the hydrogen after the reaction does not increase, it can be used as coexisting hydrogen for removing and adding hydrogen sulfide without removing the hydrogen sulfide, It can also be used as hydrogen in a hydrodesulfurization treatment with a hydrodesulfurization catalyst that is preferable as a preceding step.
〔低硫黄軽油留分〕
収着脱硫に処する低硫黄軽油留分は、多環芳香族分が4容量%以下であり、好ましくは3容量%以下であり、特に好ましくは2容量%以下である。この多環芳香族分はJPI−5S−49−97に規定された方法により測定されるものであり、2環芳香族炭化水素化合物と3環芳香族炭化水素化合物の合計含有量である。3環芳香族分(3環芳香族炭化水素化合物の含有量)は好ましくは1容量%以下であり、さらには0.7容量%以下である。多環ナフテン分(2環または3環の環状飽和炭化水素化合物の合計含有量)は好ましくは20容量%以下であり、さらには15容量%以下である。収着脱硫に処する低硫黄軽油留分に含まれる多環芳香族分が4容量%を超えたり、3環芳香族分が1容量%を超えたり、多環ナフテン分が20容量%を超えると、収着脱硫工程において有機硫黄化合物の脱硫が進行しにくくなり好ましくない。収着脱硫工程に供する低硫黄軽油留分に含まれる多環芳香族分が4容量%を超えていたり、3環芳香族分が1容量%を超えている場合はあらかじめこれらを低減する必要がある。その方法については特に限定しないが、多環芳香族分が少ない原料を選択する方法、水素共存下で水素化触媒と接触させて水素化する方法や、スルフォラン等の芳香族を抽出できる溶剤で多環芳香族を抽出する方法が挙げられる。
低硫黄軽油留分の硫黄分は、2〜50質量ppmであり、2〜30質量ppm、特には2〜10質量ppmが好ましい。
[Low sulfur gas oil fraction]
The low-sulfur gas oil fraction subjected to the collection / removal sulfur has a polycyclic aromatic content of 4% by volume or less, preferably 3% by volume or less, and particularly preferably 2% by volume or less. This polycyclic aromatic component is measured by the method specified in JPI-5S-49-97, and is the total content of the bicyclic aromatic hydrocarbon compound and the tricyclic aromatic hydrocarbon compound. The tricyclic aromatic content (content of tricyclic aromatic hydrocarbon compound) is preferably 1% by volume or less, and more preferably 0.7% by volume or less. The polycyclic naphthene content (the total content of the bicyclic or tricyclic cyclic saturated hydrocarbon compounds) is preferably 20% by volume or less, and more preferably 15% by volume or less. When the polycyclic aromatic content in the low-sulfur gas oil fraction subjected to collection / removal sulfur exceeds 4 vol%, the tricyclic aromatic content exceeds 1 vol%, or the polycyclic naphthene content exceeds 20 vol% This is not preferable because desulfurization of the organic sulfur compound is difficult to proceed in the detaching and attaching sulfur process. If the polycyclic aromatics contained in the low-sulfur gas oil fraction subjected to the collecting / removing sulfur process exceeds 4% by volume or the tricyclic aromatics exceeds 1% by volume, it is necessary to reduce these in advance. is there. The method is not particularly limited, but a method of selecting a raw material having a low polycyclic aromatic content, a method of hydrogenation by contacting with a hydrogenation catalyst in the presence of hydrogen, or a solvent that can extract aromatics such as sulfolane is used. The method of extracting a ring aromatic is mentioned.
The sulfur content of the low sulfur gas oil fraction is 2 to 50 mass ppm, preferably 2 to 30 mass ppm, and particularly preferably 2 to 10 mass ppm.
また、収着脱硫工程においては、反応条件によっては多環芳香族が水素化されて単環芳香族や多環ナフテンとなる。つまり、収着脱硫を行いながら多環芳香族も減じて、多環芳香族による脱硫妨害を回避することができる。本発明の超低硫黄軽油基材の製造方法において、得られる超低硫黄軽油基材の多環芳香族分は、3容量%以下とし、好ましくは2容量%以下、より好ましくは1容量%以下、特に好ましくは0.5容量%以下であり、少ないほど好ましい。ただし、多環芳香族が水素化される条件では1環芳香族も水素化される可能性があるが、1環芳香族が過剰に水素化されることは、水素消費が極度に増大し、芳香族の含有量が低下してディーゼル自動車などに使うとき、燃料噴射系で使用しているシールゴム部材等への影響の抑制という観点から好ましくない。なお、多環芳香族の水素化で、芳香族の含有量は大きく変化しないが、1環芳香族の水素化は、水素化した量どおりに芳香族含有量を変化させる。したがって、本発明の超低硫黄軽油基材の製造方法において、得られる超低硫黄軽油基材の1環芳香族分は、好ましくは3容量%以上であり、さらに好ましくは5容量%以上であり、特には10〜20容量%である。収着脱硫工程における1環芳香族の減少量は50%以下に抑えるのが好ましく、さらには30%以下、特には10%以下である。 Further, in the storage / detachment sulfur process, depending on the reaction conditions, the polycyclic aromatics are hydrogenated to form monocyclic aromatics or polycyclic naphthenes. In other words, polycyclic aromatics can be reduced while collecting / removing sulfur, and desulfurization interference by polycyclic aromatics can be avoided. In the method for producing an ultra-low sulfur gas oil base material of the present invention, the polycyclic aromatic component of the obtained ultra-low sulfur gas oil base material is 3% by volume or less, preferably 2% by volume or less, more preferably 1% by volume or less. Especially preferably, it is 0.5 volume% or less, and it is so preferable that it is small. However, under conditions where polycyclic aromatics are hydrogenated, monocyclic aromatics may also be hydrogenated. However, excessive hydrogenation of monocyclic aromatics results in extremely high hydrogen consumption, When the aromatic content is lowered and used in a diesel vehicle or the like, it is not preferable from the viewpoint of suppressing the influence on the seal rubber member used in the fuel injection system. In addition, although the aromatic content does not change greatly by polycyclic aromatic hydrogenation, the hydrogenation of monocyclic aromatics changes the aromatic content according to the hydrogenated amount. Therefore, in the method for producing an ultra-low sulfur gas oil base material of the present invention, the monocyclic aromatic content of the obtained ultra-low sulfur gas oil base material is preferably 3% by volume or more, more preferably 5% by volume or more. In particular, it is 10 to 20% by volume. It is preferable to suppress the amount of monocyclic aromatics to be reduced to 50% or less, more preferably 30% or less, and particularly 10% or less in the collecting / removing sulfur process.
収着脱硫工程に供する低硫黄軽油留分を得る方法としては、後述するように軽油留分を水素化脱硫触媒による水素化脱硫処理を行うのが好ましい方法である。この水素化脱硫処理では、有機硫黄化合物のうちアルキルジベンゾチオフェン類が最も残留しやすい硫黄化合物であり、一方、収着脱硫では、水素化脱硫よりもマイルドな条件でアルキルジベンゾチオフェン類を脱硫することができる。したがって、収着脱硫工程に供する低硫黄軽油留分の全硫黄分に占めるアルキルジベンゾチオフェン類硫黄化合物の割合は、硫黄分として70質量%以上、さらには80質量%以上、特には90質量%以上であるのが好ましい。 As a method for obtaining a low-sulfur gas oil fraction to be subjected to the collection / removal sulfur process, it is preferable to subject the gas oil fraction to hydrodesulfurization treatment using a hydrodesulfurization catalyst as described later. In this hydrodesulfurization treatment, alkyl dibenzothiophenes are the most likely sulfur compounds among organic sulfur compounds, while in the desorption and desulfurization, alkyl dibenzothiophenes are desulfurized under milder conditions than hydrodesulfurization. Can do. Therefore, the proportion of the alkyldibenzothiophene sulfur compound in the total sulfur content of the low-sulfur gas oil fraction used for the collection and removal sulfur process is 70% by mass or more, further 80% by mass or more, particularly 90% by mass or more as the sulfur content. Is preferred.
なお、ここでいうアルキルジベンゾチオフェン類硫黄化合物とは、2−メチルジベンゾチオフェン、2−エチルジベンゾチオフェン、2,3−ジメチルジベンゾチオフェン、2,3,4−トリメチルジベンゾチオフェン等のジベンゾチオフェン骨格にアルキル基が付いている硫黄化合物のことである。さらに、アルキルジベンゾチオフェン類の中でも、ジベンゾチオフェン骨格の4位と6位にアルキル基を持つアルキルジベンゾチオフェン類は、軽油留分の水素化脱硫触媒による水素化脱硫処理において特に残留しやすい硫黄化合物であるため、低硫黄軽油留分の全硫黄分に占めるジベンゾチオフェン骨格の4位と6位にアルキル基を持つアルキルジベンゾチオフェン類硫黄化合物の割合は、硫黄分として50質量%以上、さらには70質量%以上、特には90質量%以上であるのが好ましい。ジベンゾチオフェン骨格の4位と6位にアルキル基を持つアルキルジベンゾチオフェン類硫黄化合物としては、4,6−ジメチルジベンゾチオフェン、4,6−ジエチルジベンゾチオフェン、4,6,7−トリメチルジベンゾチオフェン等が挙げられる。 In addition, the alkyl dibenzothiophene sulfur compound referred to here is alkyl dibenzothiophene such as 2-methyldibenzothiophene, 2-ethyldibenzothiophene, 2,3-dimethyldibenzothiophene, 2,3,4-trimethyldibenzothiophene. It is a sulfur compound with a group. Furthermore, among the alkyldibenzothiophenes, alkyldibenzothiophenes having alkyl groups at the 4-position and 6-position of the dibenzothiophene skeleton are sulfur compounds that are particularly liable to remain in hydrodesulfurization treatment using hydrodesulfurization catalyst for light oil fractions. Therefore, the ratio of the alkyl dibenzothiophene sulfur compound having an alkyl group at the 4-position and the 6-position of the dibenzothiophene skeleton in the total sulfur content of the low-sulfur gas oil fraction is 50 mass% or more, further 70 mass as the sulfur content. % Or more, and particularly preferably 90% by mass or more. Examples of alkyl dibenzothiophene sulfur compounds having alkyl groups at the 4-position and 6-position of the dibenzothiophene skeleton include 4,6-dimethyldibenzothiophene, 4,6-diethyldibenzothiophene, 4,6,7-trimethyldibenzothiophene, and the like. Can be mentioned.
〔水素化脱硫触媒による水素化脱硫〕
石油精製において、原油を蒸留して得られる軽油留分には硫黄分が通常5,000〜20,000質量ppm含まれるが、これを何も処理せずに硫黄収着機能をもった多孔質脱硫剤による脱硫処理を行うと、多孔質脱硫剤の寿命が著しく短くなり実用に耐えない。このため、硫黄分が1質量ppm以下の超低硫黄軽油基材を製造する場合は多孔質脱硫剤による脱硫処理の前に、硫黄分が2〜50質量ppmになるように脱硫処理するのであるが、この硫黄分が2〜50質量ppmの低硫黄軽油留分を得る方法は、硫黄分がこの範囲に入ればどんな方法で行っても良いが、水素化脱硫触媒による水素化脱硫処理が好ましい方法である。この水素化脱硫処理により、多環芳香族分を低減することもできる。
[Hydrodesulphurization with hydrodesulfurization catalyst]
In oil refining, gas oil fractions obtained by distilling crude oil usually contain 5,000 to 20,000 ppm by mass of sulfur, but without any treatment, the porous material has a sulfur sorption function. When desulfurization treatment is performed with a desulfurizing agent, the life of the porous desulfurizing agent is remarkably shortened and cannot be practically used. For this reason, when producing an ultra-low sulfur light oil base material having a sulfur content of 1 mass ppm or less, the desulfurization treatment is performed so that the sulfur content is 2 to 50 mass ppm before the desulfurization treatment with the porous desulfurization agent. However, the method for obtaining a low sulfur gas oil fraction having a sulfur content of 2 to 50 ppm by mass may be carried out by any method as long as the sulfur content falls within this range, but hydrodesulfurization treatment with a hydrodesulfurization catalyst is preferred. Is the method. This hydrodesulfurization treatment can also reduce the polycyclic aromatic content.
この水素化脱硫処理に用いる水素化脱硫触媒としては、周期律表第6族の元素と第9族及び/又は第10族の元素を含む触媒が好適に用いられる。周期律表第6族の元素としてはモリブデン、タングステン、第9族の元素としてはコバルト、第10族の元素としてはニッケルが特に好ましい。これら周期律表第6族の元素と第9族及び/又は第10族の元素は、無機多孔質酸化物担体に担持して用いられることが好ましい。無機多孔質酸化物担体としては、周期律表第2、第4、第13、及び第14族の元素の酸化物を用いることができる。このうちでも、シリカ、アルミナ、マグネシア、ジルコニア、ボリア、カルシア等が好適であり、これらは単独或いは2種類以上を組み合わせて使用すると良い。特には、アルミナ(γ、δ、η、χ等の各結晶構造を有するもの)、シリカ−アルミナ、シリカ、アルミナ−マグネシア、シリカ−マグネシア、アルミナ−シリカ−マグネシアが好ましい。なお、ここで周期律表はIUPAC、1990年勧告による。 As the hydrodesulfurization catalyst used in this hydrodesulfurization treatment, a catalyst containing a Group 6 element and a Group 9 and / or Group 10 element is preferably used. As the Group 6 element of the periodic table, molybdenum, tungsten, cobalt as the Group 9 element, and nickel as the Group 10 element are particularly preferable. These Group 6 elements and Group 9 and / or Group 10 elements are preferably used by being supported on an inorganic porous oxide carrier. As the inorganic porous oxide carrier, oxides of elements of Groups 2, 4, 13, and 14 of the periodic table can be used. Among these, silica, alumina, magnesia, zirconia, boria, calcia and the like are suitable, and these may be used alone or in combination of two or more. In particular, alumina (having each crystal structure such as γ, δ, η, and χ), silica-alumina, silica, alumina-magnesia, silica-magnesia, and alumina-silica-magnesia are preferable. Here, the periodic table is based on IUPAC, 1990 recommendation.
上記無機多孔質酸化物担体は、共沈法や混練法等により無機含水酸化物を製造し、これを成形した後、乾燥・焼成を行う方法により、簡便に調製できる。
金属成分等の担持は、通常用いられるスプレー含浸法や浸漬法等で行うことが好適であり、無機多孔質酸化物担体の吸水率に相当する溶液を含浸させるポアフィリング法が特に好ましい。金属の担持状態を制御するために、有機化合物又は有機塩類等を金属担持液に共存させるとよい。金属成分等を含む溶液を含浸したのち50〜180℃、好ましくは80〜150℃の温度範囲で、10分〜24時間乾燥し、さらに金属成分等をより多く担持するために、乾燥と担持とを繰り返して行ってもよい。所望の金属成分を所望量含浸させた後、乾燥して得られる乾燥物を焼成処理することによって水素化処理触媒前駆体が製造される。この焼成処理は、好ましくは400〜600℃、特には450〜580℃の温度範囲で行われ、焼成温度までの昇温時間は10〜240分、焼成温度での保持時間は1〜240分が好適である。
The inorganic porous oxide carrier can be easily prepared by a method in which an inorganic hydrated oxide is produced by a coprecipitation method, a kneading method, or the like, molded, dried and fired.
The loading of the metal component or the like is preferably performed by a commonly used spray impregnation method or dipping method, and a pore filling method of impregnating a solution corresponding to the water absorption rate of the inorganic porous oxide carrier is particularly preferable. In order to control the metal loading state, an organic compound or an organic salt may be allowed to coexist in the metal loading liquid. After impregnating the solution containing the metal component and the like, drying is carried out in a temperature range of 50 to 180 ° C., preferably 80 to 150 ° C. for 10 minutes to 24 hours. May be repeated. A hydrotreatment catalyst precursor is produced by impregnating a desired amount of a desired metal component and then calcining a dried product obtained by drying. This calcination treatment is preferably performed at a temperature range of 400 to 600 ° C., particularly 450 to 580 ° C., the temperature rising time to the calcination temperature is 10 to 240 minutes, and the holding time at the calcination temperature is 1 to 240 minutes. Is preferred.
上記水素化脱硫触媒前駆体は、硫化処理することによって、水素化脱硫触媒としての活性点を発現する。通常、硫化処理は、水素化処理触媒前駆体を水素化脱硫処理に用いる反応装置内に充填した後に行われる。この硫化処理は、硫化剤を水素化処理触媒前駆体が充填された反応装置内に通しながら徐々に昇温して行うが、最終的な硫化処理温度は450℃以下、好ましくは100〜400℃である。常圧あるいはそれ以上の水素分圧の水素雰囲気下、硫化剤として直留軽油留分などの硫黄化合物を含む石油留出物、石油留出物もしくは脱硫された石油留出物などに硫黄化合物を添加したもの、あるいは硫化水素を用いて行う。石油留出物などに硫黄化合物を添加して用いる場合、この硫黄化合物は、硫化処理条件下で分解して硫化水素に転化し得るものであれば特に限定はないが、好ましくは、チオール類、二硫化炭素、チオフェン類、ジメチルスルフィド、ジメチルジスルフィド及び種々のポリスルフィド類である。水素化処理触媒前駆体を反応装置に充填した後、硫化処理を開始する前に、水素化処理触媒前駆体に付着した水分を除去するための乾燥処理を行ってもよい。この乾燥処理は、水素又は不活性ガスの雰囲気下で、常圧あるいはそれ以上の圧力でガスを流通させ、常温〜220℃、好ましくは100〜200℃で行う。 The hydrodesulfurization catalyst precursor exhibits an active site as a hydrodesulfurization catalyst by sulfiding. Usually, the sulfiding treatment is performed after filling the hydrotreating catalyst precursor into a reactor used for the hydrodesulfurization treatment. This sulfiding treatment is carried out by gradually raising the temperature while passing the sulfiding agent through the reactor filled with the hydrotreating catalyst precursor. The final sulfiding treatment temperature is 450 ° C. or less, preferably 100 to 400 ° C. It is. Sulfur compounds are added to petroleum distillates, petroleum distillates or desulfurized petroleum distillates containing sulfur compounds such as straight-run gas oil fractions as sulfiding agents in a hydrogen atmosphere at normal or higher hydrogen partial pressure. It is carried out using added one or hydrogen sulfide. When a sulfur compound is added to a petroleum distillate or the like and used, this sulfur compound is not particularly limited as long as it can be decomposed and converted into hydrogen sulfide under sulfurization treatment conditions, Carbon disulfide, thiophenes, dimethyl sulfide, dimethyl disulfide and various polysulfides. After filling the hydrotreating catalyst precursor into the reaction apparatus and before starting the sulfiding treatment, a drying process for removing water adhering to the hydrotreating catalyst precursor may be performed. This drying treatment is carried out at normal temperature to 220 ° C., preferably 100 to 200 ° C., in a hydrogen or inert gas atmosphere with a gas flowing at normal pressure or higher.
水素化脱硫触媒による水素化脱硫処理における反応装置は、バッチ式、流通式、固定床式、流動床式等、反応形式に特に制限はないが、固定床流通式反応装置に充填された水素化処理触媒に水素と原料油とを連続的に供給して接触させる形式が好ましい。水素化脱硫処理の好ましい反応条件は、反応温度が200〜450℃、特には250〜400℃、水素圧力が2〜10MPa、特には3〜8MPa、水素/油供給比が100〜1000NL/L、特には100〜500NL/L、LHSVが0.1〜5hr−1、特には0.5〜2hr−1である。上述の低硫黄軽油留分を得るための水素化脱硫触媒による水素化脱硫処理でも、脱硫と同時に多環芳香族もある程度水素化されその量が減少するので、多環芳香族量が4容量%以下になるよう反応条件を設定するという方法でもよい。水素化脱硫は、収着脱硫よりも厳しい反応条件で通常行われる。水素化脱硫処理における水素圧力に対する収着脱硫工程における水素圧力の比は0.1〜1が好ましくは、さらには0.2〜0.8、特には0.3〜0.7である。水素化脱硫処理におけるLHSVに対する収着脱硫工程におけるLHSVの比は2〜50が好ましく、さらには3〜20、特には4〜10である。 There are no particular restrictions on the type of reaction in the hydrodesulfurization treatment using the hydrodesulfurization catalyst, such as batch type, flow type, fixed bed type, fluidized bed type, etc., but the hydrogenation filled in the fixed bed flow type reaction device. A mode in which hydrogen and raw material oil are continuously supplied and brought into contact with the treatment catalyst is preferable. Preferable reaction conditions for the hydrodesulfurization treatment are a reaction temperature of 200 to 450 ° C., particularly 250 to 400 ° C., a hydrogen pressure of 2 to 10 MPa, particularly 3 to 8 MPa, a hydrogen / oil supply ratio of 100 to 1000 NL / L, Particularly, it is 100 to 500 NL / L, and LHSV is 0.1 to 5 hr −1 , particularly 0.5 to 2 hr −1 . Even in the hydrodesulfurization treatment using the hydrodesulfurization catalyst to obtain the above-mentioned low sulfur gas oil fraction, polycyclic aromatics are hydrogenated to some extent at the same time as desulfurization, so the amount of polycyclic aromatics is reduced to 4% by volume. A method of setting reaction conditions so as to be as follows may be used. Hydrodesulfurization is usually carried out under severer reaction conditions than detachable sulfur. The ratio of the hydrogen pressure in the recovery and attachment sulfur process to the hydrogen pressure in the hydrodesulfurization treatment is preferably 0.1 to 1, more preferably 0.2 to 0.8, and particularly 0.3 to 0.7. The ratio of LHSV in the collecting / removing sulfur process with respect to LHSV in the hydrodesulfurization treatment is preferably 2 to 50, more preferably 3 to 20, particularly 4 to 10.
水素化脱硫触媒による水素化脱硫処理によって生成した低硫黄軽油には、脱硫によって生成した硫化水素が溶存しており、その後に続く多孔質脱硫剤による脱硫処理において多孔質脱硫剤の硫黄収着容量を損なうことがないよう、好ましくは硫化水素を多孔質脱硫剤による脱硫処理の前に極力取り除く。硫化水素除去方法については、特に限定しないが、硫化水素を含まないガスやスチーム注入によるストリッピング、精留、吸着剤による除去等を単独で、あるいは組み合わせて用いることができる。収着脱硫工程にかける低硫黄軽油留分中の硫化水素含有量は硫黄分として5質量ppm以下が好ましく、さらには1質量ppm以下、特には0.5質量ppm以下である。 Hydrogen sulfide produced by desulfurization is dissolved in the low sulfur gas oil produced by hydrodesulfurization treatment using a hydrodesulfurization catalyst, and the sulfur sorption capacity of the porous desulfurization agent in the subsequent desulfurization treatment using the porous desulfurization agent Preferably, hydrogen sulfide is removed as much as possible before the desulfurization treatment with the porous desulfurization agent so as not to damage the heat. A method for removing hydrogen sulfide is not particularly limited, but gas containing no hydrogen sulfide, stripping by steam injection, rectification, removal by an adsorbent, or the like can be used alone or in combination. The content of hydrogen sulfide in the low-sulfur gas oil fraction subjected to the collection / removal sulfur process is preferably 5 ppm by mass or less, more preferably 1 ppm by mass or less, particularly 0.5 ppm by mass or less as the sulfur content.
〔軽油留分〕
本発明の超低硫黄軽油基材の製造方法に用いる低硫黄軽油留分を製造するための原料となる軽油留分は、好ましくは、硫黄分が0.5質量%以上のもので、通常、硫黄分が0.5〜5質量%、特には1〜2質量%であり、窒素分が50質量ppm以上、特には80〜500質量ppmであり、密度(15℃)が0.80〜0.90g/cm3であり、50容量%留出温度が250〜320℃、特には260〜310℃であり、70容量%留出温度が280〜340℃、特には290〜330℃であり、90容量%留出温度が310〜370℃、特には320〜360℃であり、95容量%留出温度が320〜390℃、特には330〜380℃である。
[Light oil fraction]
The gas oil fraction used as a raw material for producing the low sulfur gas oil fraction used in the method for producing the ultra-low sulfur gas oil base material of the present invention preferably has a sulfur content of 0.5% by mass or more, The sulfur content is 0.5 to 5% by mass, particularly 1 to 2% by mass, the nitrogen content is 50 ppm by mass or more, particularly 80 to 500 ppm by mass, and the density (15 ° C.) is 0.80 to 0. .90 g / cm 3 , 50 volume% distillation temperature is 250-320 ° C., especially 260-310 ° C., 70 volume% distillation temperature is 280-340 ° C., particularly 290-330 ° C., The 90% by volume distillation temperature is 310-370 ° C, in particular 320-360 ° C, and the 95% by volume distillation temperature is 320-390 ° C, in particular 330-380 ° C.
この軽油留分としては、原油を蒸留して得られた直留軽油留分を用いることが好ましい。直留軽油留分単独で用いてもよいが、熱分解油や接触分解油などの分解軽油留分を直留軽油留分に混合した混合軽油留分でもよい。この場合、分解軽油留分5〜45容量%、特には15〜35容量%を、直留軽油留分95〜55容量%、特には85〜65容量%と混合することが好ましい。さらには、軽油相当の留分であれば他のプロセス油も、原料となる軽油留分に混合することができる。直留軽油留分は、原油を常圧蒸留して得られ、おおよそ10容量%留出温度が200〜290℃、50容量%留出温度が260〜320℃、90容量%留出温度が300〜370℃である。 As this light oil fraction, it is preferable to use a straight-run light oil fraction obtained by distilling crude oil. A straight-run gas oil fraction may be used alone, or a mixed light-oil fraction obtained by mixing a cracked light oil fraction such as pyrolysis oil or catalytic cracked oil with a straight-run light oil fraction may be used. In this case, it is preferable to mix 5 to 45% by volume, particularly 15 to 35% by volume of the cracked gas oil fraction, and 95 to 55% by volume, particularly 85 to 65% by volume of the straight gas oil fraction. Furthermore, if it is a fraction corresponding to light oil, other process oils can be mixed with the light oil fraction as a raw material. The straight-run gas oil fraction is obtained by atmospheric distillation of crude oil, and approximately 10% by volume distillation temperature is 200 to 290 ° C, 50% by volume distillation temperature is 260 to 320 ° C, and 90% by volume distillation temperature is 300%. ~ 370 ° C.
熱分解油とは、重質油留分に熱を加えて、ラジカル反応を主体にした分解反応により得られる軽質留分油で、例えば、ディレードコーキング法、ビスブレーキング法あるいはフルードコーキング法等により得られる留分をいう。これらの留分は得られる全留分を熱分解油として用いてもよいが、留出温度が150〜520℃の範囲内にある留分を用いることが好適である。 Pyrolysis oil is a light fraction oil obtained by applying a heat to a heavy oil fraction and undergoing a cracking reaction mainly composed of radical reactions. For example, a delayed coking method, a visbreaking method or a fluid coking method is used. This refers to the fraction obtained. Although these fractions may use the whole fraction obtained as a pyrolysis oil, it is suitable to use the fraction whose distillation temperature exists in the range of 150-520 degreeC.
接触分解油としては、中間留分や重質留分、特には減圧軽油留分や常圧蒸留残油等をゼオライト系触媒等と接触分解する際に得られる留分が挙げられ、特に高オクタン価ガソリン製造を目的とした流動接触分解装置において副生する分解軽油留分が好ましい。この留分は、一般に、沸点が相対的に低い軽質接触分解油と沸点が相対的に高い重質接触分解油とが別々に採取されている。本発明においては、これらの留分のいずれをも用いることができるが、前者の軽質接触分解油、いわゆるライトサイクルオイル(LCO)を用いることが好ましい。このLCOは、一般に、10容量%留出温度が200〜250℃、50容量%留出温度が250〜290℃、90容量%留出温度が300〜355℃の範囲内にある。また、重質接触分解油、いわゆるヘビーサイクルオイル(HCO)は、10容量%留出温度が280〜340℃、50容量%留出温度が390〜420℃、90容量%留出温度が450℃以上にある。
なお、LCOは多環芳香族分を多く含むため、原料となる軽油留分に占めるLCOの比率が多いと水素化脱硫処理等を行って得られる低硫黄軽油留分に多環芳香族が多く含まれてしまう。したがって、原料となる軽油留分に占めるLCOの比率は50容量%以下が好ましく、特には30容量%以下であり、さらには20容量%以下である。
Examples of the catalytic cracking oil include middle fractions and heavy fractions, particularly fractions obtained by catalytic cracking of a vacuum gas oil fraction or atmospheric distillation residue with a zeolite catalyst, etc. A cracked gas oil fraction produced as a by-product in a fluid catalytic cracker for the purpose of gasoline production is preferred. In general, a light catalytic cracked oil having a relatively low boiling point and a heavy catalytic cracked oil having a relatively high boiling point are separately collected from this fraction. In the present invention, any of these fractions can be used, but it is preferable to use the former light catalytic cracking oil, so-called light cycle oil (LCO). The LCO generally has a 10 vol% distillation temperature of 200 to 250 ° C, a 50 vol% distillation temperature of 250 to 290 ° C, and a 90 vol% distillation temperature of 300 to 355 ° C. In addition, heavy catalytic cracking oil, so-called heavy cycle oil (HCO), has a 10 vol% distillation temperature of 280 to 340 ° C, a 50 vol% distillation temperature of 390 to 420 ° C, and a 90 vol% distillation temperature of 450 ° C or higher. It is in.
Since LCO contains a large amount of polycyclic aromatics, if the proportion of LCO in the gas oil fraction used as a raw material is large, the low sulfur gas oil fraction obtained by hydrodesulfurization has a large amount of polycyclic aromatics. It will be included. Therefore, the ratio of LCO in the gas oil fraction as a raw material is preferably 50% by volume or less, particularly 30% by volume or less, and further 20% by volume or less.
〔超低硫黄軽油基材〕
本発明において、超低硫黄軽油基材は、特定の硫黄分、芳香族含有量を有する低硫黄軽油留分を、水素共存下で、硫黄収着機能を持った多孔質脱硫剤と接触させ脱硫して得ることができる。超低硫黄軽油基材の硫黄分は、1質量ppm以下とし、好ましくは0.8質量ppm以下、より好ましくは0.5質量ppm以下であり、少ないほど好ましい。このため収着脱硫工程に供する低硫黄軽油留分は、硫黄分が2〜50質量ppm、好ましくは2〜30質量ppm、特には2〜10質量ppmである。
[Super low sulfur gas oil base]
In the present invention, the ultra-low sulfur gas oil base material is desulfurized by contacting a low sulfur gas oil fraction having a specific sulfur content and aromatic content with a porous desulfurization agent having a sulfur sorption function in the presence of hydrogen. Can be obtained. The sulfur content of the ultra-low sulfur gas oil base is 1 mass ppm or less, preferably 0.8 mass ppm or less, more preferably 0.5 mass ppm or less, and the smaller the better. For this reason, the low sulfur gas oil fraction to be used in the collecting / removing sulfur process has a sulfur content of 2 to 50 ppm by mass, preferably 2 to 30 ppm by mass, and particularly 2 to 10 ppm by mass.
〔超低硫黄軽油組成物〕
本発明の超低硫黄軽油組成物は、超低硫黄軽油基材を含む、硫黄分が1質量ppm以下のものである。超低硫黄軽油基材は50容量%以上、特には80容量%以上含むことが好ましいが、超低硫黄軽油基材をそのまま超低硫黄軽油組成物としてもよい。また、本発明の超低硫黄軽油組成物は、その硫黄分、芳香族分、蒸留性状、密度(15℃)、真発熱量などの物性が後述の条件を満たすならば、他の基材を混合してもよい。他の基材としては、直留灯油、熱分解灯油、接触分解灯油などや、それらを水素化脱硫触媒によって水素化脱硫した水素化脱硫油、さらに脱硫して硫黄分を10質量ppm以下にした超低硫黄灯油、減圧軽油を水素化分解して得られる水素化分解灯油及び水素化分解軽油、天然ガスやアスファルト分等を化学合成させて得られる合成灯油及び合成軽油などが挙げられる。
[Ultra-low sulfur gas oil composition]
The ultra-low sulfur gas oil composition of the present invention includes an ultra-low sulfur gas oil base material and has a sulfur content of 1 mass ppm or less. The ultra-low sulfur gas oil base is preferably contained in an amount of 50% by volume or more, particularly 80% by volume or more, but the ultra-low sulfur gas oil base may be used as it is as an ultra-low sulfur gas oil composition. In addition, the ultra-low sulfur gas oil composition of the present invention can have other base materials provided that physical properties such as sulfur content, aromatic content, distillation properties, density (15 ° C.), and true calorific value satisfy the conditions described later. You may mix. Other base materials include straight-run kerosene, pyrolysis kerosene, catalytic cracking kerosene, hydrodesulfurized oil obtained by hydrodesulfurizing them with a hydrodesulfurization catalyst, and further desulfurized to a sulfur content of 10 ppm by mass or less. Examples include ultra-low sulfur kerosene, hydrocracked kerosene and hydrocracked diesel oil obtained by hydrocracking vacuum gas oil, synthetic kerosene and synthetic gas oil obtained by chemically synthesizing natural gas, asphalt, and the like.
本発明の超低硫黄軽油組成物は、硫黄分が1質量ppm以下である。この硫黄分はASTM D 5453(紫外蛍光法)に規定された方法により測定されるものである。 The ultra-low sulfur gas oil composition of the present invention has a sulfur content of 1 mass ppm or less. This sulfur content is measured by the method prescribed in ASTM D 5453 (ultraviolet fluorescence method).
芳香族分は好ましくは10〜25容量%で、さらに好ましくは10〜20容量%であり、特に好ましくは13〜18容量%がよい。芳香族分が10容量%未満であると発熱量が低下し、燃費が低下するので好ましくない。芳香族分が25容量%以上であるとエンジンから排出される粒子状物質の量が増え好ましくない。芳香族分のうち、多環芳香族分については、3容量%以下が好ましく、より好ましくは2容量%以下、さらには1容量%以下、特には0.5容量%以下がよい。多環芳香族が3容量%を超えると、エンジンから排出される粒子状物質の量が増え好ましくない。 The aromatic content is preferably 10 to 25% by volume, more preferably 10 to 20% by volume, and particularly preferably 13 to 18% by volume. If the aromatic content is less than 10% by volume, the calorific value is lowered and the fuel consumption is lowered. If the aromatic content is 25% by volume or more, the amount of particulate matter discharged from the engine increases, which is not preferable. Among the aromatic components, the polycyclic aromatic component is preferably 3% by volume or less, more preferably 2% by volume or less, further 1% by volume or less, and particularly preferably 0.5% by volume or less. If the polycyclic aromatic exceeds 3% by volume, the amount of particulate matter discharged from the engine increases, which is not preferable.
蒸留性状における50容量%留出温度が好ましくは250〜320℃、特には260〜310℃であり、70容量%留出温度が好ましくは280〜340℃、特には290〜330℃であり、90容量%留出温度が好ましくは310〜370℃、特には320〜360℃であり、95容量%留出温度が好ましくは320〜390℃、特には330〜380℃である。95容量%留出温度が390℃を超えるとエンジンから排出される粒子状物質の量が増え好ましくない。この蒸留性状はJIS K 2254に規定された方法により測定されるものである。 The 50 vol% distillation temperature in the distillation properties is preferably 250 to 320 ° C, particularly 260 to 310 ° C, the 70 vol% distillation temperature is preferably 280 to 340 ° C, particularly 290 to 330 ° C, 90% The volume% distillation temperature is preferably 310 to 370 ° C, particularly 320 to 360 ° C, and the 95 volume% distillation temperature is preferably 320 to 390 ° C, particularly 330 to 380 ° C. If the 95% by volume distillation temperature exceeds 390 ° C., the amount of particulate matter discharged from the engine increases, which is not preferable. This distillation property is measured by a method defined in JIS K 2254.
15℃における密度は0.80〜0.87g/cm3が好ましく、0.82〜0.86g/cm3がさらに好ましく、0.83〜0.85g/cm3が特に好ましい。15℃における密度が0.80g/cm3未満であると発熱量が低下し燃費及び加速性の悪化を招くので好ましくない。15℃における密度が0.87g/cm3を超えると、排出ガスの粒子状物質濃度が増加し好ましくない。この15℃における密度はJIS K 2249に規定された方法により測定されるものである。 Density is preferably 0.80~0.87g / cm 3 at 15 ° C., more preferably 0.82~0.86g / cm 3, 0.83~0.85g / cm 3 is particularly preferred. If the density at 15 ° C. is less than 0.80 g / cm 3 , the calorific value is lowered and fuel consumption and acceleration are deteriorated, which is not preferable. When the density at 15 ° C. exceeds 0.87 g / cm 3 , the concentration of particulate matter in the exhaust gas increases, which is not preferable. The density at 15 ° C. is measured by the method defined in JIS K 2249.
真発熱量は34.5MJ/L以上が好ましく、さらには35MJ/L以上である。真発熱量が34.5MJ/L未満であると出力低下を招くので好ましくない。この真発熱量はJIS K 2279に規定された方法により測定されるものである。 The true calorific value is preferably 34.5 MJ / L or more, and more preferably 35 MJ / L or more. A true calorific value of less than 34.5 MJ / L is not preferable because the output is reduced. This true calorific value is measured by the method defined in JIS K 2279.
30℃における動粘度は1.5〜5.0mm2/sが好ましく、さらには2.5〜5.0mm2/sが好ましい。30℃における動粘度が1.5mm2/s未満であると、ディーゼル車の燃料噴射量が少なくなり出力低下を引き起こすおそれがあることや、エンジンに搭載された燃料噴射ポンプの各部における潤滑性が損なわれ、好ましくない。30℃における動粘度が5.0mm2/sを超えると、燃料噴射システム内部の抵抗が増加して噴射系が不安定化し、排出ガス中のNOx、粒子状物質濃度が高くなり好ましくない。この30℃における動粘度JIS K 2283に規定された方法により測定されるものである。 The kinematic viscosity at 30 ° C. is preferably 1.5 to 5.0 mm 2 / s, and more preferably 2.5 to 5.0 mm 2 / s. If the kinematic viscosity at 30 ° C. is less than 1.5 mm 2 / s, the fuel injection amount of the diesel vehicle may decrease and the output may decrease, and the lubricity in each part of the fuel injection pump mounted on the engine It is damaged and is not preferred. If the kinematic viscosity at 30 ° C. exceeds 5.0 mm 2 / s, the resistance inside the fuel injection system increases, the injection system becomes unstable, and the concentration of NOx and particulate matter in the exhaust gas becomes high, which is not preferable. The kinematic viscosity at 30 ° C. is measured by the method defined in JIS K 2283.
軽油への添加剤としては、低温流動性向上剤、耐摩耗性向上剤、セタン価向上剤、酸化防止剤、金属不活性化剤、腐食防止剤等の公知の燃料添加剤を添加してもよい。低温流動性向上剤としては、エチレン共重合体などを用いることができるが、特には、酢酸ビニル、プロピオン酸ビニル、酪酸ビニルなどの飽和脂肪酸のビニルエステルが好ましく用いられる。耐摩耗性向上剤としては、例えば長鎖脂肪酸(炭素数12〜24)又はその脂肪酸エステルが好ましく用いられる。10〜500ppm、好ましくは50〜100ppmの添加量で十分に耐摩耗性が向上する。 As additives to light oil, known fuel additives such as low-temperature fluidity improvers, wear resistance improvers, cetane number improvers, antioxidants, metal deactivators, and corrosion inhibitors may be added. Good. As the low temperature fluidity improver, an ethylene copolymer or the like can be used. In particular, a vinyl ester of a saturated fatty acid such as vinyl acetate, vinyl propionate or vinyl butyrate is preferably used. As the wear resistance improver, for example, a long chain fatty acid (having 12 to 24 carbon atoms) or a fatty acid ester thereof is preferably used. The wear resistance is sufficiently improved by the addition amount of 10 to 500 ppm, preferably 50 to 100 ppm.
(実施例)
以下、本発明を実施例により詳しく説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
(Example)
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited at all by these Examples.
(低硫黄軽油留分の調製)
まず、本発明で用いる低硫黄軽油留分を調製するための原料油となる軽油留分Dを次のようにして調製した。中東系の原油を蒸留して得られた直留軽油Aを75容量%、中東系の原油を蒸留して得られた減圧軽油留分を水素化脱硫した後に接触分解して得られた軽質接触分解油Bを5容量%、及び減圧残油を主成分とする重質油を熱分解処理して得られた熱分解油Cを20容量%混合し軽油留分Dを得た。直留軽油A、軽質接触分解油B、熱分解油C及び軽油留分Dの性状を表1に示す。
(Preparation of low sulfur gas oil fraction)
First, a light oil fraction D serving as a raw material oil for preparing a low sulfur gas oil fraction used in the present invention was prepared as follows. 75% by volume of straight-run gas oil A obtained by distillation of Middle Eastern crude oil, light contact obtained by catalytic cracking after hydrodesulfurization of vacuum gas oil fraction obtained by distillation of Middle Eastern crude oil A light oil fraction D was obtained by mixing 20% by volume of pyrolysis oil C obtained by pyrolysis treatment of 5% by volume of cracked oil B and heavy oil mainly composed of vacuum residual oil. Table 1 shows the properties of straight-run gas oil A, light catalytic cracking oil B, pyrolysis oil C and gas oil fraction D.
担持法にて調製した水素化脱硫触媒CoMo/アルミナ(コバルト含有量3重量%、モリブデン含有量13重量%)とNiMo/アルミナ(ニッケル含有量3重量%、モリブデン含有量12重量%)とを容積比で1:3となるように反応管に充填した。この反応管に、前処理としてジメチルジスルフィド1重量%を含む軽油を300℃、5MPaで水素を流しながら通油し、硫化処理を行った。
その後、この反応管に軽油留分Dを通油し、反応温度345℃、水素分圧7.0MPa、LHSVが1.2hr−1、水素/油供給比が440NL/Lの条件下で反応させた。流出した反応生成物から硫化水素をストリッピングして除去し低硫黄軽油留分Eを得た。低硫黄軽油留分Eの性状を表2に示す。
Volume of hydrodesulfurization catalyst CoMo / alumina (cobalt content 3 wt%, molybdenum content 13 wt%) and NiMo / alumina (nickel content 3 wt%, molybdenum content 12 wt%) prepared by the loading method The reaction tube was filled to a ratio of 1: 3. As a pretreatment, a light oil containing 1% by weight of dimethyl disulfide was passed through the reaction tube at 300 ° C. while flowing hydrogen at 5 MPa to perform a sulfiding treatment.
Thereafter, a light oil fraction D is passed through the reaction tube and reacted under the conditions of a reaction temperature of 345 ° C., a hydrogen partial pressure of 7.0 MPa, an LHSV of 1.2 hr −1 , and a hydrogen / oil supply ratio of 440 NL / L. It was. Hydrogen sulfide was stripped off from the effluent reaction product to obtain a low sulfur gas oil fraction E. Table 2 shows the properties of the low sulfur gas oil fraction E.
なお、本実施例において、表1及び表2に示す性状は次の方法に準拠して測定した。密度はJIS K 2249、硫黄分はASTM D 5453(紫外蛍光法)、窒素分はJIS K 2609、蒸留性状はJIS K 2254、動粘度はJIS K 2283、色はJIS K 2580のASTM色試験法、及び真発熱量はJIS K 2279に準拠して測定した。芳香族含有量はJPI−5S−49−97に基づいて測定した。 In this example, the properties shown in Tables 1 and 2 were measured according to the following method. Density is JIS K 2249, sulfur content is ASTM D 5453 (ultraviolet fluorescence method), nitrogen content is JIS K 2609, distillation property is JIS K 2254, kinematic viscosity is JIS K 2283, color is JIS K 2580 ASTM color test method, The true calorific value was measured according to JIS K 2279. The aromatic content was measured based on JPI-5S-49-97.
硫黄収着機能を持った多孔質脱硫剤としてニッケル亜鉛複合酸化物を次に示す共沈法によって調製した。炭酸ナトリウム106gを水に溶かした溶液を60℃に加温し、これに硝酸亜鉛六水和物214gを水に溶かした溶液に硝酸ニッケル六水和物23gを加えたものを滴下した。得られた沈殿物をろ過した後、水で洗浄した。その後、120℃で16時間乾燥後、350℃で3時間焼成しニッケル亜鉛複合酸化物(脱硫剤Z)を得た。脱硫剤Zはニッケル含有量が6.9質量%、亜鉛含有量が71.0質量%、ナトリウム含有量が0.01質量%、比表面積が56m2/gであった。 Nickel zinc composite oxide was prepared by the following coprecipitation method as a porous desulfurization agent with sulfur sorption function. A solution in which 106 g of sodium carbonate was dissolved in water was heated to 60 ° C., and a solution in which 214 g of zinc nitrate hexahydrate was dissolved in water and 23 g of nickel nitrate hexahydrate was added dropwise. The resulting precipitate was filtered and washed with water. Then, after drying at 120 degreeC for 16 hours, it baked at 350 degreeC for 3 hours, and obtained nickel zinc composite oxide (desulfurization agent Z). The desulfurizing agent Z had a nickel content of 6.9% by mass, a zinc content of 71.0% by mass, a sodium content of 0.01% by mass, and a specific surface area of 56 m 2 / g.
このニッケル亜鉛複合酸化物を反応管に充填した。これに水素ガスを温度300℃にて6時間流通させ、還元処理を行った。その後、この反応管に低硫黄軽油留分Eと水素を通し、反応温度300℃、水素圧力3.0MPa、LHSV5.0hr−1、水素/油供給比400NL/Lの条件で反応させ、通油開始から500時間後に超低硫黄軽油留分Fを得た。得られた超低硫黄軽油留分Fの性状を表2に示す。 This nickel zinc composite oxide was filled in a reaction tube. Hydrogen gas was allowed to flow through this at a temperature of 300 ° C. for 6 hours to perform a reduction treatment. Thereafter, the low sulfur gas oil fraction E and hydrogen are passed through the reaction tube, and the reaction is performed under the conditions of a reaction temperature of 300 ° C., a hydrogen pressure of 3.0 MPa, LHSV of 5.0 hr −1 , and a hydrogen / oil supply ratio of 400 NL / L. After 500 hours from the start, an ultra-low sulfur gas oil fraction F was obtained. Properties of the obtained ultra-low sulfur gas oil fraction F are shown in Table 2.
この結果から明らかなように、軽油留分を、高圧の水素共存下、周期律表第6族の元素と第9族の元素を含む水素化脱硫触媒及び周期律表第6族の元素と第10族の元素を含む水素化脱硫触媒と接触させて、硫黄分2〜50質量ppm、多環芳香族分4容量%以下の低硫黄軽油留分を得る工程の後、得られた低硫黄軽油留分を水素共存下、硫黄収着機能を持った多孔質脱硫剤と接触させて脱硫処理することにより、硫黄分1質量ppm以下の超低硫黄軽油留分を得ることができる。 As is clear from this result, the gas oil fraction was separated from the hydrodesulfurization catalyst containing Group 6 element and Group 9 element and Group 6 element in the periodic table in the presence of hydrogen at high pressure. After the step of obtaining a low sulfur gas oil fraction having a sulfur content of 2 to 50 mass ppm and a polycyclic aromatic content of 4% by volume or less by contacting with a hydrodesulfurization catalyst containing a Group 10 element, the obtained low sulfur gas oil An ultra-low sulfur gas oil fraction having a sulfur content of 1 mass ppm or less can be obtained by contacting the fraction with a porous desulfurization agent having a sulfur sorption function in the presence of hydrogen to perform desulfurization treatment.
実施例1で行った実験を、全く同じ条件でさらに反応させ通油開始から5000時間後に低硫黄軽油留分Gを得た。得られた低硫黄軽油留分Gの性状を表2に示す。この結果から明らかなように、長期間にわたって硫黄分1質量ppm以下の超低硫黄軽油留分を得ることができる。 The experiment conducted in Example 1 was further reacted under exactly the same conditions to obtain a low sulfur gas oil fraction G 5000 hours after the start of oil passage. Table 2 shows the properties of the obtained low sulfur gas oil fraction G. As is apparent from this result, an ultra-low sulfur gas oil fraction having a sulfur content of 1 mass ppm or less can be obtained over a long period of time.
実施例1にて調製したニッケル亜鉛複合酸化物(ニッケル含有量6.9質量%、亜鉛含有量71.0質量%)を反応管に充填し、これに水素ガスを温度300℃にて6時間流通させ、還元処理を行った。その後、この反応管に低硫黄軽油留分Eと水素を通油し、反応温度300℃、水素圧力1.0MPa、LHSVが5.0hr−1、水素/油供給比が400NL/Lの条件で反応させ、通油開始から500時間後に軽油留分Hを得た。得られた軽油留分Hの性状を表2に示す。 The reaction mixture was filled with the nickel-zinc composite oxide prepared in Example 1 (nickel content: 6.9% by mass, zinc content: 71.0% by mass), and hydrogen gas was charged at a temperature of 300 ° C. for 6 hours. It was distributed and reduced. Thereafter, a low sulfur gas oil fraction E and hydrogen were passed through the reaction tube under the conditions of a reaction temperature of 300 ° C., a hydrogen pressure of 1.0 MPa, an LHSV of 5.0 hr −1 , and a hydrogen / oil supply ratio of 400 NL / L. A light oil fraction H was obtained 500 hours after the start of oil passage. Table 2 shows the properties of the obtained light oil fraction H.
酸化亜鉛とアルミナを95:5(重量比)の割合で混合し成形した触媒を反応管に充填し、これに水素ガスを温度300℃にて6時間流通させ、還元処理を行った。その後、この反応管に低硫黄軽油留分Eと水素を通油し、反応温度300℃、水素圧力1.0MPa、LHSVが5.0hr−1、水素/油供給比が400NL/Lの条件で反応させ、通油開始から100時間後に軽油留分Iを得た。得られた軽油留分Iの性状を表2に示す。 A catalyst formed by mixing zinc oxide and alumina at a ratio of 95: 5 (weight ratio) was filled in a reaction tube, and hydrogen gas was passed through the tube at a temperature of 300 ° C. for 6 hours for reduction treatment. Thereafter, a low sulfur gas oil fraction E and hydrogen were passed through the reaction tube under the conditions of a reaction temperature of 300 ° C., a hydrogen pressure of 1.0 MPa, an LHSV of 5.0 hr −1 , and a hydrogen / oil supply ratio of 400 NL / L. A light oil fraction I was obtained 100 hours after the start of oil passing. Table 2 shows the properties of the light oil fraction I obtained.
実施例1にて調製したニッケル亜鉛複合酸化物(ニッケル含有量6.9質量%、亜鉛含有量71.0質量%)を反応管に充填し、これに水素ガスを温度300℃にて6時間流通させ、還元処理を行った。その後、この反応管に、4,6−ジメチルジベンゾチオフェン(ACROS社製、純度95%以上)を硫黄分として6質量ppm及び多環芳香族溶剤P-220(ジャパンエナジー製、2環アロマ含有量91重量%、硫黄分0.1質量ppm以下)を多環芳香族分として1容量%含まれるように調整したn−ドデカン溶液を水素とともに通油し、反応温度300℃、水素圧力1.0MPa、LHSVが40.0hr−1、水素/油供給比が200NL/Lの条件で反応させた。通油開始から50時間後に得られた生成油の硫黄分は0.9質量ppmであった。 The reaction mixture was filled with the nickel-zinc composite oxide prepared in Example 1 (nickel content: 6.9% by mass, zinc content: 71.0% by mass), and hydrogen gas was charged at a temperature of 300 ° C. for 6 hours. It was distributed and reduced. Thereafter, 4,6-dimethyldibenzothiophene (manufactured by ACROS, purity 95% or more) as a sulfur content was added to this reaction tube at 6 mass ppm and polycyclic aromatic solvent P-220 (manufactured by Japan Energy, 2-ring aroma content) The n-dodecane solution adjusted to contain 1% by volume as a polycyclic aromatic component (91 wt%, sulfur content 0.1 mass ppm or less) was passed with hydrogen, reaction temperature 300 ° C., hydrogen pressure 1.0 MPa. , LHSV was 40.0 hr −1 , and the hydrogen / oil supply ratio was 200 NL / L. The sulfur content of the product oil obtained 50 hours after the start of oil passing was 0.9 mass ppm.
実施例3においてP-220の多環芳香族含有量を5容量%とした以外は、実施例3と全く同じ条件にて反応を行った。通油開始から50時間後に得られた生成油の硫黄分は2.4質量ppmであった。 The reaction was carried out under exactly the same conditions as in Example 3, except that the polycyclic aromatic content of P-220 was changed to 5% by volume in Example 3. The sulfur content of the product oil obtained 50 hours after the start of oil passing was 2.4 mass ppm.
実施例3においてP-220の代わりにフェナントレン(和光純薬特級試薬を精製して硫黄分を0.2質量ppmとした)を添加して多環芳香族含有量を1.1容量%とした以外は、実施例3と全く同じ条件にて反応を行った。通油開始から50時間後に得られた生成油の硫黄分は2.5質量ppmであった。 In Example 3, instead of P-220, phenanthrene (a Wako Pure Chemical special grade reagent was purified to have a sulfur content of 0.2 mass ppm) was added to adjust the polycyclic aromatic content to 1.1% by volume. The reaction was carried out under exactly the same conditions as in Example 3. The sulfur content of the product oil obtained 50 hours after the start of oil passing was 2.5 ppm by mass.
Claims (4)
記載の超低硫黄軽油基材の製造方法。
The method for producing an ultra-low sulfur gas oil base material according to claim 1 , wherein the porous desulfurization agent having a sulfur sorption function contains zinc and nickel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006177418A JP4854075B2 (en) | 2006-06-28 | 2006-06-28 | Method for producing ultra-low sulfur gas oil base and ultra-low sulfur gas oil composition comprising the ultra-low sulfur gas oil base |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006177418A JP4854075B2 (en) | 2006-06-28 | 2006-06-28 | Method for producing ultra-low sulfur gas oil base and ultra-low sulfur gas oil composition comprising the ultra-low sulfur gas oil base |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008007579A JP2008007579A (en) | 2008-01-17 |
JP4854075B2 true JP4854075B2 (en) | 2012-01-11 |
Family
ID=39066074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006177418A Expired - Fee Related JP4854075B2 (en) | 2006-06-28 | 2006-06-28 | Method for producing ultra-low sulfur gas oil base and ultra-low sulfur gas oil composition comprising the ultra-low sulfur gas oil base |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4854075B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5191146B2 (en) * | 2007-03-09 | 2013-04-24 | コスモ石油株式会社 | Fuel oil composition |
JP5676344B2 (en) * | 2011-03-31 | 2015-02-25 | Jx日鉱日石エネルギー株式会社 | Kerosene manufacturing method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060260983A1 (en) * | 2003-03-07 | 2006-11-23 | Hideshi Iki | Method of hydrotreating gas oil fraction |
JP4643966B2 (en) * | 2004-10-01 | 2011-03-02 | Jx日鉱日石エネルギー株式会社 | Process for producing hydrorefined gas oil, hydrorefined gas oil and gas oil composition |
US7938955B2 (en) * | 2004-12-28 | 2011-05-10 | Japan Energy Corporation | Method for producing super-low sulfur gas oil blending component or super-low sulfur gas oil composition, and super-low sulfur gas oil composition |
-
2006
- 2006-06-28 JP JP2006177418A patent/JP4854075B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008007579A (en) | 2008-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4987485B2 (en) | Method for producing ultra-low sulfur gas oil base or ultra-low sulfur gas oil composition and ultra-low sulfur gas oil composition | |
KR20020005488A (en) | Process comprising two gasoline hydrodesulfurization stages and intermediate elimination of h2s formed during the first stage | |
JP5219247B2 (en) | Method for producing low sulfur cracking gasoline base and unleaded gasoline composition | |
JP5196734B2 (en) | Hydrorefining method | |
JP5024884B2 (en) | Unleaded gasoline composition and method for producing the same | |
JP4854075B2 (en) | Method for producing ultra-low sulfur gas oil base and ultra-low sulfur gas oil composition comprising the ultra-low sulfur gas oil base | |
US20060211900A1 (en) | Method of hydrotreating gas oil fraction | |
KR101514954B1 (en) | Process for producing gasoline base and gasoline | |
JP4658491B2 (en) | Production method of environment-friendly diesel oil | |
JP4854076B2 (en) | Method for producing ultra-low sulfur gas oil base and ultra-low sulfur gas oil composition | |
JP4969754B2 (en) | Hydrodesulfurization method for gas oil fraction and reactor for hydrodesulfurization | |
JP4680520B2 (en) | Low sulfur gas oil production method and environmentally friendly gas oil | |
JP4576257B2 (en) | Production method of oil fraction | |
JP4803785B2 (en) | Method for producing gasoline base material, environmentally friendly gasoline, and method for producing the same | |
JP5392993B2 (en) | Method for producing ultra-low sulfur gas oil base | |
JP3955990B2 (en) | Ultra-deep desulfurization method for diesel oil fraction | |
JP2022513952A (en) | Hydrodesulfurization method of sulfur-containing olefinic gasoline fraction using a regeneration catalyst | |
JP2009057404A (en) | Apparatus for producing colorless low-sulfur kerosene-light oil base material and method for producing the same | |
JP4249632B2 (en) | Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbons | |
JP5379062B2 (en) | Process for producing light oil base or light oil composition | |
JP5036074B2 (en) | Environmentally friendly gasoline | |
JP2008007675A (en) | Gas oil composition | |
JP4630014B2 (en) | Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbons | |
JP5016331B2 (en) | Production method of ultra-deep desulfurized diesel oil | |
JP5168509B2 (en) | Regeneration method of hydrodesulfurization catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090409 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100916 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110811 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110816 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110928 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111019 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111024 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141104 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4854075 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |