JP4842731B2 - Embedded magnet type rotating electric machine - Google Patents

Embedded magnet type rotating electric machine Download PDF

Info

Publication number
JP4842731B2
JP4842731B2 JP2006214937A JP2006214937A JP4842731B2 JP 4842731 B2 JP4842731 B2 JP 4842731B2 JP 2006214937 A JP2006214937 A JP 2006214937A JP 2006214937 A JP2006214937 A JP 2006214937A JP 4842731 B2 JP4842731 B2 JP 4842731B2
Authority
JP
Japan
Prior art keywords
magnet
radial
circumferential
type rotating
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006214937A
Other languages
Japanese (ja)
Other versions
JP2008011692A (en
Inventor
秀晃 西浦
佳朗 竹本
誠也 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asmo Co Ltd
Original Assignee
Asmo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asmo Co Ltd filed Critical Asmo Co Ltd
Priority to JP2006214937A priority Critical patent/JP4842731B2/en
Priority to US11/736,474 priority patent/US7772735B2/en
Publication of JP2008011692A publication Critical patent/JP2008011692A/en
Application granted granted Critical
Publication of JP4842731B2 publication Critical patent/JP4842731B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

本発明は、埋込磁石型回転電機に関するものである。   The present invention relates to an interior magnet type rotating electrical machine.

従来、埋込磁石型回転電機(モータ)としては、ロータコアに軸方向に貫通するとともに径方向に延びる収容孔が周方向に複数形成されその各収容孔にそれぞれ磁石が配設されたロータを備えたものがある。   2. Description of the Related Art Conventionally, an embedded magnet type rotating electrical machine (motor) includes a rotor in which a plurality of housing holes that extend in the axial direction and extend in the radial direction are formed in a circumferential direction in a rotor core, and a magnet is disposed in each housing hole. There is something.

そして、このような埋込磁石型回転電機としては、収容孔における径方向外側端部に、前記磁石の周方向端部より周方向外側に延びる周方向延設部が形成されたものがある(例えば、特許文献1参照)。このような埋込磁石型回転電機では、周方向延設部が形成されることでその部分で磁気抵抗が増加するため、磁石のN極から直ぐに自身のS極に向かう漏れ磁束が低減される。
特開2004−173491号公報
As such an embedded magnet type rotating electrical machine, there is one in which a circumferentially extending portion extending outward in the circumferential direction from the circumferential end of the magnet is formed at the radially outer end of the accommodation hole ( For example, see Patent Document 1). In such an embedded magnet type rotating electrical machine, since the circumferentially extending portion is formed and the magnetic resistance is increased at that portion, the leakage magnetic flux from the N pole of the magnet to the S pole immediately is reduced. .
JP 2004-173491 A

しかしながら、上記した埋込磁石型回転電機(特許文献1参照)では、ロータコアと、磁石の径方向端部の全面とが当接する構成であるため、依然、磁気抵抗が低く、漏れ磁束の低減に対する課題があった。尚、このことは、埋込磁石型回転電機のロータにおける(ステータに対する)有効磁束を減少させ、モータ効率を低くしてしまう原因となる。   However, in the above-described embedded magnet type rotating electrical machine (see Patent Document 1), since the rotor core and the entire surface of the radial end of the magnet are in contact with each other, the magnetic resistance is still low and the leakage flux can be reduced. There was a problem. This causes a reduction in the effective magnetic flux (relative to the stator) in the rotor of the embedded magnet type rotating electrical machine, which causes a reduction in motor efficiency.

本発明は、上記問題点を解決するためになされたものであって、その目的は、漏れ磁束を低減することができる埋込磁石型回転電機を提供することにある。   The present invention has been made to solve the above problems, and an object of the present invention is to provide an embedded magnet type rotating electrical machine capable of reducing leakage magnetic flux.

請求項1に記載の発明では、軸方向に貫通するとともに径方向に延びる収容孔が周方向に複数形成されたロータコアを有し前記収容孔内に磁石が配設されたロータを備えた埋込磁石型回転電機であって、前記ロータコアには、その前記収容孔における径方向外側端部及び径方向内側端部の内の少なくとも1つに、前記磁石の周方向端部と対応した位置より周方向外側に延びる周方向延設部が形成され、前記ロータコアには、その前記収容孔の周方向中心と対応した位置に、前記磁石の周方向幅より小さい周方向幅で前記磁石の径方向に当接すべく径方向に延びて該磁石の径方向の移動を規制する径方向規制部が形成され、前記ロータコアは、積層されて前記収容孔となる積層前収容孔が形成されたコアシートが軸方向に複数積層されてなるものであって、前記コアシートは、他の部分より薄い前記径方向規制部が形成された肉薄規制コアシートを含むAccording to the first aspect of the present invention, the embedding includes a rotor core having a plurality of receiving holes extending in the circumferential direction and penetrating in the axial direction, and having a magnet disposed in the receiving hole. In the magnet-type rotating electrical machine, at least one of a radially outer end portion and a radially inner end portion in the accommodation hole is provided around the rotor core from a position corresponding to the circumferential end portion of the magnet. It is formed in the circumferential direction extension portion extending outwardly in the rotor core, at positions corresponding to the circumferential center of the said housing hole, in the radial direction of the magnet in the circumferential width smaller than the circumferential width of the magnets A radial restriction portion is formed to extend in the radial direction so as to abut to restrict the movement of the magnet in the radial direction, and the rotor core is formed of a core sheet in which pre-stacking accommodation holes that are stacked to become the accommodation holes are formed. A plurality of layers stacked in the axial direction A is the core sheet comprises a thin regulatory core sheet the radial direction regulating portion thinner than other portions is formed.

同構成によれば、収容孔における径方向外側端部及び径方向内側端部の内の少なくとも1つには、磁石の周方向端部より周方向外側に延びる周方向延設部が形成されることでその部分で磁気抵抗が増加するため、磁石のN極から直ぐに自身のS極に向かう漏れ磁束が低減される。   According to this configuration, at least one of the radially outer end and the radially inner end of the accommodation hole is formed with a circumferentially extending portion that extends outward in the circumferential direction from the circumferential end of the magnet. As a result, the magnetic resistance increases at that portion, so that the leakage magnetic flux from the N pole of the magnet to the S pole of the magnet is reduced.

又、ロータコアにおける収容孔の周方向中心と対応した位置には、磁石の周方向幅より小さい周方向幅で磁石の径方向に当接すべく径方向に延びて該磁石の径方向の移動を規制する径方向規制部が形成され、磁石の周方向幅全体で磁石の径方向に当接するものに比べて更に磁気抵抗が増加するため、漏れ磁束が更に低減される。   In addition, at a position corresponding to the circumferential center of the receiving hole in the rotor core, the magnet extends in the radial direction so as to abut on the radial direction of the magnet with a circumferential width smaller than the circumferential width of the magnet, thereby moving the magnet in the radial direction. A restricting radial direction restricting portion is formed, and the magnetic resistance is further increased as compared with the one that abuts in the radial direction of the magnet over the entire circumferential width of the magnet, so that the leakage flux is further reduced.

更に、径方向規制部は、ロータコアの軸方向全体に形成されたものより径方向から見た断面積が小さく形成され、ロータコアの軸方向全体に形成されたものに比べて更に磁気抵抗が増加するため漏れ磁束が更に低減される。これらの結果、埋込磁石型回転電機のロータにおける有効磁束が増加し、モータ効率を高くすることができる。   Further, the radial restriction portion has a smaller cross-sectional area as viewed from the radial direction than that formed in the entire axial direction of the rotor core, and the magnetic resistance is further increased as compared to that formed in the entire axial direction of the rotor core. Therefore, the leakage magnetic flux is further reduced. As a result, the effective magnetic flux in the rotor of the interior magnet type rotating electrical machine is increased, and the motor efficiency can be increased.

、ロータコアは、他の部分より薄い前記径方向規制部が形成された肉薄規制コアシートを含むコアシートが軸方向に積層されてなるため、上記の構成を簡単に得ることができる。 Further , the rotor core is formed by laminating the core sheet including the thin regulating core sheet in which the radial regulating part thinner than the other part is formed in the axial direction. Therefore, the above configuration can be easily obtained.

請求項に記載の発明では、請求項1に記載の埋込磁石型回転電機において、前記径方向規制部は、前記周方向延設部の径方向幅より大きく径方向に延びる。 In the invention described in claim 2, in embedded magnet type rotary electric machine according to claim 1, wherein the radial restriction portion extends largely radially than the radial width of the circumferential direction extension portion.

同構成によれば、径方向規制部は、周方向延設部の径方向幅より大きく径方向に延びるため漏れ磁束が更に低減される According to this configuration, since the radial restricting portion extends in the radial direction larger than the radial width of the circumferentially extending portion, the leakage magnetic flux is further reduced .

請求項に記載の発明では、請求項1又は2に記載の埋込磁石型回転電機において、前記径方向規制部の少なくとも1つは、前記磁石と当接する先端部の周方向幅が該先端部を有する径方向規制部の基端側の周方向幅より小さくされた。 According to a third aspect of the present invention, in the embedded magnet type rotating electric machine according to the first or second aspect , at least one of the radial direction regulating portions has a circumferential width of a distal end portion contacting the magnet. It was made smaller than the circumferential direction width | variety of the base end side of the radial direction control part which has a part .

同構成によれば、径方向規制部の少なくとも1つは、磁石と当接する先端部の周方向幅が基端側の周方向幅より小さくされるため、その全体の剛性の低下を抑制しながら、即ち径方向規制部の変形を抑制しながら、先端部の周方向幅が基端側の周方向幅と同じとされたものに比べて磁気抵抗の更なる増加、即ち漏れ磁束の更なる低減を図ることができる。   According to this configuration, at least one of the radial direction restricting portions is configured such that the circumferential width of the distal end contacting the magnet is made smaller than the circumferential width on the proximal end side, thereby suppressing a decrease in overall rigidity. That is, while suppressing the deformation of the radial restricting portion, the magnetic resistance is further increased, that is, the leakage flux is further reduced, compared with the case where the circumferential width of the distal end portion is the same as the circumferential width of the proximal end side. Can be achieved.

請求項に記載の発明では、請求項1乃至のいずれか1項に記載の埋込磁石型回転電機において、前記径方向規制部は、前記収容孔における径方向外側端部及び径方向内側端部の両方に形成され、径方向外側端部において前記磁石と当接する先端部の周方向幅が径方向内側端部において前記磁石と当接する先端部の周方向幅より大きくされた。 According to a fourth aspect of the present invention, in the embedded magnet type rotating electric machine according to any one of the first to third aspects, the radial direction restriction portion includes a radial outer end portion and a radial inner side in the accommodation hole. The circumferential width of the tip that is formed on both ends and contacts the magnet at the radially outer end is larger than the circumferential width of the tip that contacts the magnet at the radially inner end.

同構成によれば、径方向規制部は、径方向外側端部における先端部の周方向幅が径方向内側端部における先端部の周方向幅より大きくされるため、例えば、ロータの回転時の磁石の遠心力を受ける径方向外側において径方向規制部の剛性を高くしながら、径方向内側において磁気抵抗の更なる増加、即ち漏れ磁束の更なる低減を図ることができる。   According to this configuration, since the circumferential width of the distal end portion at the radially outer end portion is larger than the circumferential width of the distal end portion at the radially inner end portion, for example, when the rotor rotates, While increasing the rigidity of the radially restricting portion on the radially outer side that receives the centrifugal force of the magnet, the magnetic resistance can be further increased on the radially inner side, that is, the leakage flux can be further reduced.

請求項に記載の発明では、請求項又はに記載の埋込磁石型回転電機において、前記径方向規制部の少なくとも1つは、前記磁石と当接する先端側が軸方向から見て曲線形状とされた。 According to a fifth aspect of the present invention, in the interior permanent magnet type rotating electric machine according to the third or fourth aspect , at least one of the radial direction restricting portions has a curved shape as viewed from an axial direction at a front end side in contact with the magnet. It was said.

同構成によれば、径方向規制部の少なくとも1つは、磁石と当接する先端側が軸方向から見て曲線形状とされるため、例えば、軸方向から見て径方向規制部と磁石とを点接触(軸方向に線接触)させることができ、請求項に記載の構成を容易に得ることができる。 According to this configuration, at least one of the radial direction restricting portions has a curved shape when viewed from the axial direction on the tip side that contacts the magnet. It is possible to make contact (line contact in the axial direction), and the configuration according to claim 3 can be easily obtained.

請求項に記載の発明では、請求項に記載の埋込磁石型回転電機において、前記径方向規制部の少なくとも1つは、軸方向から見て前記磁石と複数点で点接触するように、前記磁石と当接する先端側が軸方向から見て曲線形状とされた。 According to a sixth aspect of the present invention, in the embedded magnet type rotating electric machine according to the fifth aspect of the present invention, at least one of the radial direction restricting portions is in point contact with the magnet at a plurality of points when viewed from the axial direction. The tip side in contact with the magnet has a curved shape when viewed from the axial direction.

同構成によれば、径方向規制部の少なくとも1つは、軸方向から見て前記磁石と複数点で点接触するように、前記磁石と当接する先端側が軸方向から見て曲線形状とされるため、漏れ磁束の更なる低減を図りながらも磁石を安定して支持することができる。   According to this configuration, at least one of the radial direction restricting portions has a curved shape when viewed from the axial direction so that the tip side that contacts the magnet is point-contacted at a plurality of points when viewed from the axial direction. Therefore, the magnet can be stably supported while further reducing the leakage magnetic flux.

請求項に記載の発明では、請求項1乃至のいずれか1項に記載の埋込磁石型回転電機において、前記ロータコアには、該ロータコアの周方向において前記収容孔と交互に形成されるとともに該ロータコアの軸方向に貫通する締結孔が形成され、該締結孔は、前記ロータコアを構成する前記コアシートが軸方向に複数積層された状態で各コアシートを軸方向に締結する締結部材が挿通される孔であって、前記ロータコアは、積層されて前記収容孔となる積層前収容孔と積層されて前記締結孔となる積層前締結孔とが周方向に交互に形成された前記コアシートが軸方向に複数積層されてなり、積層された各コアシートが前記締結孔に挿通された前記締結部材によって締結されてなるものであって、前記締結孔は、軸方向から見た中心位置が、前記磁石が配設される径方向範囲における径方向内側から27%以上で52%以下の位置に設定された。 According to a seventh aspect of the present invention, in the embedded magnet type rotating electric machine according to any one of the first to sixth aspects, the rotor core is alternately formed with the receiving holes in a circumferential direction of the rotor core. And a fastening hole penetrating in the axial direction of the rotor core is formed, and the fastening hole is a fastening member that fastens each core sheet in the axial direction in a state where a plurality of the core sheets constituting the rotor core are laminated in the axial direction. a hole is inserted, the rotor core, said core sheets and stacked before fastening holes are laminated and stacked becomes the accommodating hole before lamination housing hole serving as the fastening holes are formed alternately in the circumferential direction central position but will be stacked in the axial direction, a shall such are fastened by the fastening member each core sheet is inserted into the fastening holes that are stacked, the fastening hole, as viewed in the axial direction But, Serial magnet is set to 52% or less of the positions from the radially inner side 27 percent or more in the radial extent being provided.

同構成によれば、締結孔は、軸方向から見た中心位置が、磁石が配設される径方向範囲における径方向内側から27%以上で52%以下の位置に設定されるため、磁束の流れが良好となり、出力をほぼ最大に近い値(図5参照、99%以上)とすることができる。   According to the same configuration, the fastening hole is set at a position where the center position seen from the axial direction is 27% or more and 52% or less from the radially inner side in the radial range where the magnet is disposed. The flow becomes good, and the output can be set to a value almost close to the maximum (see FIG. 5, 99% or more).

請求項に記載の発明では、請求項に記載の埋込磁石型回転電機において、前記締結孔は、軸方向から見た中心位置が、前記磁石が配設される径方向範囲における径方向内側から36%以上で41%以下の位置に設定された。 According to an eighth aspect of the present invention, in the interior permanent magnet type electric rotating machine according to the seventh aspect , the fastening hole has a radial position in a radial range where the magnet is disposed at a center position viewed from the axial direction. The position was set at 36% or more and 41% or less from the inside.

同構成によれば、締結孔は、軸方向から見た中心位置が、磁石が配設される径方向範囲における径方向内側から36%以上で41%以下の位置に設定されるため、磁束の流れが更に良好となり、出力をほぼ最大の値(図5参照、ほぼ100%)とすることができる。   According to this configuration, the fastening hole is set at a position where the center position seen from the axial direction is not less than 36% and not more than 41% from the radially inner side in the radial range where the magnet is disposed. The flow becomes even better, and the output can be set to a substantially maximum value (see FIG. 5, almost 100%).

本発明によれば、漏れ磁束を低減することができる埋込磁石型回転電機を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the embedded magnet type rotary electric machine which can reduce a leakage magnetic flux can be provided.

(第1の実施の形態)
以下、本発明を具体化した第1の実施の形態を図1〜図3に従って説明する。図1に示すように、埋込磁石型回転電機としての埋込磁石型モータは、ステータ1とロータ2とを備える。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, an embedded magnet type motor as an embedded magnet type rotating electrical machine includes a stator 1 and a rotor 2.

ステータ1は、全体的に略円筒状に形成され、外形を形成する円筒部3の内周面から周方向等角度間隔で軸中心に向かって延びるように形成された複数のティース4を有したステータコア5と、各ティース4にインシュレータ(図示略)を介して集中巻にて巻回された巻線6(図1中、一部のみ2点鎖線で図示)とを備える。尚、本実施の形態では、ティース4は、12個形成されている。   The stator 1 is formed in a substantially cylindrical shape as a whole, and has a plurality of teeth 4 formed so as to extend from the inner peripheral surface of the cylindrical portion 3 forming the outer shape toward the axial center at equal circumferential intervals. The stator core 5 is provided with a winding 6 (only part of which is shown by a two-dot chain line in FIG. 1) wound around each tooth 4 by concentrated winding via an insulator (not shown). In the present embodiment, twelve teeth 4 are formed.

ロータ2は、回転軸7と、回転軸7に対して固定されるロータコア8と、ロータコア8に形成された収容孔8a内に配設される磁石9とを備える。
詳述すると、ロータコア8は、中心孔に前記回転軸が圧入される略円筒形状に形成されている。そして、ロータコア8には、軸方向に貫通するとともに径方向に延びる収容孔8aが周方向に複数(本実施の形態では10個)形成され、各収容孔8aに磁石9が収容保持されている。尚、前記磁石9は、軸方向から見て短手方向(収容孔8a内に配設された状態で周方向)に着磁された略直方体形状に形成されている。そして、周方向に隣り合う磁石9同士で周方向に対向する極が同じとされ、それらによって1つの磁極(S極又はN極)が構成されている。
The rotor 2 includes a rotating shaft 7, a rotor core 8 fixed to the rotating shaft 7, and a magnet 9 disposed in an accommodation hole 8 a formed in the rotor core 8.
More specifically, the rotor core 8 is formed in a substantially cylindrical shape in which the rotation shaft is press-fitted into the center hole. The rotor core 8 is formed with a plurality of (10 in the present embodiment) accommodation holes 8a extending in the axial direction and extending in the radial direction, and the magnets 9 are accommodated and held in the accommodation holes 8a. . The magnet 9 is formed in a substantially rectangular parallelepiped shape that is magnetized in the short direction (the circumferential direction in a state of being disposed in the accommodation hole 8a) when viewed from the axial direction. And the pole which opposes the circumferential direction by the magnets 9 adjacent to the circumferential direction is made the same, and one magnetic pole (S pole or N pole) is comprised by them.

又、ロータコア8の各収容孔8aにおける径方向外側端部及び径方向内側端部には、磁石9の周方向端部より周方向外側に延びるように周方向幅が広くされた周方向延設部8b,8cが形成されている。   In addition, the radially outer end and the radially inner end of each accommodation hole 8a of the rotor core 8 are extended in the circumferential direction so that the circumferential width is wider than the circumferential end of the magnet 9 so as to extend outward in the circumferential direction. Portions 8b and 8c are formed.

又、ロータコア8における各収容孔8aの周方向中心と対応した位置には、磁石9の周方向幅(短手方向の幅)より小さい周方向幅で磁石9の径方向外側及び内側にそれぞれ当接すべく径方向内側及び外側にそれぞれ延びて該磁石9の径方向外側及び内側のそれぞれの移動を規制する径方向規制部8d,8eが形成されている。尚、本実施の形態における径方向規制部8d,8eの径方向の突出量は前記周方向延設部8b,8cの径方向の幅と同じに設定されている。   Further, at the position corresponding to the center in the circumferential direction of each receiving hole 8 a in the rotor core 8, the circumferential width of the magnet 9 is smaller than the circumferential width (width in the short direction), and the radially outer side and the inner side of the magnet 9 are respectively contacted. Radial direction restricting portions 8d and 8e are formed to extend inward and outward in the radial direction so as to come into contact with each other and restrict the movement of the magnet 9 in the radially outer side and the inner side, respectively. In the present embodiment, the radial protrusions of the radial restricting portions 8d and 8e are set to be the same as the radial widths of the circumferentially extending portions 8b and 8c.

そして、径方向規制部8d,8eは、ロータコア8の軸方向全体に形成されたものより径方向から見た断面積が小さくなるように形成されている。詳しくは、ロータコア8は、図2及び図3に示すように、積層されて収容孔8aとなる積層前収容孔11a,12aが形成されたコアシートが軸方向に複数積層されてなるものであって、前記コアシートは、前記径方向規制部8d,8eが形成された規制コアシート11と前記径方向規制部8d,8eが形成されていない非規制コアシート12を含む。そして、本実施の形態のロータコア8は、規制コアシート11(図2(a)参照)と非規制コアシート(図2(b)参照)とが、1枚ずつ交互に積層されてなる(図3参照)。尚、図3では、規制コアシート11及び非規制コアシート12を2枚ずつ図示したが、各枚数は埋込磁石型モータ(ロータ2)の軸方向長さ(サイズ)によって設定されるものであって、勿論3枚ずつ以上であってもよい。   And the radial direction control parts 8d and 8e are formed so that the cross-sectional area seen from radial direction may become smaller than what was formed in the whole axial direction of the rotor core 8. FIG. Specifically, as shown in FIGS. 2 and 3, the rotor core 8 is formed by laminating a plurality of core sheets in the axial direction in which the pre-lamination receiving holes 11 a and 12 a that are stacked to become the receiving holes 8 a are formed. The core sheet includes a regulation core sheet 11 in which the radial direction regulation portions 8d and 8e are formed and a non-regulation core sheet 12 in which the radial direction regulation portions 8d and 8e are not formed. The rotor core 8 of the present embodiment is formed by alternately stacking the regulation core sheets 11 (see FIG. 2 (a)) and the non-regulation core sheets (see FIG. 2 (b)) one by one (see FIG. 2). 3). In FIG. 3, two sheets of the regulated core sheet 11 and the non-regulated core sheet 12 are illustrated, but each number is set by the axial length (size) of the embedded magnet type motor (rotor 2). Of course, three or more may be used.

又、本実施の形態の各コアシート(規制コアシート11及び非規制コアシート12)には、積層されて締結孔10となる積層前締結孔11b,12bが形成されている。積層前締結孔11b,12bは、周方向に隣り合う積層前収容孔11a,12a同士の周方向の間(中央)に、言い換えると積層前収容孔11a,12aと周方向に(等角度間隔で)交互に形成されている。そして、ロータコア8は、各コアシート(規制コアシート11及び非規制コアシート12)が積層され、前記収容孔8aに磁石9が収容保持され、更にその軸方向両端に円盤プレートP(図4参照)が配設された状態で前記締結孔10に挿通される締結部材としてのリベットRによって締結されている。尚、円盤プレートPには、前記積層前締結孔11b,12b(締結孔10)と同様の孔が形成されるが、積層前収容孔11a,12a(収容孔8a)と同様の孔は形成されておらず、円盤プレートPによって磁石9の軸方向の移動が規制される(抜け止めがなされる)。又、図4では、各コアシート(規制コアシート11及び非規制コアシート12)の境目の図示を省略し、内部に収容保持される磁石9の径方向位置においては模式的に図示している。   In addition, pre-lamination fastening holes 11 b and 12 b that are laminated and become fastening holes 10 are formed in each core sheet (the regulated core sheet 11 and the non-regulated core sheet 12) of the present embodiment. The pre-lamination fastening holes 11b and 12b are disposed between the circumferential directions (center) of the pre-lamination accommodation holes 11a and 12a adjacent to each other in the circumferential direction, in other words, in the circumferential direction (at equiangular intervals) with the pre-lamination accommodation holes 11a and 12a. ) Alternatingly formed. In the rotor core 8, core sheets (regulated core sheet 11 and non-regulated core sheet 12) are laminated, the magnets 9 are accommodated and held in the accommodation holes 8a, and disk plates P (see FIG. 4) are provided at both axial ends. ) Is disposed, and is fastened by a rivet R as a fastening member inserted through the fastening hole 10. The disk plate P is formed with the same holes as the pre-lamination fastening holes 11b and 12b (fastening holes 10), but the same holes as the pre-lamination housing holes 11a and 12a (housing holes 8a) are formed. In addition, the movement of the magnet 9 in the axial direction is restricted by the disk plate P (prevention of slipping). Further, in FIG. 4, illustration of the boundary between each core sheet (the regulated core sheet 11 and the non-regulated core sheet 12) is omitted, and the radial position of the magnet 9 accommodated and held therein is schematically illustrated. .

又、本実施の形態における締結孔10は、図1に示すように、軸方向から見た中心位置X1が、前記磁石9が配設される径方向範囲H1における径方向内側から40%の位置に設定されている。言い換えると、磁石9の径方向内側端部における径方向位置から締結孔10の中心位置X1の径方向位置までの径方向距離Yは、磁石9が配設される径方向範囲H1の長さ(磁石9の径方向長さと同じ)の40%に設定されている。   Further, as shown in FIG. 1, the fastening hole 10 in the present embodiment has a center position X1 viewed from the axial direction at a position 40% from the radial inner side in the radial range H1 where the magnet 9 is disposed. Is set to In other words, the radial distance Y from the radial position at the radially inner end of the magnet 9 to the radial position of the center position X1 of the fastening hole 10 is the length of the radial range H1 where the magnet 9 is disposed ( 40% of the radial length of the magnet 9).

ここで、締結孔10の前記中心位置X1は、実験結果(図5参照)より得た特徴に基づいて設定している。即ち、図5に示すように、締結孔10は、軸方向から見た中心位置X1が、磁石9が配設される径方向範囲H1における径方向内側から27%以上で52%以下の位置に設定されると、磁束の流れが良好となり、トルクTがほぼ最大で且つ回転数Nがほぼ最大に近い値となり、ひいては出力Sがほぼ最大に近い値(最大の値の99%以上)となる。又、締結孔10は、軸方向から見た中心位置X1が、磁石9が配設される径方向範囲H1における径方向内側から36%以上で41%以下の位置に設定されると、磁束の流れが更に良好となり、トルクTがほぼ最大で且つ回転数Nがほぼ最大の値となり、ひいては出力Sがほぼ最大の値(ほぼ100%)となる。よって、本実施の形態では、締結孔10の前記中心位置X1が、磁石9が配設される径方向範囲H1における径方向内側から36%以上で41%以下の位置を満たす位置である40%の位置に設定されている。尚、図5には、出力SとともにトルクT及び回転数Nの特性をも図示したが、図5の縦軸の目盛り(99%と100%)は出力Sのみに対するものである。   Here, the said center position X1 of the fastening hole 10 is set based on the characteristic obtained from the experimental result (refer FIG. 5). That is, as shown in FIG. 5, the fastening hole 10 has a center position X1 as seen from the axial direction at a position that is 27% or more and 52% or less from the radial inside in the radial range H1 where the magnet 9 is disposed. When set, the flow of the magnetic flux becomes good, the torque T is almost maximum and the rotation speed N is almost the maximum value, and the output S is almost the maximum value (99% or more of the maximum value). . Further, when the center position X1 viewed from the axial direction is set at a position of 36% or more and 41% or less from the radially inner side in the radial range H1 where the magnet 9 is disposed, the fastening hole 10 The flow is further improved, the torque T is substantially maximum and the rotation speed N is substantially maximum, and the output S is substantially maximum (approximately 100%). Therefore, in the present embodiment, the center position X1 of the fastening hole 10 is a position satisfying a position of 36% or more and 41% or less from the radially inner side in the radial range H1 where the magnet 9 is disposed. The position is set. 5 shows the characteristics of the torque T and the rotational speed N as well as the output S, but the vertical scale (99% and 100%) in FIG. 5 is for the output S only.

次に、上記第1の実施の形態の特徴的な作用効果を以下に記載する。
(1)ロータコア8の各収容孔8aにおける径方向外側端部及び径方向内側端部には、磁石9の周方向端部より周方向外側に延びるように周方向幅が広くされた周方向延設部8b,8cが形成されることでその部分で磁気抵抗が増加するため、磁石9のN極から直ぐに自身のS極に向かう漏れ磁束が低減される。
Next, characteristic actions and effects of the first embodiment will be described below.
(1) A circumferentially extended circumferential width is formed at the radially outer end and radially inner end of each receiving hole 8a of the rotor core 8 so as to extend outward in the circumferential direction from the circumferential end of the magnet 9. Since the magnetic resistance is increased at the portions 8b and 8c formed, the leakage magnetic flux from the N pole of the magnet 9 toward the S pole of the magnet 9 is reduced.

又、ロータコア8における各収容孔8aの周方向中心と対応した位置には、磁石9の周方向幅(短手方向の幅)より小さい周方向幅で磁石9の径方向外側及び内側にそれぞれ当接すべく径方向内側及び外側にそれぞれ延びて該磁石9の径方向外側及び内側のそれぞれ移動を規制する径方向規制部8d,8eが形成される。よって、磁石9の周方向幅全体で磁石9の径方向に当接するものに比べて更に磁気抵抗が増加するため、漏れ磁束が更に低減される。   Further, at the position corresponding to the center in the circumferential direction of each receiving hole 8 a in the rotor core 8, the circumferential width of the magnet 9 is smaller than the circumferential width (width in the short direction), and the radially outer side and the inner side of the magnet 9 are respectively contacted. Radial direction restricting portions 8d and 8e are formed to extend inward and outward in the radial direction so as to be in contact with each other and restrict movement of the magnet 9 in the radially outer side and the inner side, respectively. Therefore, since the magnetic resistance is further increased as compared with the magnet 9 that is in contact with the entire radial width of the magnet 9 in the radial direction, the leakage magnetic flux is further reduced.

更に、径方向規制部8d,8eは、ロータコア8の軸方向全体に形成されたものより径方向から見た断面積が小さくなるように形成され、ロータコア8の軸方向全体に形成されたものに比べて更に磁気抵抗が増加するため、漏れ磁束が更に低減される。これらの結果、埋込磁石型モータのロータ2における(ステータ1に対する)有効磁束が増加し、モータ効率を高くすることができる。   Further, the radial restriction portions 8d and 8e are formed so that the cross-sectional area viewed from the radial direction is smaller than that formed in the entire axial direction of the rotor core 8, and are formed in the entire axial direction of the rotor core 8. Compared with the magnetic resistance, the magnetic flux leakage is further reduced. As a result, the effective magnetic flux (with respect to the stator 1) in the rotor 2 of the embedded magnet type motor is increased, and the motor efficiency can be increased.

(2)ロータコア8は、径方向規制部8d,8eが形成された規制コアシート11と径方向規制部8d,8eが形成されていない非規制コアシート12を含むコアシートが軸方向に積層されてなるため、ロータコア8の軸方向全体に形成されたものより径方向から見た断面積が小さくなる径方向規制部8d,8eを簡単に得ることができる。   (2) The rotor core 8 includes a core sheet including a restriction core sheet 11 in which the radial direction restriction portions 8d and 8e are formed and a non-restriction core sheet 12 in which the radial direction restriction portions 8d and 8e are not formed. Therefore, it is possible to easily obtain the radial direction restricting portions 8d and 8e having a smaller cross-sectional area as viewed from the radial direction than that formed in the entire axial direction of the rotor core 8.

(3)ロータコア8は、規制コアシート11と非規制コアシートとが、1枚ずつ交互に積層されてなるため、径方向規制部8d,8eが軸方向に等間隔に形成され磁石9と等間隔に当接される。よって、バランス良く(傾き等を防止しながら)磁石9の径方向の移動を規制することができる。   (3) Since the rotor core 8 is formed by alternately laminating the regulation core sheet 11 and the non-regulation core sheet one by one, the radial direction regulation portions 8d and 8e are formed at equal intervals in the axial direction and the magnet 9 or the like. Abutted on the interval. Therefore, the movement of the magnet 9 in the radial direction can be regulated in a balanced manner (while preventing inclination and the like).

(4)締結孔10の中心位置X1が、磁石9が配設される径方向範囲H1における径方向内側から36%以上で41%以下の位置を満たす位置である40%の位置に設定されるため、磁束の流れが更に良好となり、出力Sをほぼ最大の値(図5参照、ほぼ100%)とすることができる。   (4) The center position X1 of the fastening hole 10 is set to a position of 40%, which is a position that satisfies a position of 36% or more and 41% or less from the radially inner side in the radial range H1 where the magnet 9 is disposed. Therefore, the flow of the magnetic flux is further improved, and the output S can be set to a substantially maximum value (see FIG. 5, almost 100%).

上記第1の実施の形態は、以下のように変更してもよい。
・上記第1の実施の形態では、ロータコア8は、規制コアシート11と非規制コアシートとが、1枚ずつ交互に積層されてなるとしたが、これに限定されず、規制コアシート11と非規制コアシートとが複数枚ずつ交互に積層されてなるようにしてもよい。又、規制コアシート11と非規制コアシート12の数を異ならせてもよく、例えば、高速回転仕様の埋込磁石型モータとする場合等、2枚の規制コアシート11と、1枚の非規制コアシート12とを交互に積層して、磁石の径方向の移動を(実施の形態に比べて)強固に規制するようにしてもよい。
The first embodiment may be modified as follows.
In the first embodiment, the rotor core 8 is configured such that the regulation core sheet 11 and the non-regulation core sheet are alternately laminated one by one. However, the present invention is not limited to this, and the regulation core sheet 11 and the non-regulation core sheet A plurality of regulation core sheets may be alternately stacked. Further, the number of the regulation core sheet 11 and the non-regulation core sheet 12 may be different. For example, in the case of an embedded magnet type motor having a high-speed rotation specification, two regulation core sheets 11 and one non-regulation core sheet are used. The regulation core sheets 12 may be alternately laminated to strongly restrict the movement of the magnet in the radial direction (compared to the embodiment).

・上記第1の実施の形態では、ロータコア8は、規制コアシート11と非規制コアシートとが積層されてなるとしたが、ロータコア8の軸方向全体に形成されたものより径方向から見た断面積が小さい径方向規制部を有する構成となれば、他のコアシートを積層して構成してもよい。   In the first embodiment, the rotor core 8 is formed by laminating the regulation core sheet 11 and the non-regulation core sheet. However, the rotor core 8 is cut from the radial direction than that formed in the entire axial direction of the rotor core 8. If it becomes the structure which has a radial direction control part with a small area, you may comprise by laminating | stacking another core sheet.

例えば、図6及び図7に示すように変更してもよい。即ち、ロータコア21(図7参照)は、他の部分より薄い径方向規制部21a,21bが形成された肉薄規制コアシート22(図6参照)を含むコアシートが軸方向に積層されてなる。この例の肉薄規制コアシート22は、上記実施の形態の規制コアシート11における径方向規制部8d,8eの軸方向の厚さが薄くされたのみの形状である。又、この例の径方向規制部21a,21b全体は、肉薄規制コアシート22の他の部分の半分の厚さに設定されている。そして、ロータコア21は、肉薄規制コアシート22のみが複数軸方向に積層されてなる。このようにしても、ロータコア8の軸方向全体に形成されたものより径方向から見た断面積が小さくなる径方向規制部21a,21bを簡単に得ることができる。尚、前記肉薄規制コアシート22における径方向規制部21a,21bをプレス工程にてプレス成形する方法を採用すると、径方向規制部21a,21bに圧縮応力を発生させながら、肉薄規制コアシート22を簡単に得ることができる。   For example, you may change as shown in FIG.6 and FIG.7. That is, the rotor core 21 (see FIG. 7) is formed by laminating a core sheet including a thin regulating core sheet 22 (see FIG. 6) in which radial regulating parts 21a and 21b thinner than other parts are formed in the axial direction. The thin regulation core sheet 22 of this example has a shape in which the axial thickness of the radial regulation parts 8d and 8e in the regulation core sheet 11 of the above embodiment is only thinned. Further, the entire radial direction restricting portions 21 a and 21 b in this example are set to a thickness half that of the other portions of the thin restricting core sheet 22. The rotor core 21 is formed by laminating only the thin regulation core sheets 22 in a plurality of axial directions. Even in this case, the radial restricting portions 21a and 21b having a smaller cross-sectional area viewed from the radial direction than those formed in the entire axial direction of the rotor core 8 can be easily obtained. In addition, if the method of press-molding the radial direction restricting portions 21a and 21b in the thin thickness restricting core sheet 22 is adopted in the pressing process, the thin thickness restricting core sheet 22 is generated while generating compressive stress in the radial direction restricting portions 21a and 21b. Can be easily obtained.

又、上記別例(図6及び図7参照)では、径方向規制部21a,21b全体が、肉薄規制コアシート22の他の部分の半分の厚さに設定されるとしたが、これに限定されず、径方向規制部21a,21bの少なくとも一部が肉薄規制コアシート22の他の部分より薄ければ他の形状に変更してもよい。例えば、図8(a)に模式的に示すように、径方向の磁石9側に向かうほど薄くなる径方向規制部23に変更してもよい。又、例えば、図8(b)に模式的に示すように、径方向の中間に向かうほど厚い(薄くない)径方向規制部24に変更してもよい。又、例えば、図8(c)に模式的に示すように、径方向の中間に向かうほど薄い径方向規制部25に変更してもよい。尚、図8では、肉薄規制コアシート22の1枚のみを図示している。   Moreover, in the said another example (refer FIG.6 and FIG.7), although the radial direction control part 21a, 21b whole was set to the half thickness of the other part of the thin control core sheet 22, it is limited to this. Alternatively, the shape may be changed to another shape as long as at least a part of the radial direction restricting portions 21 a and 21 b is thinner than the other portions of the thin restricting core sheet 22. For example, as schematically shown in FIG. 8A, the radial direction restricting portion 23 may be changed to become thinner toward the magnet 9 side in the radial direction. Further, for example, as schematically shown in FIG. 8B, the radial direction restricting portion 24 may be changed to be thicker (not thinner) toward the middle in the radial direction. Further, for example, as schematically shown in FIG. 8C, the radial direction restricting portion 25 may be changed to be thinner toward the middle in the radial direction. In FIG. 8, only one thin regulation core sheet 22 is illustrated.

又、例えば、コアシートは、径方向外側のみ前記径方向規制部が形成された外側規制コアシートと径方向内側のみ前記径方向規制部が形成された内側規制コアシートを含むようにしてもよい。即ち、この例の外側規制コアシートは、例えば、上記実施の形態の規制コアシート11の径方向外側の径方向規制部8dが形成され、径方向内側の径方向規制部8eが形成されていない形状である。又、この例の内側規制コアシートは、例えば、上記実施の形態の規制コアシート11の径方向内側の径方向規制部8eが形成され、径方向外側の径方向規制部8dが形成されていない形状である。このようにしても、ロータコア8の軸方向全体に形成されたものより径方向から見た断面積が小さくなる径方向規制部を簡単に得ることができる。そして、例えば、ロータコアを、前記外側規制コアシートと前記内側規制コアシートとが1枚ずつ又は複数枚ずつ交互に積層されてなるものとしてもよく、このようにすると、径方向外側及び径方向内側で径方向規制部が軸方向に等間隔に形成され前記磁石と等間隔に当接される。よって、バランス良く(傾き等を防止しながら)磁石の径方向の移動を規制することができる。   Further, for example, the core sheet may include an outer regulation core sheet in which the radial regulation part is formed only on the radially outer side and an inner regulation core sheet in which the radial regulation part is formed only on the radially inner side. That is, in the outer regulation core sheet of this example, for example, the radial regulation part 8d on the radially outer side of the regulation core sheet 11 of the above embodiment is formed, and the radial regulation part 8e on the radially inner side is not formed. Shape. Further, in the inner regulation core sheet of this example, for example, the radial regulation part 8e inside the radial direction of the regulation core sheet 11 of the above embodiment is formed, and the radial regulation part 8d outside in the radial direction is not formed. Shape. Even in this case, it is possible to easily obtain a radial direction restricting portion having a smaller sectional area when viewed from the radial direction than that formed in the entire axial direction of the rotor core 8. And, for example, the rotor core may be formed by alternately laminating the outer regulation core sheet and the inner regulation core sheet one by one or a plurality of sheets. Thus, the radial restricting portions are formed at equal intervals in the axial direction and are in contact with the magnets at equal intervals. Therefore, the movement of the magnet in the radial direction can be regulated in a well-balanced manner (while preventing inclination and the like).

又、例えば、コアシートは、周方向に複数の前記積層前収容孔の内の少なくとも1つに前記径方向規制部が形成され且つ少なくとも1つに前記径方向規制部が形成されていない周方向一部規制コアシートを含むようにし、ロータコアは、収容孔の軸方向の一部に前記径方向規制部が配置されるようにコアシートが積層されてなるようにしてもよい。即ち、この例の周方向一部規制コアシートは、例えば、上記実施の形態の規制コアシート11の径方向規制部8d,8eが、周方向に並ぶ積層前収容孔11aの1つおきに形成された形状である。このようにしても、ロータコア8の軸方向全体に形成されたものより径方向から見た断面積が小さくなる径方向規制部を簡単に得ることができる。そして、例えば、ロータコアを、前記周方向一部規制コアシートが1枚ずつ又は複数枚ずつ周方向に(例えば積層前収容孔11aの間隔分)ずらされて積層されてなるものとしてもよく、このようにすると、径方向規制部を軸方向に等間隔に形成することができ前記磁石と等間隔に当接させることができる。よって、バランス良く(傾き等を防止しながら)磁石の径方向の移動を規制することができる。   Further, for example, the core sheet has a circumferential direction in which the radial direction restriction portion is formed in at least one of the plurality of pre-stacking accommodation holes in the circumferential direction and the radial direction restriction portion is not formed in at least one of the core sheets. A partly regulated core sheet may be included, and the rotor core may be formed by laminating the core sheet so that the radial direction regulating part is disposed in a part of the axial direction of the accommodation hole. That is, the circumferentially partly regulated core sheet in this example is formed, for example, every other one of the pre-stacking accommodation holes 11a in which the radial direction regulating portions 8d and 8e of the regulated core sheet 11 of the above embodiment are arranged in the circumferential direction. Shape. Even in this case, it is possible to easily obtain a radial direction restricting portion having a smaller sectional area when viewed from the radial direction than that formed in the entire axial direction of the rotor core 8. And, for example, the rotor core may be formed by laminating the circumferentially-partially regulated core sheets one by one or plurally by shifting in the circumferential direction (for example, the space between the accommodation holes 11a before lamination). If it does in this way, a radial direction control part can be formed in the axial direction at equal intervals, and can be made to contact | abut with the said magnet at equal intervals. Therefore, the movement of the magnet in the radial direction can be regulated in a well-balanced manner (while preventing inclination and the like).

又、勿論、上記した各コアシート(規制コアシート11、非規制コアシート12、肉薄規制コアシート22、外側規制コアシート、内側規制コアシート、及び周方向一部規制コアシート)等を組み合わせてロータコアを構成してもよい。   Of course, the above core sheets (restricted core sheet 11, non-restricted core sheet 12, thin-restricted core sheet 22, outer restricted core sheet, inner restricted core sheet, and circumferentially partially restricted core sheet) are combined. A rotor core may be configured.

(第2の実施の形態)
以下、本発明を具体化した第2の実施の形態を図9に従って説明する。図9に示すように、埋込磁石型回転電機としての埋込磁石型モータは、ステータ1とロータ31とを備える。尚、第2の実施の形態におけるステータ1は、上記第1の実施の形態のステータ1と同様であるため、同様の符号を付してその詳細な説明を省略する。
(Second Embodiment)
Hereinafter, a second embodiment of the present invention will be described with reference to FIG. As shown in FIG. 9, an embedded magnet type motor as an embedded magnet type rotating electrical machine includes a stator 1 and a rotor 31. Since the stator 1 in the second embodiment is the same as the stator 1 in the first embodiment, the same reference numerals are given and detailed description thereof is omitted.

ロータ31は、回転軸32と、回転軸32に対して固定されるロータコア33と、ロータコア33に形成された収容孔33a内に配設される磁石34とを備える。
詳述すると、ロータコア33は、コアシートが軸方向に複数積層されてなるものであって、その中心孔に前記回転軸32が圧入される略円筒形状に形成されている。そして、ロータコア33には、軸方向に貫通するとともに径方向に延びる収容孔33aが周方向に複数(本実施の形態では10個)形成され、各収容孔33aに磁石34が収容保持されている。尚、前記磁石34は、軸方向から見て短手方向(収容孔33a内に配設された状態で周方向)に着磁された略直方体形状に形成されている。そして、周方向に隣り合う磁石34同士で周方向に対向する極が同じとされ、それらによって1つの磁極(S極又はN極)が構成されている。
The rotor 31 includes a rotating shaft 32, a rotor core 33 that is fixed to the rotating shaft 32, and a magnet 34 that is disposed in an accommodation hole 33 a formed in the rotor core 33.
More specifically, the rotor core 33 is formed by laminating a plurality of core sheets in the axial direction, and is formed in a substantially cylindrical shape in which the rotary shaft 32 is press-fitted into the center hole. The rotor core 33 is formed with a plurality of (10 in the present embodiment) accommodation holes 33a extending in the axial direction and extending in the radial direction, and the magnets 34 are accommodated and held in the accommodation holes 33a. . The magnet 34 is formed in a substantially rectangular parallelepiped shape that is magnetized in the short direction (circumferential direction in the state of being disposed in the accommodation hole 33a) when viewed from the axial direction. And the pole which opposes the circumferential direction by the magnets 34 adjacent in the circumferential direction is made the same, and one magnetic pole (S pole or N pole) is comprised by them.

又、ロータコア33の各収容孔33aにおける径方向外側端部及び径方向内側端部には、磁石34の周方向端部より周方向外側に延びるように周方向幅が広くされた周方向延設部33b,33cが形成されている。   In addition, the radially outer end and the radially inner end of each receiving hole 33a of the rotor core 33 are extended in the circumferential direction so that the circumferential width is wider than the circumferential end of the magnet 34 so as to extend outward in the circumferential direction. Portions 33b and 33c are formed.

又、ロータコア33における各収容孔33aの径方向外側の周方向中心と対応した位置には、磁石34の周方向幅(短手方向の幅)より小さい周方向幅で磁石34の径方向外側に当接すべく周方向延設部33bの径方向幅より大きく径方向内側に延びて磁石34の径方向外側への移動を規制する径方向規制部33dが形成されている。又、ロータコア33における各収容孔33aの径方向内側の周方向中心と対応した位置には、磁石34の周方向幅(短手方向の幅)より小さい周方向幅で磁石34の径方向内側に当接すべく周方向延設部33cの径方向幅より大きく径方向外側に延びて磁石34の径方向内側への移動を規制する径方向規制部33eが形成されている。尚、本実施の形態の各径方向規制部33d,33eは、磁石34と当接する先端部33f,33gの周方向幅が基端側の周方向幅と同じ(即ち周方向幅が径方向に沿って一定)とされている。又、径方向外側における径方向規制部33dと、径方向内側における径方向規制部33eとは、その先端部33f,33gの周方向幅が同じとされている。   The rotor core 33 has a circumferential width smaller than the circumferential width (width in the short direction) of the magnet 34 at a position corresponding to the circumferential center on the radially outer side of each receiving hole 33a in the rotor core 33. A radial restricting portion 33d is formed which extends inward in the radial direction larger than the radial width of the circumferentially extending portion 33b so as to abut against it and restricts the movement of the magnet 34 outward in the radial direction. The rotor core 33 has a circumferential width smaller than the circumferential width (width in the short direction) of the magnet 34 at a position corresponding to the circumferential center on the radially inner side of each receiving hole 33 a in the rotor core 33. A radially restricting portion 33e is formed which extends radially outwardly to be in contact with the circumferentially extending portion 33c and restricts the movement of the magnet 34 radially inward. In the radial direction restricting portions 33d and 33e of the present embodiment, the circumferential widths of the distal end portions 33f and 33g contacting the magnet 34 are the same as the circumferential width on the base end side (that is, the circumferential width is in the radial direction). Along the line). Further, the radial direction restricting portion 33d on the radially outer side and the radial direction restricting portion 33e on the radially inner side have the same circumferential width at the tip portions 33f and 33g.

又、本実施の形態のロータコア33を構成する各コアシートにおいても上記第1の実施の形態と同様に積層されて締結孔35となる積層前締結孔が形成されている。そして、本実施の形態における締結孔35においても、上記第1の実施の形態と同様に、軸方向から見た中心位置X2が、前記磁石34が配設される径方向範囲H2における径方向内側から40%の位置に設定されている。   In addition, each core sheet constituting the rotor core 33 of the present embodiment is also formed with a pre-stacking fastening hole that is laminated and becomes a fastening hole 35 as in the first embodiment. Also in the fastening hole 35 in the present embodiment, as in the first embodiment, the center position X2 viewed from the axial direction is the radially inner side in the radial range H2 in which the magnet 34 is disposed. Is set at a position of 40%.

次に、上記第2の実施の形態の特徴的な作用効果を以下に記載する。
(1)ロータコア33の各収容孔33aにおける径方向外側端部及び径方向内側端部には、磁石34の周方向端部より周方向外側に延びるように周方向幅が広くされた周方向延設部33b,33cが形成されることでその部分で磁気抵抗が増加するため、磁石34のN極から直ぐに自身のS極に向かう漏れ磁束が低減される。
Next, the characteristic operational effects of the second embodiment will be described below.
(1) A circumferentially extended circumferential width is formed at the radially outer end and radially inner end of each accommodation hole 33a of the rotor core 33 so as to extend outward in the circumferential direction from the circumferential end of the magnet 34. Since the magnetic resistance increases at the portions 33b and 33c formed, the leakage magnetic flux from the N pole of the magnet 34 to the S pole of the magnet 34 is reduced.

又、各収容孔33aの周方向中心と対応した位置には、磁石34の周方向幅(短手方向の幅)より小さい周方向幅で磁石34の径方向外側及び内側にそれぞれ当接すべく周方向延設部33b,33cの径方向幅より大きく径方向内側及び外側にそれぞれ延びて磁石34の径方向外側及び内側へのそれぞれ移動を規制する径方向規制部33d,33eが形成される。よって、磁石34の周方向幅全体で磁石34の径方向に当接するものに比べて更に磁気抵抗が増加するため、漏れ磁束が更に低減される。これらの結果、埋込磁石型モータのロータ31における(ステータ1に対する)有効磁束が増加し、モータ効率を高くすることができる。   In addition, at a position corresponding to the center in the circumferential direction of each accommodation hole 33a, it is necessary to abut on the radially outer side and the inner side of the magnet 34 with a circumferential width smaller than the circumferential width (width in the short direction) of the magnet 34. Radial direction restricting portions 33d and 33e are formed which extend inward and outward in the radial direction larger than the radial width of the circumferentially extending portions 33b and 33c and restrict the movement of the magnet 34 in the radially outward and inward directions, respectively. Therefore, since the magnetic resistance is further increased as compared with the magnet 34 that is in contact with the entire radial width of the magnet 34 in the radial direction, the leakage magnetic flux is further reduced. As a result, the effective magnetic flux (with respect to the stator 1) in the rotor 31 of the embedded magnet type motor increases, and the motor efficiency can be increased.

(2)締結孔35の中心位置X2が、磁石34が配設される径方向範囲H2における径方向内側から36%以上で41%以下の位置を満たす位置である40%の位置に設定されるため、磁束の流れが更に良好となり、出力をほぼ最大の値(図5参照、ほぼ100%)とすることができる。   (2) The center position X2 of the fastening hole 35 is set to a position of 40%, which is a position satisfying a position of 36% or more and 41% or less from the radially inner side in the radial range H2 where the magnet 34 is disposed. Therefore, the flow of magnetic flux is further improved, and the output can be set to a substantially maximum value (see FIG. 5, almost 100%).

上記第2の実施の形態は、以下のように変更してもよい。
・上記第2の実施の形態では、各径方向規制部33d,33eは、磁石34と当接する先端部33f,33gの周方向幅が基端側の周方向幅と同じ(即ち周方向幅が径方向に沿って一定)とされるとしたが、これに限定されず、周方向幅が径方向の位置によって異なるように変更してもよい。例えば、径方向規制部の少なくとも1つにおいて磁石と当接する先端部の周方向幅を基端側の周方向幅より小さくしてもよい。このようにすると、径方向規制部の全体の剛性の低下を抑制しながら、即ち径方向規制部の変形を抑制しながら、先端部の周方向幅が基端側の周方向幅と同じとされたものに比べて磁気抵抗の更なる増加、即ち漏れ磁束の更なる低減を図ることができる。
The second embodiment may be modified as follows.
In the second embodiment, in each of the radial direction restricting portions 33d and 33e, the circumferential width of the distal end portions 33f and 33g in contact with the magnet 34 is the same as the circumferential width on the base end side (that is, the circumferential width is the same). However, the present invention is not limited to this, and the circumferential width may be changed depending on the position in the radial direction. For example, the circumferential width of the distal end that contacts the magnet in at least one of the radial restricting portions may be smaller than the circumferential width on the proximal end side. In this case, the circumferential width of the distal end portion is made the same as the circumferential width of the proximal end side while suppressing a decrease in the overall rigidity of the radial direction regulating portion, that is, suppressing deformation of the radial direction regulating portion. The magnetic resistance can be further increased, that is, the leakage magnetic flux can be further reduced as compared with the above.

具体的には、例えば、図10(a)に示すように、各径方向規制部41,42において磁石34と当接する先端側を軸方向から見て曲線形状であって半円形状(R形状)とすることで、先端部41a,42aの周方向幅を基端側の周方向幅より小さくしてもよい。尚、この例(図10(a)参照)では、径方向規制部41,42(先端部41a,42a)と磁石34とが点接触(軸方向に線接触)となる。又、例えば、図10(b)に示すように、径方向規制部41,42(その先端部41b,42b)が磁石34と複数点(この例では2点)で点接触(軸方向に線接触)するように、各径方向規制部41,42において磁石34と当接する先端側を軸方向から見て曲線形状であって周方向に2つ(一対)の略半円形状(R形状)としてもよい。このようにすると、磁石34と接触する先端部41b,42bの周方向幅を基端側の周方向幅より小さくして漏れ磁束の更なる低減を図りながらも磁石34を安定して支持することができる。尚、勿論、径方向規制部(先端部)は、磁石34と3点以上の複数点で点接触するように変更してもよい。   Specifically, for example, as shown in FIG. 10 (a), the distal end side that contacts the magnet 34 in each of the radial direction restricting portions 41 and 42 is a curved shape when viewed from the axial direction, and is a semicircular shape (R shape). ), The circumferential width of the distal end portions 41a and 42a may be smaller than the circumferential width on the proximal end side. In this example (see FIG. 10A), the radial direction regulating portions 41 and 42 (tip portions 41a and 42a) and the magnet 34 are in point contact (line contact in the axial direction). Further, for example, as shown in FIG. 10B, the radial direction restricting portions 41 and 42 (tip portions 41b and 42b) are in point contact with a plurality of points (two points in this example) (line in the axial direction). 2) (a pair) of substantially semicircular shapes (R shape) in the circumferential direction as viewed from the axial direction. It is good. In this way, the magnet 34 can be stably supported while further reducing the leakage flux by reducing the circumferential width of the distal end portions 41b and 42b in contact with the magnet 34 to be smaller than the circumferential width on the proximal end side. Can do. Of course, the radial direction regulating portion (tip portion) may be changed so as to make point contact with the magnet 34 at a plurality of three or more points.

又、例えば、図11に示すように、各径方向規制部43,44において磁石34と当接する先端側をその先端部43a,44aに向かうほど周方向幅が小さくなる略台形形状とすることで、先端部43a,44aの周方向幅を基端側の周方向幅より小さくしてもよい。   Further, for example, as shown in FIG. 11, the distal end side that contacts the magnet 34 in each radial direction restricting portion 43, 44 has a substantially trapezoidal shape in which the circumferential width decreases toward the distal end portions 43 a, 44 a. The circumferential width of the distal end portions 43a and 44a may be smaller than the circumferential width on the proximal end side.

又、例えば、図12に示すように、各径方向規制部45,46において磁石34と当接する先端側の周方向の一方を切り欠いた形状として先端部45a,46aに向かうほど周方向幅が小さくなる略台形形状とすることで、先端部45a,46aの周方向幅を基端側の周方向幅より小さくしてもよい。尚、この例(図12参照)では、径方向外側における径方向規制部45と径方向内側における径方向規制部46とで切り欠く側を同じ(共に、図12中、時計回り側)としている。   In addition, for example, as shown in FIG. 12, the circumferential width is increased toward the distal end portions 45a and 46a as a shape in which one of the circumferential directions on the distal end side contacting the magnet 34 is notched in each radial direction restricting portion 45 and 46. The circumferential width of the distal end portions 45a and 46a may be made smaller than the circumferential width on the base end side by making the trapezoidal shape smaller. In this example (see FIG. 12), the notched sides of the radially restricting portion 45 on the radially outer side and the radially restricting portion 46 on the radially inner side are the same (both clockwise in FIG. 12). .

又、例えば、図13に示すように、変更してもよい。この例では、まず上記別例(図12参照)と同様に、径方向規制部47,48において磁石34と当接する先端側の周方向の一方を切り欠いた形状として先端部47a,48aに向かうほど周方向幅が小さくなる略台形形状とすることで、先端部47a,48aの周方向幅を基端側の周方向幅より小さくしている。そして、この例(図13参照)では、径方向外側における径方向規制部47の先端部47aの周方向幅が、径方向内側における径方向規制部48の先端部48aの周方向幅より大きくされている。このようにすると、例えば、ロータの回転時の磁石34の遠心力を受ける径方向外側において径方向規制部47の剛性を高くしながら、径方向内側の径方向規制部48において磁気抵抗の更なる増加、即ち漏れ磁束の更なる低減を図ることができる。即ち、このようにすると、遠心力が大きくなる高速回転型の埋込磁石型モータへの対応が容易となる。尚、この例(図13参照)では、径方向外側における径方向規制部47の切り欠く側(図13中、反時計回り側)と径方向内側における径方向規制部48の切り欠く側(図13中、時計回り側)とを異なるようにしている。又、この例(図13参照)では、径方向外側及び径方向内側の各径方向規制部47,48において先端部47a,48aの周方向幅を基端側の周方向幅より小さくするとしたが、径方向外側のみの径方向規制部の先端部の周方向幅を基端側の周方向幅と同じ(即ち周方向幅が径方向に沿って一定)としてもよい。このようにしても、径方向外側における径方向規制部の先端部の周方向幅を、径方向内側における径方向規制部48の先端部48aの周方向幅より大きくすることができる。即ち、上記したように、例えば、ロータの回転時の磁石34の遠心力を受ける径方向外側において径方向規制部の剛性を高くしながら、径方向内側の径方向規制部48において磁気抵抗の更なる増加、即ち漏れ磁束の更なる低減を図ることができる。   Further, for example, as shown in FIG. In this example, first, as in the other example (see FIG. 12), the radial direction restricting portions 47 and 48 are directed to the tip portions 47a and 48a as a shape in which one end in the circumferential direction on the tip side that contacts the magnet 34 is cut out. By adopting a substantially trapezoidal shape with a smaller circumferential width, the circumferential width of the tip portions 47a and 48a is made smaller than the circumferential width on the base end side. In this example (see FIG. 13), the circumferential width of the distal end portion 47a of the radial restricting portion 47 on the radially outer side is made larger than the circumferential width of the distal end portion 48a of the radial restricting portion 48 on the radially inner side. ing. In this way, for example, while increasing the rigidity of the radial restricting portion 47 on the radially outer side that receives the centrifugal force of the magnet 34 during rotation of the rotor, the magnetic resistance is further increased in the radially restricting portion 48 on the radially inner side. An increase, that is, a further reduction of leakage flux can be achieved. That is, in this way, it becomes easy to deal with a high-speed rotation embedded magnet type motor in which centrifugal force increases. In this example (see FIG. 13), the notched side (counterclockwise in FIG. 13) of the radially restricting portion 47 on the radially outer side and the notched side of the radially restricting portion 48 on the radially inner side (see FIG. 13). 13 in the clockwise direction). Further, in this example (see FIG. 13), the circumferential width of the distal end portions 47a, 48a is made smaller than the circumferential width of the base end side in each of the radially restricting portions 47, 48 on the radially outer side and radially inner side. The circumferential width of the distal end portion of the radially restricting portion only on the radially outer side may be the same as the circumferential width on the proximal end side (that is, the circumferential width is constant along the radial direction). Even in this case, the circumferential width of the distal end portion of the radially restricting portion on the radially outer side can be made larger than the circumferential width of the distal end portion 48a of the radially restricting portion 48 on the radially inner side. That is, as described above, for example, while the rigidity of the radial restricting portion is increased on the radially outer side that receives the centrifugal force of the magnet 34 during the rotation of the rotor, the magnetic resistance is further increased in the radially restricting portion 48 on the radially inner side. Increase, that is, the leakage flux can be further reduced.

尚、上記した第2の実施の形態(図9参照)における構成及びその別例(図10〜図13参照等)における構成は、第1の実施の形態における構成と組み合わせてもよい。例えば、第1の実施の形態の径方向規制部8d,8eの径方向の突出量を周方向延設部8b,8cの径方向の幅(長さ)より大きく設定してもよい。   Note that the configuration in the second embodiment (see FIG. 9) and the configuration in another example (see FIGS. 10 to 13 and the like) may be combined with the configuration in the first embodiment. For example, the radial protrusions of the radial restricting portions 8d and 8e of the first embodiment may be set larger than the radial width (length) of the circumferentially extending portions 8b and 8c.

・上記第1及び第2の実施の形態では、締結孔10,35の中心位置X1,X2が、磁石9,34が配設される径方向範囲H1,H2における径方向内側から40%の位置に設定されるとしたが、これに限定されず、36%以上で41%以下の他の位置に設定してもよい。又、締結孔10,35の中心位置X1,X2を、磁石9,34が配設される径方向範囲H1,H2における径方向内側から27%以上で52%以下(36%以上で41%以下を除く)の位置に設定してもよい。このようにしても、磁束の流れが良好となり、出力Sをほぼ最大に近い値(最大の値の99%以上)とすることができる。   In the first and second embodiments, the center positions X1 and X2 of the fastening holes 10 and 35 are positions 40% from the radially inner side in the radial ranges H1 and H2 where the magnets 9 and 34 are disposed. However, the present invention is not limited to this, and may be set to another position of 36% or more and 41% or less. Further, the center positions X1 and X2 of the fastening holes 10 and 35 are 27% or more and 52% or less (36% or more and 41% or less) from the radially inner side in the radial direction ranges H1 and H2 where the magnets 9 and 34 are disposed. It may be set to a position of Even if it does in this way, the flow of magnetic flux will become favorable and the output S can be made into the value (99% or more of the maximum value) near substantially maximum.

・上記第1及び第2の実施の形態では、全ての収容孔8a,33aにおける径方向外側端部及び径方向内側端部に対して周方向延設部8b,8c,33b,33cや径方向規制部8d,8e,33d,33eが形成されるとしたが、それらは、一部の収容孔に対して形成してもよいし、径方向外側端部のみ又は径方向内側端部のみに形成してもよい。   In the first and second embodiments, the circumferentially extending portions 8b, 8c, 33b, 33c and the radial direction with respect to the radially outer end and the radially inner end of all the receiving holes 8a, 33a The restricting portions 8d, 8e, 33d, and 33e are formed. However, they may be formed for a part of the receiving holes, or only at the radially outer end portion or only at the radially inner end portion. May be.

・上記第1及び第2の実施の形態では、ロータコア8,33は、コアシートが軸方向に積層されてなるとしたが、これに限定されず、他の方法にて形成されるもの(例えば磁性粉体を焼結した焼結コア)としてもよい。   In the first and second embodiments, the rotor cores 8 and 33 are formed by stacking the core sheets in the axial direction. However, the present invention is not limited to this, and the rotor cores 8 and 33 are formed by other methods (for example, magnetic A sintered core obtained by sintering powder may be used.

・上記第1及び第2の実施の形態のティース4の数や収容孔8a,33a及び磁石9,34の数等は、他の数に変更してもよい。
上記各実施の形態から把握できる技術的思想について、以下にその効果とともに記載する。
-You may change the number of the teeth 4 of the said 1st and 2nd embodiment, the number of accommodation holes 8a and 33a, the magnets 9 and 34, etc. to another number.
The technical idea that can be grasped from the above embodiments will be described below together with the effects thereof.

(イ)埋込磁石型回転電機の製造方法であって、前記肉薄規制コアシートにおける前記径方向規制部をプレス成形するプレス工程を備えたことを特徴とする。このようにすると、プレス工程にて、肉薄規制コアシートにおける前記径方向規制部がプレス成形されるので、径方向規制部に圧縮応力を発生させながら、肉薄規制コアシートを簡単に得ることができる。 (B) The method of producing a buried magnet type rotary electric machine, comprising the pressing step of press-forming said radially restricting portion in the thin regulating core sheet. In this way, since the radial restricting portion in the thin regulating core sheet is press-molded in the pressing step, it is possible to easily obtain the thin regulating core sheet while generating a compressive stress in the radial regulating portion. .

(ロ)前記径方向規制部の少なくとも1つは、前記磁石と当接する先端側がその先端部に向かうほど周方向幅が小さくなる略台形形状とされたことを特徴とする。同構成によれば、径方向規制部の少なくとも1つは、磁石と当接する先端部に向かうほど周方向幅が小さくなる略台形形状とされるため、前記磁石と当接する先端部の周方向幅が該先端部を有する径方向規制部の基端側の周方向幅より小さくされた径方向規制部を容易に得ることができる。 (B) at least one of the previous Ki径direction regulating portion, characterized in that as the circumferential width the magnet abutting the distal end side toward the distal end is a smaller substantially trapezoidal shape. According to this configuration, at least one of the radial direction restricting portions has a substantially trapezoidal shape in which the circumferential width decreases toward the tip portion that comes into contact with the magnet, and thus the circumferential width of the tip portion that comes into contact with the magnet. However, it is possible to easily obtain a radial restricting portion that is smaller than the circumferential width on the base end side of the radial restricting portion having the distal end portion .

第1の実施の形態における埋込磁石型モータのステータ及びロータの平面図。The top view of the stator and rotor of an interior magnet type motor in a 1st embodiment. (a)本実施の形態における規制コアシートの一部平面図。(b)本実施の形態における非規制コアシートの一部平面図。(A) The partial top view of the control core sheet in this Embodiment. (B) The partial top view of the non-regulation core sheet in this Embodiment. 本実施の形態におけるロータコアの分解斜視図。The exploded perspective view of the rotor core in this Embodiment. 本実施の形態におけるロータの断面図。Sectional drawing of the rotor in this Embodiment. 締結孔の中心位置−出力特性図。The center position of a fastening hole-an output characteristic view. 別例における肉薄規制コアシートの一部斜視図。The partial perspective view of the thin regulation core sheet in another example. 別例におけるロータコアの一部斜視図。The partial perspective view of the rotor core in another example. (a)〜(c)別例における径方向規制部を説明するための模式断面図。(A)-(c) The schematic cross section for demonstrating the radial direction control part in another example. 第2の実施の形態における埋込磁石型モータのステータ及びロータの平面図。The top view of the stator and rotor of an interior magnet type motor in a 2nd embodiment. (a)(b)別例におけるロータの一部拡大平面図。(A) (b) The partial enlarged plan view of the rotor in another example. 別例におけるロータの一部拡大平面図。The partial enlarged plan view of the rotor in another example. 別例におけるロータの一部拡大平面図。The partial enlarged plan view of the rotor in another example. 別例におけるロータの一部拡大平面図。The partial enlarged plan view of the rotor in another example.

符号の説明Explanation of symbols

2,31…ロータ、8,21,33…ロータコア、8a,33a…収容孔、8b,8c,33b,33c…周方向延設部、8d,8e,21a,21b,23〜25,33d,33e,41〜48…径方向規制部、9,34…磁石、10,35…締結孔、11…規制コアシート、11a,12a…積層前収容孔、11b,12b…積層前締結孔、12…非規制コアシート、22…肉薄規制コアシート、41a〜48a,41b,42b…先端部、X1,X2…中心位置、H1,H2…径方向範囲。   2, 31 ... rotor, 8, 21, 33 ... rotor core, 8a, 33a ... accommodation hole, 8b, 8c, 33b, 33c ... circumferentially extending portion, 8d, 8e, 21a, 21b, 23-25, 33d, 33e , 41 to 48 ... radial restriction part, 9, 34 ... magnet, 10, 35 ... fastening hole, 11 ... restriction core sheet, 11a, 12a ... pre-stacking accommodation hole, 11b, 12b ... pre-stacking fastening hole, 12 ... non Restriction core sheet, 22... Thin restriction core sheet, 41a to 48a, 41b, 42b... Tip, X1, X2... Center position, H1, H2.

Claims (8)

軸方向に貫通するとともに径方向に延びる収容孔が周方向に複数形成されたロータコアを有し前記収容孔内に磁石が配設されたロータを備えた埋込磁石型回転電機であって、
前記ロータコアには、その前記収容孔における径方向外側端部及び径方向内側端部の内の少なくとも1つに、前記磁石の周方向端部と対応した位置より周方向外側に延びる周方向延設部が形成され、
前記ロータコアには、その前記収容孔の周方向中心と対応した位置に、前記磁石の周方向幅より小さい周方向幅で前記磁石の径方向に当接すべく径方向に延びて該磁石の径方向の移動を規制する径方向規制部が形成され、
前記ロータコアは、積層されて前記収容孔となる積層前収容孔が形成されたコアシートが軸方向に複数積層されてなるものであって、
前記コアシートは、他の部分より薄い前記径方向規制部が形成された肉薄規制コアシートを含むことを特徴とする埋込磁石型回転電機。
An embedded magnet type rotating electrical machine including a rotor core that has a rotor core that penetrates in the axial direction and extends in the circumferential direction and that has a plurality of radially extending receiving holes, the magnet being disposed in the receiving hole,
In the rotor core, at least one of a radially outer end and a radially inner end of the accommodation hole is extended in a circumferential direction extending outward in the circumferential direction from a position corresponding to the circumferential end of the magnet. Part is formed,
The rotor core has at its corresponding the circumferential center of the accommodation hole position, size of the magnet in the circumferential width smaller than a circumferential width extending radially so as to abut the radial direction of the magnet of the magnet A radial direction restricting portion that restricts movement in the direction is formed,
The rotor core is formed by laminating a plurality of core sheets in the axial direction in which pre-lamination accommodation holes that are laminated to serve as the accommodation holes are formed,
The core sheet includes an embedded magnet-type rotating electrical machine characterized in that the core sheet includes a thin regulation core sheet in which the radial regulation part is thinner than other parts .
請求項1に記載の埋込磁石型回転電機において、
前記径方向規制部は、前記周方向延設部の径方向幅より大きく径方向に延びることを特徴とする埋込磁石型回転電機。
In the interior magnet type rotating electric machine according to claim 1 ,
The embedded magnet type rotating electrical machine, wherein the radial restricting portion extends in a radial direction larger than a radial width of the circumferentially extending portion.
請求項1又は2に記載の埋込磁石型回転電機において、
前記径方向規制部の少なくとも1つは、前記磁石と当接する先端部の周方向幅が該先端部を有する径方向規制部の基端側の周方向幅より小さくされたことを特徴とする埋込磁石型回転電機。
The interior permanent magnet type electric rotating machine according to claim 1 or 2 ,
At least one of the radial direction restricting portions has a buried width characterized in that a circumferential width of a distal end portion in contact with the magnet is smaller than a circumferential width of a proximal end side of the radial direction restricting portion having the distal end portion. Built-in magnet type rotating electric machine.
請求項1乃至のいずれか1項に記載の埋込磁石型回転電機において、
前記径方向規制部は、前記収容孔における径方向外側端部及び径方向内側端部の両方に形成され、径方向外側端部において前記磁石と当接する先端部の周方向幅が径方向内側端部において前記磁石と当接する先端部の周方向幅より大きくされたことを特徴とする埋込磁石型回転電機。
In the interior magnet type rotating electric machine according to any one of claims 1 to 3 ,
The radial restricting portion is formed at both the radially outer end and the radially inner end of the receiving hole, and the circumferential width of the tip that contacts the magnet at the radially outer end is the radially inner end. An embedded magnet type rotating electrical machine characterized in that it is made larger than the circumferential width of the tip portion in contact with the magnet.
請求項又はに記載の埋込磁石型回転電機において、
前記径方向規制部の少なくとも1つは、前記磁石と当接する先端側が軸方向から見て曲線形状とされたことを特徴とする埋込磁石型回転電機。
In the interior magnet type rotating electric machine according to claim 3 or 4 ,
At least one of the radial direction restricting portions has a curved shape when viewed from the axial direction at the tip end side in contact with the magnet.
請求項に記載の埋込磁石型回転電機において、
前記径方向規制部の少なくとも1つは、軸方向から見て前記磁石と複数点で点接触するように、前記磁石と当接する先端側が軸方向から見て曲線形状とされたことを特徴とする埋込磁石型回転電機。
In the interior magnet type rotating electric machine according to claim 5 ,
At least one of the radial direction restricting portions has a curved shape when viewed from the axial direction so that the front end side in contact with the magnet is point-contacted at a plurality of points when viewed from the axial direction. Embedded magnet type rotating electrical machine.
請求項1乃至のいずれか1項に記載の埋込磁石型回転電機において、
前記ロータコアには、該ロータコアの周方向において前記収容孔と交互に形成されるとともに該ロータコアの軸方向に貫通する締結孔が形成され、該締結孔は、前記ロータコアを構成する前記コアシートが軸方向に複数積層された状態で各コアシートを軸方向に締結する締結部材が挿通される孔であって、
前記ロータコアは、積層されて前記収容孔となる積層前収容孔と積層されて前記締結孔となる積層前締結孔とが周方向に交互に形成された前記コアシートが軸方向に複数積層されてなり、積層された各コアシートが前記締結孔に挿通された前記締結部材によって締結されてなるものであって、
前記締結孔は、軸方向から見た中心位置が、前記磁石が配設される径方向範囲における径方向内側から27%以上で52%以下の位置に設定されたことを特徴とする埋込磁石型回転電機。
The interior permanent magnet type rotating electrical machine according to any one of claims 1 to 6 ,
The rotor core is formed with fastening holes that are formed alternately with the receiving holes in the circumferential direction of the rotor core and penetrate in the axial direction of the rotor core, and the fastening holes are formed by the core sheet constituting the rotor core. It is a hole through which a fastening member for fastening each core sheet in the axial direction in a state where a plurality of layers are stacked in the direction,
The rotor core, said core sheets and stacked before fastening holes are laminated and stacked becomes the accommodating hole before lamination housing hole serving as the fastening holes are formed alternately in the circumferential direction is stacked in the axial direction becomes, a shall such are fastened by the fastening member each core sheet is inserted into the fastening holes that are stacked,
The embedded magnet is characterized in that the center position when viewed from the axial direction is set at a position of 27% or more and 52% or less from the radially inner side in a radial range in which the magnet is disposed. Type rotating electric machine.
請求項に記載の埋込磁石型回転電機において、
前記締結孔は、軸方向から見た中心位置が、前記磁石が配設される径方向範囲における径方向内側から36%以上で41%以下の位置に設定されたことを特徴とする埋込磁石型回転電機。
The embedded magnet type rotating electric machine according to claim 7 ,
The fastening hole has a center position as viewed from the axial direction set at a position of 36% or more and 41% or less from a radially inner side in a radial range in which the magnet is disposed. Type rotating electric machine.
JP2006214937A 2006-04-19 2006-08-07 Embedded magnet type rotating electric machine Expired - Fee Related JP4842731B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006214937A JP4842731B2 (en) 2006-04-19 2006-08-07 Embedded magnet type rotating electric machine
US11/736,474 US7772735B2 (en) 2006-04-19 2007-04-17 Embedded magnet type rotating electric machine

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2006115939 2006-04-19
JP2006115939 2006-04-19
JP2006154807 2006-06-02
JP2006154807 2006-06-02
JP2006214937A JP4842731B2 (en) 2006-04-19 2006-08-07 Embedded magnet type rotating electric machine

Publications (2)

Publication Number Publication Date
JP2008011692A JP2008011692A (en) 2008-01-17
JP4842731B2 true JP4842731B2 (en) 2011-12-21

Family

ID=39069357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006214937A Expired - Fee Related JP4842731B2 (en) 2006-04-19 2006-08-07 Embedded magnet type rotating electric machine

Country Status (1)

Country Link
JP (1) JP4842731B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5373370B2 (en) * 2007-11-28 2013-12-18 アスモ株式会社 Embedded magnet type motor
JP2010004722A (en) * 2008-06-23 2010-01-07 Fanuc Ltd Magnet-embedded motor
JP5329902B2 (en) * 2008-10-10 2013-10-30 アスモ株式会社 Rotor structure of rotating electrical machine
JP2010154587A (en) * 2008-12-24 2010-07-08 Mitsubishi Electric Corp Permanent magnet embedded rotor, magnetic plate, and method of manufacturing the permanent magnet embedded rotor
JP5274302B2 (en) * 2009-02-24 2013-08-28 三菱電機株式会社 Rotating electric machine
CN102377257B (en) * 2010-08-10 2016-03-30 德昌电机(深圳)有限公司 Brushless electric machine
US10027190B2 (en) 2011-08-26 2018-07-17 General Electric Company Permanent magnet rotor having a combined laminated stack and method of assembly
US9627936B2 (en) 2011-12-23 2017-04-18 Mitsubishi Electric Corporation Permanent magnet motor
JP5858232B2 (en) * 2012-02-17 2016-02-10 日本電産株式会社 Rotor core, motor, and motor manufacturing method
CN104885335B (en) * 2013-01-31 2017-05-24 马渊马达株式会社 Rotor and motor
WO2014128863A1 (en) * 2013-02-20 2014-08-28 三菱電機株式会社 Electric motor having embedded permanent magnets
US10075030B2 (en) 2015-08-11 2018-09-11 Genesis Robotics & Motion Technologies Canada, Ulc Electric machine
JP2022068822A (en) * 2020-10-22 2022-05-10 株式会社ミツバ Brushless motor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09294344A (en) * 1996-04-26 1997-11-11 Meidensha Corp Rotor of permanent magnet type rotating machine
JP2001157396A (en) * 1999-11-29 2001-06-08 Mitsubishi Electric Corp Manufacturing method of rotor of rotary electric machine and rotor core
JP2006158008A (en) * 2004-11-25 2006-06-15 Asmo Co Ltd Permanent magnet embedded rotor and dynamo-electric machine

Also Published As

Publication number Publication date
JP2008011692A (en) 2008-01-17

Similar Documents

Publication Publication Date Title
JP4842731B2 (en) Embedded magnet type rotating electric machine
US7772735B2 (en) Embedded magnet type rotating electric machine
JP6125779B2 (en) Electric motor
JP5739651B2 (en) Rotor and motor
US10862353B2 (en) Axial gap motor rotor and axial gap motor
JP5231082B2 (en) Rotating electrical machine rotor
JP2012120326A (en) Interior magnet rotor, motor, and method for assembling motor
JP2013230047A (en) Rotor for motor, and motor
CN210041478U (en) Permanent magnet rotor
JP5601903B2 (en) motor
JP2010075027A (en) Stator core and motor
WO2017195498A1 (en) Rotor and rotary electric machine
JP5660058B2 (en) Core block, stator, rotating electric machine, and manufacturing method of core block
CN107580743B (en) Improved stator for an electric machine and electric machine
CN106663972B (en) Motor
JP5571480B2 (en) Manufacturing method of motor
JP5611680B2 (en) motor
JP5248048B2 (en) Rotating electric machine rotor and rotating electric machine
JP2008312321A (en) Rotor and rotary electric machine
JP5491298B2 (en) Rotor, motor, and method of manufacturing rotor
US20140084729A1 (en) Electric rotating machine
JP5449715B2 (en) motor
JP6826412B2 (en) Synchronous reluctance type rotary electric machine
JP2011030320A (en) Dynamo-electric machine and method of manufacturing the same
WO2010110150A1 (en) Permanent magnet-embedded motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111006

R150 Certificate of patent or registration of utility model

Ref document number: 4842731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees