JP4848958B2 - High-strength steel sheet excellent in deep drawability and secondary work brittleness resistance and method for producing the same - Google Patents

High-strength steel sheet excellent in deep drawability and secondary work brittleness resistance and method for producing the same Download PDF

Info

Publication number
JP4848958B2
JP4848958B2 JP2007003185A JP2007003185A JP4848958B2 JP 4848958 B2 JP4848958 B2 JP 4848958B2 JP 2007003185 A JP2007003185 A JP 2007003185A JP 2007003185 A JP2007003185 A JP 2007003185A JP 4848958 B2 JP4848958 B2 JP 4848958B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
temperature
ferrite
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007003185A
Other languages
Japanese (ja)
Other versions
JP2008169427A (en
Inventor
金晴 奥田
康伸 長滝
靖 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007003185A priority Critical patent/JP4848958B2/en
Publication of JP2008169427A publication Critical patent/JP2008169427A/en
Application granted granted Critical
Publication of JP4848958B2 publication Critical patent/JP4848958B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

この発明は、自動車用鋼板等の使途に供して有用な、引張強度(TS)が440 MPa以上の高強度で、かつ高r値(r値≧1.3)を有する、深絞り性と耐二次加工脆性に優れる高強度鋼板およびその製造方法に関するものである。   The present invention is useful for use in automobile steel sheets and the like, and has a high tensile strength (TS) of 440 MPa or more and a high r value (r value ≧ 1.3), deep drawability and secondary resistance. The present invention relates to a high-strength steel sheet excellent in work brittleness and a method for producing the same.

近年、地球環境保全の観点から、CO2の排出量を規制するために、自動車の燃費改善が要求されている。加えて、衝突時に乗員の安全を確保するために、自動車車体の衝突特性を中心とした安全性の向上も要求されている。このように、自動車車体の軽量化および自動車車体の強化が積極的に進められている。 In recent years, in order to regulate CO 2 emissions from the viewpoint of global environmental conservation, improvement in fuel efficiency of automobiles has been demanded. In addition, in order to ensure the safety of passengers in the event of a collision, improvement in safety centered on the collision characteristics of the automobile body is also required. As described above, the weight reduction of the automobile body and the reinforcement of the automobile body are being actively promoted.

自動車車体の軽量化と強化を同時に満たすには、剛性に問題とならない範囲で部品素材を高強度化し、板厚を減ずることによる軽量化が効果的であると言われており、最近では、高強度鋼板(高張力鋼板ともいう)が自動車部品に積極的に使用されている。
この軽量化効果は、使用する鋼板が高強度であるほど大きくなるため、自動車業界では、例えば内板および外板用のパネル用材料として引張強度(TS)が440 MPa以上の鋼板を使用する動向にある。
In order to satisfy the weight reduction and strengthening of automobile bodies at the same time, it is said that it is effective to reduce the thickness by increasing the strength of the component materials and reducing the plate thickness within the range where there is no problem with rigidity. High-strength steel plates (also called high-tensile steel plates) are actively used in automobile parts.
This weight reduction effect increases as the strength of the steel sheet used increases. For example, in the automotive industry, the trend of using steel sheets with a tensile strength (TS) of 440 MPa or more as the panel material for inner and outer panels, for example. It is in.

一方、鋼板を素材とする自動車部品の多くは、プレス加工によって成形されるため、自動車用鋼板には優れたプレス成形性を有していることが必要とされる。しかしながら、高強度鋼板は、通常の軟鋼板に比べて成形性、特に深絞り性が大きく劣化するため、自動車の軽量化を進める上での課題として、TS≧440 MPaで、しかも良好な深絞り成形性を兼ね備える鋼板に対する要求が高まっている。この場合、従来強度での成形性を維持することが求められるので、深絞り性の評価指標であるランクフォード値(以下、r値という)で、平均r値≧1.3 の高強度鋼板が要求されている。   On the other hand, since many automotive parts made of steel plates are formed by press working, the steel plates for automobiles are required to have excellent press formability. However, high-strength steel sheets are significantly deteriorated in formability, especially deep drawability, compared to ordinary mild steel sheets. Therefore, TS 440 MPa is a good deep draw as a challenge in reducing the weight of automobiles. There is an increasing demand for steel sheets having formability. In this case, since it is required to maintain the formability at the conventional strength, a high-strength steel sheet having an average r value ≧ 1.3 is required with a Rankford value (hereinafter referred to as r value) which is an evaluation index of deep drawability. ing.

高r値を維持しながら高強度化を図る手段としては、極低炭素鋼を用い、鋼中に固溶する炭素や窒素を固定する量のTiやNbを添加し、IF(Interstitial atom free)化した鋼をベースとして、これにSi,Mn,Pなどの固溶強化元素を添加する手法がある(例えば特許文献1)。
特開昭56−139654号公報
As a means to increase strength while maintaining a high r value, use ultra-low carbon steel, add Ti and Nb in amounts to fix carbon and nitrogen dissolved in the steel, IF (Interstitial atom free) There is a technique of adding a solid solution strengthening element such as Si, Mn, P or the like to the base of the converted steel (for example, Patent Document 1).
JP-A-56-139654

この特許文献1は、C:0.002〜0.015%、Nb:C%×3〜C%×8+0.020%、Si:1.2%以下、Mn:0.04〜0.8%、P:0.03〜0.10%の組成を有する、引張強さが35〜45kgf/mm2級(340〜440 MPa級)の非時効性を有する成形性の優れた高張力冷延鋼板に関する技術である。 This patent document 1 has a composition of C: 0.002 to 0.015%, Nb: C% x 3 to C% x 8 + 0.020%, Si: 1.2% or less, Mn: 0.04 to 0.8%, P: 0.03 to 0.10%. This is a technology relating to a high-tensile cold-rolled steel sheet having excellent formability and having non-aging properties of 35 to 45 kgf / mm 2 class (340 to 440 MPa class).

しかしながら、このような極低炭素鋼を素材とする技術では、引張強さが440 MPa以上の鋼板を製造しようとすると、合金元素添加量が多くなり、表面外観上の問題や、めっき性の劣化、2次加工脆性の顕在化などの問題が生じてくることがわかってきた。また、多量に固溶強化成分を添加すると、r値が劣化するので、高強度化を図るほどr値の水準は低下してしまうという問題があった。   However, with such ultra-low carbon steel technology, if an attempt is made to produce a steel sheet with a tensile strength of 440 MPa or higher, the amount of alloying elements added will increase, resulting in surface appearance problems and poor plating properties. It has been found that problems such as the manifestation of secondary processing brittleness arise. Further, when a solid solution strengthening component is added in a large amount, the r value deteriorates, so that there is a problem that the level of the r value decreases as the strength increases.

また、特許文献2には、C,Si,Mn,P,Ti,Nb等を特定した鋼を、所定の条件で熱間圧延、冷間圧延、焼鈍および冷却し、低温変態生成物とフェライトからなる混合組織を形成することにより、プレス成形性および焼付硬化性を向上させる技術が開示されている。
具体的には、重量%で、C:0.0005〜0.007%、Si:0.001〜0.8%、Mn:0.8〜4.0%、P:0.003〜0.15%、S:0.0010〜0.015%、Al:0.005〜0.1%、N:0.0003〜0.0060%、さらに、Ti:0.003〜0.1%およびNb:0.003〜0.1%のうち、一種類以上、残部Feおよび不可避的不純物からなる組成を有するスラブを (Ar3−100)℃以上の温度で熱間圧延の仕上を行い、室温から750℃の温度で巻取り、60%以上の圧延率で冷間圧延を行い、連続焼鈍における焼鈍温度をAc1変態点以上Ae3変態点以下とし、焼鈍温度から(Ar1−50℃)〜(Ar1+50℃)までの温度域を平均冷却速度:1℃/s以上30℃/s未満で冷却し、総体積5%超の低温変態生成物とフェライトとからなる混合組織にするというものである。この鋼板は、硬質な第2相が亀裂の伸展を抑制するために、耐二次加工脆性に優れるという特徴がある。
しかしながら、この技術では、低温変態相の制御が難しい上に、焼鈍温度を高くしなければならないという問題があった。
特開平6−116651号公報
Further, Patent Document 2 discloses a steel in which C, Si, Mn, P, Ti, Nb and the like are specified, which are hot-rolled, cold-rolled, annealed and cooled under predetermined conditions, and from low-temperature transformation products and ferrite. A technique for improving press formability and bake hardenability by forming a mixed structure is disclosed.
Specifically, by weight, C: 0.0005 to 0.007%, Si: 0.001 to 0.8%, Mn: 0.8 to 4.0%, P: 0.003 to 0.15%, S: 0.0010 to 0.015%, Al: 0.005 to A slab having a composition comprising at least one of 0.1%, N: 0.0003 to 0.0060%, Ti: 0.003 to 0.1%, and Nb: 0.003 to 0.1%, the balance Fe and inevitable impurities (Ar 3 -100 ) performs finishing hot rolling at ° C. or higher, coiling at a temperature of 750 ° C. from room temperature and the cold rolling at 60% of rolling reduction, the annealing temperature in the continuous annealing Ac 1 transformation point or more Ae 3 The temperature range from the annealing temperature to (Ar 1 −50 ° C.) to (Ar 1 + 50 ° C.) is cooled at an average cooling rate of 1 ° C./s to less than 30 ° C./s, and the total volume exceeds 5%. This is a mixed structure composed of a low-temperature transformation product and ferrite. This steel sheet is characterized by excellent secondary work brittleness resistance because the hard second phase suppresses the extension of cracks.
However, this technique has problems that it is difficult to control the low temperature transformation phase and that the annealing temperature has to be increased.
JP-A-6-116651

本発明は、上記の現状に鑑み開発されたもので、深絞り性に優れる冷延鋼板を高強度化するにあたり、高温焼鈍なしに、高r値と耐二次加工脆性の両者を兼備させた成形性の良好な高強度鋼板を、その有利な製造方法と共に提案することを目的とする。   The present invention has been developed in view of the above-described present situation, and has both high r value and secondary work brittleness resistance without high-temperature annealing in increasing the strength of a cold-rolled steel sheet excellent in deep drawability. The object is to propose a high-strength steel sheet having good formability together with its advantageous production method.

さて、発明者らは、上記の問題を解決すべく鋭意検討を重ねた結果、熱延板組織を微細化した状態で、最終焼鈍における焼鈍温度を再結晶完了温度よりも低い温度に制御して、加工組織を残存させると、この加工組織が低温脆性における亀裂の伸展を効果的に抑制して耐二次加工脆性が改善され、さらに高強度および高r値も得られることを見出した。
本発明は上記の知見に立脚するものである。
As a result of intensive studies to solve the above problems, the inventors controlled the annealing temperature in the final annealing to a temperature lower than the recrystallization completion temperature in a state where the hot rolled sheet structure was refined. It has been found that when the processed structure is left, the processed structure effectively suppresses the extension of cracks at low temperature brittleness, the secondary work brittleness resistance is improved, and further, high strength and high r value are obtained.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、
C:0.0005〜0.04%、
Si:0.01〜1.0%、
Mn:0.8〜3%、
P:0.003〜0.15%、
Al:0.005〜0.5%、
S:0.015%以下および
N:0.006%以下
を含み、かつ
Nb:0.04〜0.1%および
Ti:0.003〜0.1%
を含有し、残部はFeおよび不可避的不純物の組成になり、鋼組織が、再結晶フェライトと加工フェライトからなり、該再結晶フェライトの体積率が8%以上で、かつ該加工フェライトの体積率が5%以上であって、ビッカース硬さ試験(JIS Z 2244)における試験荷重:0.2942Nで測定したときの該再結晶フェライトに対する該加工フェライトのビッカース硬さ比が1.2以上であり、さらに該加工フェライトの平均コロニー径が15μm以下であることを特徴とする深絞り性と耐二次加工脆性に優れる高強度鋼板。
That is, the gist configuration of the present invention is as follows.
1. % By mass
C: 0.0005 to 0.04%,
Si: 0.01 to 1.0%
Mn: 0.8-3%,
P: 0.003-0.15%
Al: 0.005-0.5%
Including S: 0.015% or less and N: 0.006% or less, and
Nb: 0.04-0.1% and
Ti: 0.003-0.1%
The balance is composed of Fe and inevitable impurities, the steel structure is composed of recrystallized ferrite and processed ferrite, the volume ratio of the recrystallized ferrite is 8% or more, and the volume ratio of the processed ferrite is 5% or more, the test load in the Vickers hardness test (JIS Z 2244): the Vickers hardness ratio of the processed ferrite to the recrystallized ferrite when measured at 0.2942 N is 1.2 or more, and the processed ferrite A high-strength steel sheet excellent in deep drawability and secondary work brittleness resistance, characterized by having an average colony diameter of 15 μm or less.

2.上記1において、鋼板が、質量%でさらに
Mo,CuおよびNiのうちから選んだ1種または2種以上の合計:0.5%以下
を含有することを特徴とする深絞り性と耐二次加工脆性に優れる高強度鋼板。
2. In 1 above, the steel sheet is
A high-strength steel sheet excellent in deep drawability and secondary work brittleness resistance, characterized by containing one or more selected from Mo, Cu and Ni: 0.5% or less.

3.上記1または2において、鋼板が、質量%でさらに
B:0.01%以下
を含有することを特徴とする深絞り性と耐二次加工脆性に優れる高強度鋼板。
3. 3. A high-strength steel sheet excellent in deep drawability and secondary work brittleness resistance, characterized in that the steel sheet further contains B: 0.01% or less by mass%.

4.質量%で、
C:0.0005〜0.04%、
Si:0.01〜1.0%、
Mn:0.8〜3%、
P:0.003〜0.15%、
Al:0.005〜0.5%、
S:0.015%以下および
N:0.006%以下
を含み、かつ
Nb:0.04〜0.1%および
Ti:0.003〜0.1%
を含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブを、1000℃以上 1300℃以下の温度に加熱したのち、(Ar3−50)℃以上 950℃以下の温度で熱間圧延を終了し、熱間圧延終了後 0.5s以内に冷却を開始し、750℃までの平均冷却を30℃/s以上として750℃以下まで冷却し、550℃以上 720℃以下の温度で巻き取ったのち、圧下率:50%以上で冷間圧延後、(再結晶完了温度−50℃)以上(再結晶完了温度−10℃)以下の温度で焼鈍することを特徴とする深絞り性と耐二次加工脆性に優れる高強度鋼板の製造方法。
4). % By mass
C: 0.0005 to 0.04%,
Si: 0.01 to 1.0%
Mn: 0.8-3%,
P: 0.003-0.15%
Al: 0.005-0.5%
Including S: 0.015% or less and N: 0.006% or less, and
Nb: 0.04-0.1% and
Ti: 0.003-0.1%
After the steel slab with a balance of Fe and inevitable impurities is heated to a temperature of 1000 ° C or higher and 1300 ° C or lower, hot rolling is performed at a temperature of (Ar 3 -50) ° C or higher and 950 ° C or lower. After cooling, start cooling within 0.5 s after the end of hot rolling, cool to 750 ° C or less with an average cooling to 750 ° C of 30 ° C / s or more, and wind up at a temperature of 550 ° C to 720 ° C , Reduction ratio: Deep drawing and secondary resistance characterized by annealing at a temperature of (recrystallization completion temperature -50 ° C) or more (recrystallization completion temperature -10 ° C) after cold rolling at 50% or more A method for producing a high-strength steel sheet having excellent work brittleness.

5.上記4において、鋼スラブが、質量%でさらに
Mo,CuおよびNiのうちから選んだ1種または2種以上の合計:0.5%以下
を含有することを特徴とする深絞り性と耐二次加工脆性に優れる高強度鋼板の製造方法。
5). In 4 above, the steel slab is further in mass%.
A method for producing a high-strength steel sheet excellent in deep drawability and secondary work brittleness resistance, characterized by containing one or more selected from Mo, Cu and Ni: 0.5% or less.

6.上記4または5において、鋼スラブが、質量%でさらに
B:0.01%以下
を含有することを特徴とする深絞り性と耐二次加工脆性に優れる高強度鋼板の製造方法。
6). 4. A method for producing a high-strength steel sheet excellent in deep drawability and secondary work brittleness resistance, characterized in that the steel slab further contains B: 0.01% or less by mass% in the above 4 or 5.

本発明によれば、高温焼鈍なしに、高r値と耐二次加工脆性を兼ね備えた成形性の良好な高強度鋼板を安定して得ることができる。
また、本発明の高強度鋼板はめっき鋼板の原板としても有用であり、従って、本発明によれば、高r値と耐二次加工脆性を兼ね備えた成形性の良好なめっき鋼板を得ることもできる。
According to the present invention, it is possible to stably obtain a high-strength steel sheet having good formability and having high r value and secondary work brittleness resistance without high-temperature annealing.
In addition, the high-strength steel sheet of the present invention is useful as an original sheet of a plated steel sheet. Therefore, according to the present invention, it is possible to obtain a plated steel sheet having a good formability having both a high r value and secondary work brittleness resistance. it can.

以下、本発明を具体的に説明する。
なお、元素の含有量の単位はいずれも「質量%」であるが、以下、特に断らない限り、単に「%」で示す。
まず、本発明に用いる鋼スラブ、すなわち本発明で得ようとする高強度鋼板の成分組成を上記の範囲に限定した理由について説明する。
Hereinafter, the present invention will be specifically described.
The unit of element content is “mass%”, but hereinafter, it is simply indicated by “%” unless otherwise specified.
First, the reason why the component composition of the steel slab used in the present invention, that is, the high-strength steel sheet to be obtained in the present invention is limited to the above range will be described.

C:0.0005〜0.04%
Cは、高強度化に有効であるので、0.0005%以上を含有させるものとした。しかしながら、あまりに多量になると深絞り性が低下するので、上限を0.04%とした。より好ましくは0.03%以下である。
C: 0.0005-0.04%
Since C is effective for increasing the strength, 0.0005% or more is contained. However, if the amount becomes too large, the deep drawability deteriorates, so the upper limit was made 0.04%. More preferably, it is 0.03% or less.

Si:0.01〜1.0%
Siは、フェライト変態を促進させ、未変態オーステナイト中のC量を上昇させてフェライトとマルテンサイトの複合組織を形成させ易くする他、固溶強化の効果もある。これらの効果を得るには、Siは0.01%以上含有させる必要があり、より好ましくは0.05%以上である。一方、Siを1.0%を超えて含有すると、熱延時に赤スケールと称されるスケールに起因する欠陥が発生するため、製品板ととした時の表面外観が悪化するだけでなく、溶融亜鉛めっき(合金化溶融亜鉛めっきを含む)を施す際にめっきの濡れ性を悪くしてめっきむらの発生を招き、めっき品質が劣化するので、Si量は1.0%以下とする必要がある。より好ましくは0.7%以下である。
Si: 0.01-1.0%
Si promotes ferrite transformation and increases the amount of C in untransformed austenite to facilitate the formation of a composite structure of ferrite and martensite, and also has an effect of solid solution strengthening. In order to obtain these effects, Si must be contained in an amount of 0.01% or more, and more preferably 0.05% or more. On the other hand, if it contains more than 1.0%, defects caused by the scale called red scale occur during hot rolling, which not only deteriorates the surface appearance of the product plate but also hot dip galvanizing. When applying (including alloying hot dip galvanizing), the wettability of the plating is deteriorated to cause uneven plating and the plating quality is deteriorated. Therefore, the Si amount needs to be 1.0% or less. More preferably, it is 0.7% or less.

Mn:0.8〜3%
Mnは、熱延板組織を微細化し高r値化に寄与する。また、焼鈍板を固溶強化および細粒化強化し、高強度化にも有効に寄与する。さらに、Mnは、Sによる熱間割れを防止する上でも有効な元素である。このような観点から、Mnは0.8%以上含有させる必要がある。より好ましくは1.2%以上である。しかしながら、一方で、過度の添加はr値および溶接性を劣化させるので、3%を上限とする。
Mn: 0.8-3%
Mn contributes to increasing the r value by reducing the hot-rolled sheet structure. In addition, the annealing plate is strengthened by solid solution strengthening and fine grain strengthening, which effectively contributes to high strength. Further, Mn is an element effective in preventing hot cracking due to S. From such a viewpoint, Mn needs to be contained by 0.8% or more. More preferably, it is 1.2% or more. However, on the other hand, excessive addition degrades the r value and weldability, so 3% is made the upper limit.

P:0.003〜0.15%
Pは、固溶強化に有用な元素である。しかしながら、含有量が0.003%未満ではその実効に乏しいだけでなく、製鋼工程において脱りんコストの上昇を招く。したがって、Pは0.003%以上含有させるものとした。より好ましくは0.01%以上である。しかし、0.15%を超えて過剰に添加すると、Pが粒界に偏析し、耐二次加工脆性および溶接性を劣化させる。また、溶融亜鉛めっき鋼板とする際には、溶融亜鉛めっき後の合金化処理時に、めっき層と鋼板の界面における鋼板からめっき層へのFeの拡散が抑制され、合金化処理性が劣化する。そのため、高温での合金化処理が必要となるが、得られるめっき層はパウダリング、チッピング等のめっき剥離が生じ易いものとなり、好ましくない。従って、P含有量の上限は0.15%とした。
P: 0.003-0.15%
P is an element useful for solid solution strengthening. However, if the content is less than 0.003%, not only the effectiveness is poor, but also the dephosphorization cost is increased in the steelmaking process. Therefore, P is contained in an amount of 0.003% or more. More preferably, it is 0.01% or more. However, if it is added excessively exceeding 0.15%, P is segregated at the grain boundaries, and the secondary work embrittlement resistance and weldability are deteriorated. Further, when the hot dip galvanized steel sheet is used, the diffusion of Fe from the steel sheet to the plated layer at the interface between the plated layer and the steel sheet is suppressed during the alloying process after the hot dip galvanizing, and the alloying processability is deteriorated. Therefore, although an alloying treatment at a high temperature is required, the obtained plating layer is not preferable because plating peeling such as powdering and chipping easily occurs. Therefore, the upper limit of the P content is set to 0.15%.

Al:0.005〜0.5%
Alは、鋼の脱酸元素として有用である他、固溶Nを固定して耐常温時効性を向上させる作用があるため、0.005%以上含有させる。しかしながら、0.5%を超える添加は合金コストの上昇を招くだけでなく、表面欠陥を誘発するので、0.5%を上限とした。より好ましくは0.1%以下である。
Al: 0.005-0.5%
In addition to being useful as a deoxidizing element for steel, Al has an effect of fixing solid solution N to improve normal temperature aging resistance, so 0.005% or more is contained. However, addition exceeding 0.5% not only increases the alloy cost but also induces surface defects, so 0.5% was made the upper limit. More preferably, it is 0.1% or less.

S:0.015%以下
Sは、不純物であり、熱間割れの原因になるだけでなく、鋼中で介在物として存在し鋼板の諸特性を劣化させるので、極力低減することが好ましいが、0.015%までは許容できるため、0.015%以下とする。
S: 0.015% or less S is an impurity and not only causes hot cracking but also exists as an inclusion in the steel and degrades various properties of the steel sheet, so it is preferable to reduce it as much as possible, but 0.015% Up to 0.015%.

N:0.006%以下
Nは、多すぎると耐常温時効性を劣化させ、多量のAlやTi添加が必要となるため、極力低減することが好ましいが、0.006%までは許容できるので、上限を0.006%とする。
N: 0.006% or less If N is too much, the normal temperature aging resistance is deteriorated and a large amount of Al or Ti is required, so it is preferable to reduce it as much as possible, but 0.006% is acceptable, so the upper limit is 0.006 %.

Nb:0.04〜0.1%
Nbは、熱延板組織の微細化および熱延板中にNbCとしてCを析出固定させる作用を有しており、高r値化に寄与する元素である。また、NbCおよび固溶Nbの存在により再結晶を抑制して、再結晶完了前での特にD方向(圧延方向と45°をなす方向)のr値を高めるのに有用な元素でもある。このような観点から、Nbは0.04%以上含有させるものとした。一方で、過剰のNb添加は、延性の低下を招くので、上限を0.1%とした。
また、Nb添加の効果を奏するには、特にNb含有量(質量%)とC含有量(質量%)との比を(Nb含有量/93)/(C含有量/12)が0.2以上の範囲に満足させることが有用である。(Nb/93)/(C/12)が0.2未満では、固溶Cの存在量が多く、高r値化に有効な{111} 再結晶集合組織の形成を阻害することになる。
Nb: 0.04-0.1%
Nb has an effect of refining the hot-rolled sheet structure and precipitating and fixing C as NbC in the hot-rolled sheet, and is an element that contributes to increasing the r value. It is also an element useful for suppressing recrystallization due to the presence of NbC and solute Nb, and increasing the r value in the D direction (a direction that forms 45 ° with the rolling direction) before completion of recrystallization. From this point of view, Nb is contained in an amount of 0.04% or more. On the other hand, excessive Nb addition causes a decrease in ductility, so the upper limit was made 0.1%.
Further, in order to achieve the effect of Nb addition, the ratio of Nb content (mass%) to C content (mass%) is (Nb content / 93) / (C content / 12) is 0.2 or more. It is useful to satisfy the range. If (Nb / 93) / (C / 12) is less than 0.2, the amount of dissolved C is large, and the formation of {111} recrystallized texture effective for increasing the r value is inhibited.

Ti:0.003〜0.1%
Tiも、Nbと同様、熱延板組織の微細化および熱延板中に炭化物としてCを析出固定させる作用を有し、高r値化に寄与する元素である。但し、熱延板の微細化効果はNbが大きいので、Nb添加鋼に対して、適宜Tiを添加するようにすることが好ましい。さらに、Tiは、熱延の高温域でS,Nと析出物を形成することで高r値化などの高成形性をもたらす。このような観点から、Tiは0.003%以上含有させるものとした。一方で、本発明では、過剰のTi添加はNbと同様に延性を低下させることになるので、上限を0.1%とした。
Ti: 0.003-0.1%
Ti, like Nb, is an element that contributes to increasing the r value by refining the hot rolled sheet structure and precipitating and fixing C as a carbide in the hot rolled sheet. However, since the effect of refinement of the hot-rolled sheet is large in Nb, it is preferable to add Ti as appropriate to the Nb-added steel. Furthermore, Ti brings about high moldability, such as high r value, by forming S and N and a precipitate in the high temperature range of hot rolling. From such a viewpoint, Ti is contained in an amount of 0.003% or more. On the other hand, in the present invention, excessive addition of Ti reduces ductility like Nb, so the upper limit was made 0.1%.

以上、基本成分について説明したが、本発明ではその他にも、以下に述べる元素を適宜含有させることができる。
Mo,CuおよびNiのうちから選んだ1種または2種以上の合計:0.5%以下
Mo,CuおよびNiはいずれも、Mn,Si,Pと同様、固溶強化により焼鈍板の強度を上昇させる一方、延性、r値などへの影響は小さい元素である。特にMoは、Cを析出固定させる作用を有し高r値化に寄与する元素でもある。しかしながら、過剰の添加はこれらの効果が飽和するだけでなく、合金コストの上昇を招くことから、これら元素については単独使用または併用いずれの場合もその合計を0.5%以下として含有させることが好ましい。
The basic components have been described above. However, in the present invention, other elements described below can be appropriately contained.
Total of one or more selected from Mo, Cu and Ni: 0.5% or less
As with Mn, Si, and P, all of Mo, Cu, and Ni are elements that increase the strength of the annealed plate by solid solution strengthening, while having little effect on ductility, r value, and the like. In particular, Mo is also an element that has an action of precipitating and fixing C and contributes to an increase in r value. However, excessive addition not only saturates these effects, but also raises the alloy cost. Therefore, it is preferable to contain these elements in a total amount of 0.5% or less when used alone or in combination.

B:0.01%以下
Bは、粒界を強化する効果をもつ元素であり、必要に応じて含有させる。しかしながら、B量が0.01%を超えると上記の効果が飽和するため、0.01%以下で含有させることが好ましい。
B: 0.01% or less B is an element having an effect of strengthening grain boundaries, and is contained as necessary. However, if the amount of B exceeds 0.01%, the above effect is saturated.

本発明では、上記した成分以外の残部はFeおよび不可避的不純物である。
なお、通常の鋼組成範囲内であれば、さらにCa,REM等を含有しても何ら問題はない。
CaおよびREMは、硫化物系介在物の形態を制御する作用をもち、これにより鋼板の諸特性の劣化を防止する。このような効果は、CaおよびREMのうちから選ばれた1種または2種の含有量が合計で0.01%を超えると飽和するので、これ以下とすることが好ましい。
In the present invention, the balance other than the above components is Fe and inevitable impurities.
In addition, if it is in the normal steel composition range, there is no problem even if Ca, REM and the like are further contained.
Ca and REM have the effect of controlling the morphology of sulfide inclusions, thereby preventing the deterioration of various properties of the steel sheet. Such an effect is saturated when the content of one or two selected from Ca and REM exceeds 0.01% in total, and is therefore preferably made less than this.

なお、その他の不可避的不純物としては、例えばSb,Sn,Zn,Co等が挙げられ、これらの含有量の許容範囲については、それぞれSb:0.01%以下、Sn:0.1%以下、Zn:0.01%以下、Co:0.1%以下である。   Other unavoidable impurities include, for example, Sb, Sn, Zn, Co, etc. The allowable ranges of these contents are Sb: 0.01% or less, Sn: 0.1% or less, Zn: 0.01%, respectively. Hereinafter, Co: 0.1% or less.

次に、本発明に従う高強度鋼板の製造方法について説明する。
本発明では、上記した好適成分組成に調整した鋼スラブを素材とし、加熱後、熱間圧延し、熱間圧延終了後、直ちに所定の速度で所定の温度まで冷却して、巻取り、ついで冷間圧延後、比較的低温で仕上げ焼鈍することにより、高強度鋼板を製造することができる。
以下、各処理条件について説明する。
Next, the manufacturing method of the high strength steel plate according to this invention is demonstrated.
In the present invention, a steel slab adjusted to the above-mentioned preferred component composition is used as a raw material, heated, hot-rolled, and immediately after completion of hot rolling, cooled to a predetermined temperature at a predetermined speed, wound up, and then cooled. A high-strength steel sheet can be manufactured by finish annealing at a relatively low temperature after the intermediate rolling.
Hereinafter, each processing condition will be described.

鋼スラブの製造に際しては、成分のマクロ偏析を防止するために連続鋳造法で製造することが望ましいが、造塊法や薄スラブ鋳造法で製造してもよい。また、鋼スラブを製造した後、いったん室温まで冷却し、その後再度加熱する従来法に加え、冷却せず温片のまま加熱炉に装入し熱間圧延に供する直送圧延、あるいはわずかの保熱を行った後に直ちに熱間圧延に供する直送圧延・直接圧延などの省エネルギープロセスも問題なく適用することができる。   In producing the steel slab, it is desirable to produce it by a continuous casting method in order to prevent macro segregation of components, but it may be produced by an ingot-making method or a thin slab casting method. In addition to the conventional method in which the steel slab is manufactured and then cooled to room temperature and then heated again, it is directly fed into a heating furnace without being cooled and placed in a heating furnace for hot rolling, or a little heat retention Energy saving processes such as direct feed rolling and direct rolling that are immediately subjected to hot rolling after performing the above can be applied without any problem.

スラブ加熱温度:1000℃以上 1300℃以下
スラブ加熱温度は、後述する仕上げ温度を確保するため1000℃以上とする必要がある。しかしながら、1300℃を超えると加熱時におけるNbC,TiC,TiN,Mo2Cなど析出物の析出が不十分なだけでなく、オーステナイト(γ)粒の粒成長が生じ、また加熱温度の上昇によるコストアップ、スケールロスが生じる。そのため、スラブ加熱温度は1000℃以上 1300℃以下の範囲に限定した。
Slab heating temperature: 1000 ° C. or higher and 1300 ° C. or lower The slab heating temperature needs to be 1000 ° C. or higher in order to secure the finishing temperature described later. However, when the temperature exceeds 1300 ° C, not only the precipitation of NbC, TiC, TiN, Mo 2 C, etc. during the heating is insufficient, but also austenite (γ) grain growth occurs, and the cost due to an increase in heating temperature. Increases and scale loss. Therefore, the slab heating temperature was limited to a range of 1000 ° C or higher and 1300 ° C or lower.

上記の条件で加熱されたスラブに、粗圧延および仕上げ圧延からなる熱間圧延を施す。ここで、スラブは粗圧延によりシートバーとされる。なお、粗圧延の条件は特に規定する必要はなく、常法に従って行えばよい。また、スラブ加熱温度を低くし、かつ熱間圧延時のトラブルを防止するといった観点から、シートバーを加熱するいわゆるシートバーヒーターを活用することが有効な方法であることは言うまでもない。   The slab heated under the above conditions is subjected to hot rolling consisting of rough rolling and finish rolling. Here, the slab is made into a sheet bar by rough rolling. The conditions for rough rolling need not be specified, and may be performed according to a conventional method. In addition, it goes without saying that using a so-called sheet bar heater for heating the sheet bar is an effective method from the viewpoint of lowering the slab heating temperature and preventing troubles during hot rolling.

熱間圧延終了温度:(Ar3−50)℃以上 950℃以下
ついで、シートバーに仕上げ圧延を施して熱延板とする。この際、熱間圧延終了温度すなわち仕上げ圧延出側温度(FT)は(Ar3−50)℃以上とする必要がある。それ未満の温度では、フェライト域の高温域での圧延により熱延組織が粗大化し、冷延焼鈍後に良好な深絞り性が得られない。また、950℃超でも、γ粒が粗大化し、冷延焼鈍後に良好な深絞り性が得られず、またスケール欠陥などの表面性状の問題が生じる。このため、熱間圧延終了温度は(Ar3−50)℃以上 950℃以下の範囲に限定した。
Hot rolling end temperature: (Ar 3 −50) ° C. or higher and 950 ° C. or lower Next, the sheet bar is subjected to finish rolling to obtain a hot rolled sheet. At this time, the hot rolling finish temperature, that is, the finish rolling outlet temperature (FT), needs to be (Ar 3 −50) ° C. or higher. If the temperature is lower than that, the hot-rolled structure becomes coarse due to rolling in the high temperature region of the ferrite region, and good deep drawability cannot be obtained after cold rolling annealing. Even at temperatures exceeding 950 ° C., the γ grains become coarse, and good deep drawability cannot be obtained after cold rolling annealing, and problems of surface properties such as scale defects occur. Therefore, the hot rolling finish temperature is limited to the range of (Ar 3 -50) ℃ above 950 ° C. or less.

なお、熱間圧延時の圧延荷重を低減するために、仕上げ圧延の一部または全部のパスを潤滑圧延とすることもできる。この潤滑圧延を行うことは鋼板形状の均一化や材質の均質化の観点からも有効である。なお、潤滑圧延の際の摩擦係数は0.10〜0.25の範囲とするのが好ましい。さらに、相前後するシートバー同士を接合し、連続的に仕上げ圧延に供する連続圧延プロセスとすることも好ましい。連続圧延プロセスを適用することは熱間圧延の操業安定性の観点からも望ましい。   In addition, in order to reduce the rolling load at the time of hot rolling, a part or all pass of finish rolling can also be lubricated rolling. This lubrication rolling is effective from the viewpoint of uniforming the shape of the steel sheet and homogenizing the material. In addition, it is preferable to make the friction coefficient in the case of lubrication rolling into the range of 0.10-0.25. Furthermore, it is also preferable to use a continuous rolling process in which the adjacent sheet bars are joined to each other and continuously subjected to finish rolling. It is desirable to apply the continuous rolling process from the viewpoint of the operational stability of hot rolling.

熱間圧延終了後 0.5s以内に冷却を開始し、750℃までの平均冷却速度を30℃/s以上として750℃以下まで冷却する
本発明では、仕上げ焼鈍後に加工組織を残存させ、かつこの加工組織の平均コロニー径を15μm 以下とする必要がある。これに効果的なのが圧延後の冷却である。すなわち、熱間圧延終了後、冷却開始までの時間が長いと、組織が回復して、冷延焼鈍後のコロニー径が大きくなってしまう。そこで、本発明では、熱間圧延終了後 0.5s以内に冷却を開始することにした。
また、熱間圧延終了後、750℃以上の温度域での熱履歴が冷延焼鈍後のコロニー径に大きく影響し、この温度域における平均冷却速度が30℃/s未満では、γ域で未再結晶状態で圧延された組織が回復してしまい、さらにより高温で変態してしまうために、冷延焼鈍後のコロニー径が大きくなってしまう。そこで、本発明では、冷延開始後 750℃までの平均冷却速度を30℃/s以上の速度として、750℃以下まで冷却を行うことにしたのである。なお、750℃以下の冷却速度については特に限定する必要はなく、引き続き同じ速度で冷却を行ってもよいし、強制冷却を停止してもよい。
Cooling is started within 0.5 s after the end of hot rolling, and the average cooling rate up to 750 ° C. is reduced to 750 ° C. or less with an average cooling rate of 30 ° C./s or more. The average colony diameter of the tissue must be 15 μm or less. Effective for this is cooling after rolling. That is, when the time from the end of hot rolling to the start of cooling is long, the structure recovers and the colony diameter after cold rolling annealing becomes large. Therefore, in the present invention, cooling is started within 0.5 s after the end of hot rolling.
In addition, after the hot rolling, the heat history in the temperature range of 750 ° C. or higher greatly affects the colony diameter after cold rolling annealing. If the average cooling rate in this temperature range is less than 30 ° C./s, it is not in the γ range. Since the structure rolled in the recrystallized state is recovered and transformed at a higher temperature, the colony diameter after cold rolling annealing becomes large. Therefore, in the present invention, the average cooling rate up to 750 ° C. after the start of cold rolling is set to a rate of 30 ° C./s or more, and cooling is performed to 750 ° C. or less. In addition, it is not necessary to specifically limit about the cooling rate of 750 degrees C or less, You may continue cooling at the same rate, and you may stop forced cooling.

巻取り温度:550℃以上 720℃以下
コイルの巻取り温度(CT)は550℃以上 720℃以下とする。というのは、この温度範囲が、熱延板中にNbやTiの炭化物を析出させるのに好適な温度範囲であるだけでなく、特にCTが上限温度を超えると結晶粒が粗大化し強度低下を招くと同時に、冷延焼鈍後の高r値化が妨げられるからである。好ましくは550〜680℃の温度範囲である。
Winding temperature: 550 ° C or higher and 720 ° C or lower The coil winding temperature (CT) is 550 ° C or higher and 720 ° C or lower. This is because this temperature range is not only suitable for precipitating Nb and Ti carbides in the hot-rolled sheet, but especially when CT exceeds the upper limit temperature, the crystal grains become coarse and the strength decreases. This is because, at the same time, an increase in r value after cold rolling annealing is hindered. Preferably it is the temperature range of 550-680 degreeC.

冷延圧下率:50%以上
ついで、熱延板に酸洗を施したのち、冷間圧延を施して冷延板とする。酸洗は、通常の条件にて行えばよい。
高r値化には、一般に高圧下率での冷延が有効であり、圧下率が50%未満では{111}再結晶集合組織が発達せず、優れた深絞り性を得ることが困難となる。そこで、本発明では、冷間圧延時の圧下率は50%以上に限定した。より好ましくは60%以上である。そして、冷間圧下率を90%までの範囲で高くするほどr値が上昇するが、90%を超えるとその効果が飽和するばかりでなく、圧延時のロールへの負荷が高まるため、上限は90%とすることが好ましい。
Cold rolling reduction ratio: 50% or more Next, after pickling the hot-rolled sheet, it is cold-rolled to obtain a cold-rolled sheet. Pickling may be performed under normal conditions.
In general, cold rolling at a high pressure ratio is effective for increasing the r value. If the reduction ratio is less than 50%, the {111} recrystallization texture does not develop, and it is difficult to obtain excellent deep drawability. Become. Therefore, in the present invention, the rolling reduction during cold rolling is limited to 50% or more. More preferably, it is 60% or more. The r value increases as the cold rolling reduction is increased in the range of up to 90%, but when it exceeds 90%, not only the effect is saturated, but also the load on the roll during rolling increases, so the upper limit is 90% is preferable.

仕上げ焼鈍温度:(再結晶完了温度−50℃)以上(再結晶完了温度−10℃)以下
本発明では、加工組織を残すことによって耐二次加工脆性を向上させるために、再結晶温度以下で焼鈍する必要がある。耐二次加工脆性の向上には、亀裂の伸展を抑制させるために再結晶フェライトに対する硬さ比が1.2以上の加工組織(加工フェライト)が必要である。この意味で、仕上げ焼鈍温度は(再結晶完了 温度−10℃)以下とする必要がある。但し、焼鈍温度が低くなりすぎると延性が著しく低下するため、焼鈍温度の下限は(再結晶完了温度−50℃)とした。
Finish annealing temperature: (recrystallization completion temperature −50 ° C.) or more (recrystallization completion temperature −10 ° C.) or less In the present invention, in order to improve the secondary work embrittlement resistance by leaving the work structure, the recrystallization temperature or less It needs to be annealed. In order to improve the secondary work brittleness resistance, a processed structure (processed ferrite) having a hardness ratio to recrystallized ferrite of 1.2 or more is required in order to suppress the extension of cracks. In this sense, the finish annealing temperature must be (recrystallization completion temperature −10 ° C.) or lower. However, if the annealing temperature is too low, the ductility is remarkably lowered, so the lower limit of the annealing temperature is (recrystallization completion temperature −50 ° C.).

上記のようにして得た冷延焼鈍板、さらにはめっき処理を施しためっき鋼板には、形状矯正、表面粗度調整等の目的で調質圧延やレベラー加工を施すこともできる。この調質圧延およびレベラー加工は、伸び率で0.2〜15%の範囲とすることが好ましい。0.2%未満では形状矯正、粗度調整の所期の目的が達成できず、一方15%を超えると顕著な延性の低下を招く。なお、調質圧延とレベラー加工では加工形式が相違するが、その効果は両者で大きな差がないことを確認している。そして、これらの調質圧延およびレベラー加工はめっき処理後でも有効である。   The cold-rolled annealed plate obtained as described above, and further, the plated steel plate subjected to the plating treatment can be subjected to temper rolling and leveler processing for the purpose of shape correction, surface roughness adjustment and the like. The temper rolling and leveler processing are preferably performed in the range of 0.2 to 15% in terms of elongation. If it is less than 0.2%, the intended purpose of shape correction and roughness adjustment cannot be achieved. On the other hand, if it exceeds 15%, the ductility is significantly reduced. In addition, although the processing form differs between temper rolling and leveler processing, it has been confirmed that there is no significant difference between the two. These temper rolling and leveler processing are effective even after the plating treatment.

上記のようにして得られた冷延焼鈍板は、その組織形態が以下の要件を満足する必要がある。
再結晶フェライトと加工フェライトからなり、再結晶フェライトの体積率が8%以上、加工フェライトの体積率が5%以上で、ビッカース硬さ試験(JIS Z 2244)における試験荷重:0.2942Nで測定したときの再結晶フェライトに対する加工フェライトのビッカース硬さ比が1.2以上
亀裂の伸展抑制には、再結晶フェライトに対する硬さ比が1.2以上の加工組織(加工フェライト)を残存させる必要がある。この硬さ比が1.2に満たないと、亀裂の伸展抑制効果が得られない。この硬さは、試験荷重:0.2942N(30gf)のマイクロビッカース硬さ試験で測定を行い、再結晶フェライトと加工フェライトの硬さを測定し、その比より判断する。
そして、亀裂の伸展抑制にはある程度の加工組織が分散していなければならない。その意味で加工組織(加工フェライト)は体積率で5%以上が必要である。
The cold-rolled annealed plate obtained as described above needs to satisfy the following requirements in terms of its structure.
When the volume ratio of recrystallized ferrite is 8% or higher, the volume ratio of processed ferrite is 5% or higher, and the test load in the Vickers hardness test (JIS Z 2244) is 0.2942N. The Vickers hardness ratio of the processed ferrite to the recrystallized ferrite is 1.2 or more In order to suppress crack extension, it is necessary to leave a processed structure (processed ferrite) having a hardness ratio of 1.2 or more to the recrystallized ferrite. If this hardness ratio is less than 1.2, the effect of suppressing crack extension cannot be obtained. This hardness is measured by a micro Vickers hardness test with a test load of 0.2942 N (30 gf), and the hardness of the recrystallized ferrite and the processed ferrite is measured and determined from the ratio.
In order to suppress crack extension, a certain degree of processed structure must be dispersed. In that sense, the processed structure (processed ferrite) needs to have a volume ratio of 5% or more.

また、鋼組織に占める再結晶フェライトの比率は、体積率で8%以上とする必要がある。というのは、この再結晶フェライトの比率が8%に満たないとr値≧1.3の確保が困難になるだけでなく、フェライト径が大きい場合に、クラックの伸展が抑制しきれなくなり、脆性遷移温度が上昇するという問題が生じるからである。   Further, the ratio of recrystallized ferrite in the steel structure needs to be 8% or more by volume ratio. This is because if the ratio of the recrystallized ferrite is less than 8%, it is difficult not only to secure the r value ≧ 1.3, but also when the ferrite diameter is large, the extension of cracks cannot be suppressed, and the brittle transition temperature. This is because there is a problem of rising.

加工フェライトの平均コロニー径:15μm以下
上記した加工組織(加工フェライト)の体積率が5%以上でも、組織が粗大であると、効果的に亀裂の伸展を抑制することができない。そこで、かかる加工組織はある程度微細にする必要がある。
ここに、加工フェライトは、ある程度似たような方位をもつコロニーを形成しているので、本発明ではこのコロニーの大きさを規定するものとし、その平均値を15μm以下に限定した。
Average colony diameter of processed ferrite: 15 μm or less Even if the volume ratio of the above processed structure (processed ferrite) is 5% or more, if the structure is coarse, crack extension cannot be effectively suppressed. Therefore, such a processed structure needs to be made fine to some extent.
Here, since the processed ferrite forms a colony having a somewhat similar orientation, the size of the colony is defined in the present invention, and the average value is limited to 15 μm or less.

ここで、再結晶フェライト、加工フェライトおよび加工フェライトのコロニー径は次のようにして求めた。
すなわち、EBSD(Electron Back-Scatter Diffraction Pattern)で断面組織を測定し、15°以上の方位差を持つ粒界で囲まれた領域での結晶方位の分散が0.1°以内のものを再結晶フェライトとし、15°以上の方位差を持つ粒界で囲まれた領域での結晶方位の分散が0.1°超のものを加工フェライトとした。この場合に、方位差が15°の粒界で囲まれる加工フェライトの領域を、加工フェライトのコロニーとした。
また、鋼組織全体に占める上記加工フェライトの割合(面積率)を求めて、加工フェライトの体積率とし、残部を再結晶フェライトの体積率とした。さらに、加工フェライトのコロニー径は、上記のようにして求めた各コロニーの面積を基に円相当径を求めてコロニー径とし、その平均値で評価した。
Here, the recrystallized ferrite, the processed ferrite, and the colony diameter of the processed ferrite were obtained as follows.
That is, the cross-sectional structure is measured by EBSD (Electron Back-Scatter Diffraction Pattern), and the recrystallized ferrite has a crystal orientation dispersion within 0.1 ° in the region surrounded by grain boundaries with an orientation difference of 15 ° or more. In the region surrounded by the grain boundaries having an orientation difference of 15 ° or more, the one having a crystal orientation dispersion of more than 0.1 ° was defined as processed ferrite. In this case, the region of the processed ferrite surrounded by the grain boundary having a misorientation of 15 ° was defined as a processed ferrite colony.
Moreover, the ratio (area ratio) of the processed ferrite in the entire steel structure was determined, and the volume ratio of the processed ferrite was determined, and the balance was determined as the volume ratio of the recrystallized ferrite. Furthermore, the colony diameter of the processed ferrite was evaluated based on the average value by calculating the equivalent circle diameter based on the area of each colony obtained as described above and setting it as the colony diameter.

本発明は、上記したような再結晶フェライトと加工フェライトからなる鋼組織を有するものである。上記した再結晶フェライトおよび加工フェライト以外に、マルテンサイトやベイナイトなどの組織が存在すると、延性を低下させるので、これらの組織は極力低減することが望ましく、不可避的に存在する場合でも鋼組織全体の2%以下に抑制することが好ましい。
なお、本発明鋼中には、Nb,Tiの炭化物、あるいはさらにセメンタイトといった炭化物が存在し、鋼組織観察において認められる場合もあるが、本発明の組成範囲であればその存在量は微量であるので、本発明における鋼組織の決定の際には、これらの炭化物が不可避的に観察された場合は鋼組織から除外して、鋼組織の決定を行った。
The present invention has a steel structure composed of recrystallized ferrite and processed ferrite as described above. In addition to the recrystallized ferrite and processed ferrite described above, the presence of a structure such as martensite or bainite reduces ductility, so it is desirable to reduce these structures as much as possible. It is preferable to suppress to 2% or less.
In the steel of the present invention, carbides such as carbides of Nb and Ti or cementite are present and may be observed in the steel structure observation, but the abundance is small in the composition range of the present invention. Therefore, in determining the steel structure in the present invention, when these carbides are unavoidably observed, they are excluded from the steel structure, and the steel structure is determined.

本発明に従い、成分組成を前記の範囲に調整すると共に、鋼組織を上記の形態に制御することにより、本発明で所期した高r値と耐二次加工脆性の両者を兼ね備える成形性の良好な高強度鋼板が得られる。その理由については、必ずしも明らかではないが、発明者らは、次のように考えている。
通常、C量が少なくなると粒界が清浄となり、Pなどが偏析して粒界強度を低下させる。再結晶温度よりも低い温度では、加工組織が分散しており、適度に脆性時の亀裂を抑制してくれる。但し、そのためには、加工組織が高強度でかつ微細である必要がある。この点については、熱延後の冷却条件を制御することで再結晶前段階での加工組織のコロニー(結晶方位の似通った粒の集団)の大きさを小さくすることができる。
また、通常の固溶強化型高張力鋼においては、再結晶前のr値は低いのが通常であるが、熱延板の微細化と再結晶挙動の調整により再結晶完了前においても、r値、特に圧延方向と45°をなすD方向のr値を高くすることに成功した。これには、Nb添加量が重要であり、Nb添加は熱延時の未再結晶γ域での圧延を強化することによる熱延板の微細化と、NbCおよび固溶Nbによる再結晶抑制効果により、再結晶挙動に影響を与えるものと考えられる。
In accordance with the present invention, the component composition is adjusted to the above range, and the steel structure is controlled to the above-described form, so that both the high r value and the secondary work brittleness resistance expected in the present invention are excellent. High strength steel sheet can be obtained. The reason is not necessarily clear, but the inventors consider as follows.
Usually, when the amount of C decreases, the grain boundary becomes clean, and P and the like segregate to lower the grain boundary strength. At a temperature lower than the recrystallization temperature, the processed structure is dispersed and moderately suppresses cracking when brittle. However, for that purpose, the processed structure needs to be high strength and fine. In this regard, by controlling the cooling conditions after hot rolling, it is possible to reduce the size of the processed structure colony (a group of grains having similar crystal orientations) in the pre-recrystallization stage.
Further, in a normal solid solution strengthened high-strength steel, the r value before recrystallization is usually low, but even before recrystallization is completed by refining the hot-rolled sheet and adjusting the recrystallization behavior. The value, particularly the r value in the D direction, which forms 45 ° with the rolling direction, was successfully increased. For this, the amount of Nb added is important. Nb addition is due to the refinement of hot-rolled sheet by strengthening rolling in the non-recrystallized γ region at the time of hot rolling and the effect of suppressing recrystallization by NbC and solute Nb. This is thought to affect the recrystallization behavior.

次に、本発明の実施例について説明する。
表1に示す組成の溶鋼を、転炉で溶製し、連続鋳造法でスラブとした。これら鋼スラブを1250℃に加熱したのち、粗圧延によりシートバーとし、ついで表2に示す条件で仕上げ圧延を施して熱延板とした。これらの熱延板を、酸洗後、圧下率:65%の冷間圧延を施して板厚:1.4mmの冷延板とした。引き続き、これら冷延板に、連続焼鈍ラインにて、表2に示す条件で連続焼鈍を施した。また、一部の冷延板については、連続溶融亜鉛めっきラインにて連続焼鈍および溶融亜鉛めっき処理を施した。ついで、得られた冷延焼鈍板および溶融亜鉛めっき鋼板に、伸び率:0.5%の調質圧延を施した。
また、溶融亜鉛めっき処理では、鋼板溶融亜鉛めっき浴に浸漬したのち、鋼板を引き上げて、ガスワイピングにより目付け量を調整し、さらに合金化処理を施した。溶融亜鉛めっき処理の条件は次のとおりである。なお、合金化処理条件は、合金化溶融亜鉛めっき層中のFe含有量が10.5%となる条件とした。
・板温度:475℃
・めっき浴:0.13%Al−Zn
・浴温:475℃
・浸漬時間:3s
・目付け量:45 g/m2(片面当たり)
Next, examples of the present invention will be described.
Molten steel having the composition shown in Table 1 was melted in a converter and made into a slab by a continuous casting method. After heating these steel slabs to 1250 ° C., they were made into sheet bars by rough rolling, and then subjected to finish rolling under the conditions shown in Table 2 to obtain hot rolled sheets. These hot-rolled sheets were pickled and then cold-rolled with a reduction ratio of 65% to obtain cold-rolled sheets with a sheet thickness of 1.4 mm. Subsequently, these cold-rolled sheets were subjected to continuous annealing in the continuous annealing line under the conditions shown in Table 2. Moreover, about some cold rolled sheets, the continuous annealing and the hot dip galvanization process were performed in the continuous hot dip galvanizing line. Subsequently, the obtained cold-rolled annealed sheet and hot-dip galvanized steel sheet were subjected to temper rolling with an elongation of 0.5%.
In the hot dip galvanizing treatment, the steel plate was dipped in a hot dip galvanizing bath, the steel plate was pulled up, the basis weight was adjusted by gas wiping, and an alloying treatment was performed. The conditions for the hot dip galvanizing treatment are as follows. The alloying treatment conditions were such that the Fe content in the alloyed hot-dip galvanized layer was 10.5%.
・ Plate temperature: 475 ℃
・ Plating bath: 0.13% Al-Zn
・ Bath temperature: 475 ℃
・ Immersion time: 3s
・ Weight per unit: 45 g / m 2 (per side)

また、Ar3変態点および再結晶完了温度は次のようにして求めた。
Ar3変態点
加工フォーマスターにより測定を行った。すなわち、表1の成分組成の各々の鋼について、1200℃に加熱した後、950℃で30%の加工を行い、15℃/sで冷却したときの変態点を測定した。
再結晶完了温度
流動層熱処理炉にて加熱温度を変化させて、保持時間:10秒後、冷却して、加工フェライト率を測定し、加工フェライトがなくなる温度を再結晶完了温度とした。なお、加熱温度は600℃から20℃間隔で変化させた。
かくして得られた冷延焼鈍板の微視組織、引張特性およびr値を測定すると共に、耐二次加工脆性を調査した。なお、溶融亜鉛めっき処理材(表2のNo.2)についてはめっき処理性も評価した。
得られた結果を表2に併記する。
Further, the Ar 3 transformation point and the recrystallization completion temperature were determined as follows.
Ar 3 transformation point Measured with a machining formaster. That is, each steel having the component composition shown in Table 1 was heated to 1200 ° C., then processed 30% at 950 ° C., and measured for the transformation point when cooled at 15 ° C./s.
Recrystallization completion temperature The heating temperature was changed in a fluidized bed heat treatment furnace, holding time: after 10 seconds, cooling was performed, the processed ferrite ratio was measured, and the temperature at which the processed ferrite disappeared was defined as the recrystallization completion temperature. The heating temperature was changed from 600 ° C. at 20 ° C. intervals.
The microstructure, tensile properties and r value of the cold-rolled annealed sheet thus obtained were measured, and the secondary work brittleness resistance was investigated. In addition, about the hot dip galvanized material (No. 2 of Table 2), the plating processability was also evaluated.
The obtained results are also shown in Table 2.

なお、微視組織および各特性の調査方法は次のとおりである。
(1) 冷延焼鈍板の微視組織
各冷延焼鈍板から試験片を採取し、圧延方向に平行な板厚断面(L断面)について、光学顕微鏡あるいは走査型電子顕微鏡を用いて400〜10000倍で微視組織を撮像し、相の種類を観察すると共に、前述したようにEBSDにより400倍の像から硬質フェライト(加工フェライト)の面積率と硬質フェライトの平均コロニー径を求めた。
In addition, the investigation method of the microscopic structure and each characteristic is as follows.
(1) Microstructure of cold-rolled annealed plates Specimens were collected from each cold-rolled annealed plate, and the thickness cross section (L cross section) parallel to the rolling direction was measured using an optical microscope or scanning electron microscope. The microscopic structure was imaged at a magnification of 2, and the type of phase was observed. As described above, the area ratio of hard ferrite (processed ferrite) and the average colony diameter of hard ferrite were obtained from an image of 400 times by EBSD.

(2) 再結晶フェライトに対する加工フェライトの硬度比
ビッカース硬さ試験方法(JIS Z 2244)で、再結晶フェライトと加工フェライトの硬さを測定し、その比より求めた。
ビッカース硬さ試験におけるの荷重は0.2942Nとし、粒界に圧痕がある場合は除き、再結晶フェライトと加工フェライトそれぞれについて30個以上測定して、その平均値の比で評価した。
(2) Hardness ratio of processed ferrite to recrystallized ferrite Using the Vickers hardness test method (JIS Z 2244), the hardness of recrystallized ferrite and processed ferrite was measured and obtained from the ratio.
The load in the Vickers hardness test was 0.2942N. Except when there was an indentation at the grain boundary, 30 or more of each of the recrystallized ferrite and the processed ferrite were measured and evaluated by the ratio of the average values.

(3) 引張特性
得られた各冷延焼鈍板から圧延方向に対して90°方向(C方向)にJIS5号引張試験片を採取し、JIS Z 2241の規定に準拠してクロスヘッド速度:10mm/minで引張試験を行い、引張強さ(TS)および伸び(El)を求めた。
(3) Tensile properties JIS No. 5 tensile test specimens were taken from each of the obtained cold-rolled annealed plates in the 90 ° direction (C direction) with respect to the rolling direction, and the crosshead speed was 10 mm in accordance with the provisions of JIS Z 2241. A tensile test was conducted at / min to determine tensile strength (TS) and elongation (El).

(4) r値
得られた各冷延焼鈍板の圧延方向(L方向)、圧延方向に対し45°方向(D方向)、圧延方向に対し90°方向(C方向)からJIS5号引張試験片を採取した。 これらの試験片に10%の単軸引張歪を付与した時の各試験片の幅歪と板厚歪を測定し、これらの測定値を用い、JIS Z 2254の規定に準拠して平均r値(平均塑性歪比)を以下の式から算出し、これを平均r値とした。
平均r値=(r0+2r45+r90)/4
なお、r0、r45およびr90は、試験片を板面の圧延方向に対し、それぞれ0°、45°および90°方向に採取し測定した塑性ひずみ比である。
(4) r value JIS No. 5 tensile specimen from the rolling direction (L direction), 45 ° direction (D direction) with respect to the rolling direction, and 90 ° direction (C direction) with respect to the rolling direction. Were collected. Measure the width strain and plate thickness strain of each specimen when 10% uniaxial tensile strain was applied to these specimens, and use these measurements to determine the average r value in accordance with JIS Z 2254 regulations. (Average plastic strain ratio) was calculated from the following formula, and this was used as the average r value.
Average r value = (r 0 + 2r 45 + r 90 ) / 4
R 0 , r 45, and r 90 are plastic strain ratios obtained by measuring test pieces in the 0 °, 45 °, and 90 ° directions, respectively, with respect to the rolling direction of the plate surface.

(5) 耐二次加工脆性
65Φにブランキング後、33Φの鋼球を用いてコニカルカップを作成した。これを耳高さ(カップ底からのカップ高さ):27mmの位置で耳きりして試験カップとした。これに所定の温度まで冷却したのち、カップを横向きに置き、カップ上の耳切り部近傍に5kgの錘を80cmの高さから落として割れの有無で遷移温度を判定した。判定基準としては、3個試験を行い3つとも割れない最低温度を脆性遷移温度とした。
(5) Secondary processing brittleness resistance
After blanking to 65Φ, a conical cup was made using 33Φ steel balls. Ear height (cup height from the bottom of the cup): A test cup was prepared by cutting the ear at a position of 27 mm. After cooling to a predetermined temperature, the cup was placed sideways, a 5 kg weight was dropped from the height of 80 cm in the vicinity of the ear cut part on the cup, and the transition temperature was determined by the presence or absence of cracks. As a criterion for judgment, three tests were conducted, and the lowest temperature at which none of the three cracks was determined as the brittle transition temperature.

(6) めっき処理性
得られた溶融亜鉛めっき鋼板の表面を目視観察し、不めっき欠陥の存在の有無を判定して、めっき性を評価した。なお、評価は、不めっき欠陥の全く無いもの(めっき性良好)を○、不めっき欠陥が一部発生したもの(めっき性やや良好)を△、不めっき欠陥が多数発生したもの(めっき性不良)を×とした。
(6) Plating property The surface of the obtained hot-dip galvanized steel sheet was visually observed to determine the presence or absence of non-plating defects, and the plating property was evaluated. In addition, the evaluation is ◯ when there is no non-plating defect (good plating property), △ when some non-plating defect occurs (slightly good plating property), and many non-plating defects occur (bad plating property) ) Was marked with x.

Figure 0004848958
Figure 0004848958

Figure 0004848958
Figure 0004848958

表2から明らかなように、本発明に従い得られた発明例はいずれも、TSが440 MPa以上であり、かつr値が1.3以上と深絞り性に優れ、また脆性遷移温度も−45℃以下と耐二次加工脆性にも優れていた。
これに対し、本発明の範囲を外れる条件で製造した比較例は、強度に対してr値や延性のいずれかが低下している鋼板となっていた。
As is apparent from Table 2, all of the inventive examples obtained according to the present invention have a TS of 440 MPa or more, an r value of 1.3 or more and excellent deep drawability, and a brittle transition temperature of −45 ° C. or less. And the secondary work brittleness resistance was also excellent.
On the other hand, the comparative example manufactured on the conditions which remove | deviate from the range of this invention was a steel plate in which either r value or ductility fell with respect to intensity | strength.

本発明によれば、TS:440 MPa以上で、耐二次加工脆性に優れ、またr値が1.3以上の深絞り性に優れた高強度鋼板を安価にかつ安定して製造することが可能となり産業上格段の効果を奏する。
例えば、本発明の高強度鋼板を自動車部品に適用した場合、これまでプレス成形が困難であった部位も高強度化が可能となり、自動車車体の衝突安全性や軽量化に十分寄与できるという効果がある。また、自動車部品に限らず家電部品やパイプ用素材としても適用可能である。
According to the present invention, it is possible to stably and inexpensively produce a high-strength steel sheet having TS: 440 MPa or more, excellent secondary work brittleness resistance, and an r value of 1.3 or more and excellent deep drawability. There are remarkable effects in the industry.
For example, when the high-strength steel sheet of the present invention is applied to automobile parts, it is possible to increase the strength of parts that have been difficult to press-form so far, and it is possible to sufficiently contribute to collision safety and weight reduction of an automobile body. is there. Moreover, it is applicable not only to automobile parts but also to household appliance parts and pipe materials.

Claims (6)

質量%で、
C:0.0005〜0.04%、
Si:0.01〜1.0%、
Mn:0.8〜3%、
P:0.003〜0.15%、
Al:0.005〜0.5%、
S:0.015%以下および
N:0.006%以下
を含み、かつ
Nb:0.04〜0.1%および
Ti:0.003〜0.1%
を含有し、残部はFeおよび不可避的不純物の組成になり、鋼組織が、再結晶フェライトと加工フェライトからなり、該再結晶フェライトの体積率が8%以上で、かつ該加工フェライトの体積率が5%以上であって、ビッカース硬さ試験(JIS Z 2244)における試験荷重:0.2942Nで測定したときの該再結晶フェライトに対する該加工フェライトのビッカース硬さ比が1.2以上であり、さらに該加工フェライトの平均コロニー径が15μm以下であることを特徴とする深絞り性と耐二次加工脆性に優れる高強度鋼板。
% By mass
C: 0.0005 to 0.04%,
Si: 0.01 to 1.0%
Mn: 0.8-3%,
P: 0.003-0.15%
Al: 0.005-0.5%
Including S: 0.015% or less and N: 0.006% or less, and
Nb: 0.04-0.1% and
Ti: 0.003-0.1%
The balance is composed of Fe and inevitable impurities, the steel structure is composed of recrystallized ferrite and processed ferrite, the volume ratio of the recrystallized ferrite is 8% or more, and the volume ratio of the processed ferrite is 5% or more, the test load in the Vickers hardness test (JIS Z 2244): the Vickers hardness ratio of the processed ferrite to the recrystallized ferrite when measured at 0.2942 N is 1.2 or more, and the processed ferrite A high-strength steel sheet excellent in deep drawability and secondary work brittleness resistance, characterized by having an average colony diameter of 15 μm or less.
請求項1において、鋼板が、質量%でさらに
Mo,CuおよびNiのうちから選んだ1種または2種以上の合計:0.5%以下
を含有することを特徴とする深絞り性と耐二次加工脆性に優れる高強度鋼板。
The steel sheet according to claim 1, wherein the steel sheet is further in mass%.
A high-strength steel sheet excellent in deep drawability and secondary work brittleness resistance, characterized by containing one or more selected from Mo, Cu and Ni: 0.5% or less.
請求項1または2において、鋼板が、質量%でさらに
B:0.01%以下
を含有することを特徴とする深絞り性と耐二次加工脆性に優れる高強度鋼板。
The high-strength steel sheet having excellent deep drawability and secondary work brittleness resistance according to claim 1 or 2, wherein the steel sheet further contains B: 0.01% or less by mass%.
質量%で、
C:0.0005〜0.04%、
Si:0.01〜1.0%、
Mn:0.8〜3%、
P:0.003〜0.15%、
Al:0.005〜0.5%、
S:0.015%以下および
N:0.006%以下
を含み、かつ
Nb:0.04〜0.1%および
Ti:0.003〜0.1%
を含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブを、1000℃以上 1300℃以下の温度に加熱したのち、(Ar3−50)℃以上 950℃以下の温度で熱間圧延を終了し、熱間圧延終了後 0.5s以内に冷却を開始し、750℃までの平均冷却を30℃/s以上として750℃以下まで冷却し、550℃以上 720℃以下の温度で巻き取ったのち、圧下率:50%以上で冷間圧延後、(再結晶完了温度−50℃)以上(再結晶完了温度−10℃)以下の温度で焼鈍することを特徴とする深絞り性と耐二次加工脆性に優れる高強度鋼板の製造方法。
% By mass
C: 0.0005 to 0.04%,
Si: 0.01 to 1.0%
Mn: 0.8-3%,
P: 0.003-0.15%
Al: 0.005-0.5%
Including S: 0.015% or less and N: 0.006% or less, and
Nb: 0.04-0.1% and
Ti: 0.003-0.1%
After the steel slab with a balance of Fe and inevitable impurities is heated to a temperature of 1000 ° C or higher and 1300 ° C or lower, hot rolling is performed at a temperature of (Ar 3 -50) ° C or higher and 950 ° C or lower. After cooling, start cooling within 0.5 s after the end of hot rolling, cool to 750 ° C or less with an average cooling to 750 ° C of 30 ° C / s or more, and wind up at a temperature of 550 ° C to 720 ° C , Reduction ratio: Deep drawing and secondary resistance characterized by annealing at a temperature of (recrystallization completion temperature -50 ° C) or more (recrystallization completion temperature -10 ° C) after cold rolling at 50% or more A method for producing a high-strength steel sheet having excellent work brittleness.
請求項4において、鋼スラブが、質量%でさらに
Mo,CuおよびNiのうちから選んだ1種または2種以上の合計:0.5%以下
を含有することを特徴とする深絞り性と耐二次加工脆性に優れる高強度鋼板の製造方法。
The steel slab according to claim 4, wherein the steel slab is further in mass%.
A method for producing a high-strength steel sheet excellent in deep drawability and secondary work brittleness resistance, characterized by containing one or more selected from Mo, Cu and Ni: 0.5% or less.
請求項4または5において、鋼スラブが、質量%でさらに
B:0.01%以下
を含有することを特徴とする深絞り性と耐二次加工脆性に優れる高強度鋼板の製造方法。
6. The method for producing a high-strength steel sheet excellent in deep drawability and secondary work brittleness resistance according to claim 4, wherein the steel slab further contains B: 0.01% or less by mass%.
JP2007003185A 2007-01-11 2007-01-11 High-strength steel sheet excellent in deep drawability and secondary work brittleness resistance and method for producing the same Expired - Fee Related JP4848958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007003185A JP4848958B2 (en) 2007-01-11 2007-01-11 High-strength steel sheet excellent in deep drawability and secondary work brittleness resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007003185A JP4848958B2 (en) 2007-01-11 2007-01-11 High-strength steel sheet excellent in deep drawability and secondary work brittleness resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008169427A JP2008169427A (en) 2008-07-24
JP4848958B2 true JP4848958B2 (en) 2011-12-28

Family

ID=39697803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007003185A Expired - Fee Related JP4848958B2 (en) 2007-01-11 2007-01-11 High-strength steel sheet excellent in deep drawability and secondary work brittleness resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP4848958B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5391607B2 (en) * 2008-08-05 2014-01-15 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet with excellent appearance and method for producing the same
KR101193756B1 (en) * 2009-10-29 2012-10-23 현대제철 주식회사 Cold-rolled steel sheet having excellent surface quality, and method for producing the same
CN104284995B (en) * 2012-04-23 2016-06-22 杰富意钢铁株式会社 High-strength steel sheet and manufacture method thereof
KR102426248B1 (en) * 2020-11-05 2022-07-28 주식회사 포스코 Method for manufacturing hot-dip galvanized high strength steel sheet having excellent distinctness of image after painting
KR102468036B1 (en) * 2020-11-12 2022-11-17 주식회사 포스코 High-strength hot-dip galvanized steel sheet with excellent formability and process for producing same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143223A (en) * 1986-12-04 1988-06-15 Kawasaki Steel Corp Manufacture of high tension cold rolled steel sheet
JP3534023B2 (en) * 1999-11-05 2004-06-07 Jfeスチール株式会社 High-strength steel sheet with excellent secondary work brittleness resistance and method for producing the same
JP4265545B2 (en) * 2000-02-29 2009-05-20 Jfeスチール株式会社 High tensile cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP4407449B2 (en) * 2003-09-26 2010-02-03 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
JP4380353B2 (en) * 2004-02-17 2009-12-09 Jfeスチール株式会社 High-strength steel sheet excellent in deep drawability and strength-ductility balance and manufacturing method thereof
JP2006070338A (en) * 2004-09-03 2006-03-16 Nisshin Steel Co Ltd Automobile member having excellent secondary working crack resistance and square tube formability
JP4687260B2 (en) * 2005-06-10 2011-05-25 Jfeスチール株式会社 Manufacturing method of deep drawing high tensile cold-rolled steel sheet with excellent surface properties

Also Published As

Publication number Publication date
JP2008169427A (en) 2008-07-24

Similar Documents

Publication Publication Date Title
KR101528080B1 (en) High-strength hot-dip-galvanized steel sheet having excellent moldability, and method for production thereof
JP4635525B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
JP5709151B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP5983896B2 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
JP4998757B2 (en) Manufacturing method of high strength steel sheet with excellent deep drawability
KR20160147869A (en) High-strength hot-dip galvanized steel sheet, and method for manufacturing high-strength alloyed hot-dip galvanized steel sheet
JP2006307327A (en) High ductility and high strength alloyed hot-dip galvanized steel sheet having excellent surface property and brittle resistance to secondary processing and method for producing same
KR102177591B1 (en) High-strength steel sheet and its manufacturing method
JP4752522B2 (en) Manufacturing method of high strength cold-rolled steel sheet for deep drawing
JP4848958B2 (en) High-strength steel sheet excellent in deep drawability and secondary work brittleness resistance and method for producing the same
JP5251207B2 (en) High strength steel plate with excellent deep drawability and method for producing the same
JP4735552B2 (en) Manufacturing method of high strength steel plate and high strength plated steel plate
JP4501699B2 (en) High-strength steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
JPWO2020148948A1 (en) High-strength galvanized steel sheet and its manufacturing method
JP4293020B2 (en) Manufacturing method of high-strength steel sheet with excellent hole expandability
JP5381154B2 (en) Cold-rolled steel sheet excellent in strength-ductility balance after press working and paint baking and method for producing the same
JP5262372B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
JP3912181B2 (en) Composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet excellent in deep drawability and stretch flangeability and manufacturing method thereof
JP4380353B2 (en) High-strength steel sheet excellent in deep drawability and strength-ductility balance and manufacturing method thereof
JP4715637B2 (en) Method for producing high-strength hot-dip galvanized steel sheet with excellent formability
JP4506380B2 (en) Manufacturing method of high-strength steel sheet
JP5151227B2 (en) High strength steel plate and manufacturing method thereof
JP5251206B2 (en) High-strength steel sheet excellent in deep drawability, aging resistance and bake hardenability, and its manufacturing method
JP4301045B2 (en) High-strength steel plate, plated steel plate, and production method thereof
JP4525386B2 (en) Manufacturing method of high-strength steel sheets with excellent shape freezing and deep drawability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111003

R150 Certificate of patent or registration of utility model

Ref document number: 4848958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees