JP4843792B2 - Antigen drug vehicle enabling transmucosal and transdermal administration, method for inducing mucosal immunity using the same, mucosal vaccine and DDS - Google Patents
Antigen drug vehicle enabling transmucosal and transdermal administration, method for inducing mucosal immunity using the same, mucosal vaccine and DDS Download PDFInfo
- Publication number
- JP4843792B2 JP4843792B2 JP2006512040A JP2006512040A JP4843792B2 JP 4843792 B2 JP4843792 B2 JP 4843792B2 JP 2006512040 A JP2006512040 A JP 2006512040A JP 2006512040 A JP2006512040 A JP 2006512040A JP 4843792 B2 JP4843792 B2 JP 4843792B2
- Authority
- JP
- Japan
- Prior art keywords
- mucosal
- vaccine
- protein
- seq
- psf
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229960005486 vaccine Drugs 0.000 title claims description 102
- 239000000427 antigen Substances 0.000 title claims description 53
- 102000036639 antigens Human genes 0.000 title claims description 53
- 108091007433 antigens Proteins 0.000 title claims description 53
- 230000036039 immunity Effects 0.000 title claims description 37
- 238000000034 method Methods 0.000 title claims description 28
- 239000003937 drug carrier Substances 0.000 title claims description 24
- 230000001939 inductive effect Effects 0.000 title claims description 14
- 239000012634 fragment Substances 0.000 claims description 51
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 44
- 238000004519 manufacturing process Methods 0.000 claims description 36
- 150000002632 lipids Chemical class 0.000 claims description 30
- 210000003928 nasal cavity Anatomy 0.000 claims description 27
- 102000046299 Transforming Growth Factor beta1 Human genes 0.000 claims description 17
- 101800002279 Transforming growth factor beta-1 Proteins 0.000 claims description 17
- 239000012528 membrane Substances 0.000 claims description 13
- 230000006698 induction Effects 0.000 claims description 12
- 102000004127 Cytokines Human genes 0.000 claims description 11
- 108090000695 Cytokines Proteins 0.000 claims description 11
- 229960000856 protein c Drugs 0.000 claims description 10
- 108010041520 Pulmonary Surfactant-Associated Proteins Proteins 0.000 claims description 9
- KILNVBDSWZSGLL-KXQOOQHDSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC KILNVBDSWZSGLL-KXQOOQHDSA-N 0.000 claims description 8
- 102000000528 Pulmonary Surfactant-Associated Proteins Human genes 0.000 claims description 8
- ATBOMIWRCZXYSZ-XZBBILGWSA-N [1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (9e,12e)-octadeca-9,12-dienoate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(COP(O)(=O)OCC(O)CO)OC(=O)CCCCCCC\C=C\C\C=C\CCCCC ATBOMIWRCZXYSZ-XZBBILGWSA-N 0.000 claims description 7
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 claims description 7
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 claims description 6
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 claims description 6
- 108010042653 IgA receptor Proteins 0.000 claims description 6
- 102100034014 Prolyl 3-hydroxylase 3 Human genes 0.000 claims description 6
- 101800004937 Protein C Proteins 0.000 claims description 6
- 102100036546 Salivary acidic proline-rich phosphoprotein 1/2 Human genes 0.000 claims description 6
- 101800001700 Saposin-D Proteins 0.000 claims description 6
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 claims description 6
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 claims description 6
- 230000002209 hydrophobic effect Effects 0.000 claims description 6
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 claims description 5
- 230000001737 promoting effect Effects 0.000 claims description 4
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims description 3
- PORPENFLTBBHSG-MGBGTMOVSA-N 1,2-dihexadecanoyl-sn-glycerol-3-phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCCCCCCCCCC PORPENFLTBBHSG-MGBGTMOVSA-N 0.000 claims description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims description 3
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims description 3
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 claims description 3
- 239000005639 Lauric acid Substances 0.000 claims description 3
- 239000005642 Oleic acid Substances 0.000 claims description 3
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims description 3
- 235000021314 Palmitic acid Nutrition 0.000 claims description 3
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims description 3
- 125000003473 lipid group Chemical group 0.000 claims description 3
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 claims description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims description 3
- 150000008104 phosphatidylethanolamines Chemical class 0.000 claims description 3
- 150000003905 phosphatidylinositols Chemical class 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 2
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 claims description 2
- 125000003275 alpha amino acid group Chemical group 0.000 claims 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 claims 1
- DCXXMTOCNZCJGO-UHFFFAOYSA-N Glycerol trioctadecanoate Natural products CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 claims 1
- 230000000694 effects Effects 0.000 description 58
- 102100030343 Antigen peptide transporter 2 Human genes 0.000 description 54
- 101000652582 Homo sapiens Antigen peptide transporter 2 Proteins 0.000 description 54
- 150000001413 amino acids Chemical class 0.000 description 47
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 44
- 238000002649 immunization Methods 0.000 description 44
- 230000003053 immunization Effects 0.000 description 44
- 229960003971 influenza vaccine Drugs 0.000 description 44
- 239000002953 phosphate buffered saline Substances 0.000 description 44
- 239000003981 vehicle Substances 0.000 description 41
- 239000012530 fluid Substances 0.000 description 34
- 206010022000 influenza Diseases 0.000 description 34
- 239000000243 solution Substances 0.000 description 33
- 239000003580 lung surfactant Substances 0.000 description 30
- 239000002671 adjuvant Substances 0.000 description 27
- 238000002360 preparation method Methods 0.000 description 26
- 102000004196 processed proteins & peptides Human genes 0.000 description 24
- 241000699670 Mus sp. Species 0.000 description 22
- 210000004369 blood Anatomy 0.000 description 22
- 239000008280 blood Substances 0.000 description 22
- 208000015181 infectious disease Diseases 0.000 description 22
- 210000004072 lung Anatomy 0.000 description 22
- 239000003814 drug Substances 0.000 description 20
- 241000700605 Viruses Species 0.000 description 17
- 238000010254 subcutaneous injection Methods 0.000 description 17
- 239000007929 subcutaneous injection Substances 0.000 description 17
- 210000001331 nose Anatomy 0.000 description 16
- 239000000126 substance Substances 0.000 description 16
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 15
- 210000004027 cell Anatomy 0.000 description 15
- 229940079593 drug Drugs 0.000 description 15
- 229940066294 lung surfactant Drugs 0.000 description 15
- 150000003904 phospholipids Chemical class 0.000 description 15
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 14
- 230000002708 enhancing effect Effects 0.000 description 14
- 230000001965 increasing effect Effects 0.000 description 14
- 210000004877 mucosa Anatomy 0.000 description 14
- 229920001184 polypeptide Polymers 0.000 description 14
- 210000004443 dendritic cell Anatomy 0.000 description 13
- 235000018102 proteins Nutrition 0.000 description 13
- 108090000623 proteins and genes Proteins 0.000 description 13
- 102000004169 proteins and genes Human genes 0.000 description 13
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 12
- 241000699666 Mus <mouse, genus> Species 0.000 description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 11
- 210000004379 membrane Anatomy 0.000 description 11
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 10
- 238000011161 development Methods 0.000 description 10
- 230000018109 developmental process Effects 0.000 description 10
- 210000002966 serum Anatomy 0.000 description 10
- 102000007615 Pulmonary Surfactant-Associated Protein A Human genes 0.000 description 9
- 108010007100 Pulmonary Surfactant-Associated Protein A Proteins 0.000 description 9
- 239000004480 active ingredient Substances 0.000 description 8
- 229940031551 inactivated vaccine Drugs 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 230000002265 prevention Effects 0.000 description 8
- 238000007920 subcutaneous administration Methods 0.000 description 8
- 239000004094 surface-active agent Substances 0.000 description 8
- 239000000725 suspension Substances 0.000 description 8
- 241000712461 unidentified influenza virus Species 0.000 description 8
- 101001086862 Homo sapiens Pulmonary surfactant-associated protein B Proteins 0.000 description 7
- 206010020751 Hypersensitivity Diseases 0.000 description 7
- 230000007815 allergy Effects 0.000 description 7
- 230000016784 immunoglobulin production Effects 0.000 description 7
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 6
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 description 6
- 230000009471 action Effects 0.000 description 6
- 210000000612 antigen-presenting cell Anatomy 0.000 description 6
- 235000014113 dietary fatty acids Nutrition 0.000 description 6
- 239000000194 fatty acid Substances 0.000 description 6
- 229930195729 fatty acid Natural products 0.000 description 6
- 150000004665 fatty acids Chemical class 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 230000028993 immune response Effects 0.000 description 6
- 238000011081 inoculation Methods 0.000 description 6
- 210000002345 respiratory system Anatomy 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 210000000952 spleen Anatomy 0.000 description 6
- 230000003612 virological effect Effects 0.000 description 6
- 101150013553 CD40 gene Proteins 0.000 description 5
- 108010049048 Cholera Toxin Proteins 0.000 description 5
- 102000009016 Cholera Toxin Human genes 0.000 description 5
- 108020004414 DNA Proteins 0.000 description 5
- 238000012286 ELISA Assay Methods 0.000 description 5
- 101000612671 Homo sapiens Pulmonary surfactant-associated protein C Proteins 0.000 description 5
- 102100040245 Tumor necrosis factor receptor superfamily member 5 Human genes 0.000 description 5
- 208000026935 allergic disease Diseases 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 238000011002 quantification Methods 0.000 description 5
- 230000003248 secreting effect Effects 0.000 description 5
- 230000028327 secretion Effects 0.000 description 5
- 238000012353 t test Methods 0.000 description 5
- 210000003437 trachea Anatomy 0.000 description 5
- 238000002255 vaccination Methods 0.000 description 5
- 230000009385 viral infection Effects 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- 241000283690 Bos taurus Species 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- 206010061218 Inflammation Diseases 0.000 description 4
- 102000004388 Interleukin-4 Human genes 0.000 description 4
- 108090000978 Interleukin-4 Proteins 0.000 description 4
- 108091005804 Peptidases Proteins 0.000 description 4
- 238000001042 affinity chromatography Methods 0.000 description 4
- 210000003719 b-lymphocyte Anatomy 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 229940028617 conventional vaccine Drugs 0.000 description 4
- 210000001035 gastrointestinal tract Anatomy 0.000 description 4
- 230000004727 humoral immunity Effects 0.000 description 4
- 230000004054 inflammatory process Effects 0.000 description 4
- 210000004698 lymphocyte Anatomy 0.000 description 4
- 210000004400 mucous membrane Anatomy 0.000 description 4
- 235000004252 protein component Nutrition 0.000 description 4
- 230000002685 pulmonary effect Effects 0.000 description 4
- 235000000346 sugar Nutrition 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- 101710154606 Hemagglutinin Proteins 0.000 description 3
- 108090000176 Interleukin-13 Proteins 0.000 description 3
- 108010002616 Interleukin-5 Proteins 0.000 description 3
- 108090001005 Interleukin-6 Proteins 0.000 description 3
- 102000043131 MHC class II family Human genes 0.000 description 3
- 108091054438 MHC class II family Proteins 0.000 description 3
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 3
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 3
- 229920001213 Polysorbate 20 Polymers 0.000 description 3
- 101710176177 Protein A56 Proteins 0.000 description 3
- 108010007125 Pulmonary Surfactant-Associated Protein C Proteins 0.000 description 3
- 102000007620 Pulmonary Surfactant-Associated Protein C Human genes 0.000 description 3
- 102100032617 Pulmonary surfactant-associated protein B Human genes 0.000 description 3
- 229920002684 Sepharose Polymers 0.000 description 3
- 241000282887 Suidae Species 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 239000013566 allergen Substances 0.000 description 3
- 230000002238 attenuated effect Effects 0.000 description 3
- 210000004899 c-terminal region Anatomy 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000010353 genetic engineering Methods 0.000 description 3
- 239000000185 hemagglutinin Substances 0.000 description 3
- 230000002779 inactivation Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 210000002540 macrophage Anatomy 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 3
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000003393 splenic effect Effects 0.000 description 3
- 230000009885 systemic effect Effects 0.000 description 3
- 239000003053 toxin Substances 0.000 description 3
- 231100000765 toxin Toxicity 0.000 description 3
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 241000283153 Cetacea Species 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 241001125840 Coryphaenidae Species 0.000 description 2
- 108010041986 DNA Vaccines Proteins 0.000 description 2
- 229940021995 DNA vaccine Drugs 0.000 description 2
- 238000008157 ELISA kit Methods 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 102000018713 Histocompatibility Antigens Class II Human genes 0.000 description 2
- 108010027412 Histocompatibility Antigens Class II Proteins 0.000 description 2
- 241000711408 Murine respirovirus Species 0.000 description 2
- 102000035195 Peptidases Human genes 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 230000030741 antigen processing and presentation Effects 0.000 description 2
- VEZXCJBBBCKRPI-UHFFFAOYSA-N beta-propiolactone Chemical compound O=C1CCO1 VEZXCJBBBCKRPI-UHFFFAOYSA-N 0.000 description 2
- 238000009739 binding Methods 0.000 description 2
- 229960000074 biopharmaceutical Drugs 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229940092456 curosurf Drugs 0.000 description 2
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical group BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 description 2
- 238000000586 desensitisation Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 235000013601 eggs Nutrition 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 210000003743 erythrocyte Anatomy 0.000 description 2
- 238000000684 flow cytometry Methods 0.000 description 2
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 102000047087 human SFTPC Human genes 0.000 description 2
- 229940099472 immunoglobulin a Drugs 0.000 description 2
- 230000002458 infectious effect Effects 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- WEXRUCMBJFQVBZ-UHFFFAOYSA-N pentobarbital Chemical compound CCCC(C)C1(CC)C(=O)NC(=O)NC1=O WEXRUCMBJFQVBZ-UHFFFAOYSA-N 0.000 description 2
- 238000010647 peptide synthesis reaction Methods 0.000 description 2
- 102000013415 peroxidase activity proteins Human genes 0.000 description 2
- 108040007629 peroxidase activity proteins Proteins 0.000 description 2
- -1 poly I-poly C Chemical compound 0.000 description 2
- 229960000380 propiolactone Drugs 0.000 description 2
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229940124597 therapeutic agent Drugs 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- BIABMEZBCHDPBV-MPQUPPDSSA-N 1,2-palmitoyl-sn-glycero-3-phospho-(1'-sn-glycerol) Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@@H](O)CO)OC(=O)CCCCCCCCCCCCCCC BIABMEZBCHDPBV-MPQUPPDSSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 241000238876 Acari Species 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- IHRGVZXPTIQNIP-NAKRPEOUSA-N Ala-Met-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CCSC)NC(=O)[C@H](C)N IHRGVZXPTIQNIP-NAKRPEOUSA-N 0.000 description 1
- 206010001881 Alveolar proteinosis Diseases 0.000 description 1
- 206010002091 Anaesthesia Diseases 0.000 description 1
- YQGZIRIYGHNSQO-ZPFDUUQYSA-N Arg-Ile-Gln Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)O)NC(=O)[C@H](CCCN=C(N)N)N YQGZIRIYGHNSQO-ZPFDUUQYSA-N 0.000 description 1
- JEXPNDORFYHJTM-IHRRRGAJSA-N Arg-Leu-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCCN=C(N)N JEXPNDORFYHJTM-IHRRRGAJSA-N 0.000 description 1
- OISWSORSLQOGFV-AVGNSLFASA-N Arg-Met-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CCSC)NC(=O)[C@@H](N)CCCN=C(N)N OISWSORSLQOGFV-AVGNSLFASA-N 0.000 description 1
- 238000000035 BCA protein assay Methods 0.000 description 1
- VGGGPCQERPFHOB-MCIONIFRSA-N Bestatin Chemical compound CC(C)C[C@H](C(O)=O)NC(=O)[C@@H](O)[C@H](N)CC1=CC=CC=C1 VGGGPCQERPFHOB-MCIONIFRSA-N 0.000 description 1
- VGGGPCQERPFHOB-UHFFFAOYSA-N Bestatin Natural products CC(C)CC(C(O)=O)NC(=O)C(O)C(N)CC1=CC=CC=C1 VGGGPCQERPFHOB-UHFFFAOYSA-N 0.000 description 1
- 241000195940 Bryophyta Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 241000251730 Chondrichthyes Species 0.000 description 1
- 241000207199 Citrus Species 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 240000005109 Cryptomeria japonica Species 0.000 description 1
- XBELMDARIGXDKY-GUBZILKMSA-N Cys-Pro-Val Chemical compound CC(C)[C@@H](C(=O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@H](CS)N XBELMDARIGXDKY-GUBZILKMSA-N 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 108010012253 E coli heat-labile enterotoxin Proteins 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 101000867232 Escherichia coli Heat-stable enterotoxin II Proteins 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 229920001503 Glucan Polymers 0.000 description 1
- VSVZIEVNUYDAFR-YUMQZZPRSA-N Gly-Ala-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)CN VSVZIEVNUYDAFR-YUMQZZPRSA-N 0.000 description 1
- 208000005176 Hepatitis C Diseases 0.000 description 1
- RNMNYMDTESKEAJ-KKUMJFAQSA-N His-Leu-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC1=CN=CN1 RNMNYMDTESKEAJ-KKUMJFAQSA-N 0.000 description 1
- 241000257303 Hymenoptera Species 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 241001500351 Influenzavirus A Species 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 108010065805 Interleukin-12 Proteins 0.000 description 1
- 102000013462 Interleukin-12 Human genes 0.000 description 1
- CLVUXCBGKUECIT-HJGDQZAQSA-N Leu-Asp-Thr Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O CLVUXCBGKUECIT-HJGDQZAQSA-N 0.000 description 1
- HNDWYLYAYNBWMP-AJNGGQMLSA-N Leu-Ile-Lys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CC(C)C)N HNDWYLYAYNBWMP-AJNGGQMLSA-N 0.000 description 1
- YOKVEHGYYQEQOP-QWRGUYRKSA-N Leu-Leu-Gly Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)NCC(O)=O YOKVEHGYYQEQOP-QWRGUYRKSA-N 0.000 description 1
- HLFSDGLLUJUHTE-SNVBAGLBSA-N Levamisole Chemical compound C1([C@H]2CN3CCSC3=N2)=CC=CC=C1 HLFSDGLLUJUHTE-SNVBAGLBSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 201000005505 Measles Diseases 0.000 description 1
- 208000005647 Mumps Diseases 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 241000187479 Mycobacterium tuberculosis Species 0.000 description 1
- 102000006386 Myelin Proteins Human genes 0.000 description 1
- 108010083674 Myelin Proteins Proteins 0.000 description 1
- 229920002274 Nalgene Polymers 0.000 description 1
- 102000005348 Neuraminidase Human genes 0.000 description 1
- 108010006232 Neuraminidase Proteins 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 206010048685 Oral infection Diseases 0.000 description 1
- FVJZSBGHRPJMMA-IOLBBIBUSA-N PG(18:0/18:0) Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@@H](O)CO)OC(=O)CCCCCCCCCCCCCCCCC FVJZSBGHRPJMMA-IOLBBIBUSA-N 0.000 description 1
- 108010081690 Pertussis Toxin Proteins 0.000 description 1
- 241001600434 Plectroglyphidodon lacrymatus Species 0.000 description 1
- 208000000474 Poliomyelitis Diseases 0.000 description 1
- ABSSTGUCBCDKMU-UWVGGRQHSA-N Pro-Lys-Gly Chemical compound NCCCC[C@@H](C(=O)NCC(O)=O)NC(=O)[C@@H]1CCCN1 ABSSTGUCBCDKMU-UWVGGRQHSA-N 0.000 description 1
- 244000088415 Raphanus sativus Species 0.000 description 1
- 235000006140 Raphanus sativus var sativus Nutrition 0.000 description 1
- 201000003176 Severe Acute Respiratory Syndrome Diseases 0.000 description 1
- 108010017898 Shiga Toxins Proteins 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 101710120037 Toxin CcdB Proteins 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- DJQIUOKSNRBTSV-CYDGBPFRSA-N Val-Ile-Val Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](C(C)C)C(=O)O)NC(=O)[C@H](C(C)C)N DJQIUOKSNRBTSV-CYDGBPFRSA-N 0.000 description 1
- DAVNYIUELQBTAP-XUXIUFHCSA-N Val-Leu-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C(C)C)N DAVNYIUELQBTAP-XUXIUFHCSA-N 0.000 description 1
- 108010065667 Viral Matrix Proteins Proteins 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000000240 adjuvant effect Effects 0.000 description 1
- 239000003905 agrochemical Substances 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 210000002588 alveolar type II cell Anatomy 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 239000012148 binding buffer Substances 0.000 description 1
- 102000023732 binding proteins Human genes 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000000513 bioprotective effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 210000000233 bronchiolar non-ciliated Anatomy 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 235000020971 citrus fruits Nutrition 0.000 description 1
- 229960002424 collagenase Drugs 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- LHCZDUCPSRJDJT-UHFFFAOYSA-N dilauroyl phosphatidylglycerol Chemical compound CCCCCCCCCCCC(=O)OCC(COP(O)(=O)OCC(O)CO)OC(=O)CCCCCCCCCCC LHCZDUCPSRJDJT-UHFFFAOYSA-N 0.000 description 1
- 229960005160 dimyristoylphosphatidylglycerol Drugs 0.000 description 1
- ZGSPNIOCEDOHGS-UHFFFAOYSA-L disodium [3-[2,3-di(octadeca-9,12-dienoyloxy)propoxy-oxidophosphoryl]oxy-2-hydroxypropyl] 2,3-di(octadeca-9,12-dienoyloxy)propyl phosphate Chemical compound [Na+].[Na+].CCCCCC=CCC=CCCCCCCCC(=O)OCC(OC(=O)CCCCCCCC=CCC=CCCCCC)COP([O-])(=O)OCC(O)COP([O-])(=O)OCC(OC(=O)CCCCCCCC=CCC=CCCCCC)COC(=O)CCCCCCCC=CCC=CCCCCC ZGSPNIOCEDOHGS-UHFFFAOYSA-L 0.000 description 1
- BPHQZTVXXXJVHI-AJQTZOPKSA-N ditetradecanoyl phosphatidylglycerol Chemical compound CCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@@H](O)CO)OC(=O)CCCCCCCCCCCCC BPHQZTVXXXJVHI-AJQTZOPKSA-N 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 208000010824 fish disease Diseases 0.000 description 1
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 235000021588 free fatty acids Nutrition 0.000 description 1
- 235000013376 functional food Nutrition 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- LLCSXHMJULHSJN-UHFFFAOYSA-N glycerophosphoglycerol Chemical compound OCC(O)COP(O)(=O)OCC(O)CO LLCSXHMJULHSJN-UHFFFAOYSA-N 0.000 description 1
- 239000007973 glycine-HCl buffer Substances 0.000 description 1
- 108010000434 glycyl-alanyl-leucine Proteins 0.000 description 1
- 230000009422 growth inhibiting effect Effects 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 238000011597 hartley guinea pig Methods 0.000 description 1
- 235000013402 health food Nutrition 0.000 description 1
- 208000002672 hepatitis B Diseases 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 229940027941 immunoglobulin g Drugs 0.000 description 1
- 230000002434 immunopotentiative effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 229940026289 infasurf Drugs 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 208000037797 influenza A Diseases 0.000 description 1
- 108010019701 influenza virus M-protein Proteins 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 229940117681 interleukin-12 Drugs 0.000 description 1
- 229940028885 interleukin-4 Drugs 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 239000000644 isotonic solution Substances 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 230000000503 lectinlike effect Effects 0.000 description 1
- 229960001614 levamisole Drugs 0.000 description 1
- 230000004576 lipid-binding Effects 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 229940124590 live attenuated vaccine Drugs 0.000 description 1
- 229940023012 live-attenuated vaccine Drugs 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 230000007721 medicinal effect Effects 0.000 description 1
- 230000034217 membrane fusion Effects 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 235000011929 mousse Nutrition 0.000 description 1
- 230000016379 mucosal immune response Effects 0.000 description 1
- 208000010805 mumps infectious disease Diseases 0.000 description 1
- 210000005012 myelin Anatomy 0.000 description 1
- 210000002850 nasal mucosa Anatomy 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 231100000957 no side effect Toxicity 0.000 description 1
- 230000000474 nursing effect Effects 0.000 description 1
- 229960005030 other vaccine in atc Drugs 0.000 description 1
- 230000036407 pain Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 229960001412 pentobarbital Drugs 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 201000005404 rubella Diseases 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000012679 serum free medium Substances 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000013271 transdermal drug delivery Methods 0.000 description 1
- 108010015530 tryptase Clara Proteins 0.000 description 1
- 229950009811 ubenimex Drugs 0.000 description 1
- 229940126580 vector vaccine Drugs 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/39—Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/08—Antiallergic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/54—Medicinal preparations containing antigens or antibodies characterised by the route of administration
- A61K2039/541—Mucosal route
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Immunology (AREA)
- Epidemiology (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Pulmonology (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicinal Preparation (AREA)
- Peptides Or Proteins (AREA)
Description
本発明は、経粘膜投与及び経皮投与を可能にする抗原薬物ヴィークルに関するものであり、更に詳しくは、該ヴィークルを所望の抗原や薬物に用いることを特徴とする、抗原特異的分泌型免疫グロブリンAを優先的かつ効果的、特に選択的に産生させる粘膜免疫の誘導方法、粘膜ワクチン、アレルギーの予防・治療、及びドラッグデリバリーシステムに関するものである。 The present invention relates to an antigen-drug vehicle that enables transmucosal administration and transdermal administration, and more specifically, an antigen-specific secretory immunoglobulin characterized by using the vehicle for a desired antigen or drug. The present invention relates to a mucosal immunity induction method, mucosal vaccine, allergy prevention / treatment, and drug delivery system that preferentially and effectively produces A.
従来の不活化ワクチンやトキソイド等には次の欠点が知られている:
(1) 自然感染ルートでの乏しい感染防御
ワクチン接種ルートが皮下、筋肉内等であるのに対し、細菌やウイルス等の自然感染ルートは、例えば鼻腔、気管、腸管等の粘膜であり、上記接種ルートとは異なる。自然感染の実態に即した接種ルートによる感染防御、特に粘膜経由のワクチン投与よる粘膜での感染防御の実現が望まれる。
(2) 低い粘膜免疫性
ワクチン被接種者においては、主に免疫グロブリンG(以下「IgG」又は「IgG抗体」と略記する)が血中に産生され、体液性免疫が誘導される。しかし、粘膜免疫を担う免疫グロブリンA(以下「IgA」又は「IgA抗体」と略記する)は、ほとんど産生されず、粘膜免疫の成立は期待できない。尚、IgA抗体の必要性と有効性は次の通りである:IgA抗体は、飛沫や空気による鼻腔、気管等の呼吸器への感染、また、経口による腸管への感染の門戸である粘膜での感染防御、即ち、粘膜免疫を担っており、臨床免疫上、極めて重要な役割を演じている。更に、IgG抗体が、抗原に対する特異性が高く、感染防御スペクトルが狭隘で、抗原変異した病原体の感染防御にはほとんど無効であるのに対し、IgA抗体は、交差免疫性、即ち、交差中和活性があるので、それだけ感染防御スペクトルの幅が広く、変異抗原に対する感染をも防御する。
(3) 追加接種の必要性と重なる費用
初回免疫の1回接種だけでは産生されるIgG抗体が低く、確実な効果が期待できないため、その後のIgG抗体保有状況に基づき、更に1回以上の追加接種、いわゆるブースター接種により血中IgG抗体価を高める必要がある。そのため、経費や労力を繰り返し要する上に、ブースター接種の機会に恵まれた高齢者、成人及び学童では効果が認められるが、その機会を逸し易い低年齢、特に2歳以下の乳幼児では効果なしのケースが散見される。
以上につき換言すれば、従来の不活化ワクチンやトキソイド等は、被接種者において主に血中IgG抗体の産生を誘導し、体液性免疫を高める作用効果をもたらし、その有効性は確認されている。しかし、IgA抗体産生ないしは粘膜免疫の誘導能が低いため、自然感染を防御するに十分な機能と効果には限界がある。かかる現状から、従来ワクチンの欠点を解消するため、現在までに多種多様な側面から多くの試みがなされている。例えば、ワクチン抗原の質的又は量的改良、不活化ワクチンに代わる生ワクチンの試作、新しい接種ルートや粘膜ワクチン等の開発、体液性免疫の高進とその持続をもたらすアジュバントのスクリーニング、粘膜免疫アジュバントの開発に特定した試行等々。しかし、未だ安全かつ有効な粘膜ワクチンの開発は達成されていない。
以下、粘膜ワクチンの開発につき、説明する。
(1) ワクチン抗原の増量
皮下又は筋肉内接種するワクチン抗原を増量し、粘膜に分泌されるIgG及びIgA抗体量を増加させる試みがされている。例えば、従来の不活化インフルエンザワクチンに該ウイルス膜蛋白のノイラミニダーゼを添加混合して抗体産生量を増加させたり、アジュバントとしてMF59を添加混合する方法等が試みられている。しかし、これには痛みを生じ、副反応が強くなる等の不都合が見られる。
(2) 経鼻投与型ワクチン
最も有効と考えられるIgA抗体による感染防御のため、液状のスプリット抗原を経鼻に直接接種する方法が試みられたが、IgA産生量の低いことが指摘されている。そこでIgA抗体産生能を上げるため、スプリット抗原にアジュバントとして大腸菌易熱生毒素やコレラ毒素を添加混合し、粘膜免疫応答、即ち、IgA抗体産生能を上げる試みがなされているが、アジュバントとしての毒素の安全性が保証されていない現状から、治検が中止され、実用化には至っていない。
(3) 鼻腔内接種が可能な低温馴化株を用いる生ワクチン
増殖の最適温度が25℃であり、39℃ではほとんど増殖しない低温馴化インフルエンザウイルス株を鼻腔内に接種する方法が実用化されているが、低温馴化親株の弱毒のメカニズムが明らかでなく毒性復帰の危険性が否定できない。また、ワクチンの有効成分が生きたウイルスのため、細胞内への侵入力が高く免疫の初期化には優れているが、軽度のインフルエンザ症状が散発するので、インフルエンザに感染すると重症化しやすいハイリスクのヒトや高齢者等には使えない等の欠点が見られる。
(4) その他のワクチン
ワクチニアウイルスをウイルスベクターとしたベクターワクチンや、リバースジェネティクスによる弱毒生ワクチン、DNAやcDNAそのものを有効成分として用いるDNAワクチン等の開発が実験的に進められてはいるが実用化には至っていない。
更に、以下、免疫アジュバントの開発につき、説明する。
(1) 免疫アジュバント
免疫アジュバントは、免疫応答の強化や抑制等の調節活性を有する物質の総称であり、被接種体内での抗原の徐放や貯留等を目的とした投与形態に係る物質と、免疫応答の高進や抑制等を図るための物質に2大別される。これ等のうち、前者、投与形態のためのアジュバントとしては、例えばリン酸アルミニウム、ミョウバン等を用いるワクチンやトキソイドが既に実用化されている。しかし、後者、免疫応答の強化・高進を図るためのアジュバントの実用化は、未だ知られていない。例えば、細菌由来のBCG生菌、BCG−CWS、エンドトキシン、グルカン等、合成されたMDP、レバミソール、ポリ I−ポリ C、ベスタチン等、また、サイトカイン類のインターフェロン、TNF、CSF等が公知であるが、関節炎、慢性関節リウマチ、高Yグロブリン血症、貧血等のアジュバント病、効果が不十分等々の理由により、これ等の実用化には安全性と有効性の保証が必要だと思量される。また、広く体液性免疫の誘導強化を図るため、高等動物由来の肺サーファクタント・プロテインをアジュバントとして用いる技術(特許文献1)が公知であるが、その実用化は未だ知られていない。
(2) 粘膜免疫用アジュバントの開発
例えば、百日咳毒素Bオリゴマー(特許文献2)、コレラ毒素(特許文献3)、大腸菌の易熱性エンテロトキシンBサブユニットLTB(特許文献4)、デンプン粒子(特許文献5)、コレラトキシンB鎖タンパク質CTB(特許文献6)、ベロ毒素1のBサブユニット(特許文献7)、オリゴヌクレオチド(特許文献8)、インターロイキン12(非特許文献1)等々、多種多様に開発されてはいるが、未だ実用化には至っていない。
以上の通り、皮下や筋肉内等へ接種する従来ワクチンから、ウイルスの自然感染ルートである粘膜においてIgA抗体の産生を誘導する粘膜ワクチンへの切り替えの必要性は、広くかつ深く認識されている。特に、21世紀における次世代ワクチンとしては、IgA抗体の産生、局所免疫あるいは粘膜免疫を誘導する、いわゆる粘膜ワクチンの開発と実用化が全世界で待望されてはいるが、未だ達成されていない。その理由は、IgA抗体産生、局所免疫ないしは粘膜免疫を誘導する機能をワクチンに付与するための安全かつ有効なアジュバントが特定・確立されていないことにあると思量される。
(1) Poor protection against natural infection route Whereas the vaccination route is subcutaneous or intramuscular, the natural infection route such as bacteria or virus is the mucous membrane of nasal cavity, trachea, intestinal tract, etc. Different from root. It is desired to achieve infection protection by the inoculation route in accordance with the actual condition of natural infection, particularly prevention of infection in the mucosa by vaccine administration via the mucosa.
(2) Low mucosal immunity In vaccine recipients, immunoglobulin G (hereinafter abbreviated as “IgG” or “IgG antibody”) is mainly produced in the blood to induce humoral immunity. However, immunoglobulin A responsible for mucosal immunity (hereinafter abbreviated as “IgA” or “IgA antibody”) is hardly produced and mucosal immunity cannot be expected. The necessity and effectiveness of IgA antibody are as follows: IgA antibody is a mucous membrane that is the gateway to infection of respiratory tracts such as nasal cavity and trachea by droplets and air, and oral infection of intestinal tract. Is responsible for mucosal immunity and plays an extremely important role in clinical immunity. In addition, IgG antibodies are highly specific for antigens, have a narrow spectrum of protection against infection and are almost ineffective at protecting against antigen-mutated pathogens, whereas IgA antibodies are cross-immune, ie cross-neutralizing. Because of its activity, it has a broad spectrum of protection against infection and protects against infection with mutant antigens.
(3) Necessary cost for additional vaccination Since the IgG antibody produced is low only by the first vaccination of the first immunization and a reliable effect cannot be expected, one or more additional vaccinations based on the status of subsequent IgG antibody possession It is necessary to increase blood IgG antibody titer by inoculation, so-called booster inoculation. Therefore, it is necessary to repeat costs and labor, and is effective for elderly people, adults and school children who are blessed with booster vaccinations. Is occasionally seen.
In other words, conventional inactivated vaccines, toxoids, etc. have the effect of inducing mainly the production of IgG antibodies in blood and increasing humoral immunity in recipients, and their effectiveness has been confirmed. . However, since the ability to induce IgA antibody production or mucosal immunity is low, there are limits to the functions and effects sufficient to protect against natural infection. From this situation, many attempts have been made from various aspects so far in order to eliminate the drawbacks of conventional vaccines. For example, qualitative or quantitative improvement of vaccine antigens, production of live vaccines to replace inactivated vaccines, development of new inoculation routes and mucosal vaccines, screening for adjuvants that promote and sustain humoral immunity, mucosal immune adjuvants Trials specified in the development of the. However, development of a safe and effective mucosal vaccine has not yet been achieved.
The development of mucosal vaccine will be described below.
(1) Increasing the vaccine antigen An attempt has been made to increase the vaccine antigen to be inoculated subcutaneously or intramuscularly and to increase the amount of IgG and IgA antibodies secreted into the mucosa. For example, methods have been attempted in which neuraminidase of the viral membrane protein is added to and mixed with a conventional inactivated influenza vaccine to increase antibody production, or MF59 is added and mixed as an adjuvant. However, there are inconveniences such as pain and increased side reactions.
(2) Nasal administration type vaccine In order to protect against infection with IgA antibody, which is considered to be the most effective, a method of inoculating the liquid split antigen directly into the nose was tried, but it has been pointed out that the production amount of IgA is low . Therefore, in order to increase IgA antibody production ability, attempts have been made to increase mucosal immune response, that is, IgA antibody production ability, by adding E. coli heat-labile toxin or cholera toxin as an adjuvant to the split antigen, Because of the current situation where safety is not guaranteed, clinical trials have been discontinued and have not yet been put to practical use.
(3) Live vaccine using a cold-acclimated strain capable of intranasal inoculation A method for inoculating the intranasal cavity with a cold-adapted influenza virus strain that has an optimum temperature for growth of 25 ° C and hardly proliferates at 39 ° C has been put into practical use. However, the mechanism of attenuation of the cold-acclimated parent strain is not clear, and the risk of reversion to toxicity cannot be denied. In addition, because the active ingredient of the vaccine is a live virus, it has a high invasion ability into cells and excellent immunization initialization. However, since mild influenza symptoms occur sporadically, high risk is likely to become severe if infected with influenza. There are some disadvantages, such as being unusable for humans and the elderly.
(4) Other vaccines Although development of vector vaccines using vaccinia virus as a viral vector, live attenuated vaccines using reverse genetics, DNA vaccines using DNA or cDNA itself as an active ingredient has been experimentally promoted. It has not been put into practical use.
Furthermore, the development of an immune adjuvant will be described below.
(1) Immune adjuvant Immune adjuvant is a general term for substances having regulatory activity such as enhancement and suppression of immune response, and substances related to administration forms for the purpose of sustained release and storage of antigens in the inoculated body, The substance is roughly divided into two substances for enhancing or suppressing the immune response. Among these, as the former, adjuvants for administration forms, for example, vaccines and toxoids using aluminum phosphate, alum and the like have already been put into practical use. However, the practical application of an adjuvant for enhancing and enhancing the immune response has not been known yet. For example, BCG live bacteria derived from bacteria, BCG-CWS, endotoxin, glucan, etc., synthesized MDP, levamisole, poly I-poly C, bestatin, etc., and cytokines such as interferon, TNF, CSF, etc. are known. For reasons such as arthritis, rheumatoid arthritis, hyper- Y globulinemia, adjuvant diseases such as anemia, and insufficient effects, it is considered that safety and efficacy guarantees are necessary for practical use. In addition, a technique (Patent Document 1) that uses a pulmonary surfactant protein derived from a higher animal as an adjuvant is widely known in order to broaden the enhancement of induction of humoral immunity, but its practical use has not been known yet.
(2) Development of adjuvant for mucosal immunization For example, pertussis toxin B oligomer (Patent Document 2), cholera toxin (Patent Document 3), heat-labile enterotoxin B subunit LTB (Patent Document 4) of E. coli, starch particles (Patent Document 5) ), Cholera toxin B chain protein CTB (patent document 6), B subunit of verotoxin 1 (patent document 7), oligonucleotide (patent document 8), interleukin 12 (non-patent document 1), etc. However, it has not yet been put into practical use.
As described above, the necessity of switching from a conventional vaccine inoculated subcutaneously or intramuscularly to a mucosal vaccine that induces the production of IgA antibody in the mucosa, which is a natural virus infection route, is widely and deeply recognized. In particular, as a next-generation vaccine in the 21st century, development and practical application of so-called mucosal vaccine that induces production of IgA antibody, local immunity or mucosal immunity has been awaited all over the world, but has not been achieved yet. The reason is thought to be that a safe and effective adjuvant for imparting a vaccine with a function of inducing IgA antibody production, local immunity or mucosal immunity has not been specified or established.
本出願は以下を課題とする。すなわち、従来の不活化ワクチンやトキソイド等に、IgA抗体の産生、局所免疫あるいは粘膜免疫を誘導する機能を付与する。そのための安全かつ有効な技術の開発。従来の体液性免疫ワクチンから安全かつ有効な粘膜免疫ワクチンへの変換。また、アレルギーの予防と治療、更に、粘膜や皮膚を経由して薬物を投与かつ輸送する経粘膜・経皮ドラッグデリバリーシステム(以下「DDS」と略記する)の確立。
本発明は、前記課題の解決手段として、経粘膜投与及び経皮投与を可能にする抗原薬物ヴィークル、該ヴィークルを所望の抗原や薬物に用いることを特徴とする、抗原特異的分泌型免疫グロブリンAを優先的かつ効果的、特に選択的に産生させる粘膜免疫の誘導方法、粘膜ワクチン、アレルギーの予防と治療剤、並びに経粘膜・経皮DDSを提供する。
本発明が提供する抗原薬物ヴィークルの適用・汎用により、多種多様な感染症に対する粘膜ワクチン、アレルギーの予防と治療剤、及び経粘膜・経皮DDSの実現と普及をもたらす。粘膜ワクチンは、自然感染の実態に即した免疫手段であるので、従来ワクチンに比し、著しく優れた感染防御効果を発揮する。また、抗原薬物ヴィークルが誘導する鼻腔粘膜IgAは、そこでのアレルゲンの失活をもたらし、減感作を可能にする。更に、多種多様な薬剤への該DDSの適用は、薬物の経粘膜投与及び経皮投与による予防・治療効果を強化かつ促進させる。その結果、この発明は、人類全体の医療・保健・衛生を多大に向上させると共に、世界の医療・保健・衛生分野の従事者には待望の福音になる。併せて、従来及び未来のワクチンやトキソイド等を含む生物学的製剤、更に多種多様な薬物に広く、注射に比べ簡便な経粘膜投与及び経皮投与が可能な機能と性能を付加する手段を与える。This application makes the following a subject. That is, a function of inducing production of IgA antibody, local immunity or mucosal immunity is imparted to a conventional inactivated vaccine, toxoid or the like. Development of safe and effective technology for that purpose. Conversion from conventional humoral immune vaccines to safe and effective mucosal immune vaccines. In addition, prevention and treatment of allergies, and establishment of a transmucosal / transdermal drug delivery system (hereinafter abbreviated as “DDS”) for administering and transporting drugs via the mucosa and skin.
The present invention provides an antigen-specific secretory immunoglobulin A characterized in that as a means for solving the above problems, an antigen-drug vehicle that enables transmucosal administration and transdermal administration, and the vehicle is used for a desired antigen or drug. The present invention provides a mucosal immunity induction method, a mucosal vaccine, an allergy prevention and treatment agent, and a transmucosal / transdermal DDS.
Application and general use of the antigen drug vehicle provided by the present invention brings about the realization and widespread use of mucosal vaccines against various infectious diseases, allergy prevention and treatment agents, and transmucosal / transdermal DDS. The mucosal vaccine is an immunization means adapted to the actual condition of natural infection, and thus exhibits a significantly superior infection protection effect compared to conventional vaccines. Also, the nasal mucosal IgA induced by the antigen drug vehicle results in inactivation of the allergens therein, enabling desensitization. Furthermore, application of the DDS to a wide variety of drugs enhances and promotes the preventive / therapeutic effects of transmucosal and transdermal administration of drugs. As a result, the present invention greatly improves the medical care, health care and hygiene of the entire human race and becomes a long-awaited gospel for workers in the medical care, health care, and hygiene fields of the world. In addition, biologics including conventional and future vaccines, toxoids, etc., and a wide variety of drugs, providing a means to add functions and performance that enable simple transmucosal administration and transdermal administration compared to injection. .
図1は、各種経鼻インフルエンザワクチン投与における鼻腔(a)、肺胞(b)、皮下注インフルエンザワクチン投与における鼻腔(c)、肺胞(d)におけるインフルエンザウイルス感染抑制効果。*はt検定によるワクチン単独(ADヴィークル又はアジュバントなし)投与群との間の有意水準(p<0.01)を示す。(実施例1)
図2は、経鼻投与(a)、皮下注射(b)インフルエンザワクチンによる鼻腔洗浄液の抗インフルエンザ抗体産生IgAとIgG量。白いバーはIgA量を、黒いバーはIgG量をそれぞれ示す。(実施例2)
図3は、経鼻(a)、皮下注射(b)インフルエンザワクチン投与による肺洗浄液における抗インフルエンザ特異抗体IgA及びIgG産生に対するアジュバントの影響を示す。(実施例3)
図4は、経鼻(a)、皮下注射(b)インフルエンザワクチン投与による血中抗インフルエンザ特異抗体産生に対するPSF−2,CTBの影響を示す。(実施例4)
図5は、経鼻インフルエンザワクチン投与による鼻腔(a)、肺胞(b)粘膜におけるTGF−β1分泌レベルに対するPSF−2,CTBの影響を示す。(実施例6)
図6は、経鼻投与インフルエンザワクチンによる鼻腔(a)、肺胞(b)及び血液中(c)の抗インフルエンザ特異抗体産生に対するPSF−2、CTBの影響を示す。(実施例7)。
図7は、経鼻インフルエンザワクチン投与による鼻、肺および脾臓のリンパ球から分泌される各種サイトカインに対するSPF−2、CTBの影響を示す。(実施例8)。
図8は、経鼻投与インフルエンザワクチンによる鼻腔(a)、肺胞(b)及び血液中(c)の抗インフルエンザ特異抗体産生に対するPSF−3の影響を示す。(実施例9)。FIG. 1 shows the effect of suppressing influenza virus infection in the nasal cavity (a) and alveoli (b) in various nasal influenza vaccine administrations, and the nasal cavity (c) and alveoli (d) in subcutaneous influenza vaccine administration. * Indicates a significant level (p <0.01) between the group administered with vaccine alone (no AD vehicle or adjuvant) by t test. Example 1
FIG. 2 shows nasal administration (a), subcutaneous injection (b) anti-influenza antibody-producing IgA and IgG amounts in the nasal lavage fluid by influenza vaccine. The white bar indicates the amount of IgA, and the black bar indicates the amount of IgG. (Example 2)
FIG. 3 shows the effect of adjuvants on anti-influenza specific antibody IgA and IgG production in pulmonary lavage fluid by nasal (a), subcutaneous injection (b) influenza vaccine administration. (Example 3)
FIG. 4 shows the effect of PSF-2 and CTB on blood anti-influenza specific antibody production by intranasal (a), subcutaneous injection (b) influenza vaccine administration. (Example 4)
FIG. 5 shows the effect of PSF-2 and CTB on TGF-β1 secretion levels in the nasal cavity (a) and alveolar (b) mucosa by administration of the nasal influenza vaccine. (Example 6)
FIG. 6 shows the effect of PSF-2 and CTB on the production of anti-influenza specific antibodies in the nasal cavity (a), alveoli (b) and blood (c) by the nasal influenza vaccine. (Example 7).
FIG. 7 shows the effect of SPF-2 and CTB on various cytokines secreted from nasal, lung and splenic lymphocytes by nasal influenza vaccine administration. (Example 8).
FIG. 8 shows the effect of PSF-3 on the production of anti-influenza specific antibodies in nasal cavity (a), alveoli (b) and blood (c) by nasal influenza vaccine. (Example 9).
以下、本発明の実施形態を詳しく説明する。
1.用語及び抗原薬物ヴィークル構成成分の説明
(1) 抗原薬物ヴィークル
該ヴィークル(Antigen and Drug Vehicle、以下、「ADヴィークル」又は「ADV」と略記する)は、抗原や薬物等の経粘膜投与及び経皮投与が可能になるよう設計(デザイン)された、脂質とタンパク質との複合体(コンプレックス)である。ADヴィークルは、次の(a)〜(c)からなる。
(a) 肺サーファクタントプロテインB又はその断片(タンパク質分解酵素により得られる天然断片だけではなく、遺伝工学やペプチド合成により得られる人工断片、かかる断片を構成するアミノ酸の1個以上が置換及び/又は欠失した変異断片等々をも含む)。
(b) 肺サーファクタントプロテインC又はその断片(タンパク質分解酵素により得られる天然断片だけではなく、遺伝工学やペプチド合成により得られる人工断片、かかる断片を構成するアミノ酸の1個以上が置換及び/又は欠失した変異断片等々をも含む)。
(c) リン脂質や脂肪酸等の脂質。その形状構造は、表面に棘状あるいはスパイク状のポリペプチド鎖を保有の膜状(シート状又はローリング状の脂質膜)であり、複数のポリペプチド鎖の疎水領域末端を、脂質膜に嵌入させスパイク状に植鎖したかたちになっており、従来の脂質小胞(リポソーム)とは異なる。
この発明に係る抗原薬物ヴィークルに所望の抗原や薬物等を共存、接触、捕捉、吸着又は結合させれば(乗せれば)、かかる抗原や薬物等の経粘膜投与及び経皮投与が可能になる。換言すれば、該ヴィークルは、抗原や薬物等の経粘膜投与及び経皮投与を可能にする、これ等の乗り物である。
尚、ADヴィークルの構成成分、該ヴィーイグルの調製・製造に用いるタンパク質、ポリペプチドあるいはペプチドと脂質、即ち、肺サーファクタントプロテインBおよびC、これ等の断片、かかる断片ペプチドの少なくとも1個のアミノ酸が置換及び/又は欠失した変異断片等々、及びリン脂質、脂肪酸等の脂質の詳細については、後述される。
(2) 肺サーファクタント
肺サーファクタントは、呼吸窮迫症候群(RDS:Respiratory Distress Syndrome)の治療に1990年代中頃から実用化され、既に現在、ヒト、ウシ、ブタ等に由来の、多様な製剤が広く市販され常用化されている(非特許文献2)。また、RDS治療に係る活性ドメインを含む合成ペプチド製剤も市販され、更に、SP−BやSP−Cアナログのデザイン開発や合成も進められている(非特許文献3)。肺サーファクタントの組成と構成は通りである:約90%の脂質(ホスファチシセルコリン67.3%、ホスファチジルグリセロール19.3%、ホスファチジルセリン3.2%、その他の遊離脂肪酸等)と、約10%の蛋白質(サーファクタントプロテインA、B、C及びD;以下「SP−A」、「SP−B」、「SP−C」及び「SP−D」とそれぞれ略記する)からなる複合体である。分子量はSP−Aが28−36kDa、Bが15kDa、Cが3.5kDa、及びDが43kDaである。SP−AとDは親水性(水溶性)かつレクチン様(膜アソシエィテッド)である。SP−BとCは、疎水性(脂溶性)かつ脂質結合性で、リン脂質膜への嵌入能及び界面活性作用を有する。ヒト、ウシ、ブタ等に由来の肺サーファクタントプロテイン遺伝子は公知であり、例えば、GenBank/NCBI(http//www.ncbi.nlm.nih.gov./)におけるヒトSP−B遺伝子DNAの完全長塩基配列のアクセッション番号はJ02761、ヒトSP−C(及びSP−C1)のそれは、J03890である。以下、このNCBIより得たヒトSP−B及びCのコーディング領域(CDR)とそれがコードするアミノ酸配列を記載する。
配列番号1:ヒトSP−B遺伝子DNAのCDR塩基配列;
配列番号2:配列番号1から解読されたヒトSP−B完全長アミノ酸配列;
配列番号3:ヒトSP−C遺伝子DNAのCDR塩基配列;
配列番号4:配列番号3から解読されたヒトSP−C完全長アミノ酸配列;
配列番号5:ヒトSP−C遺伝子DNA上に占めるSP−C1のCDR塩基配列;及び
配列番号6:配列番号5から解読されたヒトSP−C1完全長アミノ酸配列。
(3) この発明で用いるタンパク質あるいはペプチド
この発明に係る抗原薬物ヴィークルの調製・製造には、ヒト、ウシ、ブタ、クジラ、イルカ等の哺乳類に由来、更に、マグロ、サメ、エイ、ブリ等の魚類に由来のSP−BとSP−Cとの組合せ、及びSP−BとSP−C1との組合せをそれぞれ用いることができる。例えば、上記の配列番号2、4及び6にそれぞれ記載の完全長アミノ酸配列からなるヒト由来タンパク質、SP−BとSP−Cとの組合せ、及びSP−BとSP−C1との組合せを、それぞれ用いることができる。更に、例えばKyte−Doolittleの疎水性値に基づくSP−B及びSP−Cの疎水性(脂溶性)領域及び該領域を含む断片、かかる断片ペプチドの少なくとも1個のアミノ酸が置換及び/又は欠失した変異断片等々をも用いることができる。例えば、以下に示す配列番号7〜20に記載のアミノ酸配列からなる天然ペプチドあるいは遺伝子工学や化学合成により得られるペプチド、これ等のペプチドを含むこれより長鎖のペプチド、及びかかるペプチドの少なくとも1個のアミノ酸が置換及び/又は欠失した変異体や合成アナログ等々を使用できる。尚、アミノ酸番号は、各配列のN末端を占めるMetを第1番アミノ酸とし、これよりC末端方向(記載配列の左から右方向)に順に付された序数で表示されている。
配列番号7:配列番号2の第214〜225番のアミノ酸配列(SP−B断片);
配列番号8:配列番号2の第257〜266番のアミノ酸配列(SP−B断片);
配列番号9:配列番号4及び6の第29〜58番のアミノ酸配列(SP−C断片);
配列番号10:配列番号2の第1〜20番のアミノ酸配列(SP−B断片);
配列番号11:配列番号2の第102〜110番のアミノ酸配列(SP−B断片);
配列番号12:配列番号2の第119〜127番のアミノ酸配列(SP−B断片);
配列番号13:配列番号2の第136〜142番のアミノ酸配列(SP−B断片);
配列番号14:配列番号2の第171〜185番のアミノ酸配列(SP−B断片);
配列番号15:配列番号2の第201〜279番のアミノ酸配列(SP−B断片);
配列番号16:配列番号2の第253〜278番のアミノ酸配列(SP−B断片);
配列番号17:配列番号2の第300〜307番のアミノ酸配列(SP−B断片);
配列番号18:配列番号2の第317〜330番のアミノ酸配列(SP−B断片);
配列番号19:配列番号2の第344〜351番のアミノ酸配列(SP−B断片);
配列番号20:配列番号2の第358〜381番のアミノ酸配列(SP−B断片);
配列番号21:配列番号4及び6の第24〜58番のアミノ酸配列(SP−C断片)。
尚、この発明によれば、配列番号2、7、8、10〜20に記載のアミノ酸配列からなるSP−Bとその断片群から選ばれる少なくとも1種と、配列番号4、6、9及び21に記載のアミノ酸配列からなるとSP−C(及びSP−C1)とその断片群から選ばれる少なくとも1種とを組合せて用いることができる。
(4) 本発明で用いる脂質
リン脂質としては、肺サーファクタントが含有するリン脂質、例えばホスファチジルコリン(レシチン)、ジパルミトイルホスファチジルコリン、ホスファチジルセリン等の使用が望ましい。その他、ジパルミトイルグリセロホスホコリン、ジアシルグリセロホスホグリセロール、ホスファチジルグリセロール(カルジオリピン)、ジラウロイルホスファチジルグリセロール、ジミリストイルホスファチジルグリセロール、ジパルミトイルホスファチジルグリセロール、ジステアロイルホスファチジルグリセロール、ホスファチジルイノシトール、ホスファチジルエタノールアミン、ホスファチジン酸、スフィンゴミエリン等を用いることができる。また、脂肪酸としては、ラウリル酸、ミリスチン酸、パルミチン酸、ステアリン酸、パルミトオレイン酸、オレイン酸等を用いることができる。更に、肺の膨張が活発なクジラ、マグロ、イルカ等の水棲動物に由来の脂質を用いることができる。
(5) RDS治療用の市販の肺サーファクタント製剤
この発明によれば、RDS治療剤としての安全性と有効性が関係当局により認可され、かつ、疎水性あるいは脂溶性のSP−B及びSP−C並びにリン脂質を含有する市販の肺サーファクタント、例えば、商品名サーファクテン(Surfacten)Infasurf、Curosurf、Humansurf、Exosurf、Alveofact等をADヴィークルとして用いることができる。尚、SP−BとSP−C以外に、親水性あるいは水溶性のSP−A及びSP−Dを含有する市販製剤では、例えば1−ブタノールでこれ等の水溶性タンパク質SP−AとSP−Dとを抽出し、これ等を検出限界以下にまで除去した後、使用に供する。また、ADヴィークルの調製における使用濃度の調整を考慮すると、液状製剤に比べ、乾燥製剤の使用が望ましい。
2.本発明の基礎となる新規な知見
この発明は、前述した背景技術の激しく厳しい渦中にあって、10余年にも及ぶ試行錯誤を重ねた筆頭発明者の卓抜した観察力と解析力、そして深い学識経験と斬新な着想によるものであり、次の驚くべき発見に基づく。
(1) 従来のアジュバントが炎症を惹起して抗原提示能を増強するのに対し、本来、肺や消化管粘膜が分泌の界面活性物質である肺サーファクタントの4種のタンパク質有効成分、SP−A、B、C及びDから、AとDとを除去したSP−B及びSP−Cの組合せとリン脂質との複合体、あるいはこれ等の脂溶性領域(有効領域)を含むSP−BとSP−C両断片の合成ペプチドの組合せと脂質膜との複合体(前述したADヴィークル)に、ウイルス抗原を共存又は接触又は捕捉又は吸着させると、炎症を惹起することなく鼻腔粘膜の抗原提示細胞が活性化され、ウイルス抗原が該細胞内に効率よく取り込まれると共に、粘膜や血液中でのIgG産生の誘導を起こすことなく、粘膜の抗ウイルスIgA産生が効果的かつ優先的に、就中、選択的に誘導されることを発見した。
(2) 更に、従来から安全な不活化ワクチン抗原として使用されているインフルエンザウイルス・スプリット抗原に、SP−BとSP−Cの組合せとリン脂質との複合体、あるいはこれ等の脂溶性領域(有効領域)を含むSP−BとSP−C両断片の合成ペプチドの組合せと脂質膜との複合体(ADヴィークル)を添加混合することにより、スプリット抗原の高い安全性を保持しながら、しかもスプリット抗原単独では生ワクチンに比べて劣る抗原提示細胞の活性化が十分に増強され補われた状態で、分泌型IgA産生の選択的誘導が実現されることを発見した。
3.上記の発見に至る経緯
(1) 筆頭発明者は、インフルエンザ発症機序と治療、予防法を解明するべく鋭意研究を重ねてきた。その過程で、インフルエンザウイルス膜蛋白質のヘマグルチニン(HA)を限定分解してウイルスの膜融合活性と感染能を発現させる気道のHAプロセシングプロテアーゼのトリプターゼクララを肺サーファクタントが吸着して不活性化し、結果としてウイルスの増殖サイクルを阻止することを解明した。
(2) 引き続く研究の結果、肺サーファクタントには上記の作用以外に、選択的に粘膜の抗原提示細胞を活性化してウイルス抗原に対する免疫能を活性化して、分泌型IgAの誘導を引き起こすがIgGの誘導は起こさないことを見いだした。さらに肺サーファクタント中の粘膜免疫増強有効成分として、SP−B、SP−Cが脂質成分と共に重要であることを明らかにし、これら蛋白成分の有効領域の特定と、粘膜免疫増強の有効性を検証した。
(3) 更に、上述したように気道粘膜の生体防御物質とウイルス感染防御の観点から研究を進め、体内に分泌されている肺サーファクタントが生体内由来の粘膜免疫アジュバントとして選択的IgA産生の誘導に関与していることを証明した。
(4) 上記の肺サーファクタントが本来生体内の生理的作用物質で、(a)特定の生体物質を吸着する性質のあること(Kido H.,et al.FEBS Lett.Pulmonary surfactant is a potentialendogenous inhibitor of proteolytic activation of Sendai virus and influenza Avirus,322(29),115−119,1992)、(b)肺胞II型細胞やクララ細胞から分泌された後、選択的にマクロファージーに取り込まれて代謝されること(諏訪部彰、J.Jpn.Med.Soc.Biol.Interface;肺胞蛋白症におけるサーファクタント代謝異常、33,10−13,2002)、更に(c)その類縁細胞、例えば抗原提示細胞(樹状細胞)に取り込まれて代謝されることに注目し研究を重ねた。
その結果、肺サーファクタントの蛋白成分の中で、SP−B、SP−C及び脂質成分だけで、選択的にIgA産生を誘導する粘膜ワクチンの「ADヴィークル」として機能すること、更に、SP−Bの有効成分領域あるいは粘膜免疫誘導活性ドメインが次のアミノ酸配列からなるペプチドであることを明らかにした:
SP−B 214−225:Leu Ile Lys Arg Ile Gln Ala Met Ile Pro Lys Gly(配列番号7);及び
SP−B 257−266:Leu Leu Asp Thr Leu Leu Gly Arg Met Leu(配列番号8)。
併せて、SP−Cの有効成分領域あるいは粘膜免疫誘導活性ドメインが次のアミノ酸配列からなるペプチドであることを明らかにした:
SP−C 29−58:Cys Pro Val His Leu Lys Arg Leu Leu Ile Val Val Val Val Val Val Leu Ile Val Val Val Ile Val Gly Ala Leu Leu Met Gly Leu(配列番号9)。
(5) 更に、選択的IgA誘導の機序として、肺サーファクタントの有効成分は、抗原提示樹上細胞のMHC Class II、CD40、B7−2の発現増加を誘導してT−リンパ球への抗原提示を効果的に実行する以外に、粘膜局所のサイトカインTGF−β1を誘導してIgA産生B−リンパ球へのクラススイッチを促進していることを明らかにした。
4.以上の発見とその経緯に基づき完成された本発明の目的は次の通りである
(1) 第1の目的は、粘膜免疫方法の確立である。「ADヴィークル」の提供とその活用により、粘膜免疫の有効物質である抗原特異的IgA産生の選択的誘導を実現すると共に、安全かつ有効な(副作用のない)粘膜免疫の誘導とその方法を確立する。
(2) 第2の目的は、合成ペプチドの使用による、ADヴィークルの安全性・有効性・均質性に係る品質の向上にある。SP−Bの粘膜免疫誘導活性ドメイン(前述SP−B 214−225及びSP−B 257−266の各アミノ酸配列からなる)の合成ペプチド、及びSP−Cの粘膜免疫活性導活性ドメイン(前記SP−C 29−58のアミノ酸配列からなる)の合成ペプチド、これ等の合成アナログ、更に、これ等のアミノ酸配列を部分として含む長鎖の合成ペプチド等々と、肺サーファクタント脂質成分との間で調製される複合体(ADヴィークル)を提供し、ADヴィークルの品質を向上させる。
(3) 第3の目的は、従来ワクチンの皮下接種から経粘膜投与への転換にある。ADヴィークルを、気道感染ウイルスの不活化ワクチン、例えばインフルエンザ、SARS、麻疹、風疹、ムンプス等の不活化ワクチン、更に、腸管感染ウイルスの不活化ワクチン、例えばロタ、ポリオ等の不活化ワクチンに利用し、これ等の皮下接種ワクチンを粘膜ワクチンに変換する。
(4) 第4の目的は、気道、腸管以外の粘膜経由ウイルス感染に対する不活化ワクチン、例えばエイズ、B型肝炎、C型肝炎等の不活化ワクチンにおいて、ADヴィークルの利用可能な方法を提供することである。
(5) 第5の目的は、DNAワクチン、生ワクチン、アレルギーの予防や治療等についても、ADヴィークルの利用可能な方法を提供することである。
(6) 第6の目的は、粘膜以外のIgAを誘導可能な免疫ルートとして、経皮接種(塗布や貼付等)において、ADヴィークルの利用可能な方法を提供することにある。
(7) 第7の目的は、DDSや製薬のみならず、農業、漁業等々へのADヴィークルの用途と応用の道を開くことにある。
尚、本発明が提案するADヴィークルは、従来免疫学で使用されているアジュバントとは、次の通り性能と作用を異にする。すなわち、従来アジュバントは、通常、皮下あるいは筋肉内接種され、局所の炎症反応を引き起こし、抗原提示細胞やB−、T−リンパ球を引き寄せ、その能力を発揮する異物を有効成分としている。更に、長時間にわたる炎症反応を維持するため、抗原の徐放や貯留を惹起する鉱油や金属塩が併用されている。また、従来の粘膜ワクチン・アジュバントとして知られているものは、前述した通り、大腸菌易熱生毒素やコレラ毒素等の異物であり、為害作用や副作用の生じる危険性がある。これに対し、本発明に係るADヴィークルは、局所の炎症反応を引き起こさない。更に、生体成分由来である上に、肺サーファクタントの中の活性成分あるいはその活性ドメインが限定されていると共に、かかるドメインや該ドメイン領域を含む低分子ペプチドを使い、効果的な粘膜ワクチンを実現している。従って、極めて安全であり、かつ非侵襲的である。
5.この発明によれば、次(1)〜(5)が、それぞれ提供される
(1) 肺サーファクタントプロテインB又は該プロテインBに由来の複数の断片から選ばれる少なくとも1つの断片、肺サーファクタントプロテインC又は該プロテインCに由来の複数の断片から選ばれる少なくとも1つの断片、及び少なくとも1種の脂質からなる複合体である抗原薬物ヴィークル。
更に詳しくは、ADヴィークルは、次のI群(肺サーファクタントプロテインB及び該プロテインBに由来あるいは起因する天然及び合成ポリペプチド群)II群(肺サーファクタントプロテインC及び該プロテインCに由来あるいは起因する天然及び合成ポリペプチド群)及びIII群(リン脂質、脂肪酸等の脂質群)の各群から少なくとも1種ずつ選ばれる、合計、少なくとも3種の物質からなる複合体である。
[I群]肺サーファクタントプロテインB、及び配列番号2に記載の次のアミノ酸配列からなるポリペプチド(アミノ酸番号は、N末端のMetを第1番アミノ酸とし、これよりC末端方向に順次付されている):第1−381番(配列番号2)、第214−225番(配列番号7)、第257−266番(配列番号8)、第1−20番(配列番号10)、第102−110番(配列番号11)、第119−127番(配列番号12)、第136−142番(配列番号13)、第171−185番(配列番号14)、第201−279番(配列番号15)、第253−278番(配列番号16)、第300−307番(配列番号17)、第317−330番(配列番号18)、第344−351番(配列番号19)、第358−381番(配列番号20)、上記のアミノ酸配列の少なくとも1つの配列を活性ドメインとして保有するポリペプチド、上記の各アミノ酸配列の少なくとも1個のアミノ酸が置換及び/又は欠失したポリペプチド、これ等の合成アナログ、これ等の糖又は糖鎖による修飾体等々。
[II群]肺サーファクタントプロテインC、及び配列番号4に記載の次のアミノ酸配列からなるポリペプチド(アミノ酸番号は、N末端のMetを第1番アミノ酸とし、これよりC末端方向に順次付されている):第1−197番(配列番号4)、第29−58番(配列番号9)、第24−58番(配列番号21)、配列番号6の第1−191番のアミノ酸配列からなるポリペプチド、上記のアミノ酸配列の少なくとも1つの配列を活性ドメインとして保有するポリペプチド、上記の各アミノ酸配列の少なくとも1個のアミノ酸が置換及び/又は欠失したポリペプチド、これ等の合成アナログ、これ等の糖又は糖鎖による修飾体等々。
[III群]ホスファチジルコリン、ジパルミトイルホスファチジルコリン、ホスファチジルセリン、ジパルミトイルグリセロホスホコリン、ジアシルグリセロホスホグセロール、ホスファチジルグリセロール、ホスファチジルイノシトール、ホスファチジルエタノールアミン、ホスファチジン酸等のリン脂質、ラウリル酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸等の脂肪酸等々の脂質。
またこの抗原薬物ヴィークルは、前記III群がシート状又はロール状の脂質膜であり、前記I群及びII群のそれぞれ複数鎖が、疎水領域末端を該脂質膜に嵌入した状態でスパイク状に植鎖されていることを、その構成及び形状の一つの好ましい態様としている。
(2) 上記(1)の抗原薬物ヴィークルに抗原を共存、接触、捕捉、又は吸着させることにより得られ、粘膜免疫を誘導することを特徴とする粘膜ワクチン。
(3) 上記(1)の抗原薬物ヴィークルにアレルゲンを共存、接触、捕捉、又は吸着させることにより得られ、粘膜免疫を誘導することを特徴とするアレルギーの予防及び治療剤。その作用効果は、例えば、飛来吸引されたスギ花粉、ダニ等のアレルゲンの鼻腔あるいは鼻咽頭粘膜IgAによる失活あるいは減感作にある。
(4) 上記(1)の抗原薬物ヴィークルに薬効を奏する量の薬物を共存、接触、捕捉又は吸着させることにより得られる経粘膜及び/又は経皮DDS。
(5) 上記(1)の抗原薬物ヴィークルに抗原を共存、接触、捕捉又は吸着させることによって得られる粘膜ワクチンを鼻または上気道に投与することを特徴とする粘膜免疫の誘導方法。
なお、上記の発明(2)、(3)および(5)においては、粘膜免疫の誘導が、粘膜局所におけるIgA抗体の産生促進によって、さらには粘膜局所におけるTGF−β1およびTh2タイプサイトカインの産生促進によって特徴付けられることを好ましい態様としている。
6.以下、この発明の実施態様につき説明する。
(1) ADヴィークルの組成
前述したI群(肺サーファクタントプロテインB及び該プロテインBに由来あるいは起因する天然及び合成ポリペプチド群)、II群(肺サーファクタントプロテインC及び該プロテインCに由来あるいは起因する天然及び合成ポリペプチド群)及びIII群(リン脂質、脂肪酸等の脂質群)の3群の乾燥重量%は、次の通りである:I群は約0.1〜約6.0重量%、II群は約0.1〜約6.0重量%、及びIII群は約88〜約99.8重量%である。抗原薬物ヴィークルの調製では、重量%においてI群%+II群+III群%=100%になるよう調整する。
(2) ADヴィークルの調製
以下に調製手順を例示する。例えば、I群を2mg、II群を2mg、及びIII群を96mgそれぞれ秤取し(重量%にてI群%+II群+III群%=100%)、これ等を5mlの等張液、例えば生理的食塩水やリン酸緩衝液(PBS)中に均一に懸濁させる。得られた懸濁液は、抗原薬物ヴィークル(100mg/5ml)液として使用に供する。該ヴィークルは、使用時にその都度、調製する。尚、懸濁には、超音波、ホモジナイザー、ミキサー、振盪器等を用いることができる。超音波は過剰処理による液の変性(粘性の増加)をもたらし易いので、ミキサー、例えばボックスミキサー(例えば商品名Vortex mixer)の使用が望ましい。
尚、III群の脂質96mgの内訳については、例えば、ホスファチジルコリン71mg、ホスファチジルグリセロール21mg、及びホスファチジルセリン4mgの混合等を採用することができる(脂質量の合計は96mg)。また、SP−AとDが除去され、SP−BとCの含有が確実な市販のRDS治療用の肺サーファクタント製剤を用いる場合には、その使用書に従って調製した懸濁液をそのまま、抗原薬物ヴィークル液として使用に供することができる。
(3) 粘膜ワクチンの調製
ワクチン中の抗原量(A)に対する抗原薬物ヴィークル量(V)の乾燥重量比A/Vが約0.2〜約5になるよう、ワクチン原液に抗原薬物ヴィークル液を添加混合し調製する。例えば、抗原含有量が1μg/mlのワクチン原液1,000mlに対し、重量比A/V=1を採用すると、上記(2)で調製した抗原薬物ヴィークル(100mg/5ml)液の添加混合量は50μlである。尚、均一に混合するには、ホモジナイザー、ミキサー、振盪器、攪拌器等を用いることができる。
(4) 経粘膜・経皮DDSの調製
上記(3)と同様にして、抗原の代わりに薬物を用いることにより、調製できる。Hereinafter, embodiments of the present invention will be described in detail.
1. Terminology and description of antigen drug vehicle components
(1) Antigen drug vehicle
The vehicle (Antigen and Drug Vehicle, hereinafter abbreviated as “AD vehicle” or “ADV”) is composed of a lipid designed to enable transmucosal administration and transdermal administration of antigens, drugs and the like. It is a complex with protein. The AD vehicle includes the following (a) to (c).
(A) Lung surfactant protein B or fragments thereof (not only natural fragments obtained by proteolytic enzymes, but also artificial fragments obtained by genetic engineering or peptide synthesis, or one or more of the amino acids constituting such fragments are substituted and / or missing. Including lost mutant fragments, etc.).
(B) Lung surfactant protein C or fragments thereof (not only natural fragments obtained by proteolytic enzymes, but also artificial fragments obtained by genetic engineering or peptide synthesis, or one or more of the amino acids constituting such fragments are substituted and / or missing. Including lost mutant fragments, etc.).
(C) Lipids such as phospholipids and fatty acids. Its shape structure is a membrane-like (sheet-like or rolling lipid membrane) having a spine-like or spike-like polypeptide chain on its surface, and the hydrophobic region ends of a plurality of polypeptide chains are inserted into the lipid membrane. It is shaped like a spike and is different from conventional lipid vesicles (liposomes).
When the desired antigen or drug is coexisted, contacted, captured, adsorbed or bound to the antigen-drug vehicle according to the present invention (when placed), transmucosal administration and transdermal administration of such antigen or drug can be performed. . In other words, the vehicle is a vehicle that allows transmucosal and transdermal administration of antigens, drugs, and the like.
A component of AD vehicle, a protein, polypeptide or peptide and lipid used to prepare / manufacture the eagle, ie, pulmonary surfactant proteins B and C, fragments thereof, and at least one amino acid of the fragment peptide are substituted. Details of lipids such as mutated fragments and / or phospholipids and fatty acids will be described later.
(2) Lung surfactant
Pulmonary surfactant has been put into practical use in the treatment of respiratory distress syndrome (RDS) since the mid-1990s, and various preparations derived from humans, cows, pigs and the like have already been widely marketed and commonly used. (Non-patent document 2). In addition, synthetic peptide preparations containing an active domain related to RDS treatment are also commercially available, and design development and synthesis of SP-B and SP-C analogs are also being promoted (Non-patent Document 3). The composition and composition of the pulmonary surfactant is as follows: about 90% lipids (phosphaticel choline 67.3%, phosphatidylglycerol 19.3%, phosphatidylserine 3.2%, other free fatty acids, etc.) and about 10%. % Protein (surfactant proteins A, B, C and D; hereinafter abbreviated as “SP-A”, “SP-B”, “SP-C” and “SP-D”, respectively). The molecular weight is 28-36 kDa for SP-A, 15 kDa for B, 3.5 kDa for C, and 43 kDa for D. SP-A and D are hydrophilic (water-soluble) and lectin-like (membrane associated) Is . SP-B and C are hydrophobic (lipid-soluble) and lipid-binding, and have an ability to fit into a phospholipid membrane and a surface-active effect. Lung surfactant protein genes derived from humans, cows, pigs, etc. are known, for example, full length bases of human SP-B gene DNA in GenBank / NCBI (https://www.ncbi.nlm.nih.gov./) The accession number of the sequence is J02761, that of human SP-C (and SP-C1) is J03890. Hereinafter, human SP-B and C coding regions (CDRs) obtained from NCBI and the amino acid sequences encoded by them are described.
SEQ ID NO: 1: CDR base sequence of human SP-B gene DNA;
SEQ ID NO: 2: human SP-B full-length amino acid sequence decoded from SEQ ID NO: 1;
SEQ ID NO: 3: CDR base sequence of human SP-C gene DNA;
SEQ ID NO: 4: human SP-C full-length amino acid sequence decoded from SEQ ID NO: 3;
SEQ ID NO: 5: CDR base sequence of SP-C1 occupying on human SP-C gene DNA; and
SEQ ID NO: 6: human SP-C1 full-length amino acid sequence decoded from SEQ ID NO: 5.
(3) Protein or peptide used in the present invention
For the preparation and production of the antigen drug vehicle according to the present invention, SP-B and SP- derived from mammals such as humans, cattle, pigs, whales, dolphins, and from fish such as tuna, shark, ray, yellowtail, etc. A combination with C and a combination of SP-B and SP-C1 can be used. For example, human-derived proteins consisting of the full-length amino acid sequences described in SEQ ID NOs: 2, 4 and 6, respectively, a combination of SP-B and SP-C, and a combination of SP-B and SP-C1, Can be used. Further, for example, the hydrophobic (lipid-soluble) region of SP-B and SP-C based on the hydrophobicity value of Kyte-Doolittle, a fragment containing the region, and at least one amino acid of such a fragment peptide is substituted and / or deleted. Mutated fragments etc. can also be used. For example, a natural peptide consisting of the amino acid sequences shown in SEQ ID NOs: 7 to 20 shown below or a peptide obtained by genetic engineering or chemical synthesis, a longer chain peptide containing these peptides, and at least one of such peptides Mutants, synthetic analogs, and the like in which amino acids are substituted and / or deleted can be used. The amino acid numbers are indicated by ordinal numbers sequentially assigned in the C-terminal direction (from the left to the right of the described sequence), with Met occupying the N-terminus of each sequence being the first amino acid.
SEQ ID NO: 7: amino acid sequence Nos. 214 to 225 of SEQ ID NO: 2 (SP-B fragment);
SEQ ID NO: 8: amino acid sequence of Nos. 257 to 266 of SEQ ID NO: 2 (SP-B fragment);
SEQ ID NO: 9: amino acid sequence of Nos. 29 to 58 of SEQ ID NOs: 4 and 6 (SP-C fragment);
SEQ ID NO: 10: amino acid sequence Nos. 1 to 20 of SEQ ID NO: 2 (SP-B fragment);
SEQ ID NO: 11: amino acid sequence of Nos. 102 to 110 of SEQ ID NO: 2 (SP-B fragment);
SEQ ID NO: 12: amino acid sequence of Nos. 119 to 127 of SEQ ID NO: 2 (SP-B fragment);
SEQ ID NO: 13: amino acid sequence of positions 136 to 142 of SEQ ID NO: 2 (SP-B fragment);
SEQ ID NO: 14: amino acid sequence from positions 171 to 185 of SEQ ID NO: 2 (SP-B fragment);
SEQ ID NO: 15: amino acid sequence Nos. 201 to 279 of SEQ ID NO: 2 (SP-B fragment);
SEQ ID NO: 16: amino acid sequence of Nos. 253 to 278 of SEQ ID NO: 2 (SP-B fragment);
SEQ ID NO: 17: amino acid sequence of Nos. 300 to 307 of SEQ ID NO: 2 (SP-B fragment);
SEQ ID NO: 18: amino acid sequence of Nos. 317 to 330 of SEQ ID NO: 2 (SP-B fragment);
SEQ ID NO: 19: amino acid sequence of Nos. 344 to 351 of SEQ ID NO: 2 (SP-B fragment);
SEQ ID NO: 20: amino acid sequence of Nos. 358 to 381 of SEQ ID NO: 2 (SP-B fragment);
SEQ ID NO: 21: amino acid sequence Nos. 24-58 of SEQ ID NOs: 4 and 6 (SP-C fragment).
According to the present invention, at least one selected from SP-B consisting of the amino acid sequences set forth in SEQ ID NOs: 2, 7, 8, 10 to 20 and fragments thereof, and SEQ ID NOs: 4, 6, 9 and 21 Can be used in combination with at least one selected from SP-C (and SP-C1) and fragments thereof.
(4) Lipid used in the present invention
As the phospholipid, it is desirable to use a phospholipid contained in the lung surfactant, such as phosphatidylcholine (lecithin), dipalmitoylphosphatidylcholine, phosphatidylserine, and the like. Others, dipalmitoyl glycerophosphocholine, diacyl glycerophosphoglycerol, phosphatidylglycerol (cardiolipin), dilauroyl phosphatidylglycerol, dimyristoyl phosphatidylglycerol, dipalmitoyl phosphatidylglycerol, distearoyl phosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, phosphatidic acid, Myelin or the like can be used. As the fatty acid, lauric acid, myristic acid, palmitic acid, stearic acid, palmitooleic acid, oleic acid and the like can be used. Furthermore, lipids derived from aquatic animals such as whales, tuna and dolphins with active lung expansion can be used.
(5) Commercial pulmonary surfactant formulation for RDS treatment
According to this invention, safety and effectiveness as an RDS therapeutic agent are approved by the relevant authorities, and commercially available pulmonary surfactants containing hydrophobic or fat-soluble SP-B and SP-C and phospholipids, for example, The trade name Surfacten Infasurf, Curosurf, Humasurf, Exosurf, Alveofact etc. can be used as the AD vehicle. In addition to SP-B and SP-C, commercially available preparations containing hydrophilic or water-soluble SP-A and SP-D include, for example, 1-butanol and these water-soluble proteins SP-A and SP-D. And these are removed to below the detection limit and then used. In consideration of adjustment of the use concentration in the preparation of AD vehicle, it is desirable to use a dry preparation as compared with a liquid preparation.
2. New knowledge underlying the present invention
This invention is in the intense and severe whirl of the background art described above, and is based on the outstanding insight and analysis ability of the leading inventor who has been through trial and error for more than 10 years, and deep academic experience and novel ideas. Based on the following amazing discoveries.
(1) Whereas conventional adjuvants cause inflammation and enhance antigen-presenting ability, four types of active protein components of lung surfactant, which are inherently secreted surfactants in the lung and gastrointestinal mucosa, SP-A A combination of SP-B and SP-C from which A and D are removed from B, C and D, and a phospholipid complex, or SP-B and SP containing these fat-soluble regions (effective regions) When a viral antigen is allowed to coexist with, contact with, or be captured or adsorbed to a complex of a combination of synthetic peptides of both fragments and the lipid membrane (the aforementioned AD vehicle), antigen-presenting cells of the nasal mucosa can be produced without causing inflammation. Activated, viral antigen is efficiently taken up into the cells, and mucosal antiviral IgA production is effectively and preferentially selected without causing induction of IgG production in the mucosa and blood I was found to be guided.
(2) In addition, a combination of SP-B and SP-C and a phospholipid, or a lipid-soluble region thereof (such as a combination of SP-B and SP-C), which has been conventionally used as a safe inactivated vaccine antigen, A combination of a synthetic peptide of both SP-B and SP-C fragments containing the effective region) and a lipid membrane complex (AD vehicle) is added and mixed, while maintaining the high safety of the split antigen and further splitting. It has been discovered that selective induction of secretory IgA production can be achieved with the antigen alone, in which the activation of antigen-presenting cells, which is inferior to that of a live vaccine, is sufficiently enhanced and supplemented.
3. Background to the above discovery
(1) The lead inventor has conducted extensive research to elucidate the mechanism of influenza onset, treatment, and prevention. In the process, the lung surfactant adsorbs and inactivates the tryptase clara of the HA processing protease of the respiratory tract that restricts the hemagglutinin (HA) of the influenza virus membrane protein to express viral membrane fusion activity and infectivity, resulting in inactivation. It was elucidated to block the virus growth cycle.
(2) As a result of subsequent studies, in addition to the above-mentioned effects, lung surfactant selectively activates mucosal antigen-presenting cells to activate immunity against viral antigens and induces secretory IgA. I found that no induction occurred. Furthermore, it was clarified that SP-B and SP-C are important together with lipid components as an active ingredient for enhancing mucosal immunity in pulmonary surfactant, and the effective region of these protein components was identified and the effectiveness of enhancing mucosal immunity was verified. .
(3) Further, as described above, research is conducted from the viewpoint of airway mucosa bioprotective substances and virus infection protection, and pulmonary surfactant secreted in the body induces selective IgA production as a mucosal immune adjuvant derived from the living body. Prove that you are involved.
(4) The above pulmonary surfactant is a physiologically active substance in the living body, and (a) has the property of adsorbing a specific biological substance (Kido H., et al. FEBS Lett. Pulmonary survivant is a potentiogenous inhibitor of proteolytic activation of Sendai virus and influenza A, 322 (29), 115-119, 1992), (b) secreted from alveolar type II cells and Clara cells, and then selectively taken up and metabolized by macrophages (Akira Suwabe, J. Jpn. Med. Soc. Biol. Interface; Surfactant metabolic disorder in alveolar proteinosis, 33, 10-13, 2002), c) an analogue cells were overlaid attention studied to be metabolized, for example, incorporated into antigen presenting cells (dendritic cells).
As a result, among the protein components of lung surfactant, only SP-B, SP-C, and lipid components function as an “AD vehicle” for a mucosal vaccine that selectively induces IgA production. The active ingredient region or mucosal immunity-inducing active domain was revealed to be a peptide consisting of the following amino acid sequences:
SP-B 214-225: Leu Ile Lys Arg Ile Gln Ala Met Ile Pro Lys Gly (SEQ ID NO: 7); and
SP-B 257-266: Leu Leu Asp Thr Leu Leu Gly Arg Met Leu (SEQ ID NO: 8).
In addition, it was clarified that the active ingredient region of SP-C or the mucosal immunity inducing active domain is a peptide comprising the following amino acid sequence:
SP-C 29-58: Cys Pro Val His Leu Lys Arg Leu Leu Ile Val Val Val Val Val Val Leu Ile Val Val Val Ile Val Gly Ala Leu 9
(5) Furthermore, as a mechanism for selective IgA induction, the active ingredient of lung surfactant induces an increase in the expression of MHC Class II, CD40, B7-2 in antigen-presenting dendritic cells and antigens to T-lymphocytes. In addition to effectively performing the presentation, it was clarified that the cytokine TGF-β1 localized in the mucosa was induced to promote class switching to IgA-producing B-lymphocytes.
4). The object of the present invention completed based on the above discovery and its background is as follows.
(1) The first purpose is to establish a mucosal immunization method. By providing "AD vehicle" and its utilization, selective induction of antigen-specific IgA production, which is an effective substance of mucosal immunity, is realized, and induction of safe and effective (no side effects) mucosal immunity and its method are established. To do.
(2) The second purpose is to improve the quality of AD vehicle related to safety, effectiveness and homogeneity by using synthetic peptides. SP-B mucosal immunity-inducing active domain (consisting of the amino acid sequences of SP-B 214-225 and SP-B 257-266) and SP-C mucosal immunity-activating domain (SP-B) C 29-58 (consisting of the amino acid sequence), synthetic analogs thereof, long-chain synthetic peptides containing these amino acid sequences as a part, and the surfactant surfactant lipid component. Provide composite (AD vehicle) to improve the quality of AD vehicle.
(3) The third purpose is to switch from subcutaneous injection of conventional vaccines to transmucosal administration. AD vehicle is used as an inactivated vaccine for respiratory tract virus, such as influenza, SARS, measles, rubella, mumps, etc., and an inactivated vaccine for enteric virus, such as rota, polio, etc. Convert these subcutaneous vaccines into mucosal vaccines.
(4) The fourth object is to provide an AD vehicle that can be used in inactivated vaccines against viral infections other than the respiratory tract and intestinal tract, such as AIDS, hepatitis B, and hepatitis C. That is.
(5) A fifth object is to provide a method that can use an AD vehicle for DNA vaccines, live vaccines, prevention and treatment of allergies, and the like.
(6) The sixth object is to provide an AD vehicle that can be used in transcutaneous inoculation (application, pasting, etc.) as an immunization route capable of inducing IgA other than mucous membranes.
(7) The seventh purpose is to open the road to the use and application of AD vehicles not only for DDS and pharmaceuticals, but also for agriculture, fishery and so on.
The AD vehicle proposed by the present invention differs in performance and action from the adjuvants conventionally used in immunology as follows. That is, conventional adjuvants are usually inoculated subcutaneously or intramuscularly, cause a local inflammatory reaction, attract antigen-presenting cells, B- and T-lymphocytes, and contain foreign substances that exhibit their ability as active ingredients. Furthermore, in order to maintain an inflammatory reaction over a long period of time, mineral oil and metal salts that cause slow release and storage of antigens are used in combination. Moreover, what is known as a conventional mucosal vaccine / adjuvant is a foreign substance such as Escherichia coli heat-labile toxin or cholera toxin as described above, and therefore has a risk of causing harmful effects and side effects. In contrast, the AD vehicle according to the present invention does not cause a local inflammatory response. In addition to being derived from biological components, the active ingredient in the lung surfactant or its active domain is limited, and an effective mucosal vaccine is realized by using such a domain and a low molecular peptide containing the domain region. ing. Therefore, it is extremely safe and non-invasive.
5). According to this invention, the following (1) to (5) are provided respectively.
(1) at least one fragment selected from lung surfactant protein B or a plurality of fragments derived from protein B, at least one fragment selected from lung surfactant protein C or a plurality of fragments derived from protein C, and at least one An antigen-drug vehicle that is a complex of lipids of a species.
More specifically, the AD vehicle comprises the following group I (pulmonary surfactant protein B and natural and synthetic polypeptide groups derived from or derived from the protein B) group II (pulmonary surfactant protein C and natural derived from or derived from the protein C). And a composite polypeptide group) and a group III (a lipid group such as phospholipid and fatty acid), and a total of at least three substances selected from each group.
[Group I] Pulmonary surfactant protein B and a polypeptide comprising the following amino acid sequence described in SEQ ID NO: 2 (the amino acid number is the N-terminal Met as the first amino acid, and sequentially attached in the C-terminal direction from this) No. 1-381 (sequence number 2), 214-225 (sequence number 7), 257-266 (sequence number 8), 1-20 (sequence number 10), 102- 110 (sequence number 11), 119-127 (sequence number 12), 136-142 (sequence number 13), 171-185 (sequence number 14), 201-279 (sequence number 15) ), 253-278 (SEQ ID NO: 16), 300-307 (SEQ ID NO: 17), 317-330 (SEQ ID NO: 18), 344-351 (SEQ ID NO: 19), 358-381 Number No. 20), a polypeptide having at least one of the above amino acid sequences as an active domain, a polypeptide in which at least one amino acid of each of the above amino acid sequences is substituted and / or deleted, synthetic analogs thereof, These sugars or sugar chain-modified products, etc.
[Group II] Pulmonary surfactant protein C and a polypeptide comprising the following amino acid sequence described in SEQ ID NO: 4 (the amino acid number is assigned to the N-terminal Met as the first amino acid and sequentially attached in the C-terminal direction from this) 1): No. 1-197 (SEQ ID NO: 4), 29-58 (SEQ ID NO: 9), 24-58 (SEQ ID NO: 21), consisting of amino acid sequence No. 1-191 of SEQ ID NO: 6 Polypeptide, polypeptide having at least one of the above amino acid sequences as an active domain, polypeptide in which at least one amino acid in each of the above amino acid sequences is substituted and / or deleted, synthetic analog thereof, Etc. modified by sugar or sugar chain, etc.
[Group III] Phosphatidylcholine, dipalmitoylphosphatidylcholine, phosphatidylserine, dipalmitoylglycerophosphocholine, diacylglycerophosphoglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, phosphatidic acid and other phospholipids, lauric acid, myristic acid, palmitic acid Lipids such as fatty acids such as stearic acid and oleic acid.
Further, in this antigen drug vehicle, the group III is a sheet-shaped or roll-shaped lipid membrane, and each of the plurality of chains of the group I and the group II is implanted in a spike shape with the end of the hydrophobic region inserted into the lipid membrane. Chaining is one preferred aspect of the configuration and shape.
(2) A mucosal vaccine obtained by coexisting, contacting, capturing, or adsorbing an antigen to the antigen drug vehicle of (1) above, and inducing mucosal immunity.
(3) A prophylactic and therapeutic agent for allergy obtained by coexisting, contacting, capturing or adsorbing an allergen to the antigen drug vehicle of (1) above, and inducing mucosal immunity. The effect is, for example, inactivation or desensitization by nasal cavity or nasopharyngeal mucosa IgA of allergens such as Japanese cedar pollen and mites that are sucked in and out.
(4) A transmucosal and / or transdermal DDS obtained by coexisting, contacting, capturing or adsorbing a drug having a medicinal effect on the antigen drug vehicle of (1).
(5) A method for inducing mucosal immunity, comprising administering to the nose or upper respiratory tract a mucosal vaccine obtained by coexisting, contacting, capturing or adsorbing an antigen to the antigen drug vehicle of (1) above.
In the above inventions (2), (3) and (5), mucosal immunity is induced by promoting production of IgA antibody in the mucosal region and further promoting production of TGF-β1 and Th2 type cytokines in the mucosal region. It is made into the preferable aspect to be characterized by these.
6). Hereinafter, embodiments of the present invention will be described.
(1) Composition of AD vehicle
Group I (pulmonary surfactant protein B and natural and synthetic polypeptide groups derived or derived from protein B), Group II (pulmonary surfactant protein C and natural and synthetic polypeptide groups derived from or derived from protein C), and The dry weight% of
(2) Preparation of AD vehicle
The preparation procedure is illustrated below. For example, 2 mg of group I, 2 mg of group II, and 96 mg of group III are weighed (% by weight of group I + group II + group III% = 100%), and these are mixed with 5 ml of isotonic solution, for example, physiological Suspend uniformly in saline or phosphate buffered saline (PBS). The obtained suspension is used as an antigen drug vehicle (100 mg / 5 ml) solution. The vehicle is prepared each time it is used. In addition, an ultrasonic wave, a homogenizer, a mixer, a shaker, etc. can be used for suspension. Since ultrasonic waves tend to cause liquid denaturation (increase in viscosity) due to excessive treatment, it is desirable to use a mixer such as a box mixer (for example, the trade name Vortex mixer).
In addition, about the breakdown of the lipid of group III, for example, a mixture of 71 mg of phosphatidylcholine, 21 mg of phosphatidylglycerol, and 4 mg of phosphatidylserine can be employed (total amount of lipid is 96 mg). In addition, when using a commercially available pulmonary surfactant preparation for RDS treatment in which SP-A and D are removed and SP-B and C are surely contained, the suspension prepared according to the instructions for use is used as it is. Can be used as a vehicle solution.
(3) Preparation of mucosal vaccine
An antigen drug vehicle solution is added to the vaccine stock solution and mixed so that the dry weight ratio A / V of the antigen drug vehicle amount (V) to the antigen amount (A) in the vaccine is about 0.2 to about 5. For example, when a weight ratio of A / V = 1 is adopted for 1,000 ml of a vaccine stock solution having an antigen content of 1 μg / ml, the added amount of the antigen drug vehicle (100 mg / 5 ml) prepared in the above (2) is 50 μl. In addition, in order to mix uniformly, a homogenizer, a mixer, a shaker, a stirrer, etc. can be used.
(4) Preparation of transmucosal / transdermal DDS
It can be prepared by using a drug instead of an antigen in the same manner as in (3) above.
以下、実施例を示し、この発明の構成と効果につき、具体的に説明する。但し、この発明は、これ等の具体例、説明及び記載にのみ限定されるわけではない。
なお、この実施例で使用した材料、試験手続等は以下のとおりである。
(1) 肺サーファクタント
「抗原薬物ヴィークル(ADヴィークル)」して用いた肺サーファクタントは、牛の肺よりHowgoodらの方法(Howgood S,et al.,:Effects of a surfactant−associated protein and calcium ions on the structure and surface activity of lung surfactant lipids.Biochemistry 24,184−190,1985)で調整した標品(PSF−1)か、あるいは多くはこの標品を1−ブタノールで抽出して水溶性蛋白成分SP−A、SP−Dを除去、あるいは検出限界以下にまで減じた標品(Haagsman HP,et al.,:The major lung surfactant protein,SP28−36,isa calcium−dependent,carbohydrate binding protein,J.Biol.Chem.262,13977−13880,1987)(PSF−2)、さらに主にホスファチジルコリンやジパルミトイルホスファチジルコリンからなるリン脂質を全体として40重量%以上含有し、さらに肺サーファクタント脂質に類似してホスファチジルグリセロールを10−20%、ホスファチジルセリンが2〜5%含有され、脂溶性蛋白質のSP−B、SP−Cの有効領域の合成ペプチドのどちらか、あるいは両方のペプチドを合わせて、0〜3.5%含む標品が用いられる。この標品の中でSP−B、SP−Cの有効領域の両方のペプチドを合わせ持つ標品(PSF−3)、SP−Bの有効領域の合成ペプチドを有する標品(PSF−4)、SP−Cの有効領域の合成ペプチドを有する標品(PSF−5)についても検討した。あるいはPSF−1、PSF−2に相当する公知の標品、例えば商品名サーファクテン、インサァーフ(Infasurf)、キューロサーフ(Curosurf)、ヒューマンサーフ(Humansurf)、エキソサーフ(Exosurf)、アルビオファクト(Alveofact)なども用いられる。
(2) 動物
6週齢、メスBALB/cマウスおよび、10週齢Hartleyモルモットを日本エスエルシー株式会社(日本・静岡)から購入して用いた。全ての動物実験は徳島大学医学部実験動物センターの感染動物舎(P2レベル)で行われ、徳島大学医学部動物実験委員会のガイドラインに従って行われた。
(3) スプリット型インフルエンザワクチンの作製
インフルエンザウイルスA Aichi/68/2/H3N2株を接種した発育鶏卵由来浮遊液(1×108Plaque forming unit(PFU))(川崎医科大学・微生物学教室 大内正信教授より供与された)を用いて以下の操作でスプリット型インフルエンザワクチンの作成を行った。0.004M PBS(タカラバイオ株式会社 日本・東京・滋賀)で一晩透析されたウイルス浮遊液にβプロピオラクトン(和光純薬株式会社 日本・大阪)を液量の0.05%、最終濃度8nMになるように添加し、氷浴中で18時間インキュベートした。その後、37℃で1.5時間インキュベートすることで、βプロピオラクトンの加水分解を行った。その後、終濃度0.1%となるようにTween20(和光純薬株式会社)を加え、さらにTweenと等量のジエチルエーテル(和光純薬株式会社)を加え、4℃で2時間転倒混和した。この液を2000rpm、5分間遠心分離することにより水層を回収した。さらにAutomatic Environmental SpeedVac System(SAVANT INSTRUMENTS,INC.アメリカ・ニューヨーク)を用いて水層よりジエチルエーテルの除去を行った。これをMillex 0.45μmフィルター(MILLIPORE アメリカ・マサチューセッツ)で濾過し、不活化スプリット型インフルエンザワクチンとして用いた。
(4) 免疫法
上記の製造法で作製したスプリット型インフルエンザワクチンに「ADヴィークル」として上記の肺サーファクタント(PSF−1)、1−ブタノール抽出肺サーファクタント(PSF−2)、SP−B,SP−Cの有効領域の合成ペプチドと肺サーファクタント脂質(PSF−3、4、5)、公知の肺サーファクタント商品、あるいは免疫アジュバントとしてコレラトキシンBサブユニット(CTB、SIGMA アメリカ・ミズーリ)を混合して用いた。肺サーファクタントあるいは上記の相当標品を、ワクチン投与に必要な濃度で用時PBSに懸濁し、室温、5分間の超音波処理により均一な懸濁液とした。これに肺サーファクタントあるいは上記の相当標品の乾燥重量で0.1μgに対してスプリット型インフルエンザワクチンを0.1μg加え、ボルテックスミキサーで混合したのち、室温で1時間静置して使用した。CTBも同様に用時に調整し、スプリット型インフルエンザワクチン0.1μgに対して0.1μgになるように混合した(Watanabe I,et al.,:Characterization of protective immune responses induced by nasal influenza vaccine containing mutant cholera toxin as a safe Adjuvant(CT112K).Vaccine 2002;20:3443−55)。
ワクチンの経鼻投与においては、上記の調整品を乾燥重量相当量として0.1μg/1μl Phosphate buffered saline(PBS)溶液になるようにPBSで希釈し、これを1匹当たり片側1μlづつを両側に投与して、合計2μlをエーテルで麻酔したマウスの両側鼻腔に点鼻投与した。比較のために行った従来型皮下注射においては、スプリット型インフルエンザワクチンを0.1μg/50μl溶液になるようにPBSで希釈し、これをマウス頸部皮下に投与した。対照群にはワクチン液と同量のPBSを投与した。4週間後に初回免疫と同様の方法によって2次免疫を行い、2次免疫後2週間目のマウスの、鼻腔・肺胞洗浄液および血清を調製して、ウイルス特異的なIgA、IgGの測定とウイルス感染実験に用いた。
(5) マウス鼻腔・肺胞洗浄液および血清の調製
ワクチン投与マウスをペントバルビタール麻酔下で開腹開胸し、気管を切開しアトム静脈カテーテル節付3Fr(アトムメディカル株式会社 日本・東京)を肺へ挿入後、生理食塩水1mlを注入し、この液を回収した。これを3回繰り返して採取した液、計3mlを肺胞洗浄液として用いた。肺洗浄液採取後、切開した気管から鼻腔方向へアトム静脈カテーテルを挿入し、1mlの生理食塩水を注入し、鼻から出てきた液を採取した。この液を鼻洗浄液として用いた。さらに、心臓より採血を行い、5,000rpm、10分間の遠心分離により血清を調製した。
(6) タンパク定量
鼻洗浄液、肺洗浄液、および血清のタンパク含有量をBCA Protein Assay Reagent Kit(PIERCE アメリカ・イリノイ)を用いて測定した(Smith PK.et al.,:Measurement of protein using bicinchoninic acid.Anal.Biochem.,150,76−85,1985)。562nmの吸光度はSPECTRAmax PLUS 384(Molecular Devices Corporation アメリカ・カリフォルニア)を用いて測定した。
(7) ウイルス感染実験および感染価の評価
スプリット型インフルエンザワクチンの調製に用いたウイルス株と同じインフルエンザウイルス株、A Aichi/68/2/H3N2株を感染に用いた。2次免疫終了後2週間目のマウスをエーテルで麻酔した後、インフルエンザウイルス発育鶏卵由来浮遊液を、両側鼻腔に合計7×104PFU/3μlを滴下して感染させた。感染3日後に鼻腔、肺胞洗浄液を上記の要領で調製し、ウイルス感染価の評価に用いた。ウイルス感染価の評価をA549細胞(川崎医科大学・微生物学教室 大内正信教授より供与された)を用いて行った。A549細胞は、5%牛胎児血清/DMEM(Gibco アメリカ・ニューヨーク)の条件下で培養を行った。A549細胞を6ウェル培養プレート(グレイナー ドイツ・シュトゥットガルト社)に100%コンフルエントになるように継代し、24時間後に無血清培地に交換した。各ウェルにインフルエンザ感染マウスの鼻腔・肺胞洗浄液を500μlずつ滴下し、CO2インキュベーターにて12時間から16時間37℃で培養を行った。これにモルモットより採血した赤血球1% PBS液を加え、5分間室温下で静置した。これを1mM Ca2+/Mg2+PBSを用いて洗浄し、赤血球を凝集させた細胞をウイルス感染細胞としてカウントし、ウイルス感染価の評価を行った(Tashiro M.,HommaM.:Pneumotropism of Sendai virus in relation to protease−mediated activation in mouse lungs.Infect.Immun.39,879−888,1983)。
(8) 抗インフルエンザ特異的IgAおよびIgGの精製
ELISA assayにおける定量の基準として用いるために、特異的抗インフルエンザIgAおよびIgGの精製を以下のようにして行った。組換え大腸菌発現ProteinGセファロース4Bカラム(ZYMED LABORTORIES INC,アメリカ・サンフランシスコ)を用いたアフィニィティークロマトグラフィーにより、インフルエンザワクチン投与およびウイルス感染マウスの肺洗浄液からIgG画分を精製した。抗マウスIgAヤギIgG(SIGMA)をBrCN活性化セファロース4Bカラム(Amersham Bioscience アメリカ・ニュージャージー)に結合し、ProteinGの素通り画分からこれを用いたアフィニィティークロマトグラフィーによりIgA画分を精製した。これらのIgG、IgA画分からウイルス特異的抗体を精製するため、免疫に用いた不活化スプリット型インフルエンザワクチンをBrCN活性化セファロースカラムに結合し、IgA、IgG画分からこれを用いた抗原アフィニィティークロマトグラフィーによりそれぞれ抗インフルエンザ特異的IgAおよびIgGを精製した。リガンドとしてのスプリット型インフルエンザ蛋白質のカラムへのカップリングは、0.1M NaHCO3/0.5M NaCl緩衝液(pH8.5)を用いて結合反応を行い、フリーのリガンドを0.1M 酢酸/0.5M NaCl緩衝液(pH8.5)を用いて除去後、PBS(pH7.5)により中和を行った。各アフィニティクロマトグラフィーはPBS(pH7.5)によりアフィニティ結合反応およびフリーの抗体の除去を行った後、glycine−HCl緩衝液(pH2.8)によって特異抗体の溶出を行った。溶出された画分は直ちに0.5M Tris−HCl緩衝液(pH9.0)により中和を行い、MilliQ水にて透析後凍結乾燥し、用時PBSに溶解して用いた。
(9) 抗インフルエンザ抗体の定量
鼻腔、肺胞洗浄液および血清中の抗インフルエンザIgA、IgG含有量を、ELISA assayにより定量した。ELISA assayはBETHYL LABORATORIES社(アメリカ・テキサス)のMouse ELISA quantitation kitの方法に従って行った。96ウェル Nunc イムノプレート(Nalgen Nunc International アメリカ・ニューヨーク)各ウェルにワクチン1μg、ウシ血清アルブミン(BSA,SIGMA アメリカ・ミズーリ)1μg/ml PBS溶液100μlを加え、4℃で一晩固層化反応を行った。その後洗浄液(50mM Tris,0.14M NaCl,0.05% Tween 20,pH8.0)で3回すすぎワクチン液を除去した。各ウェルに0.15M NaCl、1% BSAを含む50mM Tris−HCl緩衝液(pH8.0)200μlを加え、室温で1時間ブロッキング反応を行った。各ウェルを洗浄液で3回すすいだのち、サンプル結合緩衝液(50mM Tris,0.15M NaCl,1% BSA,0.05% Tween 20,pH8.0)にて適量に希釈した鼻洗浄液・肺洗浄液あるいは血清を100μl加え、室温で2時間反応させた。Goat anti−mouse IgAまたはIgG−horse rADish peroxidase(HRP)(BETHYL LABORATORIES INC.)を二次抗体として用い、TMB Microwell Peroxidase Substrate System(Kirkegaard & Perry Laboratories,Inc.アメリカ・メリーランド)を用いて発色反応を行った。各ウェルに100μl、2M H2SO4(和光純薬株式会社)を添加することによって反応を停止し、450nmの吸光度をSPECTRAmax PLUS 384で測定した。定量のためのスタンダードとして、上記肺洗浄液から精製した抗インフルエンザIgAおよびIgG 10ngについて同様にして得られた吸光度を用いた。
(10) 樹状細胞の調製およびフローサイトメトリー
初回免疫後2日目の各群のマウス(1群4匹)より採取した鼻、肺、脾臓より、樹状細胞の調製をGonzalez−Juarrero Mの方法(Gonzalez−Juarrero M,Orme IM.:Characterization of murine lung dendritic cells infected with Mycobacterium tuberculosis.Infect Immun 2001;69:1127−33)によりの調製を行った。なお、鼻より樹状細胞の調製、およびそのコラゲナーゼ処理はAsanuma H等の方法(Asanuma H,et al.,:Characterization of mousenasal lymphocytes isolated by enzymatic extraction with collagenase.J Immunol Methods 1995;187:41−51)に従って行った。各組織から調製された樹状細胞を1mM EDTA/PBSにて洗浄し、106細胞当たりFITC conjugated Anti−IA/IE(MHC class II)およびPE conjugated Anti CD40あるいはFITC conjugated Anti−CD80(B7−1)およびPE conjugated Anti CD86(B7−2)(BDバイオサイエンス アメリカ・ニュージャージー)各1μg/mlを加え、50μl 1mM EDTA/PBS懸濁液として氷上で30分間反応させた。1mlの1mM EDTA/PBSで2回洗浄を行ってフリーの抗体を除き、1mlの1mM EDTA/PBSに再懸濁した。これを用いてBD FACS Callibur(BDバイオサイエンス)により細胞表面修飾因子の検出を行った。
(11) TGF−β1の定量
鼻腔、肺胞洗浄液中のTGF−β1の分泌量を、ELISA assayにより定量した。
ELISA assayはTGF−β1 ELISA kit(BIOSOURCE INTERNATIONAL アメリカ・カリフォルニア)を用いて、キットに添付された使用法に従って行った。
(12) 各種サイトカインの定量
鼻腔、肺胞洗浄液中、および脾臓のリンパ球からそれぞれ分泌されるサイトカイン(インターロイキン 4:IL−4、IL−5、IL−6、IL−13)の量を、それぞれの市販ELISAキットにより定量した。
(13) SP−BおよびSP−Cの合成ペプチドとリン脂質とからなるPSF−3の調製
SP−B 253−278(配列番号16)とSP−C 24−58(配列番号21)のそれぞれのペプチドを公知の方法により化学合成した。これらのペプチドを、リン脂質膜(ジパルミトイルホスファチジルコリン(75)、ホスファチジルグリセロール(25)、パルミチン酸(10))に加えて板状のリン脂質膜を作成し、ADヴィークルPSF−3を調製した。
実施例1
経鼻インフルエンザワクチンと皮下注射インフルエンザワクチンのウイルス増殖抑制作用の比較
経鼻ワクチンとしてスプリット型インフルエンザワクチン0.1μgを単独、あるいは「ADヴィークル」として1−ブタノール抽出(SP−A、SP−D除去)サーファクタント(以下PSF−2)0.1μg、あるいはCTB 0.1μgとともに、PBS溶液としてBALB/cマウス両鼻に1μlずつ投与を行った。皮下注射ワクチンとしては、経鼻ワクチンと同量のワクチン単独、あるいはADヴィークルとしてPSF−2、又はアジュバントとしてCTBを加え、全体で50μl PBS溶液としてBALB/cマウス頸部皮下に投与した。4週間後に初回免疫と同様の方法によって2次免疫を行った。対照群にはそれぞれ同容量のPBSを投与した。2次免疫2週間経過後に6.6×104PFUのインフルエンザウイルスを3μl PBS溶液として経鼻感染させた。感染3日後にマウスを屠殺し、鼻腔および肺胞洗浄液を調製しこれらを用いてウイルス感染価の評価を行った(n=15〜20;平均±SE;*,t検定による有意水準はワクチン投与群に対してp<0.01)。
図1(a)と(b)に示すように、経鼻インフルエンザワクチン投与の場合、鼻腔と肺洗浄液中のインフルエンザウイルスの増殖は、ワクチン単独投与によっても抑制されるが、PSF−2、CTBはその効果を有意に増強してほぼ完全にまでインフルエンザの増殖をおさえてワクチンの効果を確実にした。図には示していないが、PSF−2の代わりにPSF−1、PSF−3を使用してもほほ程度の効果が得られている。PSF−4、−5についても同様な現象は確認されたが、効果は減弱している。
尚、図には示していないがPSF−2、CTBをそれぞれ単独に初回免疫時と2次免疫時に経鼻投与しても、ウイルス増殖の抑制効果は全く認められず、PSF−2、CTBの効果はワクチン作用の増強効果と判定された。
一方、皮下注射インフルエンザワクチンの場合、図1(c)と(d)に示す通り、鼻腔、肺洗浄液中のインフルエンザウイルスのタイター(PFU)はワクチン単独でも有意に減少して、ワクチンの効果は確認されたが、PSF−2、CTBのワクチン作用の増強効果は認められなかった。則ち皮下投与の場合には、PSF−2、CTBの免疫増強効果はほとんど認められないか、あっても極僅かと推定された。なお、この実験においては図には示していないが、PSF−2、CTBをそれぞれ単独に初回免疫時と2次免疫時に皮下投与しても、ウイルス増殖の抑制効果は全く認められなかった。図には示していないが、PSF−2の代わりにPSF−1、PSF−3、PSF−4、PSF−5を使用してもワクチン作用の増強効果は認められなかった。
実施例2
経鼻(a)、皮下注射(b)によるインフルエンザワクチン投与後の鼻腔洗浄液中における抗インフルエンザ特異抗体(IgA、IgG)産生に対するPSF−2、CTBの影響
図1に記載した方法で、経鼻ワクチンとしてスプリット型インフルエンザワクチン0.1μgを単独、あるいはADヴィークルとしてPSF−2 0.1μg、あるいはアジュバントとしてCTB0.1μgと共に、PBS溶液としてBALB/cマウス両鼻に1μlずつ合計2μl投与を行った。皮下ワクチンとしては、経鼻ワクチンと同量のワクチン、PSF−2、CTBを50μl PBS溶液としてBALB/cマウス頸部皮下に投与した。4週間後に初回免疫と同様の方法によって2次免疫を行った。対照群にはそれぞれ同容量のPBSを投与した。2次免疫2週間経過後に6.6×104PFUのインフルエンザウイルスを3μl PBS溶液として経鼻感染させた。感染3日後にマウスを屠殺し、鼻腔洗浄液を調製しこれらを用いてウイルス感染価の評価を行った(n=15〜20;平均±SE;*,t検定による有意水準はワクチン投与群に対してp<0.01)。
その結果を図2(a)と(b)に示す。経鼻投与したスプリット型インフルエンザワクチンによって、抗インフルエンザ特異IgAが選択的に鼻腔で産生されて洗浄液中に増加するが、この特異的IgA量をPSF−2、CTBは共に同程度、著明に増加させた。一方皮下注射した場合も、スプリット型インフルエンザワクチン単独による鼻腔洗浄液中の特異的IgA量の増加は認められたが、鼻腔投与に比べてその程度は低かった。またワクチンの皮下注射の場合、PSF−2、CTBの免疫増強効果はIgA、IgG産生において共に認められなかった。図には示していないが、PSF−2の代わりにPSF−1、PSF−3を使用してもPSF−2と同程度の効果が得られている。PSF−4、−5についても同様な現象は確認されたが、その効果は減弱している。
実施例3
経鼻投与(a)、皮下注射(b)インフルエンザワクチンによる肺洗浄液中の抗インフルエンザ特異抗体(IgA、IgG)産生に対するPSF−2、CTBの影響
経鼻ワクチンとしてスプリット型インフルエンザワクチン0.1μgを単独、あるいはADヴィークルとしてPSF−2 0.1μg、あるいはアジュバントとしてCTB0.1μgと共に、PBS溶液としてBALB/cマウス両鼻に1μlずつ合計2μl投与を行った。皮下ワクチンとしては、経鼻ワクチンと同量のワクチン、PSF−2、CTBを50μl PBS溶液としてBALB/cマウス頸部皮下に投与した。4週間後に初回免疫と同様の方法によって2次免疫を行った。対照群にはそれぞれ同容量のPBSを投与した。2次免疫2週間経過後に6.6×104 PFUのインフルエンザウイルスを3μl PBS溶液として経鼻感染させた。感染3日後にマウスを屠殺し、肺胞洗浄液を調製しこれらを用いて抗インフルエンザ特異抗体IgA、IgG産生に対する抗原薬物ヴィークルの影響を検討した。(n=15〜20; 平均±SE;*,t検定による有意水準はワクチン投与群に対してp<0.01)。
図3(a)と(b)に示すようにワクチンの鼻腔投与の場合と同様、肺洗浄液中に産生される抗インフルエンザ特異抗体に対するPSF−2、CTBの産生促進効果は著明で、両者の間に大きな差はなかった。この免疫増強効果はIgAに特異的で、IgGに対して効果は認められなかった。皮下注射の場合、肺洗浄中のIgAの増加が認められたが、PSF−2、CTBの免疫増強効果は、鼻腔洗浄液中の場合と同様に認められなかった。なお、図には示していないがPSF−2、CTBをそれぞれ単独に初回免疫時と2次免疫時に経鼻投与、皮下投与しても、肺洗浄中のウイルス特異的IgA、IgGの増加は認められず、PSF−2、CTBの効果はワクチン作用の増強効果と判定された。図には示していないが、PSF−2の代わりにPSF−1、PSF−3を使用してもほほ程度の効果が得られている。PSF−4、−5についても同様な現象は確認されたが、その効果は減弱している。
実施例4
経鼻投与(a)、皮下注射(b)インフルエンザワクチンによる血液中の抗インフルエンザ特異抗体(IgA、IgG)産生に対するPSF−2、CTBの影響
経鼻ワクチンとしてスプリット型インフルエンザワクチン0.1μgを単独、あるいはADヴィークルとしてPSF−2 0.1μg、あるいはアジュバントとしてCTB0.1μgと共に、PBS溶液としてBALB/cマウス両鼻に1μlずつ合計2μl投与を行った。皮下注射ワクチンとしては、経鼻ワクチンと同量のワクチン、PSF−2、CTBを50μl PBS溶液としてBALB/cマウス頸部皮下に投与した。4週間後に初回免疫と同様の方法によって2次免疫を行った。対照群にはそれぞれ同容量のPBSを投与した。2次免疫2週間後にマウスを屠殺し、心臓採血を行い、これより血清を調製しこれらを用いて抗インフルエンザ抗体発現量の定量を行った(n=15〜20,平均±SE)。
図4(a)と(b)に示すように、血液中抗インフルエンザ抗体IgA(白いバー)、IgG(黒いバー)の産生量は、経鼻ワクチン投与の場合、軽度のIgA、IgGの増加が認められるものの、PSF−2、CTBによるIgA、IgGの増加はなく、免疫増強効果は認められなかった。一方、皮下注射の場合、スプリット型インフルエンザワクチン投与による著しいIgGの増加と、IgAの明らかな増加が認められたが、ここでもPSF−2、CTBによる抗体産生量の増加はなく、免疫増強効果は認められなかった。特に皮下注射の場合、IgGが特異的に血液中で増加していた。PSF−2の代わりにPSF−1を使用してもほほ同様の結果が得られている(図には示していない)。
なお、PSF−2、CTBをそれぞれ単独に初回免疫時と2次免疫時に経鼻投与、皮下投与しても血液中のウイルス特異的IgA、IgGの増加は認められず、PSF−2、CTBの効果はワクチン作用の増強効果と判定された(図には示していない)。
実施例5
経鼻投与(a)、皮下注射(b)インフルエンザワクチンによる鼻、肺、脾臓の樹状細胞の抗原提示能に対するPSF−2、CTBの影響
経鼻ワクチンとしてスプリット型インフルエンザワクチン0.1μgを単独、あるいはPSF−2 0.1μg、CTB 0.1μgと共に、1μl PBS溶液としてBALB/cマウス両鼻に合計2μl投与を行った。皮下ワクチンとして経鼻ワクチンと同量のスプリット型インフルエンザワクチン、PSF−2、CTBを50μl PBS溶液としてBALB/cマウス頸部皮下に投与した。2日後にマウスを屠殺し鼻、肺、脾臓より樹状細胞を調製し、フローサイトメトリーによりMHC class II、CD40、B7−1(CD80)、B7−2(CD80)の細胞表面発現レベルを測定した。
その結果、CTBによってワクチンをチャレンジした鼻の樹状細胞(抗原提示細胞)の膜表面の抗原提示関連分子、CD40、B7−2の発現増加が認められ、アジュバント効果が分子のレベルで確かめられた。PSF−2の場合、鼻の樹状細胞のCD40、B7−2に加えてMHC II分子の発現増加も認められ、その免疫増強効果に樹状細胞の少なくとも3つの分子が関与していることが明らかとなった。
しかし肺と脾臓の樹状細胞のCD40、B7−2、MHC II分子では、明らかな変化は認めることができなかった。また、PSF−2の代わりにPSF−1、PSF−3を使用してもほほ程度の効果が得られた。PSF−4、−5についても同様な現象は確認されたが、その効果は減弱していた。
実施例6
経鼻インフルエンザワクチン投与による鼻腔(a)、肺胞(b)粘膜におけるTGF−β1分泌レベルに対するSPF−2、CTBの影響
経鼻ワクチンとしてスプリット型インフルエンザワクチン0.1μgを単独、あるいはSPF−2 0.1μg、CTB 0.1μgとともに、1μl PBS溶液としてBALB/cマウス両鼻に合計2μl投与を行った。皮下ワクチンとして経鼻ワクチンと同量のワクチン、PSF−2、CTBを50μl PBS溶液としてBALB/cマウス頸部皮下に投与した。4週間後に初回免疫と同様の方法によって2次免疫を行った。対照群にはそれぞれ同容量のPBSを投与した。2次免疫2週間後にマウスを屠殺し、鼻腔洗浄液を調製しこれらを用いてTGF−β1分泌量の定量を行った(n=15〜20; 平均±SE;*,t検定による有意水準はワクチン投与群に対してp<0.01)。
B細胞がIgA産生細胞に分化(クラススイッチ)するためには、産生細胞の局在している局所のTGF−β1濃度が重要であることが知られている(Stavnezer,J.:Regulation of antibody production and class switching by TGF−beta.J.Immunol.155(4),1647−1651,1995)。そこで上記の条件下での鼻腔(a)、肺胞(b)粘膜局所のTGF−β1濃度を検討した。
スプリット型インフルエンザワクチンを投与した鼻腔、肺胞粘膜局所のTGF−β1濃度は、共にSPF−2、CTB存在下に有意に増加した。増加の程度は、SPF−2、CTB間で有意な差はなかった。その結果を図5(a)と(b)に示す。生体内由来のSPF−2は、外来毒素のCTBと同程度、IgA分泌B細胞分化の促進を促すTGF−β1の濃度を増加させていることが判明した。図には示していないが、PSF−2の代わりにPSF−1、PSF−3を使用してもほほ程度の効果が得られている。PSF−4、−5についても同様な現象は確認されたが、効果は減弱している。なお、PSF−2、CTBをそれぞれ単独に初回免疫時と2次免疫時に経鼻投与、皮下注射投与してもTGF−β1の濃度の増加は認められず、PSF−2、CTBの効果はワクチン作用の増強効果と判定された(図には示していない)。
実施例7
経鼻投与インフルエンザワクチンによる鼻腔(a)、肺胞(b)及び血液中(c)の抗インフルエンザ特異抗体(IgA、IgG)産生に対するPSF−2、CTBの影響
経鼻ワクチンとしてスプリット型インフルエンザワクチン0.2μgを単独、あるいはADヴィークルとしてPSF−2 0.2μg、あるいはアジュバントとしてCTB0.2μgと共に、PBS溶液としてBALB/cマウス両鼻に1μlずつ合計2μl投与を行った。4週間後に初回免疫と同様の方法によって2次免疫を行った。対照群にはそれぞれ同容量のPBSを投与した。各群とも、2次免疫2週間後にマウスを屠殺し、鼻腔洗浄液、肺胞洗浄液および心臓採血による血清を調製し、これらを用いて抗インフルエンザ抗体発現量の定量を行った(n=15〜30,平均±SE、+,p<0.01vs.ワクチン単独投与)。
図6(a)と(b)に示すように、鼻腔洗浄液および肺胞洗浄液では、PSF−2とワクチンとを投与した場合に血液中抗インフルエンザ抗体IgA(青丸)が顕著な増加を示したが、図6(c)に示すように、血液中ではIgG(赤丸)の増加は認められなかった。
一方、CTBとワクチンを投与した場合、IgGとIgGが、鼻腔洗浄液およ肺胞洗浄液で増加し(図6(a)、(b))、さらに血液中でも顕著に増加した(図6(c))。
以上のとおり、CTBの場合には、従来からの報告のとおり、経鼻接種した抗原に反応して局所免疫を成立させる以外に、全身性の免疫反応(Systemic Immune Response)を生じさせた。一方、PSF−2を用いた場合には、局所粘膜免疫のみを成立させた。
なお、J.Freek van Iwaarden等(非特許文献4)は、肺からマクロファージを人工的に除去すると、SP−Bと脂質によって全身性の免疫反応を誘導できるが、マクロファージを除去しない場合には免疫を誘導することができないことを報告している。また、前記文献においては、前身性免疫反応を誘導するために必要なSP−B+脂質量は250−300μlであり、前記実施例のPSF−2投与量(0.2μl)とは大きくかけ離れている。しかも、局所粘膜免疫については一切言及していない。
実施例8
経鼻インフルエンザワクチン投与による鼻、肺および脾臓のリンパ球から分泌される各種サイトカインに対するSPF−2、CTBの影響
経鼻ワクチンとしてスプリット型インフルエンザワクチン0.2μgをSPF−20.2μg、またはCTB 0.2μgとともに、1μl PBS溶液としてBALB/cマウスの上気道に合計2μl投与した。2次免疫2週間後にマウスを屠殺し、鼻腔、肺胞および脾臓リンパ球からのTGF−β1およびサイトカイン(IL−4、IL−5、IL−6、IL−13)の分泌量の定量を行った(n=15〜20;平均±SE;+++,P=0.06;++,P=0.05;+,P=0.01 vs.ワクチン単独投与)。
図7(a)〜(e)に示すように、PSF−2とともにワクチン免疫した後の粘膜局所(鼻、肺)ではTGF−β1、IL−5およびIL−6の有意な分泌増加が認められたが、IL−4およびIL−13では有意な増加は認められなかった。一方、脾臓ではいずれのサイトカインの有意な増加は観察されなかった。
以上の結果から、PSF−2は、IgAを産生するB細胞の分化、誘導を促進するTh2タイプのサイトカインを粘膜局所で増加させることが確認された。
実施例9
経鼻投与インフルエンザワクチンによる鼻腔(a)、肺胞(b)及び血液中(c)の抗インフルエンザ特異抗体(IgA、IgG)産生に対するPSF−3の影響
経鼻ワクチンとしてスプリット型インフルエンザワクチン0.2μgを単独、あるいはADヴィークルとしてPSF−3(配列番号16に記載のSP−B断片253〜278ペプチドと配列番号21に記載のSP−C断片24〜58ペプチドとの等重量混合物)0.2μg、または脂質成分0.2μgと共に、PBS溶液としてBALB/cマウス両鼻に1μlずつ合計2μl投与を行った。4週間後に初回免疫と同様の方法によって2次免疫を行った。対照群にはそれぞれ同容量のPBSを投与した。各群とも、2次免疫2週間後にマウスを屠殺し、鼻腔洗浄液、肺胞洗浄液および心臓採血による血清を調製し、これらを用いて抗インフルエンザ抗体発現量の定量を行った(n=15〜30,平均±SE、+,p<0.01 vs.ワクチン単独投与)。
図8(a)と(b)に示すように、鼻腔洗浄液および肺胞洗浄液では、PSF−3とワクチンとを投与した場合に血液中抗インフルエンザ抗体IgA(青丸)が顕著な増加を示したが、IgG(赤丸)の有意な増加は認められなかった。一方、血清中(c)では、IgG(赤丸)およびIgG(青丸)とも、有意な増強は認められなかった。Hereinafter, examples will be shown, and the configuration and effects of the present invention will be specifically described. However, the present invention is not limited only to these specific examples, explanations and descriptions.
The materials, test procedures, etc. used in this example are as follows.
(1) Lung surfactant
Lung surfactant used as “antigenic drug vehicle (AD vehicle)” was prepared by the method of Howgood S, et al.,: Effects of a surfactant-and-cir- sition of citrus rations on the basis of cattle lungs. of surf surfactant lipids.Biochemistry 24,184-190, 1985), or in many cases, this preparation is extracted with 1-butanol and water-soluble protein components SP-A, SP- D sample removed or reduced to below detection limit (Haagsman HP, et al.,: The major lunge surfactant p otein, SP28-36, isa calcium-dependent, carbhydrating binding protein, J. Biol. Chem. 262, 13977-13880, 1987) (PSF-2), and phospholipids mainly comprising phosphatidylcholine and dipalmitoylphosphatidylcholine as a whole. Synthetic peptides containing SP-B and SP-C, which are fat-soluble proteins, containing 40% by weight or more, further containing 10-20% phosphatidylglycerol and 2-5% phosphatidylserine, similar to lung surfactant lipids A standard containing 0 to 3.5% of either or both peptides is used. Among these preparations, a preparation (PSF-3) having both peptides of SP-B and SP-C effective region, a preparation (PSF-4) having a synthetic peptide of SP-B effective region, A specimen (PSF-5) having a synthetic peptide of the effective region of SP-C was also examined. Alternatively, known preparations corresponding to PSF-1 and PSF-2, such as trade name Surfacten, Insurfurf, Curosurf, Humansurf, Exosurf, Alveofact, etc. Is also used.
(2) Animals
Six-week-old female BALB / c mice and 10-week-old Hartley guinea pigs were purchased from Nippon SLC Co., Ltd. (Shizuoka, Japan) and used. All animal experiments were performed at the Infectious Animal House (P2 level) of the University of Tokushima Medical School Experimental Animal Center, and were conducted according to the guidelines of the Animal Experiment Committee of the University of Tokushima Medical School.
(3) Production of split influenza vaccine
Suspension derived from embryonated chicken eggs inoculated with influenza virus A Aichi / 68/2 / H3N2 strain (1 × 10 8 Using a Plaque forming unit (PFU) (provided by Professor Masanobu Ouchi, Department of Microbiology, Kawasaki Medical University), a split influenza vaccine was prepared by the following operation. Β-propiolactone (Wako Pure Chemical Industries, Ltd., Osaka, Japan) was added to a virus suspension that was dialyzed overnight in 0.004M PBS (Takara Bio Inc., Japan, Tokyo, Shiga). It was added to 8 nM and incubated in an ice bath for 18 hours. Thereafter, β-propiolactone was hydrolyzed by incubating at 37 ° C. for 1.5 hours. Thereafter, Tween 20 (Wako Pure Chemical Industries, Ltd.) was added to a final concentration of 0.1%, and diethyl ether (Wako Pure Chemical Industries, Ltd.) in an amount equivalent to Tween was further added, and the mixture was mixed by inverting at 4 ° C. for 2 hours. The aqueous layer was recovered by centrifuging this solution at 2000 rpm for 5 minutes. Further, diethyl ether was removed from the aqueous layer using an Automatic Environmental SpeedVac System (SAVANT INSTRUMENTS, INC. New York, USA). This was filtered through a Millex 0.45 μm filter (MILLIPORE USA, Massachusetts) and used as an inactivated split influenza vaccine.
(4) Immunization
The split influenza vaccine prepared by the above production method has an effective region of the above-mentioned lung surfactant (PSF-1), 1-butanol extracted lung surfactant (PSF-2), SP-B and SP-C as “AD vehicle” A synthetic peptide and pulmonary surfactant lipid (PSF-3, 4, 5), a known pulmonary surfactant product, or cholera toxin B subunit (CTB, SIGMA USA, MO) was used as a mixture as an immune adjuvant. Lung surfactant or the above-mentioned equivalent preparation was suspended in PBS at the concentration required for vaccine administration and sonicated at room temperature for 5 minutes to obtain a uniform suspension. To this, 0.1 μg of the split influenza vaccine was added to 0.1 μg of the dry weight of the lung surfactant or the above-mentioned equivalent preparation, mixed with a vortex mixer, and allowed to stand at room temperature for 1 hour. Similarly, CTB was adjusted at the time of use and mixed to 0.1 μg with respect to 0.1 μg of the split influenza vaccine (Watanabe I, et al.,: Characteristic of protected responses injured cinnacin cinnacin toxin as a safe Adjuvant (CT112K). Vaccine 2002; 20: 3443-55).
In nasal administration of the vaccine, the above preparation is diluted with PBS to give a 0.1 μg / 1 μl Phosphate buffered saline (PBS) solution equivalent to the dry weight, and this is 1 μl per side per mouse on both sides. Once administered, a total of 2 μl was administered nasally into the bilateral nasal cavity of anesthetized ether. In the conventional subcutaneous injection performed for comparison, the split influenza vaccine was diluted with PBS so as to be a 0.1 μg / 50 μl solution, and this was subcutaneously administered to the mouse neck. The control group received PBS in the same amount as the vaccine solution. After 4 weeks, secondary immunization was carried out in the same manner as the primary immunization, and nasal cavity / alveolar lavage fluid and serum were prepared 2 weeks after the secondary immunization, and virus-specific IgA and IgG measurements and virus were prepared. Used for infection experiments.
(5) Preparation of mouse nasal cavity / alveolar lavage fluid and serum
The vaccinated mice were laparotomized under pentobarbital anesthesia, the trachea was opened, and 3Fr (Atom Medical Co., Ltd., Tokyo, Japan) with an Atom Vein Catheter was inserted into the lung. It was collected. This was repeated 3 times, and a total of 3 ml was used as the alveolar lavage fluid. After collecting the pulmonary lavage fluid, an atom venous catheter was inserted from the incised trachea toward the nasal cavity, 1 ml of physiological saline was injected, and the fluid that came out of the nose was collected. This solution was used as a nasal wash. Furthermore, blood was collected from the heart, and serum was prepared by centrifugation at 5,000 rpm for 10 minutes.
(6) Protein determination
The protein content of nasal lavage fluid, lung lavage fluid, and serum was measured using the BCA Protein Assay Reagent Kit (PIERCE USA, Illinois) (Smith PK. Et al., Measurement of protein biotinch. 150, 76-85, 1985). Absorbance at 562 nm was measured using SPECTRAmax PLUS 384 (Molecular Devices Corporation, California, USA).
(7) Virus infection experiment and evaluation of infectious titer
The same influenza virus strain A Aichi / 68/2 / H3N2 strain as that used for the preparation of the split influenza vaccine was used for infection. After 2 weeks from the end of the second immunization, the mice were anesthetized with ether, and then the suspension derived from the influenza virus-developing hen's egg was placed in both nasal cavities for a total of 7 × 10 4 PFU / 3 μl was added dropwise to infect. Three days after infection, the nasal cavity and alveolar lavage fluid were prepared as described above and used for evaluation of the virus infectivity. Evaluation of virus infectivity was performed using A549 cells (provided by Professor Masanobu Ouchi, Department of Microbiology, Kawasaki Medical University). A549 cells were cultured under conditions of 5% fetal bovine serum / DMEM (Gibco USA, New York). A549 cells were subcultured to 6-well culture plates (Grainer Stuttgart, Germany) to be 100% confluent and replaced with serum-free medium after 24 hours. 500 μl of nasal / alveolar lavage fluid from influenza-infected mice was dropped into each well, and CO 2 Culturing was performed at 37 ° C. for 12 to 16 hours in an incubator. To this was added 1% PBS of erythrocytes collected from guinea pigs and allowed to stand at room temperature for 5 minutes. This is 1 mM Ca 2+ / Mg 2+ Cells washed with PBS and aggregated erythrocytes were counted as virus-infected cells, and the virus infectivity was evaluated (Tashiro M., Hamma M .: Pneurotropism of Sendai virus to protease-mediated activation in). lungs.Infect.Immun.39,879-888,1983).
(8) Purification of anti-influenza specific IgA and IgG
Purification of specific anti-influenza IgA and IgG was performed as follows for use as a quantitation standard in ELISA assay. The IgG fraction was purified from lung vaccine of influenza vaccine-administered and virus-infected mice by affinity chromatography using recombinant E. coli-expressed Protein G Sepharose 4B column (ZYMED LABORTORIES INC, San Francisco, USA). Anti-mouse IgA goat IgG (SIGMA) was bound to a BrCN-activated Sepharose 4B column (Amersham Bioscience USA, New Jersey), and the IgA fraction was purified by affinity chromatography using this from the ProteinG flow-through fraction. In order to purify virus-specific antibodies from these IgG and IgA fractions, the inactivated split influenza vaccine used for immunization was bound to a BrCN-activated Sepharose column, and the antigen affinity chromatography using this from the IgA and IgG fractions. Anti-influenza specific IgA and IgG were purified by graphy, respectively. Coupling the split influenza protein as a ligand to the column is 0.1
(9) Quantification of anti-influenza antibodies
Anti-influenza IgA and IgG content in nasal cavity, alveolar lavage fluid and serum were quantified by ELISA assay. The ELISA assay was performed according to the method of Mouse ELISA quantification kit of BETHYL LABORATORIES (Texas, USA). 96-well Nunc immunoplate (Nalgen Nunc International USA / New York) Each well was added with 1 μg of vaccine and bovine serum albumin (BSA, SIGMA USA / MO) 100 μl of PBS solution, and solidified at 4 ° C. overnight. It was. Thereafter, the vaccine solution was rinsed three times with a washing solution (50 mM Tris, 0.14 M NaCl, 0.05
(10) Dendritic cell preparation and flow cytometry
Dendritic cells were prepared from the nose, lungs, and spleen collected from each group of mice (4 mice per group) on the second day after the first immunization by the method of Gonzalez-Juarrero M (Charzalez-Juarrero M, Orchar IM .: Characterization. of murine luden dendritic cells infused with Mycobacterium tuberculosis. Infect Immuno 2001; 69: 1127-33). The preparation of dendritic cells from the nose and their collagenase treatment were carried out by a method such as Asanuma H (Asanuma H, et al.,: Characterization of mousse lysated by 19 ol. ). Dendritic cells prepared from each tissue were washed with 1 mM EDTA / PBS, 10 6 FITC conjugated Anti-IA / IE (MHC class II) and PE conjugated Anti-CD40 per cell or FITC conjugated Anti-CD80 (B7-1) and PE conjugated Anti CD86 (B7-2) G1 USA (B7-2) / Ml was added and reacted as a 50
(11) Quantification of TGF-β1
The secretion amount of TGF-β1 in the nasal cavity and alveolar lavage fluid was quantified by ELISA assay.
ELISA assay was performed using TGF-β1 ELISA kit (BIOSOURCE INTERNATIONAL, California, USA) according to the usage attached to the kit.
(12) Quantification of various cytokines
Quantities of cytokines (interleukin 4: IL-4, IL-5, IL-6, IL-13) secreted from nasal cavity, alveolar lavage fluid, and spleen lymphocytes were quantified by respective commercially available ELISA kits. did.
(13) Preparation of PSF-3 consisting of SP-B and SP-C synthetic peptides and phospholipids
Each peptide of SP-B 253-278 (SEQ ID NO: 16) and SP-C 24-58 (SEQ ID NO: 21) was chemically synthesized by a known method. These peptides were added to a phospholipid membrane (dipalmitoylphosphatidylcholine (75), phosphatidylglycerol (25), palmitic acid (10)) to form a plate-like phospholipid membrane, and AD vehicle PSF-3 was prepared.
Example 1
Comparison of virus growth inhibitory effect of nasal influenza vaccine and subcutaneous injection influenza vaccine
As a nasal vaccine, 0.1 μg of a split influenza vaccine alone, or as an “AD vehicle”, 1-butanol extraction (SP-A, SP-D removal) surfactant (hereinafter PSF-2) 0.1 μg, or CTB 0.1 μg At the same time, 1 μl of each solution was administered to both noses of BALB / c mice as a PBS solution. As a subcutaneous injection vaccine, the same amount of vaccine as the nasal vaccine alone, PSF-2 as an AD vehicle, or CTB as an adjuvant was added, and the whole was subcutaneously administered to the neck of the BALB / c mouse as a 50 μl PBS solution. After 4 weeks, secondary immunization was performed by the same method as the primary immunization. Each control group received the same volume of PBS. 6.6 × 10 after 2 weeks of secondary immunization 4 PFU influenza virus was infected nasally as a 3 μl PBS solution. Three days after infection, the mice were sacrificed, and nasal and alveolar lavage fluids were prepared and used to evaluate the viral infectivity titer (n = 15 to 20; mean ± SE; *, significance level by t-test was vaccinated. P <0.01 for the group.
As shown in FIGS. 1 (a) and (b), in the case of nasal influenza vaccine administration, the growth of influenza virus in the nasal cavity and lung lavage fluid is also suppressed by the vaccine alone administration, but PSF-2 and CTB are The effect was significantly enhanced to suppress the growth of influenza to almost completeness and ensure the effectiveness of the vaccine. Although not shown in the figure, even if PSF-1 or PSF-3 is used instead of PSF-2, a slight effect is obtained. The same phenomenon was confirmed for PSF-4 and -5, but the effect was reduced.
Although not shown in the figure, even if PSF-2 and CTB were administered nasally at the time of primary immunization and secondary immunization alone, no effect of suppressing virus growth was observed. The effect was determined to be a vaccine effect enhancement effect.
On the other hand, as shown in FIGS. 1 (c) and (d), the influenza virus titer (PFU) in the nasal cavity and lung lavage fluid decreased significantly even with the vaccine alone, and the effect of the vaccine was confirmed. However, the effect of enhancing the vaccine action of PSF-2 and CTB was not observed. In other words, in the case of subcutaneous administration, it was estimated that PSF-2 and CTB had little or no effect on immune enhancement. In this experiment, although not shown in the figure, even when PSF-2 and CTB were each administered subcutaneously at the time of the first immunization and the second immunization, no effect of suppressing the virus growth was observed. Although not shown in the figure, even if PSF-1, PSF-3, PSF-4, or PSF-5 was used instead of PSF-2, the effect of enhancing the vaccine action was not recognized.
Example 2
Effects of PSF-2 and CTB on production of anti-influenza specific antibodies (IgA, IgG) in nasal lavage fluid after influenza vaccine administration by nasal (a) and subcutaneous injection (b)
In the method described in FIG. 1, 0.1 μg of split influenza vaccine alone as a nasal vaccine, or 0.1 μg of PSF-2 as an AD vehicle, or 0.1 μg of CTB as an adjuvant, and both noses of a BALB / c mouse as a PBS solution A total of 2 μl of 1 μl was administered. As a subcutaneous vaccine, the same amount of vaccine as the nasal vaccine, PSF-2, CTB was administered subcutaneously to the neck of the BALB / c mouse as a 50 μl PBS solution. After 4 weeks, secondary immunization was performed by the same method as the primary immunization. Each control group received the same volume of PBS. 6.6 × 10 after 2 weeks of secondary immunization 4 PFU influenza virus was infected nasally as a 3 μl PBS solution. Three days after infection, the mice were sacrificed, nasal washes were prepared, and these were used to evaluate the viral infectivity titer (n = 15 to 20; mean ± SE; *, t test significant level relative to the vaccine administration group P <0.01).
The results are shown in FIGS. 2 (a) and 2 (b). Anti-influenza-specific IgA is selectively produced in the nasal cavity and increased in the lavage fluid by the nasal split influenza vaccine, but this specific IgA amount is significantly increased in both PSF-2 and CTB. I let you. On the other hand, in the case of subcutaneous injection, an increase in specific IgA in the nasal lavage fluid by the split influenza vaccine alone was observed, but the level was lower than that of nasal administration. In the case of subcutaneous injection of vaccine, neither PSF-2 nor CTB immune enhancing effects were observed in IgA and IgG production. Although not shown in the figure, even if PSF-1 or PSF-3 is used instead of PSF-2, the same effect as PSF-2 is obtained. The same phenomenon was confirmed for PSF-4 and -5, but the effect was attenuated.
Example 3
Nasal administration (a), subcutaneous injection (b) Effects of PSF-2 and CTB on anti-influenza specific antibody (IgA, IgG) production in lung lavage fluid by influenza vaccine
Inject 0.1 μg of split influenza vaccine as a nasal vaccine alone, 0.1 μg of PSF-2 as an AD vehicle, or 0.1 μg of CTB as an adjuvant, and administer 1 μl to both noses as a PBS solution in a total volume of 2 μl. It was. As a subcutaneous vaccine, the same amount of vaccine as the nasal vaccine, PSF-2, CTB was administered subcutaneously to the neck of the BALB / c mouse as a 50 μl PBS solution. After 4 weeks, secondary immunization was performed by the same method as the primary immunization. Each control group received the same volume of PBS. 6.6 × 10 after 2 weeks of secondary immunization 4 PFU influenza virus was infected nasally as a 3 μl PBS solution. Three days after infection, the mice were sacrificed, alveolar lavage fluids were prepared, and the effects of the antigen drug vehicle on the production of anti-influenza specific antibodies IgA and IgG were examined. (N = 15-20; mean ± SE; *, significance level by t test is p <0.01 with respect to the vaccine administration group).
As shown in FIGS. 3 (a) and 3 (b), the effect of promoting the production of PSF-2 and CTB against anti-influenza-specific antibodies produced in the lung lavage fluid is remarkable as in the case of nasal administration of the vaccine. There was no big difference between them. This immunopotentiating effect was specific to IgA, and no effect was observed on IgG. In the case of subcutaneous injection, IgA increased during lung lavage, but the immune enhancing effect of PSF-2 and CTB was not observed as in nasal lavage fluid. Although not shown in the figure, increases in virus-specific IgA and IgG during pulmonary lavage were observed even when PSF-2 and CTB were administered nasally or subcutaneously during the first and second immunizations, respectively. However, the effect of PSF-2 and CTB was determined to be an effect of enhancing vaccine action. Although not shown in the figure, even if PSF-1 or PSF-3 is used instead of PSF-2, a slight effect is obtained. The same phenomenon was confirmed for PSF-4 and -5, but the effect was attenuated.
Example 4
Effects of PSF-2 and CTB on intranasal administration (a), subcutaneous injection (b) production of anti-influenza specific antibodies (IgA, IgG) in blood by influenza vaccine
Inject 0.1 μg of split influenza vaccine as a nasal vaccine alone, 0.1 μg of PSF-2 as an AD vehicle, or 0.1 μg of CTB as an adjuvant, and administer 1 μl to both noses as a PBS solution in a total volume of 2 μl. It was. As a subcutaneous injection vaccine, the same amount of vaccine as nasal vaccine, PSF-2, CTB was administered subcutaneously to the neck of the BALB / c mouse as a 50 μl PBS solution. After 4 weeks, secondary immunization was performed by the same method as the primary immunization. Each control group received the same volume of PBS. Two weeks after the second immunization, the mice were sacrificed, blood was collected from the blood, serum was prepared therefrom, and the amount of anti-influenza antibody expression was quantified using these (n = 15-20, mean ± SE).
As shown in FIGS. 4 (a) and 4 (b), the production amounts of anti-influenza antibodies IgA (white bars) and IgG (black bars) in blood are slightly increased in IgA and IgG in the case of nasal vaccine administration. Although recognized, there was no increase in IgA and IgG by PSF-2 and CTB, and no immune enhancing effect was observed. On the other hand, in the case of subcutaneous injection, a significant increase in IgG and a clear increase in IgA were observed due to the split influenza vaccine administration, but again there was no increase in antibody production by PSF-2 and CTB, and the immune enhancement effect was I was not able to admit. Particularly in the case of subcutaneous injection, IgG was specifically increased in blood. Similar results are obtained when PSF-1 is used instead of PSF-2 (not shown).
Even if PSF-2 and CTB were administered nasally and subcutaneously at the time of primary immunization and secondary immunization, respectively, no increase in virus-specific IgA and IgG in the blood was observed, and PSF-2 and CTB The effect was determined to be an effect of enhancing vaccine action (not shown in the figure).
Example 5
Nasal administration (a), subcutaneous injection (b) Effects of PSF-2 and CTB on antigen presentation ability of nasal, lung and splenic dendritic cells by influenza vaccine
As a nasal vaccine, 0.1 μg of a split influenza vaccine was administered alone, or together with 0.1 μg of PSF-2 and 0.1 μg of CTB, a total of 2 μl was administered to both noses of BALB / c mice as a 1 μl PBS solution. As a subcutaneous vaccine, the same amount of split influenza vaccine, PSF-2, and CTB as the nasal vaccine were administered subcutaneously to the neck of the BALB / c mouse as a 50 μl PBS solution. Two days later, the mice were sacrificed, dendritic cells were prepared from the nose, lungs, and spleen, and the cell surface expression levels of MHC class II, CD40, B7-1 (CD80), and B7-2 (CD80) were measured by flow cytometry. did.
As a result, increased expression of antigen presentation-related molecules CD40 and B7-2 on the membrane surface of nasal dendritic cells (antigen-presenting cells) challenged with vaccine by CTB was confirmed, and the adjuvant effect was confirmed at the molecular level. . In the case of PSF-2, in addition to CD40 and B7-2 of nasal dendritic cells, increased expression of MHC II molecules is also observed, and at least three molecules of dendritic cells are involved in the immune enhancing effect. It became clear.
However, no clear changes could be observed in the CD40, B7-2 and MHC II molecules of lung and spleen dendritic cells. Moreover, even if PSF-1 and PSF-3 were used instead of PSF-2, a slight effect was obtained. The same phenomenon was confirmed for PSF-4 and -5, but the effect was attenuated.
Example 6
Effects of SPF-2 and CTB on TGF-β1 secretion level in nasal cavity (a) and alveolar (b) mucosa by nasal influenza vaccine administration
As a nasal vaccine, 0.1 μg of a split influenza vaccine was administered alone, or together with 0.1 μg of SPF-2 and 0.1 μg of CTB, a total of 2 μl was administered as a 1 μl PBS solution to both noses of BALB / c mice. As a subcutaneous vaccine, the same amount of vaccine as nasal vaccine, PSF-2, and CTB were administered subcutaneously to the neck of the BALB / c mouse as a 50 μl PBS solution. After 4 weeks, secondary immunization was performed by the same method as the primary immunization. Each control group received the same volume of PBS. Two weeks after the second immunization, the mice were sacrificed, and nasal washes were prepared and used to quantify TGF-β1 secretion (n = 15-20; mean ± SE; * The significance level by t test is p <0.01 for the vaccine administration group.
In order for B cells to differentiate into IgA-producing cells (class switch), it is known that the local TGF-β1 concentration in which the producing cells are localized is important (Stavzer, J .: Regulation of antibody). production and class switching by TGF-beta.J.Immunol.155 (4), 1647-1651, 1995). Therefore, the concentration of TGF-β1 in the nasal cavity (a) and alveoli (b) mucosal region under the above conditions was examined.
Both the nasal cavity and alveolar mucosa local TGF-β1 concentrations administered with the split influenza vaccine increased significantly in the presence of SPF-2 and CTB. The degree of increase was not significantly different between SPF-2 and CTB. The results are shown in FIGS. 5 (a) and 5 (b). In vivo SPF-2 was found to increase the concentration of TGF-β1 that promotes the promotion of IgA-secreting B cell differentiation to the same extent as the foreign toxin CTB. Although not shown in the figure, even if PSF-1 or PSF-3 is used instead of PSF-2, a slight effect is obtained. The same phenomenon was confirmed for PSF-4 and -5, but the effect was reduced. Even if PSF-2 and CTB are administered nasally or subcutaneously during the first and second immunizations, respectively, no increase in TGF-β1 concentration is observed, and the effect of PSF-2 and CTB is the vaccine. It was determined as an effect of enhancing the action (not shown in the figure).
Example 7
Effects of PSF-2 and CTB on production of anti-influenza specific antibodies (IgA, IgG) in nasal cavity (a), alveoli (b) and blood (c) by intranasal influenza vaccine
As a nasal vaccine, 0.2 μg of split influenza vaccine alone, or PSF-2 0.2 μg as an AD vehicle, or CTB 0.2 μg as an adjuvant, and 1 μl of a total of 2 μl administered as a PBS solution to both noses of BALB / c mice It was. After 4 weeks, secondary immunization was performed by the same method as the primary immunization. Each control group received the same volume of PBS. In each group, mice were sacrificed 2 weeks after the secondary immunization, and nasal lavage fluid, alveolar lavage fluid, and serum from heart blood were prepared, and these were used to quantify the expression level of anti-influenza antibodies (n = 15-30). , Mean ± SE, +, p <0.01 vs. vaccine alone).
As shown in FIGS. 6 (a) and 6 (b), in the nasal lavage fluid and alveolar lavage fluid, blood anti-influenza antibody IgA (blue circle) showed a marked increase when PSF-2 and vaccine were administered. However, as shown in FIG. 6 (c), no increase in IgG (red circles) was observed in the blood.
On the other hand, when CTB and vaccine were administered, IgG and IgG increased in the nasal and alveolar lavage fluids (FIGS. 6 (a) and (b)) and also significantly increased in blood (FIG. 6 (c)). ).
As described above, in the case of CTB, a systemic immune response (systemic immune response) was generated in addition to establishing local immunity in response to a nasal inoculated antigen, as previously reported. On the other hand, when PSF-2 was used, only local mucosal immunity was established.
Note that J. et al. Freek van Iwaarden et al. (Non-patent Document 4) can induce a systemic immune response with SP-B and lipids when artificially removing macrophages from the lung, but induce immunity when macrophages are not removed. Has reported that it is not possible. Moreover, in the said literature, SP-B + lipid amount required in order to induce | guide | derive a predecessor immune reaction is 250-300microliter, and is far from the PSF-2 dosage (0.2microliter) of the said Example. . Moreover, no mention is made of local mucosal immunity.
Example 8
Effects of SPF-2 and CTB on various cytokines secreted from nasal, lung and splenic lymphocytes by nasal influenza vaccine administration
As a nasal vaccine, 0.2 μg of split influenza vaccine was administered to the upper respiratory tract of BALB / c mice in a total amount of 2 μl together with SPF-20.2 μg or CTB 0.2 μg as a 1 μl PBS solution. Two weeks after the second immunization, the mice were sacrificed, and the secreted amounts of TGF-β1 and cytokines (IL-4, IL-5, IL-6, IL-13) from nasal cavity, alveoli and spleen lymphocytes were determined. (N = 15-20; mean ± SE; +++, P = 0.06; ++, P = 0.05; +, P = 0.01 vs. vaccine alone).
As shown in FIGS. 7 (a) to (e), significant increase in secretion of TGF-β1, IL-5 and IL-6 was observed in the mucosal region (nose, lung) after immunization with PSF-2. However, no significant increase was observed in IL-4 and IL-13. On the other hand, no significant increase in any cytokine was observed in the spleen.
From the above results, it was confirmed that PSF-2 increases Th2 type cytokines that promote differentiation and induction of B cells that produce IgA locally in the mucosa.
Example 9
Effect of PSF-3 on production of anti-influenza specific antibodies (IgA, IgG) in nasal cavity (a), alveoli (b) and blood (c) by intranasal influenza vaccine
As a nasal vaccine, 0.2 μg of a split influenza vaccine alone, or as an AD vehicle, PSF-3 (SP-B fragment 253 to 278 peptide described in SEQ ID NO: 16 and SP-C fragment 24 to 58 described in SEQ ID NO: 21) Equal-weight mixture with peptide) 0.2 μg or lipid component 0.2 μg was administered as a PBS solution to BALB / c mice on both noses, 1 μl in total, 2 μl. After 4 weeks, secondary immunization was performed by the same method as the primary immunization. Each control group received the same volume of PBS. In each group, mice were sacrificed 2 weeks after the secondary immunization, and nasal lavage fluid, alveolar lavage fluid, and serum from heart blood were prepared, and these were used to quantify the expression level of anti-influenza antibodies (n = 15-30). , Mean ± SE, +, p <0.01 vs. vaccine alone).
As shown in FIGS. 8 (a) and (b), in the nasal lavage fluid and alveolar lavage fluid, blood anti-influenza antibody IgA (blue circle) showed a marked increase when PSF-3 and vaccine were administered. However, no significant increase in IgG (red circles) was observed. On the other hand, in serum (c), neither IgG (red circle) nor IgG (blue circle) significantly increased.
この発明に係る「ADヴィークル」は、抗原・薬物・栄養剤等々のあらゆる物質を、鼻・気管・腸管等々の粘膜あるいは皮膚から細胞内に輸送する機能を発揮すると共に、そこでのIgA産生を優先的かつ選択的に誘導するので、粘膜ワクチン、アレルギーの予防と治療、経粘膜及び経皮DDS、薬物や栄養素等の有用物質の経粘膜投与及び経皮投与を可能にする。しかも、その臨床使用及び安全性は国内及び諸外国で既に認可されている。
従って、生物学的製剤やDDS等での医薬品・製薬、機能性食品や健康食品等での飲食品・食糧工業、農産物の育成・栽培・病気対策・昆虫駆除等での農業・農薬、魚病ワクチン・投薬等での栽培漁業、防蟻・防虫等での建築業や環境保全等々、極めて広範囲の産業における用途と活用が期待される。The “AD vehicle” according to the present invention exerts the function of transporting all substances such as antigens, drugs, nutrients, etc. from the mucous membrane of the nose, trachea, intestinal tract, etc. or the skin into the cells, and gives priority to IgA production there. Therefore, it enables mucosal vaccine, allergy prevention and treatment, transmucosal and transdermal DDS, transmucosal administration and transdermal administration of useful substances such as drugs and nutrients. Moreover, its clinical use and safety have already been approved in Japan and abroad.
Therefore, biopharmaceuticals, pharmaceuticals and pharmaceuticals in DDS, food and drinks and food industry in functional foods and health foods, agriculture, agricultural chemicals, fish diseases in the cultivation, cultivation, disease control, insect control, etc. of agricultural products It is expected to be used and utilized in a very wide range of industries, such as cultivation and fisheries for vaccines and medications, construction work for ants and insects, and environmental protection.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006512040A JP4843792B2 (en) | 2004-04-05 | 2005-03-22 | Antigen drug vehicle enabling transmucosal and transdermal administration, method for inducing mucosal immunity using the same, mucosal vaccine and DDS |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004111249 | 2004-04-05 | ||
JP2004111249 | 2004-04-05 | ||
JP2004125036 | 2004-04-21 | ||
JP2004125036 | 2004-04-21 | ||
PCT/JP2005/005659 WO2005097182A1 (en) | 2004-04-05 | 2005-03-22 | Antigen-drug vehicle enabling transmucosal and transdermal administration and method of inducing mucosal immunity, mucosal vaccine and dds using the same |
JP2006512040A JP4843792B2 (en) | 2004-04-05 | 2005-03-22 | Antigen drug vehicle enabling transmucosal and transdermal administration, method for inducing mucosal immunity using the same, mucosal vaccine and DDS |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2005097182A1 JPWO2005097182A1 (en) | 2008-02-28 |
JP4843792B2 true JP4843792B2 (en) | 2011-12-21 |
Family
ID=35124843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006512040A Active JP4843792B2 (en) | 2004-04-05 | 2005-03-22 | Antigen drug vehicle enabling transmucosal and transdermal administration, method for inducing mucosal immunity using the same, mucosal vaccine and DDS |
Country Status (9)
Country | Link |
---|---|
US (1) | US8268321B2 (en) |
EP (1) | EP1738765B1 (en) |
JP (1) | JP4843792B2 (en) |
KR (1) | KR100992492B1 (en) |
CN (1) | CN1942205B (en) |
BR (1) | BRPI0508792A (en) |
CA (1) | CA2579710C (en) |
RU (1) | RU2396090C2 (en) |
WO (1) | WO2005097182A1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007018152A1 (en) * | 2005-08-05 | 2007-02-15 | The University Of Tokushima | ANTIGEN-AND-DRUG VEHICLE WHICH ENABLES THE CHANGEOVER FROM THE SELECTIVE PRODUCTION OF IgA ANTIBODY TO THE PRODUCTION OF BOTH OF IgA AND IgG ANTIBODIES, AND TRANSNASAL/TRANSMUCOSAL VACCINE USING THE VEHICLE |
US8287887B2 (en) * | 2008-04-02 | 2012-10-16 | The University Of Tokushima | Antigen-and-drug vehicle comprising synthetic peptide, and mucosal vaccine using the same |
CN102300582A (en) | 2009-01-30 | 2011-12-28 | 阿尔法贝塔公司 | Compound and method for treatment of alzheimer's disease |
WO2010089940A1 (en) * | 2009-02-05 | 2010-08-12 | 国立大学法人大阪大学 | Mucosal vaccine |
JP5893614B2 (en) | 2010-06-24 | 2016-03-23 | アルファベータ・エービーAlphaBeta AB | Compounds and methods for the treatment of Alzheimer's disease and familial dementia |
US9522170B2 (en) | 2011-04-05 | 2016-12-20 | Alphabeta Ab | Methods of screening compounds for the fibril formation of Aβ peptides based on a decreased trimer/monomer ratio of a chaperone protein |
WO2013031827A1 (en) | 2011-08-29 | 2013-03-07 | 国立大学法人徳島大学 | Rsv mucosal vaccine |
CN107397956A (en) * | 2017-08-08 | 2017-11-28 | 南开大学 | A kind of preparation method and application of pseudomonas aeruginosa 1 outer-membrane protein vaccine |
JP7393007B2 (en) | 2018-08-30 | 2023-12-06 | 国立大学法人徳島大学 | Immune tolerance inducers and therapeutic or preventive agents for allergic diseases |
WO2021206103A1 (en) * | 2020-04-06 | 2021-10-14 | 応用酵素医学研究所株式会社 | Vaccine for subcutaneous administration |
US20210322511A1 (en) * | 2020-04-17 | 2021-10-21 | President And Fellows Of Harvard College | Methods and compositions for treating a respiratory disease |
WO2022082082A2 (en) * | 2020-10-16 | 2022-04-21 | Sherwood Russ Lehrman | Lung treatment compositions |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH069428A (en) * | 1992-06-24 | 1994-01-18 | Tokyo Tanabe Co Ltd | Preventive and curative medicine for viral disease of air duct |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996030051A1 (en) * | 1995-03-31 | 1996-10-03 | Genetic Therapy, Inc. | Use of surfactants for introducing genetic material into lung cells |
DE59800863D1 (en) | 1997-02-11 | 2001-07-19 | Mse Pharmazeutika Gmbh | TRANSDERMAL, ORAL AND INTRAVENOUS PREPARATIONS OF 2,3-DIMETHOXY-5-METHYL-6-DECAPRENYL-1,4-BENZOQUINONE |
EP0976403A1 (en) * | 1998-07-30 | 2000-02-02 | Stichting Instituut voor Dierhouderij en Diergezondheid (ID-DLO) | Adjuvant comprising pulmonary surfactant |
EP1440084B1 (en) * | 2001-10-24 | 2010-01-06 | University College Cardiff Consultants Ltd. | Sperm factor sequences |
-
2005
- 2005-03-22 EP EP05721586A patent/EP1738765B1/en active Active
- 2005-03-22 US US11/547,650 patent/US8268321B2/en not_active Expired - Fee Related
- 2005-03-22 KR KR1020067020581A patent/KR100992492B1/en active IP Right Grant
- 2005-03-22 BR BRPI0508792-9A patent/BRPI0508792A/en not_active Application Discontinuation
- 2005-03-22 JP JP2006512040A patent/JP4843792B2/en active Active
- 2005-03-22 WO PCT/JP2005/005659 patent/WO2005097182A1/en active Application Filing
- 2005-03-22 CN CN2005800120996A patent/CN1942205B/en not_active Expired - Fee Related
- 2005-03-22 RU RU2006138182/13A patent/RU2396090C2/en active
- 2005-03-22 CA CA2579710A patent/CA2579710C/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH069428A (en) * | 1992-06-24 | 1994-01-18 | Tokyo Tanabe Co Ltd | Preventive and curative medicine for viral disease of air duct |
Also Published As
Publication number | Publication date |
---|---|
US8268321B2 (en) | 2012-09-18 |
US20070141073A1 (en) | 2007-06-21 |
KR20070017348A (en) | 2007-02-09 |
RU2006138182A (en) | 2008-05-20 |
EP1738765A1 (en) | 2007-01-03 |
CA2579710C (en) | 2013-01-08 |
RU2396090C2 (en) | 2010-08-10 |
WO2005097182A1 (en) | 2005-10-20 |
JPWO2005097182A1 (en) | 2008-02-28 |
KR100992492B1 (en) | 2010-11-08 |
CN1942205B (en) | 2012-06-06 |
BRPI0508792A (en) | 2007-11-13 |
EP1738765A4 (en) | 2008-09-17 |
CA2579710A1 (en) | 2005-10-20 |
CN1942205A (en) | 2007-04-04 |
EP1738765B1 (en) | 2011-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5028627B2 (en) | Antigen drug vehicle that enables switching from selective production of IgA antibody to production of both IgA and IgG antibodies, and nasal / mucosal vaccine using the same | |
JP4817625B2 (en) | Novel vaccine containing mucosal immunity induction adjuvant | |
KR101638661B1 (en) | Vaccine vectors and methods of enhancing immune responses | |
JP4843792B2 (en) | Antigen drug vehicle enabling transmucosal and transdermal administration, method for inducing mucosal immunity using the same, mucosal vaccine and DDS | |
RU2570394C2 (en) | Mucosal vaccine | |
JP5473899B2 (en) | Antigen drug vehicle containing synthetic peptide and mucosal vaccine using the same | |
Kimoto | Development of a safe and effective novel synthetic mucosal adjuvant SF-10 derived from physiological metabolic pathways and function of human pulmonary surfactant | |
JP2005082581A (en) | SECRETORY IgA ANTIBODY INDUCER | |
KR20090016659A (en) | Intranasal influenza vaccine based on virosomes | |
JP6085886B2 (en) | RSV mucosal vaccine | |
Feliciano Ruiz | Poly (I: C) adjuvanted corn nanoparticle enhances the breadth of inactivated influenza virus vaccine immune response in pigs | |
MX2008012046A (en) | Intranasal influenza vaccine based on virosomes. | |
Zanvit | Adjuvant mucosal immunization of mice against influenza virus | |
WO2006019183A1 (en) | Mucosal immunity and mucosal vaccine and protective inoculation system using the sensitizer | |
MX2008008967A (en) | Mucosal immunogenic substances comprising a polyinosinic acid - polycytidilic acid based adjuvant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110524 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110725 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110913 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |