JP4829147B2 - Air conditioning equipment - Google Patents

Air conditioning equipment Download PDF

Info

Publication number
JP4829147B2
JP4829147B2 JP2007051523A JP2007051523A JP4829147B2 JP 4829147 B2 JP4829147 B2 JP 4829147B2 JP 2007051523 A JP2007051523 A JP 2007051523A JP 2007051523 A JP2007051523 A JP 2007051523A JP 4829147 B2 JP4829147 B2 JP 4829147B2
Authority
JP
Japan
Prior art keywords
cooling
refrigerator
free
temperature
cooling tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007051523A
Other languages
Japanese (ja)
Other versions
JP2008215679A (en
Inventor
和政 島田
茂 水島
哲 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2007051523A priority Critical patent/JP4829147B2/en
Publication of JP2008215679A publication Critical patent/JP2008215679A/en
Application granted granted Critical
Publication of JP4829147B2 publication Critical patent/JP4829147B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/54Free-cooling systems

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、空気調和設備に係り、空気調和設備の冷房用冷水を冷凍機を使わず、冷却塔だけによって製造する(フリークーリング)期間を長くする技術に関する。
周知のように、半導体製造工場や電算室は年間を通して冷房を行う。これらを冷房する時の冷水は、基本的には冷凍機によって製造するが、中間期や冬季の外気湿球温度が低い場合に省エネルギーを図るため、冷却塔で予冷水の冷却が一部可能になり(以後、フリークーリングという)、その予冷水を予備冷却に用いる。しかし、冷凍機の代替にフリークーリングを用いると、水温7℃を確保するには運転期間がごくわずかであり、実質省エネルギーが図れず、イニシャルコストのみ増える(外気湿球温度は3℃以下が必要)。そこで、空調機内に予冷コイルと冷水コイルを前段と後段に配置し、前段の予冷コイルでは搬送動力と冷凍機削減動力との兼ね合いで決めた温度18℃以下の冷却水で20℃以下に予冷水を冷却し、予冷水で空気を予備冷却し、さらに後段の冷水コイルで冷凍機による冷水で冷却することをフリークーリング運転として行っていた(例えば、特許文献1〜特許文献5を参照)。
The present invention relates to an air conditioner, and more particularly to a technique for prolonging a period (free cooling) in which cooling water for cooling the air conditioner is manufactured only by a cooling tower without using a refrigerator.
As is well known, semiconductor manufacturing factories and computer rooms cool throughout the year. Chilled water for cooling these is basically produced by a refrigerator, but in order to save energy when the outside air wet bulb temperature is low during the intermediate period and winter, some cooling of the precooled water is possible in the cooling tower. (Hereinafter referred to as free cooling), the precooled water is used for precooling. However, if free cooling is used as an alternative to a refrigerator, the operation period is very short to ensure a water temperature of 7 ° C, energy savings cannot be achieved, and only the initial cost increases (the ambient wet bulb temperature must be 3 ° C or less) ). Therefore, a pre-cooling coil and a cold water coil are arranged in the front and rear stages in the air conditioner, and the pre-cooling coil in the front stage is pre-cooled to a temperature of 18 ° C. or less with cooling water having a temperature of 18 ° C. or less determined in accordance with the conveyance power and the chiller reduction power. The air is precooled with precooled water, and further cooled with chilled water from a refrigerator with a chilled water coil at the subsequent stage as a free cooling operation (see, for example, Patent Documents 1 to 5).

従来のフリークーリング運転を行う空気調和設備を図15〜図19によって説明する。
空気調和設備は、空調機101内に予冷コイル102を設け、予冷コイル102に流す予冷水を、予冷水循環路130を介して循環ポンプ(P4)103で搬送し、熱交換器104にて冷却する構成とし、この熱交換器104の1次側に冷却水をフリークーリング用冷却水循環路131を介して流すため、フリークーリング用の冷却塔(CT3)105とその循環ポンプ(P3)106とを設け、外気により冷却している。また、予冷コイル102の後段に冷水コイル107を設置し、その冷水コイル107に流す冷水を、冷水循環路132を介して第一の冷凍機(R1)108、第二の冷凍機(R2)109により冷却し、そのポンプ(CP1)110、ポンプ(CP2)111により往きヘッダ112および還りヘッダ113を経由して搬送している。また、第一の冷凍機(R1)108には、第一の冷凍機用の冷却塔(CT1)114と循環ポンプ(P1)116とが冷却水循環路133を介して連絡している。また、第二の冷凍機(R2)109には、第二の冷凍機用の冷却塔(CT2)115と循環ポンプ(P2)117とが冷却水循環路134を介して連絡している。また、空調機101は、例えば、電算室118の空調流路に設置されている。
A conventional air-conditioning facility that performs a free cooling operation will be described with reference to FIGS.
In the air conditioning equipment, a precooling coil 102 is provided in the air conditioner 101, and precooling water flowing through the precooling coil 102 is conveyed by a circulation pump (P 4) 103 through a precooling water circulation path 130 and cooled by a heat exchanger 104. A cooling tower (CT3) 105 for free cooling and its circulation pump (P3) 106 are provided to flow the cooling water to the primary side of the heat exchanger 104 via the cooling water circulation path 131 for free cooling. Cooling by outside air. A chilled water coil 107 is installed after the precooling coil 102, and chilled water flowing through the chilled water coil 107 is supplied to the first refrigerator (R 1) 108 and the second refrigerator (R 2) 109 via the chilled water circulation path 132. And is conveyed by the pump (CP1) 110 and the pump (CP2) 111 via the forward header 112 and the return header 113. The first refrigerator (R1) 108 is connected to a cooling tower (CT1) 114 for the first refrigerator and a circulation pump (P1) 116 via a cooling water circulation path 133. The second refrigerator (R2) 109 is connected to a cooling tower (CT2) 115 for the second refrigerator and a circulation pump (P2) 117 via a cooling water circulation path 134. Moreover, the air conditioner 101 is installed in the air conditioning flow path of the computer room 118, for example.

次に、この空気調和設備によって、例えば、電算機119が設置されている電算機室120の室温26℃、床下空間121に吹き出す空気の温度20℃、天井空間122に還る空気の温度27℃となる温度環境を維持する場合について説明する。
空調機101の後段の冷水コイル107には、ポンプ(CP1)110によって往きヘッダ112から7℃の冷水が、冷水循環路132の往き路132aを介して搬送され、空調機101に戻ってくる27℃の室内還り空気と熱交換して空気を20℃に冷却する。20℃の空気は、空調機101によって電算室118の床下空間121から電算機119が設置されている電算機室120に搬送され、天井空間122を介して空調機101が設置されている空調室123に戻ってくる。後段の冷水コイル107にて熱交換した冷水は、14℃に昇温して冷水循環路132の還り路132bを介して還りヘッダ113に還ってくる。そして、フリークーリングを行う場合には、予冷コイル102に20℃の冷却水を搬送できるように、フリークーリング用の冷却塔(CT3)105、循環ポンプ(P3)106および循環ポンプ(P4)103を運転して熱交換器104に18℃の冷却水を搬送する。
Next, with this air conditioning equipment, for example, the room temperature of the computer room 120 in which the computer 119 is installed is 26 ° C., the temperature of the air blown into the underfloor space 121 is 20 ° C., and the temperature of the air returning to the ceiling space 122 is 27 ° C. A case where the temperature environment is maintained will be described.
The chilled water coil 107 at the rear stage of the air conditioner 101 is fed with cold water of 7 ° C. from the forward header 112 by the pump (CP1) 110 via the forward path 132a of the cold water circulation path 132 and returns to the air conditioner 101 27 The air is cooled to 20 ° C. by exchanging heat with the indoor return air at 0 ° C. The air at 20 ° C. is conveyed by the air conditioner 101 from the underfloor space 121 of the computer room 118 to the computer room 120 where the computer 119 is installed, and the air conditioner room where the air conditioner 101 is installed via the ceiling space 122. Return to 123. The chilled water heat-exchanged by the chilled water coil 107 at the subsequent stage is heated to 14 ° C. and returned to the return header 113 via the return path 132 b of the chilled water circulation path 132. When free cooling is performed, a cooling tower (CT3) 105, a circulation pump (P3) 106, and a circulation pump (P4) 103 for free cooling are provided so that cooling water at 20 ° C. can be conveyed to the precooling coil 102. Operate and carry 18 ° C. cooling water to heat exchanger 104.

また、外気湿球温度計にて測定された外気湿球温度T1は、温度調節器TIC1を介してコントローラ124に入力される。フリークーリング用の冷却塔(CT3)105内の水温T6は水温計にて測定され、温度調節器TIC6を介してコントローラ124に入力される。コントローラ124は、フリークーリング用の冷却塔(CT3)105、第二の冷凍機用の冷却塔(CT2)115のファン、循環ポンプ(P4)103の運転を制御する。予冷水循環路130の予冷水の熱交換器104への還り路130bの温度T2は、水温計で測定され、温度調節器TIC2を介してコントローラ124に入力される。予冷水の熱交換器104への還り路130bの温度T2が設定温度の下限値を下回れば、循環ポンプ(P4)103の電源周波数を下げ回転数を減少させ流量を少なくする。   Further, the outdoor air wet bulb temperature T1 measured by the outdoor air wet bulb thermometer is input to the controller 124 via the temperature controller TIC1. The water temperature T6 in the cooling tower (CT3) 105 for free cooling is measured by a water temperature gauge and input to the controller 124 via the temperature controller TIC6. The controller 124 controls the operation of the cooling tower (CT3) 105 for free cooling, the fan of the cooling tower (CT2) 115 for the second refrigerator, and the circulation pump (P4) 103. The temperature T2 of the return path 130b of the precooling water circulation path 130 to the heat exchanger 104 of the precooling water is measured by a water thermometer and input to the controller 124 via the temperature controller TIC2. If the temperature T2 of the return path 130b to the heat exchanger 104 of the precooling water falls below the lower limit value of the set temperature, the power supply frequency of the circulation pump (P4) 103 is lowered to reduce the rotational speed and reduce the flow rate.

また、予冷水循環路130の予冷水の予冷コイル102への往き路130aには、バルブ(VE2)126が設けてある。バルブ(VE2)126は温度調節器TIC7によって比例制御される。温度調節器TIC7は空調機101内の予冷水出口空気温度T7を温度計からの測定値に基づいてバルブ(VE2)126の開度を制御する。
第一の冷凍機(R1)108、第二の冷凍機(R2)109から空調機101の冷却コイル107に搬送される冷水循環路132の往き路132aには、バルブ(VE1)125が設けてある。バルブ(VE1)125は、温度調節器TIC5によって比例制御される。温度調節器TIC5は、床下空間121内に配置した温度計によって測定される吹出温度T5に基づいてバルブ(VE1)125の開度を制御する。
In addition, a valve (VE2) 126 is provided on the outgoing path 130a of the precooling water circulation path 130 to the precooling coil 102 of the precooling water. The valve (VE2) 126 is proportionally controlled by the temperature controller TIC7. The temperature controller TIC7 controls the opening degree of the valve (VE2) 126 based on the precooled water outlet air temperature T7 in the air conditioner 101 based on the measured value from the thermometer.
A valve (VE1) 125 is provided on the outgoing path 132a of the chilled water circulation path 132 conveyed from the first refrigerator (R1) 108 and the second refrigerator (R2) 109 to the cooling coil 107 of the air conditioner 101. is there. The valve (VE1) 125 is proportionally controlled by the temperature controller TIC5. The temperature controller TIC5 controls the opening degree of the valve (VE1) 125 based on the blowing temperature T5 measured by the thermometer arranged in the underfloor space 121.

第一の冷凍機(R1)108、第二の冷凍機(R2)109から空調機101の冷却コイル107に搬送される冷水の冷水循環路132には、往き路132aに1つの水温計、還り路132bに流量計F3と水温計とが設けてある。往き路132aの水温計の測定値T3は、TIC3を介して熱量演算コントローラ127に入力される。還り路132bの流量計F3の測定値は、流量調節器FIC3を介して熱量演算コントローラ127に入力される。還り路132bの水温計の測定値T4は、TIC4を介して熱量演算コントローラ127に入力される。熱量演算コントローラ127は、第一の冷凍機(R1)108、第二の冷凍機(R2)109、第一の冷凍機用の冷却塔(CT1)114、第二の冷凍機用の冷却塔(CT2)115のファン、ポンプ(CP1)110、ポンプ(CP2)111の運転を制御する。   In the cold water circulation path 132 of the chilled water conveyed from the first refrigerator (R1) 108 and the second refrigerator (R2) 109 to the cooling coil 107 of the air conditioner 101, one water temperature gauge is returned to the outgoing path 132a. A flow meter F3 and a water temperature meter are provided in the path 132b. The measured value T3 of the water thermometer on the outgoing path 132a is input to the calorific value calculation controller 127 via the TIC3. The measured value of the flow meter F3 on the return path 132b is input to the calorific value calculation controller 127 via the flow rate controller FIC3. The measured value T4 of the thermometer on the return path 132b is input to the calorific value calculation controller 127 via the TIC4. The calorific value calculation controller 127 includes a first refrigerator (R1) 108, a second refrigerator (R2) 109, a cooling tower (CT1) 114 for the first refrigerator, and a cooling tower ( CT2) The operation of the fan 115, the pump (CP1) 110, and the pump (CP2) 111 is controlled.

次に、図17に基づいて、空気調和設備の動作について説明する。
先ず、空調機101を運転し、第一の冷凍機(R1)108、第一の冷凍機用の冷却塔(CT1)114のファン、冷却塔用循環ポンプ(P1)116、循環ポンプ(CT1)110を運転する(ステップS100,S101)。
次に、電算室118の床下空間121の温度計にて空調機101から吹き出される空気の吹出温度T5を測定し、温度調節器TIC5が設定吹出温度となるようにバルブ(VE1)125を比例制御する(ステップS102)。
Next, based on FIG. 17, operation | movement of an air conditioning installation is demonstrated.
First, the air conditioner 101 is operated, the first refrigerator (R1) 108, the cooling tower (CT1) 114 fan for the first refrigerator, the cooling tower circulation pump (P1) 116, and the circulation pump (CT1). 110 is operated (steps S100 and S101).
Next, the temperature T5 of the air blown from the air conditioner 101 is measured with the thermometer in the underfloor space 121 of the computer room 118, and the valve (VE1) 125 is proportionally adjusted so that the temperature controller TIC5 becomes the set blowing temperature. Control (step S102).

次に、冷水循環路132の往き路132aの水温T3と還り路132bの水温T4と流量計F3で測定した流量Qによって、熱量q=Q(T3−T4)(kcal/h)を求める。そして、得られた熱量qが設定熱量以上か否かの判断を熱量演算コントローラ127が行う(ステップS103)。設定熱量未満の場合には、ステップS101に戻り、設定熱量以上であると判断された場合には、次にステップS104へ進む。   Next, the heat quantity q = Q (T3−T4) (kcal / h) is obtained from the water temperature T3 of the outgoing path 132a of the cold water circulation path 132, the water temperature T4 of the return path 132b, and the flow rate Q measured by the flowmeter F3. Then, the calorific value calculation controller 127 determines whether or not the obtained calorie q is equal to or greater than the set calorie (step S103). If it is less than the set heat amount, the process returns to step S101, and if it is determined that the heat quantity is equal to or greater than the set heat amount, the process proceeds to step S104.

次に、外気湿球温度計が測定した外気湿球温度T1を温度調節器TIC1を介してコントローラ124に入力する。コントローラ124では、外気湿球温度T1が5℃未満か否かの判断を行う(ステップS104)。外気湿球温度T1が5℃以上の場合には、ステップS113へ進み、外気湿球温度T1が5℃未満の場合には、ステップS105へ進む。
次に、外気湿球温度T1が5℃以下の場合には、フリークーリング用の冷却塔(CT3)105のファンを運転し、循環ポンプ(P3)106と循環ポンプ(P4)103とを運転する(ステップS105)。
Next, the outside air wet bulb temperature T1 measured by the outside air wet bulb thermometer is input to the controller 124 via the temperature controller TIC1. The controller 124 determines whether or not the outdoor wet bulb temperature T1 is less than 5 ° C. (step S104). If the outdoor wet bulb temperature T1 is 5 ° C. or higher, the process proceeds to step S113, and if the outdoor wet bulb temperature T1 is less than 5 ° C., the process proceeds to step S105.
Next, when the outside air wet bulb temperature T1 is 5 ° C. or less, the fan of the cooling tower (CT3) 105 for free cooling is operated, and the circulation pump (P3) 106 and the circulation pump (P4) 103 are operated. (Step S105).

次に、空調機101の予冷コイル102からの出口空気温度T7が設定予冷水出口空気温度になるように温度調節器TIC7がバルブ(VE2)126を比例制御する(ステップS106)。
次に、フリークーリング用の冷却塔(CT3)105の冷却水温T6が5℃未満か否かの判断を行う(ステップS107)。冷却水温T6が5℃未満の場合には、フリークーリング用の冷却塔(CT3)105のファンを停止する(ステップS108)。冷却水温T6が5℃以上の場合には、ステップS104に戻る。
Next, the temperature controller TIC7 proportionally controls the valve (VE2) 126 so that the outlet air temperature T7 from the precooling coil 102 of the air conditioner 101 becomes the preset precooled water outlet air temperature (step S106).
Next, it is determined whether or not the cooling water temperature T6 of the cooling tower (CT3) 105 for free cooling is lower than 5 ° C. (step S107). When the cooling water temperature T6 is less than 5 ° C., the fan of the cooling tower (CT3) 105 for free cooling is stopped (step S108). When the cooling water temperature T6 is 5 ° C. or higher, the process returns to step S104.

次に、フリークーリング用の冷却塔(CT3)105の冷却水温T6が5℃以上か否かの判断を行う(ステップS109)。冷却水温T6が5℃未満の場合には、ステップS108に戻る。
次に、外気湿球温度T1が5℃+0.5℃以上か否かの判断を行う(ステップS110)。外気湿球温度T1が5℃+0.5℃未満の場合には、ステップS105に戻る。
Next, it is determined whether or not the cooling water temperature T6 of the cooling tower (CT3) 105 for free cooling is 5 ° C. or higher (step S109). When the cooling water temperature T6 is less than 5 ° C., the process returns to step S108.
Next, it is determined whether or not the outdoor wet bulb temperature T1 is 5 ° C. + 0.5 ° C. or higher (step S110). If the outdoor wet bulb temperature T1 is less than 5 ° C. + 0.5 ° C., the process returns to step S105.

次に、フリークーリング用の冷却塔(CT3)105のファン、循環ポンプ(P3)106および循環ポンプ(P4)103を停止する(ステップS111)。
次に、空調機101を停止するか否かの判断を行う(ステップS112)。停止する場合には、ステップS117に進む。停止しない場合には、ステップS104の否定と同じく、第二の冷凍機(R2)109、第二の冷凍機用の冷却塔(CT2)115のファン、循環ポンプ(P2)117、循環ポンプ(CP2)111を運転する(ステップS113)。
Next, the fan of the cooling tower (CT3) 105 for free cooling, the circulation pump (P3) 106, and the circulation pump (P4) 103 are stopped (step S111).
Next, it is determined whether to stop the air conditioner 101 (step S112). In the case of stopping, the process proceeds to step S117. If not stopped, as in the negative of step S104, the second refrigerator (R2) 109, the fan of the cooling tower (CT2) 115 for the second refrigerator, the circulation pump (P2) 117, the circulation pump (CP2 ) 111 is operated (step S113).

次に、熱量qが設定値以下か否かの判断を行う(ステップS114)。熱量が設定値以上の場合には、ステップS104に戻る。
次に、熱量が設定値以下の場合には、第二の冷凍機(R2)109、第二の冷凍機用の冷却塔(CT2)115のファン、循環ポンプ(P2)117、循環ポンプ(CP2)111を停止する(ステップS115)。
Next, it is determined whether the heat quantity q is equal to or less than a set value (step S114). If the amount of heat is greater than or equal to the set value, the process returns to step S104.
Next, when the amount of heat is equal to or less than the set value, the second refrigerator (R2) 109, the fan of the cooling tower (CT2) 115 for the second refrigerator, the circulation pump (P2) 117, the circulation pump (CP2) ) 111 is stopped (step S115).

次に、空調機101を停止するか否かの判断を行う(ステップS116)。停止する場合には、ステップS117に進む。停止しない場合には、ステップS103に戻る。
次に、空調機101を停止し、第一の冷凍機(R1)108、第一の冷凍機用の冷却塔(CT1)114のファン、循環ポンプ(P1)116、循環ポンプ(CP1)110を停止する(ステップS117、118)。
Next, it is determined whether or not to stop the air conditioner 101 (step S116). In the case of stopping, the process proceeds to step S117. When not stopping, it returns to step S103.
Next, the air conditioner 101 is stopped, and the first refrigerator (R1) 108, the fan of the cooling tower (CT1) 114 for the first refrigerator, the circulation pump (P1) 116, and the circulation pump (CP1) 110 are turned on. Stop (steps S117 and 118).

図18に基づいて夏季、中間期の動作を説明する。ここで、夏季は外気湿球温度が13℃以上(東京の気象データでは年間4360時間)、中間期は外気湿球温度が5℃以上13℃未満(東京の気象データでは年間2100時間)とした。なお、ここでは、フリークーリング用の冷却塔(CT3)105によるフリークーリングを行わないので、フリークーリング用の冷却塔(CT3)105、循環ポンプ(P3)106、熱交換器104、循環ポンプ(P4)103、予冷コイル102は省略されている。   Based on FIG. 18, the operation in the summer and intermediate periods will be described. Here, the outdoor wet bulb temperature was 13 ° C or higher in summer (4360 hours per year for Tokyo weather data), and the outdoor wet bulb temperature was 5 ° C or higher and less than 13 ° C (2100 hours per year for Tokyo meteorological data) in the intermediate period. . Here, since free cooling is not performed by the free cooling cooling tower (CT3) 105, the free cooling cooling tower (CT3) 105, the circulation pump (P3) 106, the heat exchanger 104, the circulation pump (P4) ) 103, the pre-cooling coil 102 is omitted.

この季節には、フリークーリング用の冷却塔(CT3)105での冷却が、設定の水温18℃以下に冷却できない外気湿球温度T1となるので、ステップS113へ進み、フリークーリング用の冷却塔(CT3)105および循環ポンプ(P3)106は停止し、循環ポンプ(P4)103も停止する。夏季など室内熱負荷が大きくなるので、この冷却のためさらに空調機101の後段の冷水コイル107で予冷分の冷却も無くなるので、今まで運転していた第一の冷凍機(R1)108、ポンプ(CP1)110の他に第二の冷凍機(R2)109、ポンプ(CP2)111を運転し、後段の冷却コイル107の水量を増やす。   In this season, the cooling in the cooling tower (CT3) 105 for free cooling becomes the outside wet bulb temperature T1 that cannot be cooled below the set water temperature of 18 ° C., so the process proceeds to step S113 and the cooling tower for free cooling ( CT3) 105 and circulation pump (P3) 106 are stopped, and circulation pump (P4) 103 is also stopped. Since the indoor heat load increases in summer and the like, the cooling of the pre-cooled portion is further eliminated by the chilled water coil 107 at the rear stage of the air conditioner 101 for this cooling. Therefore, the first refrigerator (R1) 108, which has been operated so far, the pump In addition to (CP1) 110, the second refrigerator (R2) 109 and the pump (CP2) 111 are operated to increase the amount of water in the subsequent cooling coil 107.

図19に基づいて冬季の動作を説明する。ここで、冬季は外気湿球温度が5℃未満(東京の気象データでは年間2300時間)とした。
この季節では、冷却水の設定水温18℃以下の外気湿球温度T1となるので、ステップ105へ進み、フリークーリング用の冷却塔(CT3)105と循環ポンプ(P3)106と循環ポンプ(P4)103を運転する。冷水循環路132の往き路132aの冷却水は、空調機101の予冷コイル102で室内循環空気と熱交換し温められ、冷水循環路132の還り路132bを介して熱交換器104へ搬送され、フリークーリング用冷却水循環路131の往き路131aの冷却水と熱交換する。この冷却水は、フリークーリング用冷却水循環路131の還り路131bを介して循環ポンプ(P3)106によってフリークーリング用の冷却塔(CT3)105へ搬送される。その搬送された冷却水は、フリークーリング用の冷却塔(CT3)105によって冷却水設定水温18℃以下に冷却されて再度熱交換器104へ搬送される。この時の後段の冷水コイル107では、冬期の場合建物負荷が無くなり、外気冷却負荷もなくなるので、室内負荷が小さく、第一の冷凍機(R1)108の冷却でまかなえ、ポンプ(CP1)110で搬送される冷水の一部が導入され、設定室温になるように空気を冷却する。
特許第2979061号公報 特開2002−61911号公報 特開平4−208332号公報 特開2005−214608号公報 特開2002−115863号公報
The winter operation will be described with reference to FIG. Here, the outdoor wet bulb temperature was less than 5 ° C. in winter (2300 hours per year in Tokyo weather data).
In this season, since the set temperature of the cooling water is the outside air wet bulb temperature T1 of 18 ° C. or less, the process proceeds to step 105, the cooling tower (CT3) 105 for free cooling, the circulation pump (P3) 106, and the circulation pump (P4). 103 is driven. The cooling water in the outgoing path 132a of the cold water circulation path 132 is heated by exchanging heat with the indoor circulation air in the pre-cooling coil 102 of the air conditioner 101, and conveyed to the heat exchanger 104 via the return path 132b of the cold water circulation path 132. Heat exchange with the cooling water in the outgoing path 131a of the cooling water circulation path 131 for free cooling is performed. This cooling water is conveyed to the cooling tower (CT3) 105 for free cooling by the circulation pump (P3) 106 via the return path 131b of the cooling water circulation path 131 for free cooling. The conveyed cooling water is cooled to a cooling water set water temperature of 18 ° C. or lower by a cooling tower (CT 3) 105 for free cooling, and is again conveyed to the heat exchanger 104. At this time, in the chilled water coil 107 at the latter stage, the building load is eliminated in the winter, and the outside air cooling load is eliminated. Therefore, the indoor load is small, and the cooling of the first refrigerator (R1) 108 can be used. A part of the cold water to be conveyed is introduced, and the air is cooled to the set room temperature.
Japanese Patent No. 2997661 JP 2002-61911 A JP-A-4-208332 JP 2005-214608 A JP 2002-115863 A

しかし、従来の空気調和設備では、外気湿球温度T1が高くなる中間期は、18℃以下の冷水が製造できない。この期間が運転可能な冬季時間より長く、フリークーリング設備を有効に運転できていなかった。フリークーリングができない期間は、圧縮式冷凍機や吸収式冷凍機を運転することによって冷水を冷却するためにエネルギーを多く必要とするので、省エネルギー運転ではなく、折角のフリークーリング設備の利用期間が年間で短いという問題がある。   However, in the conventional air-conditioning equipment, cold water of 18 ° C. or lower cannot be produced in the intermediate period when the outdoor air wet bulb temperature T1 is high. This period was longer than the operable winter time, and the free cooling facility was not operated effectively. During the period when free cooling is not possible, energy is required to cool the chilled water by operating the compression and absorption chillers. There is a problem that it is short.

また、フリークーリングが担当する熱負荷を、ターボ冷凍機用冷却塔の定格能力に合わせて選定した能力の冷却塔では、水温23℃の冷却水を18℃に冷却するのに、外気湿球温度T1が5℃以下である。しかし、その時のフリークーリングが可能な時間は、東京の気候で年間延べ2300時間と短いという問題があった。
さらに、冷却塔の容量を大きくすると、イニシャルコストが増加し、得策ではない。
Moreover, in the cooling tower having the capacity selected according to the rated capacity of the cooling tower for the centrifugal chiller, the heat load in charge of free cooling is used to cool the cooling water having a water temperature of 23 ° C. to 18 ° C. T1 is 5 ° C. or less. However, there was a problem that the free cooling time at that time was as short as 2300 hours a year in the climate of Tokyo.
Furthermore, increasing the capacity of the cooling tower increases the initial cost and is not a good idea.

また、フリークーリングができない時間は、冷凍機のコンプレッサーを使用するため、大きな消費電力エネルギーが必要になるという問題があった。
本発明は斯かる従来の問題点を解決するために為されたもので、その目的は、従来より高い外気湿球温度でも、冷却塔だけで冷水を製造できる空気調和設備を提供することにある。
In addition, during the time when free cooling is not possible, there is a problem that a large amount of power consumption energy is required because the compressor of the refrigerator is used.
The present invention has been made to solve such a conventional problem, and an object of the present invention is to provide an air-conditioning facility capable of producing cold water only with a cooling tower even at a higher outdoor wet bulb temperature than before. .

本発明の別の目的は、年間のフリークーリング運転時間を長くできる空気調和設備を提供することにある。   Another object of the present invention is to provide an air-conditioning facility that can increase the annual free cooling operation time.

請求項1に係る発明は、予冷コイルと冷却コイルとを設けた空調機と、外気湿球温度計と、前記外気湿球温度計によって測定された外気湿球温度に拘わらず運転する第一の冷凍機と、前記外気湿球温度計によって測定された外気湿球温度に拘わらず運転する前記第一の冷凍機用の冷却塔と、液ポンプを設け、前記第一の冷凍機と前記第一の冷凍機用の冷却塔とを連絡する第一の冷却水循環路と、前記外気湿球温度計によって測定された外気湿球温度と前記冷却コイルの冷却要求に応じて発停する少なくとも1つ以上の第二の冷凍機と、前記外気湿球温度計によって測定された外気湿球温度と前記冷却コイルの冷却要求に応じて発停する前記第二の冷凍機用の冷却塔と、液ポンプを設け、前記第二の冷凍機と前記第二の冷凍機用の冷却塔とを連絡する第二の冷却水循環路と、液ポンプを設け、前記第一の冷凍機および前記第二の冷凍機と前記空調機の冷却コイルとを連絡する冷水循環路と、フリークーリング用の冷却塔と、液ポンプを設け、前記フリークーリング用の冷却塔に連絡するフリークーリング用冷却水循環路と、液ポンプを設け、前記空調機の予冷コイルと連絡する予冷コイル用冷却水循環路と、前記フリークーリング用冷却水循環路と前記予冷コイル用冷却水循環路との間に配される熱交換器と、前記第二の冷却水循環路と前記フリークーリング用冷却水循環路との間に設け、前記フリークーリング用の冷却塔と前記第二の冷凍機用の冷却塔とを直列に接続するフリークーリング用切替機構と、前記外気湿球温度計によって測定される外気湿球温度に、フリークーリングを行えない第一の設定値とフリークーリングを行える第二の設定値とを設定するとともに、前記フリークーリング用切替機構の切替制御を行う制御装置とを備え、前記フリークーリング用切替機構は、前記フリークーリング用冷却水循環路の往き路と前記第二の冷却水循環路の還り路とを結ぶ第一の流路と、前記フリークーリング用冷却水循環路の往き路と前記第二の冷却水循環路の往き路とを結ぶ第二の流路と、前記第一の流路の前記フリークーリング用冷却水循環路の往き路側の分岐点と前記第二の流路の前記フリークーリング用冷却水循環路の往き路側の分岐点との間の前記フリークーリング用冷却水循環路の往き路に設けた第一のバルブと、前記第一の流路に設けた第二のバルブと、前記第二の流路に設けた第三のバルブと、前記第二の流路の前記第二の冷却水循環路の往き路側の分岐点より前記第二の冷凍機側に設けた第四のバルブとを備え、前記制御装置は、前記外気湿球温度計によって測定された外気湿球温度が第一の設定値以上になると、前記第一のバルブ、前記第二のバルブおよび前記第三のバルブを閉じ、前記第四のバルブを開いて前記第二の冷凍機および前記第二の冷凍機用の冷却塔を運転する制御を行い、前記外気湿球温度計によって測定された外気湿球温度が前記第一の設定値より低くかつ第二の設定値以上になると、前記第二の冷凍機を停止し、前記第二のバルブおよび前記第三のバルブを開き、前記第一のバルブおよび前記第四のバルブを閉じて前記フリークーリング用冷却塔と前記第二の冷凍機用の冷却塔とを直列に連絡して前記フリークーリング用冷却水循環路の冷却水を二段階に冷却する制御を行い、前記外気湿球温度計によって測定された外気湿球温度が前記第二の設定値より低くなると、前記第二の冷凍機用の冷却塔を停止し、前記第一のバルブを開き、前記第二のバルブおよび第三のバルブを閉じ、前記フリークーリング用冷却水循環路の冷却水を一段冷却する制御を行い、前記フリークーリング用冷却水循環路を介して前記熱交換器に冷却水を搬送する制御を行うことを特徴とする。   The invention according to claim 1 is a first air-conditioner provided with a pre-cooling coil and a cooling coil, an outside air wet bulb thermometer, and a first operation that operates regardless of the outside air wet bulb temperature measured by the outside air wet bulb thermometer. A refrigerator, a cooling tower for the first refrigerator that is operated regardless of the outdoor wet bulb temperature measured by the outdoor wet bulb thermometer, a liquid pump, and the first refrigerator and the first A first cooling water circuit that communicates with the cooling tower for the refrigerator, and at least one or more that starts and stops according to the outside air wet bulb temperature measured by the outside air wet bulb thermometer and the cooling requirement of the cooling coil A second cooling machine, a cooling tower for the second cooling machine that starts and stops according to the outside air wet bulb temperature measured by the outside air wet bulb thermometer and the cooling request of the cooling coil, and a liquid pump And connecting the second refrigerator and the cooling tower for the second refrigerator. A second cooling water circulation path, a liquid pump, a cooling water circulation path connecting the first refrigerator and the second refrigerator and the cooling coil of the air conditioner, and a cooling tower for free cooling A cooling water circulation path for free cooling that is provided with a liquid pump and communicates with the cooling tower for free cooling, a cooling water circulation path for the precooling coil that is provided with a liquid pump and communicates with the precooling coil of the air conditioner, and for the free cooling A cooling device provided between the cooling water circulation path and the cooling water circulation path for the precooling coil, and the cooling water circulation path provided between the second cooling water circulation path and the free cooling cooling water circulation path. Free cooling switching mechanism for connecting the tower and the cooling tower for the second refrigerator in series, and free cooling to the outside wet bulb temperature measured by the outside wet bulb thermometer A first setting value that cannot be performed and a second setting value that can perform free cooling, and a control device that performs switching control of the free cooling switching mechanism, wherein the free cooling switching mechanism includes the free cooling switching mechanism. A first flow path connecting the outgoing path of the cooling water circulation path and the return path of the second cooling water circulation path, an outgoing path of the free cooling cooling water circulation path, and an outgoing path of the second cooling water circulation path A second flow path connecting the first flow path, a branch point of the free cooling cooling water circulation path of the first flow path, and a branch path of the free cooling cooling water circulation path of the second flow path A first valve provided in the free cooling cooling water circulation path between the points, a second valve provided in the first flow path, and a third valve provided in the second flow path. And the second valve A fourth valve provided on the second refrigerator side from a branch point on the outgoing path side of the second cooling water circulation path of the second flow path, and the control device is measured by the outside air wet bulb thermometer When the outdoor wet bulb temperature becomes equal to or higher than the first set value, the first valve, the second valve, and the third valve are closed, the fourth valve is opened, and the second refrigerator and When performing control to operate the cooling tower for the second refrigerator, the outdoor wet bulb temperature measured by the outdoor wet bulb thermometer is lower than the first set value and equal to or higher than the second set value, The second refrigerator is stopped, the second valve and the third valve are opened, the first valve and the fourth valve are closed, and the free cooling cooling tower and the second refrigeration are closed. Free cooling by connecting the cooling tower for the machine in series Control is performed to cool the cooling water in the cooling water circulation path in two stages, and when the outside air wet bulb temperature measured by the outside air wet bulb thermometer becomes lower than the second set value, the cooling for the second refrigerator The tower is stopped, the first valve is opened, the second valve and the third valve are closed, the cooling water in the free cooling cooling water circulation path is controlled to be cooled in one stage, and the free cooling cooling water circulation is performed. Control which conveys cooling water to the said heat exchanger via a path | route is performed.

請求項2に係る発明は、予冷コイルと冷却コイルとを設けた空調機と、外気湿球温度計と、前記外気湿球温度計によって測定された外気湿球温度に拘わらず運転する第一の冷凍機と、前記外気湿球温度計によって測定された外気湿球温度に拘わらず運転する前記第一の冷凍機用の冷却塔と、液ポンプを設け、前記第一の冷凍機と前記第一の冷凍機用の冷却塔とを連絡する第一の冷却水循環路と、前記外気湿球温度計によって測定された外気湿球温度と前記冷却コイルの冷却要求に応じて発停する少なくとも1つ以上の第二の冷凍機と、前記外気湿球温度計によって測定された外気湿球温度と前記冷却コイルの冷却要求に応じて発停する前記第二の冷凍機用の冷却塔と、液ポンプを設け、前記第二の冷凍機と前記第二の冷凍機用の冷却塔とを連絡する第二の冷却水循環路と、液ポンプを設け、前記第一の冷凍機および前記第二の冷凍機と前記空調機の冷却コイルとを連絡する冷水循環路と、フリークーリング用の冷却塔と、液ポンプを設け、前記フリークーリング用の冷却塔と前記空調機の予冷コイルとを連絡するフリークーリング用冷却水循環路と、前記第二の冷却水循環路と前記フリークーリング用冷却水循環路との間に設け、前記フリークーリング用の冷却塔と前記第二の冷凍機用の冷却塔とを直列に接続するフリークーリング用切替機構と、前記外気湿球温度計によって測定される外気湿球温度に、フリークーリングを行えない第一の設定値とフリークーリングを行える第二の設定値とを設定するとともに、前記フリークーリング用切替機構の切替制御を行う制御装置とを備え、前記フリークーリング用切替機構は、前記フリークーリング用冷却水循環路の往き路と前記第二の冷却水循環路の還り路とを結ぶ第一の流路と、前記フリークーリング用冷却水循環路の往き路と前記第二の冷却水循環路の往き路とを結ぶ第二の流路と、前記第一の流路の前記フリークーリング用冷却水循環路の往き路側の分岐点と前記第二の流路の前記フリークーリング用冷却水循環路の往き路側の分岐点との間の前記フリークーリング用冷却水循環路の往き路に設けた第一のバルブと、前記第一の流路に設けた第二のバルブと、前記第二の流路に設けた第三のバルブと、前記第二の流路の前記第二の冷却水循環路の往き路側の分岐点より前記第二の冷凍機側に設けた第四のバルブとを備え、前記制御装置は、前記外気湿球温度計によって測定された外気湿球温度が第一の設定値以上になると、前記第一のバルブ、前記第二のバルブおよび前記第三のバルブを閉じ、前記第四のバルブを開いて前記第二の冷凍機および前記第二の冷凍機用の冷却塔を運転する制御を行い、前記外気湿球温度計によって測定された外気湿球温度が前記第一の設定値より低くかつ第二の設定値以上になると、前記第二の冷凍機を停止し、前記第二のバルブおよび前記第三のバルブを開き、前記第一のバルブおよび前記第四のバルブを閉じて前記フリークーリング用冷却塔と前記第二の冷凍機用の冷却塔とを直列に連絡して前記フリークーリング用冷却水循環路の冷却水を二段階に冷却する制御を行い、前記外気湿球温度計によって測定された外気湿球温度が前記第二の設定値より低くなると、前記第二の冷凍機用の冷却塔を停止し、前記第一のバルブを開き、前記第二のバルブおよび第三のバルブを閉じ、前記フリークーリング用冷却水循環路の冷却水を一段冷却する制御を行い、前記フリークーリング用冷却水循環路を介して前記予冷コイルに冷却水を搬送する制御を行うことを特徴とする。   The invention according to claim 2 is an air conditioner provided with a pre-cooling coil and a cooling coil, an outside air wet bulb thermometer, and a first operation that operates regardless of the outside air wet bulb temperature measured by the outside air wet bulb thermometer. A refrigerator, a cooling tower for the first refrigerator that is operated regardless of the outdoor wet bulb temperature measured by the outdoor wet bulb thermometer, a liquid pump, and the first refrigerator and the first A first cooling water circuit that communicates with the cooling tower for the refrigerator, and at least one or more that starts and stops according to the outside air wet bulb temperature measured by the outside air wet bulb thermometer and the cooling requirement of the cooling coil A second cooling machine, a cooling tower for the second cooling machine that starts and stops according to the outside air wet bulb temperature measured by the outside air wet bulb thermometer and the cooling request of the cooling coil, and a liquid pump And connecting the second refrigerator and the cooling tower for the second refrigerator. A second cooling water circulation path, a liquid pump, a cooling water circulation path connecting the first refrigerator and the second refrigerator and the cooling coil of the air conditioner, and a cooling tower for free cooling A free cooling cooling water circulation path that provides a liquid pump and communicates the cooling tower for free cooling and the pre-cooling coil of the air conditioner, and between the second cooling water circulation path and the free cooling cooling water circulation path. A free cooling switching mechanism for connecting the cooling tower for free cooling and the cooling tower for the second refrigerator in series, and the outdoor wet bulb temperature measured by the outdoor wet bulb thermometer, A first setting value for which free cooling cannot be performed and a second setting value for performing free cooling, and a control device for performing switching control of the free cooling switching mechanism. The free cooling switching mechanism includes a first flow path connecting the free cooling cooling water circulation path and a return path of the second cooling water circulation path, and a free cooling cooling water circulation path. And a second flow path connecting the outgoing path of the second cooling water circulation path, a branch point on the outgoing path side of the free cooling cooling water circulation path of the first flow path, and the second flow path A first valve provided in a forward path of the free cooling cooling water circulation path between a branch point on the outgoing path side of the cooling water circulation path for free cooling, a second valve provided in the first flow path, A third valve provided on the second flow path, and a fourth valve provided on the second refrigerator side from a branch point on the outgoing path side of the second cooling water circulation path of the second flow path. The control device includes the outside air wet bulb thermometer. When the measured outdoor wet bulb temperature is equal to or higher than the first set value, the first valve, the second valve, and the third valve are closed, the fourth valve is opened, and the second refrigeration is performed. The outside air wet bulb temperature measured by the outside air wet bulb thermometer is lower than the first set value and greater than or equal to the second set value. Then, the second refrigerator is stopped, the second valve and the third valve are opened, the first valve and the fourth valve are closed, and the cooling tower for free cooling and the second valve are closed. The cooling tower for the freezer is connected in series to control cooling of the cooling water in the free cooling cooling water circulation path in two stages, and the outside wet bulb temperature measured by the outside wet bulb thermometer is When lower than the second set value, The cooling tower for the refrigerator is stopped, the first valve is opened, the second valve and the third valve are closed, and control is performed to cool the cooling water in the free cooling cooling water circulation path one stage, Control which conveys cooling water to the said pre-cooling coil via the cooling water circulation path for free cooling is performed, It is characterized by the above-mentioned.

請求項3に係る発明は、冷却コイルを備えた空調機と、外気湿球温度計と、前記外気湿球温度計によって測定された外気湿球温度に拘わらず運転する第一の冷凍機と、前記外気湿球温度計によって測定された外気湿球温度に拘わらず運転する前記第一の冷凍機用の冷却塔と、液ポンプを設け、前記第一の冷凍機と前記第一の冷凍機用の冷却塔とを連絡する第一の冷却水循環路と、前記外気湿球温度計によって測定された外気湿球温度と前記冷却コイルの冷却要求に応じて発停する少なくとも一つ以上の第二の冷凍機と、前記外気湿球温度計によって測定された外気湿球温度と前記冷却コイルの冷却要求に応じて発停する前記第二の冷凍機の冷却塔と、液ポンプを設け、前記第二の冷凍機と前記第二の冷凍機用の冷却塔とを連絡する第二の冷却水循環路と、フリークーリング用の冷却塔と、液ポンプと熱交換器とを設け、前記フリークーリング用の冷却塔に連絡するフリークーリング用冷却水循環路と、液ポンプを設け、前記第一の冷凍機および前記第二の冷凍機及び前記熱交換器と前記空調機の冷却コイルとを連絡する冷水循環路と、前記第二の冷却水循環路と前記フリークーリング用冷却水循環路との間に設け、前記フリークーリング用の冷却塔と前記第二の冷凍機用の冷却塔とを直列に接続するフリークーリング用切替機構と、前記外気湿球温度計によって測定される外気湿球温度に、フリークーリングを行えない第一の設定値とフリークーリングを行える第二の設定値とを設定するとともに、前記フリークーリング用切替機構の切替制御を行う制御装置とを備え、前記フリークーリング用切替機構は、前記フリークーリング用冷却水循環路の往き路と前記第二の冷却水循環路の還り路とを結ぶ第一の流路と、前記フリークーリング用冷却水循環路の往き路と前記第二の冷却水循環路の往き路とを結ぶ第二の流路と、前記第一の流路の前記フリークーリング用冷却水循環路の往き路側の分岐点と前記第二の流路の前記フリークーリング用冷却水循環路の往き路側の分岐点との間の前記フリークーリング用冷却水循環路の往き路に設けた第一のバルブと、前記第一の流路に設けた第二のバルブと、前記第二の流路に設けた第三のバルブと、前記第二の流路の前記第二の冷却水循環路の往き路側の分岐点より前記第二の冷凍機側に設けた第四のバルブとを備え、前記制御装置は、前記外気湿球温度計によって測定された外気湿球温度が第一の設定値以上になると、前記第一のバルブ、前記第二のバルブおよび前記第三のバルブを閉じ、前記第四のバルブを開いて前記第二の冷凍機および前記第二の冷凍機用の冷却塔を運転する制御を行い、前記外気湿球温度計によって測定された外気湿球温度が前記第一の設定値より低くかつ第二の設定値以上になると、前記第二の冷凍機を停止し、前記第二のバルブおよび前記第三のバルブを開き、前記第一のバルブおよび前記第四のバルブを閉じて前記フリークーリング用冷却塔と前記第二の冷凍機用の冷却塔とを直列に連絡して前記フリークーリング用冷却水循環路の冷却水を二段階に冷却する制御を行い、前記外気湿球温度計によって測定された外気湿球温度が前記第二の設定値より低くなると、前記第二の冷凍機用の冷却塔を停止し、前記第一のバルブを開き、前記第二のバルブ及び第三のバルブを閉じ、前記フリークーリング用冷却水循環路の冷却水を一段冷却する制御を行い、前記フリークーリング用冷却水循環路を介して前記熱交換器に冷却水を搬送する制御を行うことを特徴とする。   The invention according to claim 3 is an air conditioner provided with a cooling coil, an outside air wet bulb thermometer, a first refrigerator that operates regardless of the outside air wet bulb temperature measured by the outside air wet bulb thermometer, The first refrigerator and the first refrigerator are provided with a cooling tower for the first refrigerator and a liquid pump that operate regardless of the outside wet bulb temperature measured by the outside air bulb thermometer. A first cooling water circuit that communicates with the cooling tower, and an at least one second or more second that starts and stops in response to the outside air wet bulb temperature measured by the outside air wet bulb thermometer and the cooling coil cooling request A refrigerator, a cooling tower of the second refrigerator that starts and stops according to the temperature of the outdoor wet bulb measured by the outdoor wet bulb thermometer and the cooling request of the cooling coil, a liquid pump, and the second Second cooling connecting the second refrigerator and the cooling tower for the second refrigerator A circulation path, a cooling tower for free cooling, a liquid pump and a heat exchanger, a cooling water circulation path for free cooling communicating with the cooling tower for free cooling, a liquid pump, and the first refrigeration A chilled water circuit connecting the cooling coil of the air conditioner and the second refrigerator and the heat exchanger and the air conditioner, and provided between the second cooling water circuit and the free cooling cooling water circuit. A free cooling switching mechanism for connecting the cooling tower for free cooling and the cooling tower for the second refrigerator in series, and free air cooling to the outside air wet bulb temperature measured by the outside air wet bulb thermometer. A first setting value that cannot be performed and a second setting value that can perform free cooling, and a control device that performs switching control of the switching mechanism for free cooling. The switching mechanism for the cooling includes a first flow path connecting the forward path of the cooling water circulation path for free cooling and the return path of the second cooling water circulation path, the forward path of the cooling water circulation path for free cooling, and the first A second flow path connecting the outgoing path of the second cooling water circulation path, a branch point on the outgoing path side of the cooling water circulation path for free cooling of the first flow path, and the free cooling of the second flow path A first valve provided in a forward path of the cooling water circulation path for free cooling between a branch point on a forward path side of the cooling water circulation path, a second valve provided in the first flow path, and the second A third valve provided in the second flow path, and a fourth valve provided on the second refrigerator side from a branch point of the second cooling water circulation path in the second flow path. The control device is configured to measure the outside air measured by the outside air bulb thermometer. When the wet bulb temperature exceeds the first set value, the first valve, the second valve, and the third valve are closed, the fourth valve is opened, and the second refrigerator and the second valve are opened. Performing control to operate the cooling tower for the second refrigerator, and when the outside air wet bulb temperature measured by the outside air wet bulb thermometer is lower than the first set value and equal to or higher than the second set value, The second refrigerator is stopped, the second valve and the third valve are opened, the first valve and the fourth valve are closed, and the free cooling cooling tower and the second refrigerator are closed. The cooling tower of the free cooling is connected in series to control cooling of the cooling water in the cooling water circulation path for free cooling in two stages, and the outside air wet bulb temperature measured by the outside air wet bulb thermometer is the second setting. When lower than the value, the cooling for the second refrigerator The tower is stopped, the first valve is opened, the second valve and the third valve are closed, and the cooling water in the free cooling cooling water circulation path is controlled by one stage, and the free cooling cooling water circulation is performed. Control which conveys cooling water to the said heat exchanger via a path | route is performed.

請求項4に係る発明は、請求項1または請求項3記載の空気調和設備において、前記制御装置は、前記フリークーリング用冷却水循環路の熱交換器へ供給する冷却水往き温度をTs、熱交換器から還ってくる冷却水還り温度をTrとした際に、前記フリークーリング用の冷却塔冷却水入口水温(これはTr温度と等しい)℃をTw1、前記フリークーリング用の冷却塔冷却水出口水温℃をTw2、前記第二流路を流れる前記第二の冷凍機用の冷却塔冷却水出口水温℃をTw3、Tw1℃における飽和空気のエンタルピーkJ/kgDAをhw1、Tw2℃における飽和空気のエンタルピーkJ/kgDAをhw2、Tw3℃における飽和空気のエンタルピーkJ/kgDAをhw3、前記フリークーリング用の冷却塔固有の比例定数C1、前記フリークーリング用の冷却塔充填物高さZ1、前記フリークーリング用の冷却塔水空気比L/GをN1、前記第二の冷凍機用の冷却塔固有の比例定数C2、前記第二の冷凍機用の冷却塔充填物高さZ2、前記第二の冷凍機用の冷却塔水空気比L/GをN2と規定して近似して表せる塔特性を求める、下記に示すフリークーリング用の冷却塔特性の対数平均法式および第二の冷凍機用の冷却塔特性の対数平均法式により、前記フリークーリング用の冷却塔を流れる空気湿球温度毎に算出したTw2と、前記第二の冷凍機用の冷却塔を流れる空気湿球温度毎に算出したTw3とを求め、
フリークーリング用の冷却塔特性の対数平均法式
According to a fourth aspect of the present invention, in the air-conditioning equipment according to the first or third aspect, the control device supplies a cooling water going-out temperature supplied to a heat exchanger of the free cooling cooling water circulation path as T s , heat When the return temperature of the cooling water returning from the exchanger is T r , the cooling tower inlet water temperature for free cooling (this is equal to the Tr temperature) ° C. is T w1 , and the free cooling cooling tower The cooling water outlet water temperature ° C is T w2 , the cooling tower cooling water outlet water temperature ° C for the second refrigerator flowing through the second flow path is T w3 , and the enthalpy kJ / kgDA of saturated air at T w1 ° C is h w1 , The enthalpy kJ / kgDA of saturated air at T w2 ° C is h w2 , the enthalpy kJ / kgDA of saturated air at T w3 ° C is h w3 , the proportional constant C 1 inherent to the cooling tower for free cooling, the free cooling Cooling tower filling height Z 1 for cooling, cooling tower water / air ratio L / G for free cooling N 1 , proportional constant C 2 inherent to the cooling tower for the second refrigerator, Free cooling shown below for obtaining tower characteristics that can be expressed by approximating the cooling tower filling height Z 2 for the refrigerator and the cooling tower water / air ratio L / G for the second refrigerator as N 2 T w2 calculated for each air wet bulb temperature flowing through the cooling tower for free cooling, according to the logarithmic average formula for the cooling tower characteristics and the logarithmic average formula for the cooling tower characteristics for the second refrigerator, Tw3 calculated for each air wet bulb temperature flowing through the cooling tower of the refrigerator
Logarithmic average formula of cooling tower characteristics for free cooling

Figure 0004829147
Figure 0004829147

ただし、ここでのΔh1とΔh2は以下とする。
Δh1=hW2−h1
Δh2=hW1−h2
(U/N)1=C111α-1、0.3≦α≦0.5
第二の冷凍機用の冷却塔特性の対数平均法式
Here, Δh 1 and Δh 2 are as follows.
Δh 1 = h W2 −h 1
Δh 2 = h W1 −h 2
(U / N) 1 = C 1 Z 1 N 1 α −1 , 0.3 ≦ α ≦ 0.5
Logarithmic average formula of cooling tower characteristics for the second refrigerator.

Figure 0004829147
Figure 0004829147

ただし、ここでのΔh1とΔh2は以下とする。
Δh1=hW3−h1
Δh2=hW2−h3
(U/N)2=C222α-1、0.3≦α≦0.5
縦軸に前記フリークーリング用の冷却塔冷却水入口/出口水温℃を取り、横軸に前記フリークーリング用の冷却塔に導入される空気湿球温度℃を取ったグラフに、前記フリークーリング用の冷却塔に導入される空気湿球温度毎に算出したTw2と前記第二の冷凍機用の冷却塔に導入される空気湿球温度毎に算出したTw3とをそれぞれプロットしプロット点を結んだ二つの冷却塔出口水温線を作成し、前記第二の冷凍機用の冷却塔出口水温線と前記グラフの縦軸の前記フリークーリング用の冷却塔冷却水出口水温℃を横軸と平行に引かれたTs温度線との交点の空気湿球温度℃を外気湿球温度の第一の設定値とし、前記フリークーリング用の冷却塔出口水温線と前記グラフの縦軸の前記フリークーリング用の冷却塔冷却水出口水温℃を横軸と平行に引かれたTs温度線との交点の空気湿球温度℃を外気湿球温度の第二の設定値とすることを特徴とする。
Here, Δh 1 and Δh 2 are as follows.
Δh 1 = h W3 −h 1
Δh 2 = h W2 −h 3
(U / N) 2 = C 2 Z 2 N 2 α −1 , 0.3 ≦ α ≦ 0.5
A graph in which the vertical axis represents the cooling tower cooling water inlet / outlet water temperature ° C for free cooling, and the horizontal axis represents the air wet bulb temperature ° C introduced into the free cooling cooling tower, the free cooling Tw2 calculated for each air wet bulb temperature introduced to the cooling tower and T w3 calculated for each air wet bulb temperature introduced to the cooling tower for the second refrigerator are respectively plotted to connect plot points. Two cooling tower outlet water temperature lines are created, and the cooling tower outlet water temperature line for the second refrigerator and the cooling tower cooling water outlet water temperature for free cooling on the vertical axis of the graph are parallel to the horizontal axis. The air wet bulb temperature ° C at the intersection with the drawn T s temperature line is set as the first set value of the outside air wet bulb temperature, and the free cooling cooling tower outlet water temperature line and the vertical axis of the graph for the free cooling The cooling tower cooling water outlet water temperature in ° C is parallel to the horizontal axis. Characterized by the air wet-bulb temperature ℃ the intersection of the Drawn T s isothermal line and a second set value of the outside air wet-bulb temperature.

請求項5に係る発明は、請求項1または請求項3記載の空気調和設備において、前記制御装置は、前記フリークーリング用冷却水循環路の熱交換器へ供給する冷却水往き温度をTs、熱交換器から還ってくる冷却水還り温度をTrとした際に、前記フリークーリング用の冷却塔冷却水入口水温(これはTr温度と等しい)℃をTw1、前記フリークーリング用の冷却塔冷却水出口水温℃をTw2、前記第二流路を流れる前記第二の冷凍機用の冷却塔冷却水出口水温℃をTw3、Tw1℃における飽和空気のエンタルピーkJ/kgDAをhw1、Tw2℃における飽和空気のエンタルピーkJ/kgDAをhw2、Tw3℃における飽和空気のエンタルピーkJ/kgDAをhw3、前記フリークーリング用の冷却塔固有の比例定数C1、前記フリークーリング用の冷却塔充填物高さZ1、前記フリークーリング用の冷却塔水空気比L/GをN1、前記第二の冷凍機用の冷却塔固有の比例定数C2、前記第二の冷凍機用の冷却塔充填物高さZ2、前記第二の冷凍機用の冷却塔水空気比L/GをN2と規定して近似して表せる塔特性を求める、下記に示すフリークーリング用の冷却塔特性のチェビシェフの公式により、前記フリークーリング用の冷却塔を流れる空気湿球温度毎に算出したTw2と、前記第二の冷凍機用の冷却塔を流れる空気湿球温度毎に算出したTw3とを求め、
フリークーリング用の冷却塔特性のチェビシェフの公式
U/N=(Cρ×Δtw/4)×{(1/Δh1)+(1/Δh2)+(1/Δh3
+(1/Δh4)}
ただし、ここでのΔh1〜Δh4は以下とする。
According to a fifth aspect of the present invention, in the air conditioning equipment according to the first or third aspect, the control device sets a cooling water going temperature supplied to a heat exchanger of the free cooling cooling water circulation path to T s , heat When the return temperature of the cooling water returning from the exchanger is T r , the cooling tower inlet water temperature for free cooling (this is equal to the Tr temperature) ° C. is T w1 , and the free cooling cooling tower The cooling water outlet water temperature ° C is T w2 , the cooling tower cooling water outlet water temperature ° C for the second refrigerator flowing through the second flow path is T w3 , and the enthalpy kJ / kgDA of saturated air at T w1 ° C is h w1 , The enthalpy kJ / kgDA of saturated air at T w2 ° C is h w2 , the enthalpy kJ / kgDA of saturated air at T w3 ° C is h w3 , the proportional constant C 1 inherent to the cooling tower for free cooling, the free cooling Cooling tower filling height Z 1 for cooling, cooling tower water / air ratio L / G for free cooling N 1 , proportional constant C 2 inherent to the cooling tower for the second refrigerator, Free cooling shown below for obtaining tower characteristics that can be expressed by approximating the cooling tower filling height Z 2 for the refrigerator and the cooling tower water / air ratio L / G for the second refrigerator as N 2 According to Chebyshev's formula for cooling tower characteristics for each, T w2 calculated for each air wet bulb temperature flowing through the cooling tower for free cooling and for each air wet bulb temperature flowing through the cooling tower for the second refrigerator Find the calculated T w3 ,
Chebyshev formula for cooling tower characteristics for free cooling U / N = (Cρ × Δt w / 4) × {(1 / Δh 1 ) + (1 / Δh 2 ) + (1 / Δh 3 )
+ (1 / Δh 4 )}
Here, Δh 1 to Δh 4 are as follows.

Δh1= tW2+0.1ΔtWにおける(hW−h)の値
Δh2= tW2+0.4ΔtWにおける(hW−h)の値
Δh3= tW2−0.4ΔtWにおける(hW−h)の値
Δh4= tW2−0.1ΔtWにおける(hW−h)の値
(U/N)1=C111α-1、0.3≦α≦0.5
第二の冷凍機用の冷却塔特性のチェビシェフの公式
U/N=(Cρ×Δtw/4)×{(1/Δh1)+(1/Δh2)+(1/Δh3
+(1/Δh4)}
ただし、ここでのΔh1〜Δh4は以下とする。
Δh 1 = t W2 + 0.1Δt W in (h W -h) value Δh 2 = t W2 + 0.4Δt W in (h W -h) value Δh 3 = t W2 -0.4Δt W in (h W the value of the values Δh 4 = t W2 -0.1Δt W of -h) (h W -h) ( U / N) 1 = C 1 Z 1 N 1 α -1, 0.3 ≦ α ≦ 0.5
Chebyshev formula for cooling tower characteristics for second refrigerator U / N = (Cρ × Δt w / 4) × {(1 / Δh 1 ) + (1 / Δh 2 ) + (1 / Δh 3 )
+ (1 / Δh 4 )}
Here, Δh 1 to Δh 4 are as follows.

Δh1= tW3+0.1ΔtWにおける(hW−h)の値
Δh2= tW2+0.4ΔtWにおける(hW−h)の値
Δh3= tW2−0.4ΔtWにおける(hW−h)の値
Δh4= tW2−0.1ΔtWにおける(hW−h)の値
(U/N)2=C222α-1、0.3≦α≦0.5
縦軸に前記フリークーリング用の冷却塔冷却水入口/出口水温℃を取り、横軸に前記フリークーリング用の冷却塔に導入される空気湿球温度℃を取ったグラフに、前記フリークーリング用の冷却塔に導入される空気湿球温度毎に算出したTw2と前記第二の冷凍機用の冷却塔に導入される空気湿球温度毎に算出したTw3とをそれぞれプロットしプロット点を結んだ二つの冷却塔出口水温線を作成し、前記第二の冷凍機用の冷却塔出口水温線と前記グラフの縦軸の前記フリークーリング用の冷却塔冷却水出口水温℃を横軸と平行に引かれたTs温度線との交点の空気湿球温度℃を外気湿球温度の第一の設定値とし、前記フリークーリング用の冷却塔出口水温線と前記グラフの縦軸の前記フリークーリング用の冷却塔冷却水出口水温℃を横軸と平行に引かれたTs温度線との交点の空気湿球温度℃を外気湿球温度の第二の設定値とすることを特徴とする。
Δh 1 = t W3 + 0.1Δt W in (h W -h) value Δh 2 = t W2 + 0.4Δt W in (h W -h) value Δh 3 = t W2 -0.4Δt W in (h W the value of the values Δh 4 = t W2 -0.1Δt W of -h) (h W -h) ( U / N) 2 = C 2 Z 2 N 2 α -1, 0.3 ≦ α ≦ 0.5
A graph in which the vertical axis represents the cooling tower cooling water inlet / outlet water temperature ° C for free cooling, and the horizontal axis represents the air wet bulb temperature ° C introduced into the free cooling cooling tower, the free cooling Tw2 calculated for each air wet bulb temperature introduced to the cooling tower and T w3 calculated for each air wet bulb temperature introduced to the cooling tower for the second refrigerator are respectively plotted to connect plot points. Two cooling tower outlet water temperature lines are created, and the cooling tower outlet water temperature line for the second refrigerator and the cooling tower cooling water outlet water temperature for free cooling on the vertical axis of the graph are parallel to the horizontal axis. The air wet bulb temperature ° C at the intersection with the drawn T s temperature line is set as the first set value of the outside air wet bulb temperature, and the free cooling cooling tower outlet water temperature line and the vertical axis of the graph for the free cooling The cooling tower cooling water outlet water temperature in ° C is parallel to the horizontal axis. Characterized by the air wet-bulb temperature ℃ the intersection of the Drawn T s isothermal line and a second set value of the outside air wet-bulb temperature.

請求項6に係る発明は、請求項2記載の空気調和設備において、前記制御装置は、前記フリークーリング用冷却水循環路の予冷コイルへ供給する冷却水往き温度をTs、予冷コイルから還ってくる冷却水還り温度をTrとした際に、前記フリークーリング用の冷却塔冷却水入口水温(これはTr温度と等しい)℃をTw1、前記フリークーリング用の冷却塔冷却水出口水温℃をTw2、前記第二流路を流れる前記第二の冷凍機用の冷却塔冷却水出口水温℃をTw3、Tw1℃における飽和空気のエンタルピーkJ/kgDAをhw1、Tw2℃における飽和空気のエンタルピーkJ/kgDAをhw2、Tw3℃における飽和空気のエンタルピーkJ/kgDAをhw3、前記フリークーリング用の冷却塔固有の比例定数C1、前記フリークーリング用の冷却塔充填物高さZ1、前記フリークーリング用の冷却塔水空気比L/GをN1、前記第二の冷凍機用の冷却塔固有の比例定数C2、前記第二の冷凍機用の冷却塔充填物高さZ2、前記第二の冷凍機用の冷却塔水空気比L/GをN2と規定して近似して表せる塔特性を求める、下記に示すフリークーリング用の冷却塔特性の対数平均法式および第二の冷凍機用の冷却塔特性の対数平均法式により、前記フリークーリング用の冷却塔を流れる空気湿球温度毎に算出したTw2と、前記第二の冷凍機用の冷却塔を流れる空気湿球温度毎に算出したTw3とを求め、
フリークーリング用の冷却塔特性の対数平均法式
According to a sixth aspect of the present invention, in the air conditioning equipment according to the second aspect, the control device returns the cooling water going temperature supplied to the precooling coil of the free cooling cooling water circuit T s from the precooling coil. When the cooling water return temperature is T r , the cooling tower inlet water temperature for free cooling (this is equal to the Tr temperature) ° C is T w1 , and the cooling tower outlet water temperature for free cooling is ° C. T w2 , cooling tower cooling water outlet water temperature ° C for the second refrigerator flowing through the second flow path is T w3 , saturated air enthalpy kJ / kgDA at T w1 ° C is h w1 , saturated air at T w2 ° C Enthalpy kJ / kgDA of h w2 , enthalpy kJ / kgDA of saturated air at T w3 ° C. h w3 , proportional constant C 1 inherent to the cooling tower for free cooling, cooling for free cooling Rejection tower packing height Z 1 , cooling tower water / air ratio L / G for free cooling N 1 , proportional constant C 2 specific to cooling tower for second refrigerator, for second refrigerator The cooling tower filling height Z 2 , the cooling tower water-air ratio L / G for the second refrigerator is determined as N 2, and the tower characteristics that can be approximated to obtain the cooling characteristics are shown below. T w2 calculated for each temperature of air wet bulb flowing in the cooling tower for free cooling by the logarithmic average formula of the tower characteristics and the logarithmic average formula of the cooling tower characteristics for the second refrigerator, and the second refrigerator Tw3 calculated for each air wet bulb temperature flowing through the cooling tower for
Logarithmic average formula of cooling tower characteristics for free cooling

Figure 0004829147
Figure 0004829147

ただし、ここでのΔh1とΔh2は以下とする。
Δh1=hW2−h1
Δh2=hW1−h2
(U/N)1=C111α-1、0.3≦α≦0.5
第二の冷凍機用の冷却塔特性の対数平均法式
Here, Δh 1 and Δh 2 are as follows.
Δh 1 = h W2 −h 1
Δh 2 = h W1 −h 2
(U / N) 1 = C 1 Z 1 N 1 α −1 , 0.3 ≦ α ≦ 0.5
Logarithmic average formula of cooling tower characteristics for the second refrigerator.

Figure 0004829147
Figure 0004829147

ただし、ここでのΔh1とΔh2は以下とする。
Δh1=hW3−h1
Δh2=hW2−h3
(U/N)2=C222α-1、0.3≦α≦0.5
フリークーリング用の冷却塔特性の対数平均法式
縦軸に前記フリークーリング用の冷却塔冷却水入口/出口水温℃を取り、横軸に前記フリークーリング用の冷却塔に導入される空気湿球温度℃を取ったグラフに、前記フリークーリング用の冷却塔に導入される空気湿球温度毎に算出したTw2と前記第二の冷凍機用の冷却塔に導入される空気湿球温度毎に算出したTw3とをそれぞれプロットしプロット点を結んだ二つの冷却塔出口水温線を作成し、前記第二の冷凍機用の冷却塔出口水温線と前記グラフの縦軸の前記フリークーリング用の冷却塔冷却水出口水温℃を横軸と平行に引かれたTs温度線との交点の空気湿球温度℃を外気湿球温度の第一の設定値とし、前記フリークーリング用の冷却塔出口水温線と前記グラフの縦軸の前記フリークーリング用の冷却塔冷却水出口水温℃を横軸と平行に引かれたTs温度線との交点の空気湿球温度℃を外気湿球温度の第二の設定値とすることを特徴とする。
Here, Δh 1 and Δh 2 are as follows.
Δh 1 = h W3 −h 1
Δh 2 = h W2 −h 3
(U / N) 2 = C 2 Z 2 N 2 α −1 , 0.3 ≦ α ≦ 0.5
The logarithmic average formula of the cooling tower characteristics for free cooling The vertical axis represents the cooling tower cooling water inlet / outlet water temperature ° C for free cooling, and the horizontal axis represents the air wet bulb temperature ° C introduced to the free cooling cooling tower In the graph, the Tw2 calculated for each air wet bulb temperature introduced into the cooling tower for free cooling and the air wet bulb temperature introduced into the cooling tower for the second refrigerator were calculated. Two cooling tower outlet water temperature lines are plotted by plotting T w3 and connecting the plot points, and the cooling tower outlet water temperature line for the second refrigerator and the free cooling cooling tower on the vertical axis of the graph air wet-bulb temperature ℃ the intersection of the cooling water outlet temperature ℃ the horizontal axis parallel to drawn the T s isothermal line as the first set value of the outside air wet-bulb temperature, the cooling tower outlet water temperature lines for the free cooling And the free cue on the vertical axis of the graph Characterized by the air wet-bulb temperature ℃ intersections of the T s temperature line cooling towers cooling water outlet temperature ℃ drawn parallel to the horizontal axis for the ring and the second set value of the outside air wet-bulb temperature .

請求項7に係る発明は、請求項2記載の空気調和設備において、前記制御装置は、前記フリークーリング用冷却水循環路の予冷コイルへ供給する冷却水往き温度をTs、予冷コイルから還ってくる冷却水還り温度をTrとした際に、前記フリークーリング用の冷却塔冷却水入口水温(これはTr温度と等しい)℃をTw1、前記フリークーリング用の冷却塔冷却水出口水温℃をTw2、前記第二流路を流れる前記第二の冷凍機用の冷却塔冷却水出口水温℃をTw3、Tw1℃における飽和空気のエンタルピーkJ/kgDAをhw1、Tw2℃における飽和空気のエンタルピーkJ/kgDAをhw2、Tw3℃における飽和空気のエンタルピーkJ/kgDAをhw3、前記フリークーリング用の冷却塔固有の比例定数C1、前記フリークーリング用の冷却塔充填物高さZ1、前記フリークーリング用の冷却塔水空気比L/GをN1、前記第二の冷凍機用の冷却塔固有の比例定数C2、前記第二の冷凍機用の冷却塔充填物高さZ2、前記第二の冷凍機用の冷却塔水空気比L/GをN2と規定して近似して表せる塔特性を求める、下記に示すフリークーリング用の冷却塔特性のチェビシェフの公式により、前記フリークーリング用の冷却塔を流れる空気湿球温度毎に算出したTw2と、前記第二の冷凍機用の冷却塔を流れる空気湿球温度毎に算出したTw3とを求め、
フリークーリング用の冷却塔特性のチェビシェフの公式
U/N=(Cρ×Δtw/4)×{(1/Δh1)+(1/Δh2)+(1/Δh3
+(1/Δh4)}
ただし、ここでのΔh1〜Δh4は以下とする。
According to a seventh aspect of the present invention, in the air conditioning equipment according to the second aspect, the control device returns the cooling water going temperature supplied to the precooling coil of the free cooling cooling water circulation path from the precooling coil to T s . When the cooling water return temperature is T r , the cooling tower inlet water temperature for free cooling (this is equal to the Tr temperature) ° C is T w1 , and the cooling tower outlet water temperature for free cooling is ° C. T w2 , cooling tower cooling water outlet water temperature ° C for the second refrigerator flowing through the second flow path is T w3 , saturated air enthalpy kJ / kgDA at T w1 ° C is h w1 , saturated air at T w2 ° C Enthalpy kJ / kgDA of h w2 , enthalpy kJ / kgDA of saturated air at T w3 ° C. h w3 , proportional constant C 1 inherent to the cooling tower for free cooling, cooling for free cooling Rejection tower packing height Z 1 , cooling tower water / air ratio L / G for free cooling N 1 , proportional constant C 2 specific to cooling tower for second refrigerator, for second refrigerator The cooling tower filling height Z 2 , the cooling tower water-air ratio L / G for the second refrigerator is determined as N 2, and the tower characteristics that can be approximated to obtain the cooling characteristics are shown below. According to Chebyshev's formula for tower characteristics, T w2 calculated for each air wet bulb temperature flowing through the cooling tower for free cooling and T calculated for each air wet bulb temperature flowing through the cooling tower for the second refrigerator seeking w3 ,
Chebyshev formula for cooling tower characteristics for free cooling U / N = (Cρ × Δt w / 4) × {(1 / Δh 1 ) + (1 / Δh 2 ) + (1 / Δh 3 )
+ (1 / Δh 4 )}
Here, Δh 1 to Δh 4 are as follows.

Δh1= tW2+0.1ΔtWにおける(hW−h)の値
Δh2= tW2+0.4ΔtWにおける(hW−h)の値
Δh3= tW2−0.4ΔtWにおける(hW−h)の値
Δh4= tW2−0.1ΔtWにおける(hW−h)の値
(U/N)1=C111α-1、0.3≦α≦0.5
第二の冷凍機用の冷却塔特性のチェビシェフの公式
U/N=(Cρ×Δtw/4)×{(1/Δh1)+(1/Δh2)+(1/Δh3
+(1/Δh4)}
ただし、ここでのΔh1〜Δh4は以下とする。
Δh 1 = t W2 + 0.1Δt W in (h W -h) value Δh 2 = t W2 + 0.4Δt W in (h W -h) value Δh 3 = t W2 -0.4Δt W in (h W the value of the values Δh 4 = t W2 -0.1Δt W of -h) (h W -h) ( U / N) 1 = C 1 Z 1 N 1 α -1, 0.3 ≦ α ≦ 0.5
Chebyshev formula for cooling tower characteristics for second refrigerator U / N = (Cρ × Δt w / 4) × {(1 / Δh 1 ) + (1 / Δh 2 ) + (1 / Δh 3 )
+ (1 / Δh 4 )}
Here, Δh 1 to Δh 4 are as follows.

Δh1= tW3+0.1ΔtWにおける(hW−h)の値
Δh2= tW2+0.4ΔtWにおける(hW−h)の値
Δh3= tW2−0.4ΔtWにおける(hW−h)の値
Δh4= tW2−0.1ΔtWにおける(hW−h)の値
(U/N)2=C222α-1、0.3≦α≦0.5
縦軸に前記フリークーリング用の冷却塔冷却水入口/出口水温℃を取り、横軸に前記フリークーリング用の冷却塔に導入される空気湿球温度℃を取ったグラフに、前記フリークーリング用の冷却塔に導入される空気湿球温度毎に算出したTw2と前記第二の冷凍機用の冷却塔に導入される空気湿球温度毎に算出したTw3とをそれぞれプロットしプロット点を結んだ二つの冷却塔出口水温線を作成し、前記第二の冷凍機用の冷却塔出口水温線と前記グラフの縦軸の前記フリークーリング用の冷却塔冷却水出口水温℃を横軸と平行に引かれたTs温度線との交点の空気湿球温度℃を外気湿球温度の第一の設定値とし、前記フリークーリング用の冷却塔出口水温線と前記グラフの縦軸の前記フリークーリング用の冷却塔冷却水出口水温℃を横軸と平行に引かれたTs温度線との交点の空気湿球温度℃を外気湿球温度の第二の設定値とすることを特徴とする。
Δh 1 = t W3 + 0.1Δt W in (h W -h) value Δh 2 = t W2 + 0.4Δt W in (h W -h) value Δh 3 = t W2 -0.4Δt W in (h W the value of the values Δh 4 = t W2 -0.1Δt W of -h) (h W -h) ( U / N) 2 = C 2 Z 2 N 2 α -1, 0.3 ≦ α ≦ 0.5
A graph in which the vertical axis represents the cooling tower cooling water inlet / outlet water temperature ° C for free cooling, and the horizontal axis represents the air wet bulb temperature ° C introduced into the free cooling cooling tower, the free cooling Tw2 calculated for each air wet bulb temperature introduced to the cooling tower and T w3 calculated for each air wet bulb temperature introduced to the cooling tower for the second refrigerator are respectively plotted to connect plot points. Two cooling tower outlet water temperature lines are created, and the cooling tower outlet water temperature line for the second refrigerator and the cooling tower cooling water outlet water temperature for free cooling on the vertical axis of the graph are parallel to the horizontal axis. The air wet bulb temperature ° C at the intersection with the drawn T s temperature line is set as the first set value of the outside air wet bulb temperature, and the free cooling cooling tower outlet water temperature line and the vertical axis of the graph for the free cooling The cooling tower cooling water outlet water temperature in ° C is parallel to the horizontal axis. Characterized by the air wet-bulb temperature ℃ the intersection of the Drawn T s isothermal line and a second set value of the outside air wet-bulb temperature.

請求項8に係る発明は、請求項4ないし請求項7の何れか記載の空気調和設備において、C2=C1、Z2=Z1、N2=N1である、第二の冷凍機用の冷却塔を備えたことを特徴とする。
請求項9に係る発明は、請求項4ないし請求項7の何れか記載の空気調和設備において、Z2>Z1、N2<N1である、第二の冷凍機用の冷却塔を備えたことを特徴とする。
The invention according to claim 8 is the second refrigerator according to any one of claims 4 to 7, wherein C 2 = C 1 , Z 2 = Z 1 , and N 2 = N 1. A cooling tower is provided.
The invention according to claim 9 is the air conditioning equipment according to any one of claims 4 to 7, further comprising a cooling tower for a second refrigerator, wherein Z 2 > Z 1 and N 2 <N 1. It is characterized by that.

請求項10に係る発明は、請求項1ないし請求項9の何れか記載の空気調和設備において、前記フリークーリング用冷却水循環路は、往き路に前記液ポンプを設け、前記液ポンプと前記第一の流路の前記フリークーリング用冷却水循環路の往き路側の分岐点との間に第一の流量計を設け、還り路に第二の流量計を設けていることを特徴とする。
請求項11に係る発明は、請求項1ないし請求項9の何れか記載の空気調和設備において、前記冷却コイルに連絡する冷却コイルを設けた空調機をさらに備えたことを特徴とする。
The invention according to claim 10 is the air conditioning equipment according to any one of claims 1 to 9, wherein the free cooling cooling water circulation path is provided with the liquid pump in a forward path, the liquid pump and the first A first flow meter is provided between the flow path of the cooling water circulating path for free cooling and a branch point on the outgoing path side, and a second flow meter is provided on the return path.
The invention according to claim 11 is the air conditioning equipment according to any one of claims 1 to 9, further comprising an air conditioner provided with a cooling coil connected to the cooling coil.

請求項12に係る発明は、請求項4または請求項5記載の空気調和設備において、前記フリークーリング用冷却水循環路の熱交換器へ供給する冷却水往き温度Tsと、前記熱交換器から還ってくる冷却水還り温度をTrとに所定の値を設定する入力装置をさらに備え、前記制御装置は、前記外気湿球温度の第一の設定値および前記外気湿球温度の第二の設定値を算出演算する演算部を格納し、前記入力装置で入力された所定の値を演算した結果で、前記フリークーリング用切替機構、前記フリークーリング用冷却塔、前記第二の冷凍機、前記第二の冷凍機用の冷却塔の制御を行うことを特徴とする。 According to a twelfth aspect of the present invention, in the air conditioning equipment according to the fourth or fifth aspect, the cooling water going-out temperature T s supplied to the heat exchanger of the cooling water circulation path for free cooling is returned from the heat exchanger. An input device that sets a predetermined value for the cooling water return temperature to Tr, and the control device includes a first setting value of the outdoor air wet bulb temperature and a second setting of the outdoor air wet bulb temperature. A calculation unit for calculating and calculating a value is stored, and a result of calculating a predetermined value input by the input device, the free cooling switching mechanism, the free cooling cooling tower, the second refrigerator, the first Controlling the cooling tower for the second refrigerator.

請求項13に係る発明は、請求項6または請求項7記載の空気調和設備において、前記フリークーリング用冷却水循環路の予冷コイルへ供給する冷却水往き温度Tsと、前記熱予冷コイルから還ってくる冷却水還り温度をTrとに所定の値を設定する入力装置をさらに備え、前記制御装置は、前記外気湿球温度の第一の設定値および外気湿球温度の第二の設定値を算出演算する演算部を格納し、前記入力装置で入力された所定の値を演算した結果で、前記フリークーリング用切替機構、前記フリークーリング用冷却塔、前記第二の冷凍機、前記第二の冷凍機用の冷却塔の制御を行うことを特徴とする。 The invention according to claim 13 is the air conditioning equipment according to claim 6 or claim 7, wherein the cooling water going-out temperature T s supplied to the pre-cooling coil of the free cooling cooling water circulation path is returned from the heat pre-cooling coil. An input device for setting a predetermined value for the cooling water return temperature to Tr, and the control device sets a first set value of the outside air wet bulb temperature and a second set value of the outside air wet bulb temperature; An arithmetic unit for calculating and storing is stored, and as a result of calculating a predetermined value input by the input device, the switching mechanism for free cooling, the cooling tower for free cooling, the second refrigerator, the second refrigerator, Control of a cooling tower for a refrigerator is performed.

本発明によれば、例えば、フリークーリングにより23℃に温度上昇した冷却水を18℃にまで冷却する場合、フリークーリングが可能な時間が、東京の気候で2300時間から4400時間へと延びた。実に年間の半分以上の時間が利用可能となった。そして、フリークーリング時間が延びることによって省エネルギー化が進んだ。
冷却塔における空気と水の熱交換において、冷却塔の空気と水の交換熱量はその塔部位における空気のエンタルピーhと入口水温と同温での飽和空気のエンタルピーhwとの差Δhに比例するので、1台だけの冷却塔を、冷却塔高さを増やしたり、空気の流動方向に垂直な塔断面積を増やしたりしても、その容量アップさせた部分へ導入される空気のエンタルピーが上がってしまい、水をなかなか冷却できないところ、2台の冷却塔を直列に接続することで、2台目として容量アップした部分への入口空気のエンタルピーが、1台目の入口空気のエンタルピーと同じでとても低いので、容量アップの塔部分の熱交換を最大限促進することができる。
According to the present invention, for example, when cooling water that has risen to 23 ° C. by free cooling is cooled to 18 ° C., the time during which free cooling is possible has been extended from 2300 hours to 4400 hours in the climate of Tokyo. Indeed, more than half of the year was available. And the energy saving progressed by extending free cooling time.
In the heat exchange of air and water in the cooling tower, the heat exchanged between the air and water in the cooling tower is proportional to the difference Δh between the enthalpy h of air in the tower and the enthalpy h w of saturated air at the same temperature as the inlet water temperature. Therefore, even if the height of the cooling tower is increased by using only one cooling tower or the cross-sectional area of the tower perpendicular to the air flow direction is increased, the enthalpy of the air introduced into the portion where the capacity is increased is increased. However, it is difficult to cool the water. By connecting two cooling towers in series, the enthalpy of the inlet air to the part where the capacity is increased as the second is the same as the enthalpy of the first inlet air. Since it is very low, heat exchange in the tower section with increased capacity can be promoted to the maximum.

フリークーリングを行うにあたり、ターボ冷凍機用冷却塔の定格能力で専用機を選定したので、専用機のイニシャルコストが極小となった。   When performing free cooling, a dedicated machine was selected based on the rated capacity of the cooling tower for the centrifugal chiller, so the initial cost of the dedicated machine was minimized.

以下、本発明を図面に示す実施形態に基づいて説明する。
〔第一実施形態〕
電算センターの電算機発熱負荷は、ピーク時での全体熱負荷の60〜90%を占め、その他の電算室での外気、建物伝熱負荷は夏季に発生する熱負荷である。
本実施形態に係る空気調和設備1は、外気、建物負荷が全体に占める割合が小さい場合に適用される。
Hereinafter, the present invention will be described based on embodiments shown in the drawings.
[First embodiment]
The computer heat generation load of the computer center accounts for 60 to 90% of the total heat load at the peak time, and the outside air and building heat transfer load in other computer rooms are heat loads generated in the summer.
The air conditioning equipment 1 according to the present embodiment is applied when the ratio of outside air and building load to the whole is small.

本実施形態に係る空気調和設備1は、図1および図2に示すように、フリークーリング用冷却水循環路131と第二の冷却水循環路134との間に、フリークーリング用の冷却塔(CT3)105と第二の冷凍機用の冷却塔(CT2)115とを直列に接続するフリークーリング用切替機構10を設けた点で、従来の空気調和設備とは相違する。従って、本実施形態では、従来の空気調和装置と同じ構成には同一の符号を付し、その説明は省略する。   As shown in FIG. 1 and FIG. 2, the air-conditioning equipment 1 according to the present embodiment includes a free cooling cooling tower (CT 3) between a free cooling cooling water circulation path 131 and a second cooling water circulation path 134. This is different from conventional air-conditioning equipment in that a free cooling switching mechanism 10 that connects 105 and a cooling tower (CT2) 115 for the second refrigerator in series is provided. Therefore, in this embodiment, the same code | symbol is attached | subjected to the same structure as the conventional air conditioning apparatus, and the description is abbreviate | omitted.

フリークーリング用切替機構10は、フリークーリング用冷却水循環路131の往き路131aと第二の冷却水循環路134の還り路134bとを結ぶ第一の流路11と、フリークーリング用冷却水循環路131の往き路131aと第二の冷却水循環路134の往き路134aとを結ぶ第二の流路12と、第一の流路11のフリークーリング用冷却水循環路131の往き路134a側の分岐点11aと第二の流路12のフリークーリング用冷却水循環路131の往き路131a側の分岐点12aとの間のフリークーリング用冷却水循環路131の往き路131aに設けた第一のバルブ(V1)13と、第一の流路11に設けた第二のバルブ(V2)14と、第二の流路12に設けた第三のバルブ(V3)15と、第二の流路12の第二の冷却水循環路134の往き路134a側の分岐点12bより第二の第二の冷凍機(R2)109側に設けた第四のバルブ(V4)16とを備えている。   The free cooling switching mechanism 10 includes a first flow path 11 that connects the forward path 131 a of the free cooling cooling water circulation path 131 and the return path 134 b of the second cooling water circulation path 134, and the free cooling cooling water circulation path 131. A second flow path 12 connecting the outgoing path 131a and the outgoing path 134a of the second cooling water circulation path 134, and a branch point 11a on the outgoing path 134a side of the free cooling cooling water circulation path 131 of the first flow path 11; A first valve (V1) 13 provided in the forward path 131a of the free cooling cooling water circulation path 131 between the free cooling cooling water circulation path 131 of the second flow path 12 and the branch point 12a on the outgoing path 131a side; The second valve (V2) 14 provided in the first flow path 11, the third valve (V3) 15 provided in the second flow path 12, and the second cooling of the second flow path 12 And a fourth valve (V4) 16 which from forward path 134a side of the branch point 12b provided on the second second refrigerator (R2) 109 side of the circulation path 134.

また、フリークーリング用冷却水循環路131の往き路131aには、循環ポンプ(P3)106と分岐点11aとの間に流量計F1を備えている。流量計F1に連絡する流量調節器FIC1は、流量計F1からの流量と設定流量とを比較し、循環ポンプ(P2)117の定格流量の80%流量になるように循環ポンプ(P3)106の回転数を制御する。フリークーリング用冷却水循環路131の還り路131bには、流量計F2を備えている。流量計F2に連絡する流量調節器FIC2は、流量計F2からの流量と設定流量とを比較し、循環ポンプ(P2)117の定格流量の80%流量になるように循環ポンプ(P2)117の回転数を制御する。   Further, the forward passage 131a of the cooling water circulation passage 131 for free cooling is provided with a flow meter F1 between the circulation pump (P3) 106 and the branch point 11a. The flow rate controller FIC1 that communicates with the flow meter F1 compares the flow rate from the flow meter F1 with the set flow rate, and adjusts the flow rate of the circulation pump (P3) 106 so that the flow rate becomes 80% of the rated flow rate of the circulation pump (P2) 117. Control the number of revolutions. The return path 131b of the cooling water circulation path 131 for free cooling is provided with a flow meter F2. The flow controller FIC2 that communicates with the flow meter F2 compares the flow rate from the flow meter F2 with the set flow rate, and adjusts the flow rate of the circulation pump (P2) 117 so that the flow rate becomes 80% of the rated flow rate of the circulation pump (P2) 117. Control the number of revolutions.

フリークーリング用切替機構10の切替制御を行う制御装置は、コントローラ124と熱量演算コントローラ127によって構成されている。
コントローラ124は、外気湿球温度T1が13℃の設定1と外気湿球温度T1が5℃の設定2とを判断する判断部を備えている。また、コントローラ124は、2つの設定値1,2に基づいて、第二の冷凍機(R2)109、第二の冷凍機用の冷却塔(CT2)115のファン、循環ポンプ(P2)117、循環ポンプ(CT1)111、フリークーリング用の冷却塔(CT3)105のファン、第一のバルブ(V1)13、第二のバルブ(V2)14、第三のバルブ(V3)15、第四のバルブ(V4)16、循環ポンプ(P4)103の運転を制御する。
A control device that performs switching control of the free cooling switching mechanism 10 includes a controller 124 and a calorific value calculation controller 127.
The controller 124 includes a determination unit that determines a setting 1 where the outdoor air wet bulb temperature T1 is 13 ° C. and a setting 2 where the outdoor air wet bulb temperature T1 is 5 ° C. Further, the controller 124, based on the two set values 1 and 2, the second refrigerator (R2) 109, the fan of the cooling tower (CT2) 115 for the second refrigerator, the circulation pump (P2) 117, Circulation pump (CT1) 111, fan for cooling tower (CT3) 105 for free cooling, first valve (V1) 13, second valve (V2) 14, third valve (V3) 15, fourth The operation of the valve (V4) 16 and the circulation pump (P4) 103 is controlled.

熱量演算コントローラ127は、冷水循環路132の温度T3,T4および流量計F3からの流量Qに基づいて、熱量q=Q(T3−T4)を演算し、その結果が設定熱量以上か否かを判断し、第一の冷凍機(R1)108、第一の冷凍機用の第一の冷凍機用の冷却塔(CT1)114のファン、循環ポンプ(P1)116、循環ポンプ(CP1)110、第二の冷凍機(R2)109、第二の冷凍機用の冷却塔(CT2)115のファン、循環ポンプ(P2)111、循環ポンプ(CP2)111の運転を制御する。   The calorific value calculation controller 127 calculates the calorific value q = Q (T3−T4) based on the temperatures T3 and T4 of the chilled water circulation path 132 and the flow rate Q from the flow meter F3, and determines whether the result is equal to or greater than the set calorific value. The first refrigerator (R1) 108, the fan of the cooling tower (CT1) 114 for the first refrigerator for the first refrigerator, the circulation pump (P1) 116, the circulation pump (CP1) 110, The operation of the second refrigerator (R2) 109, the cooling tower (CT2) 115 for the second refrigerator, the circulation pump (P2) 111, and the circulation pump (CP2) 111 is controlled.

次に、本実施形態に係る空気調和設備1の動作を図3に基づいて説明する。
先ず、空調機101を運転し、第一のバルブ(V1)13、第二のバルブ(V2)14、第三のバルブ(V3)15および第四のバルブ(V4)16を閉じ、第一の冷凍機(R1)108、第一の冷凍機用の冷却塔(CT1)114のファン、冷却塔用循環ポンプ(P1)116、循環ポンプ(CT1)110を運転する(ステップS1〜S3)。
Next, operation | movement of the air conditioning equipment 1 which concerns on this embodiment is demonstrated based on FIG.
First, the air conditioner 101 is operated, the first valve (V1) 13, the second valve (V2) 14, the third valve (V3) 15 and the fourth valve (V4) 16 are closed, The refrigerator (R1) 108, the fan of the cooling tower (CT1) 114 for the first refrigerator, the cooling tower circulation pump (P1) 116, and the circulation pump (CT1) 110 are operated (steps S1 to S3).

次に、電算室118の床下空間121の温度計にて空調機101から吹き出される空気の吹出温度T5を測定し、温度調節器TIC5が設定吹出温度となるようにバルブ(VE1)125を比例制御する(ステップS4)。
次に、冷水循環路132の往き路132aの水温T3と還り路132bの水温T4と流量計F3で測定した冷水の流量Qによって、熱量q=Q(T3−T4)(kcal/h)を求める。そして、得られた熱量qが設定熱量以上か否かの判断を熱量演算コントローラ127が行う(ステップS5)。設定熱量未満の場合には、ステップS3に戻り、設定熱量以上であると判断された場合には、次にステップS6へ進む。
Next, the temperature T5 of the air blown from the air conditioner 101 is measured with the thermometer in the underfloor space 121 of the computer room 118, and the valve (VE1) 125 is proportionally adjusted so that the temperature controller TIC5 becomes the set blowing temperature. Control (step S4).
Next, the heat quantity q = Q (T3−T4) (kcal / h) is obtained from the water temperature T3 of the outgoing path 132a of the cold water circulation path 132, the water temperature T4 of the return path 132b, and the flow rate Q of the cold water measured by the flowmeter F3. . Then, the calorific value calculation controller 127 determines whether or not the obtained calorie q is equal to or greater than the set calorie (step S5). If it is less than the set heat amount, the process returns to step S3, and if it is determined that the heat quantity is greater than the set heat amount, the process proceeds to step S6.

次に、外気湿球温度計が測定した外気湿球温度T1を温度調節器TIC1を介してコントローラ124に入力する。コントローラ124では、13℃未満か否かの判断を行う(ステップS6)。外気湿球温度T1が13℃以上の場合には、ステップS26へ進み、外気湿球温度T1が13℃未満の場合には、ステップS7へ進む。
次に、外気湿球温度計が測定した外気湿球温度T1を温度調節器TIC1を介してコントローラ124に入力する。コントローラ124では、外気湿球温度T1が5℃未満か否かの判断を行う(ステップS7)。外気湿球温度T1が5℃以上の場合には、ステップS18へ進み、外気湿球温度T1が5℃未満の場合には、ステップS8へ進む。
Next, the outside air wet bulb temperature T1 measured by the outside air wet bulb thermometer is input to the controller 124 via the temperature controller TIC1. The controller 124 determines whether the temperature is lower than 13 ° C. (step S6). If the outdoor wet bulb temperature T1 is 13 ° C. or higher, the process proceeds to step S26, and if the outdoor wet bulb temperature T1 is less than 13 ° C., the process proceeds to step S7.
Next, the outside air wet bulb temperature T1 measured by the outside air wet bulb thermometer is input to the controller 124 via the temperature controller TIC1. The controller 124 determines whether or not the outdoor wet bulb temperature T1 is less than 5 ° C. (step S7). If the outdoor wet bulb temperature T1 is 5 ° C. or higher, the process proceeds to step S18, and if the outdoor wet bulb temperature T1 is less than 5 ° C., the process proceeds to step S8.

次に、外気湿球温度T1が5℃未満の場合には、第一のバルブ(V1)13を開き、第二のバルブ(V2)14、第三のバルブ(V3)15および第四のバルブ(V4)16を閉じて、フリークーリング用の冷却塔(CT3)105のファンを運転し、循環ポンプ(P3)106と循環ポンプ(P4)103とを運転する。流量計F1で測定した流量が、循環ポンプ(P2)117の定格流量の80%流量になるように循環ポンプ(P3)106の回転数を制御する(ステップS8〜S10)。   Next, when the outdoor wet bulb temperature T1 is less than 5 ° C., the first valve (V1) 13 is opened, the second valve (V2) 14, the third valve (V3) 15 and the fourth valve. (V4) 16 is closed, the fan of the cooling tower (CT3) 105 for free cooling is operated, and the circulation pump (P3) 106 and the circulation pump (P4) 103 are operated. The rotational speed of the circulation pump (P3) 106 is controlled so that the flow rate measured by the flow meter F1 becomes 80% of the rated flow rate of the circulation pump (P2) 117 (steps S8 to S10).

次に、空調機101の予冷コイル102からの出口空気温度T7が設定予冷水出口空気温度になるように温度調節器TIC7がバルブ(VE2)126を比例制御する(ステップS11)。
次に、フリークーリング用の冷却塔(CT3)105の冷却水温T6が5℃未満か否かの判断を行う(ステップS12)。冷却水温T6が5℃未満の場合には、フリークーリング用の冷却塔(CT3)105のファンを停止する(ステップS13)。冷却水温T6が5℃以上の場合には、ステップS7に戻る。
Next, the temperature regulator TIC7 proportionally controls the valve (VE2) 126 so that the outlet air temperature T7 from the precooling coil 102 of the air conditioner 101 becomes the preset precooled water outlet air temperature (step S11).
Next, it is determined whether or not the cooling water temperature T6 of the cooling tower (CT3) 105 for free cooling is lower than 5 ° C. (step S12). When the cooling water temperature T6 is less than 5 ° C., the fan of the cooling tower (CT3) 105 for free cooling is stopped (step S13). When the cooling water temperature T6 is 5 ° C. or higher, the process returns to step S7.

次に、フリークーリング用の冷却塔(CT3)105の冷却水温T6が5℃以上か否かの判断を行う(ステップS14)。冷却水温T6が5℃未満の場合には、ステップS13に戻る。
次に、外気湿球温度T1が5℃+0.5℃以上か否かの判断を行う(ステップS15)。外気湿球温度T1が5℃+0.5℃未満の場合には、ステップS8に戻る。外気湿球温度T1が5℃+0.5℃以上の場合にはステップ16に進む。
Next, it is determined whether or not the cooling water temperature T6 of the cooling tower (CT3) 105 for free cooling is 5 ° C. or higher (step S14). When the cooling water temperature T6 is less than 5 ° C., the process returns to step S13.
Next, it is determined whether or not the outdoor wet bulb temperature T1 is 5 ° C. + 0.5 ° C. or higher (step S15). If the outdoor wet bulb temperature T1 is less than 5 ° C. + 0.5 ° C., the process returns to step S8. When the outdoor wet bulb temperature T1 is 5 ° C. + 0.5 ° C. or higher, the process proceeds to Step 16.

次に、フリークーリング用の冷却塔(CT3)105のファン、循環ポンプ(P3)106および循環ポンプ(P4)103を停止する(ステップS16)。
次に、空調機101を停止するか否かの判断を行う(ステップS17)。停止する場合には、ステップS31に進む。停止しない場合には、ステップS7の否定と同じく、第二のバルブ(V2)14と第三のバルブ(V3)15とを開き、第一のバルブ(V1)13と第四のバルブ(V4)16とを閉じる(ステップS18)。
Next, the fan of the cooling tower (CT3) 105 for free cooling, the circulation pump (P3) 106, and the circulation pump (P4) 103 are stopped (step S16).
Next, it is determined whether to stop the air conditioner 101 (step S17). When stopping, it progresses to step S31. If not stopped, the second valve (V2) 14 and the third valve (V3) 15 are opened and the first valve (V1) 13 and the fourth valve (V4) are opened as in the negative of step S7. 16 is closed (step S18).

次に、第二の冷凍機用の冷却塔(CT2)115のファンとフリークーリング用の冷却塔(CT3)105のファンとを運転し、循環ポンプ(P2)117と循環ポンプ(P3)106と循環ポンプ(P4)103とを運転する。流量計F1で測定した流量が循環ポンプ(P2)117の定格流量の80%流量になるように循環ポンプ(P3)106の回転数を制御し、流量計F2で測定した流量が循環ポンプ(P2)117の定格流量の80%流量になるように循環ポンプ(P2)117の回転数を制御する(ステップS19〜S21)。   Next, the fan of the cooling tower (CT2) 115 for the second refrigerator and the fan of the cooling tower (CT3) 105 for free cooling are operated, and the circulation pump (P2) 117, the circulation pump (P3) 106, The circulation pump (P4) 103 is operated. The rotational speed of the circulation pump (P3) 106 is controlled so that the flow rate measured by the flow meter F1 is 80% of the rated flow rate of the circulation pump (P2) 117, and the flow rate measured by the flow meter F2 is the circulation pump (P2 ) The rotational speed of the circulation pump (P2) 117 is controlled so as to be 80% of the rated flow rate of 117 (steps S19 to S21).

次に、空調機101の予冷コイル102からの出口空気温度T7が設定予冷水出口空気温度になるように温度調節器TIC7がバルブ(VE2)126を比例制御する(ステップS22)。
次に、外気湿球温度T1が13℃+0.5℃以上か否かの判断を行う(ステップS23)。外気湿球温度T1が13℃+0.5℃未満の場合には、ステップS7に戻る。外気湿球温度T1が13℃+0.5℃以上の場合にはステップS24に進む。
Next, the temperature controller TIC7 proportionally controls the valve (VE2) 126 so that the outlet air temperature T7 from the precooling coil 102 of the air conditioner 101 becomes the preset precooled water outlet air temperature (step S22).
Next, it is determined whether or not the outdoor wet bulb temperature T1 is 13 ° C. + 0.5 ° C. or higher (step S23). When the outdoor wet bulb temperature T1 is less than 13 ° C. + 0.5 ° C., the process returns to step S7. When the outdoor wet bulb temperature T1 is 13 ° C. + 0.5 ° C. or higher, the process proceeds to step S24.

次に、第二の冷凍機用の冷却塔(CT2)115のファン、フリークーリング用の冷却塔(CT3)105のファン、循環ポンプ(P2)117、循環ポンプ(P3)106および循環ポンプ(P4)103を停止する(ステップS24)。
次に、空調機101を停止するか否かの判断を行う(ステップS25)。停止する場合には、ステップS31に進む。停止しない場合には、ステップS6の否定と同じく、第四のバルブ(V4)16を開き、第一のバルブ(V1)13、第二のバルブ(V2)14および第三のバルブ(V3)15を閉じる(ステップS26)。
Next, the fan of the cooling tower (CT2) 115 for the second refrigerator, the fan of the cooling tower (CT3) 105 for free cooling, the circulation pump (P2) 117, the circulation pump (P3) 106, and the circulation pump (P4) ) 103 is stopped (step S24).
Next, it is determined whether to stop the air conditioner 101 (step S25). When stopping, it progresses to step S31. If not stopped, the fourth valve (V4) 16 is opened and the first valve (V1) 13, the second valve (V2) 14, and the third valve (V3) 15 are opened as in the negative of step S6. Is closed (step S26).

次に、第二の冷凍機(R2)109、第二の冷凍機用の冷却塔(CT2)115のファン、循環ポンプ(P2)117、循環ポンプ(CP2)111を運転する(ステップS27)。
次に、熱量qが設定値以下か否かの判断を行う(ステップS28)。熱量が設定値以上の場合には、ステップS6に戻る。
Next, the second refrigerator (R2) 109, the fan of the cooling tower (CT2) 115 for the second refrigerator, the circulation pump (P2) 117, and the circulation pump (CP2) 111 are operated (step S27).
Next, it is determined whether the heat quantity q is equal to or less than a set value (step S28). If the amount of heat is greater than or equal to the set value, the process returns to step S6.

次に、熱量が設定値以下の場合には、第二の冷凍機(R2)109、第二の冷凍機用の冷却塔(CT2)115のファン、循環ポンプ(P2)117、循環ポンプ(CP2)112を停止する(ステップS29)。
次に、空調機101を停止するか否かの判断を行う(ステップS30)。停止する場合には、ステップS31に進む。停止しない場合には、ステップS5に戻る。
Next, when the amount of heat is not more than the set value, the second refrigerator (R2) 109, the fan of the cooling tower (CT2) 115 for the second refrigerator, the circulation pump (P2) 117, the circulation pump (CP2) ) 112 is stopped (step S29).
Next, it is determined whether to stop the air conditioner 101 (step S30). When stopping, it progresses to step S31. When not stopping, it returns to step S5.

次に、空調機101を停止し、第一の冷凍機(R1)108、第一の冷凍機用の冷却塔(CT1)114のファン、循環ポンプ(P1)116、循環ポンプ(CP1)111を停止する(ステップS32)。
次に、第一のバルブ(V1)13、第二のバルブ(V2)14、第三のバルブ(V3)15、第四のバルブ(V4)16を閉じる(ステップS33)。
Next, the air conditioner 101 is stopped, the first refrigerator (R1) 108, the fan of the cooling tower (CT1) 114 for the first refrigerator, the circulation pump (P1) 116, and the circulation pump (CP1) 111 are turned on. Stop (step S32).
Next, the first valve (V1) 13, the second valve (V2) 14, the third valve (V3) 15, and the fourth valve (V4) 16 are closed (step S33).

以上により、空気調和設備1の運転が制御されている。
次に、図4に基づいて夏季の動作を説明する。ここで、夏季は外気湿球温度が13℃以上、温度調節器TIC1の設定1以上(東京の気象データでは年間4360時間)とした。なお、ここでは、フリークーリング用の冷却塔105によるフリークーリングを行わないので、フリークーリング用の冷却塔(CT3)105、循環ポンプ(P3)106、熱交換器104、循環ポンプ(P4)103、予冷コイル102は省略されている。
As described above, the operation of the air conditioning equipment 1 is controlled.
Next, the summer operation will be described with reference to FIG. Here, in the summer, the outside air wet bulb temperature was set to 13 ° C. or higher, and the temperature controller TIC 1 was set to 1 or higher (4360 hours per year in Tokyo weather data). Here, since free cooling by the free cooling cooling tower 105 is not performed, the free cooling cooling tower (CT3) 105, the circulation pump (P3) 106, the heat exchanger 104, the circulation pump (P4) 103, The precooling coil 102 is omitted.

夏季は、フリークーリング用の冷却塔(CT3)105を動作させて予冷水入口水温が設定条件(この場合20℃)を作ることができる外気湿球温度とならないので、図3のステップS26に示すように、第一のバルブ(V1)13、第二のバルブ(V2)14、第三のバルブ(V3)15が閉まり、第四のバルブ(V4)16が開き、フリークーリング用の冷却塔(CT3)105と冷却塔用の循環ポンプ(P3)106は停止し、予冷用の循環ポンプ(P4)103も停止する。夏季など室内熱負荷が大きくなるので、この冷却のためさらに空調機101の後段の冷却コイル107で予冷分の冷却も無くなるので、今まで運転していた第一の冷凍機(R1)108、ポンプ(CP1)110の他に第二の冷凍機(R2)109、ポンプ(CP2)111を運転し、後段の冷却コイル107の水量を増やす。   In the summer, the cooling tower (CT3) 105 for free cooling is operated so that the precooled water inlet water temperature does not reach the outside air wet bulb temperature at which the set condition (in this case, 20 ° C.) can be established. Thus, the first valve (V1) 13, the second valve (V2) 14, the third valve (V3) 15 are closed, the fourth valve (V4) 16 is opened, and the free cooling cooling tower ( CT3) 105 and the cooling tower circulation pump (P3) 106 are stopped, and the precooling circulation pump (P4) 103 is also stopped. Since the indoor heat load increases in summer, for example, the cooling coil 107 at the rear stage of the air conditioner 101 also eliminates the cooling of the precooling, so the first refrigerator (R1) 108 and the pump that have been operated so far In addition to (CP1) 110, the second refrigerator (R2) 109 and the pump (CP2) 111 are operated to increase the amount of water in the subsequent cooling coil 107.

次に、図5に基づいて中間期の動作を説明する。中間期は外気湿球温度が5℃以上13℃未満、温度調節器TIC1の設定1未満設定2以上(東京の気象データでは年間2100時間)とした。なお、ここでは、第二の冷凍機(R2)109、循環ポンプ(CT2)111、循環ポンプ(P2)117による運転は行わないので、これらは省略されている。   Next, the operation in the interim period will be described based on FIG. In the interim period, the outside wet bulb temperature was set to 5 ° C. or more and less than 13 ° C., and the temperature controller TIC 1 was set to less than 1 setting 2 or more (2100 hours per year in Tokyo weather data). In addition, since operation by the 2nd refrigerator (R2) 109, the circulation pump (CT2) 111, and the circulation pump (P2) 117 is not performed here, these are abbreviate | omitted.

この季節では、フリークーリング用の冷却塔105だけの運転では、フリークーリング用冷却水循環路131の往き路131aの冷却水の水温は18℃以下にならないので、図3のステップS18に示すように、フリークーリング用の冷却塔(CT3)105と第二の冷凍機用の冷却塔(CT2)115とを直列にすることによって水温18℃以下での外気湿球温度T1の設定1(13℃)とする。   In this season, when only the cooling tower 105 for free cooling is operated, the temperature of the cooling water in the outgoing path 131a of the cooling water circulation path 131 for free cooling does not become 18 ° C. or lower, so as shown in step S18 of FIG. By setting a cooling tower (CT3) 105 for free cooling and a cooling tower (CT2) 115 for the second refrigerator in series, setting 1 (13 ° C.) of the outdoor wet bulb temperature T1 at a water temperature of 18 ° C. or less To do.

予冷コイル102で室内循環空気と熱交換し温められた予冷水循環路130の冷水は、熱交換器104へ搬送され、フリークーリング用冷却水循環路131の冷却水と熱交換する。この冷却水は、循環ポンプ(P3)106によってフリークーリング用の冷却塔(CT3)105へ搬送され、この1段目のフリークーリング用の冷却塔(CT3)105ではその時の湿球温度と冷却塔の能力の関係によって設定水温18℃に近ずいた温度に冷却される。この冷却水は、第一の流路11を介して2段目の第二の冷凍機用の冷却塔(CT2)115へ搬送される。2段目の第二の冷凍機用の冷却塔(CT2)115では、1段目に冷却された冷却水を設定水温18℃以下に冷却して第二の流路12を介して再度熱交換器104へ搬送する。この時の後段の冷水コイル107では、中間期の場合建物負荷が無くなり、外気冷却負荷もなくなるので室内負荷が小さく、第一の冷凍機(R1)108の冷却でまかなえ、冷水ポンプ(CP1)110で搬送される冷水の一部が導入され、設定室温26℃になるように空気を冷却する。   The cold water in the precooling water circulation path 130 heated by exchanging heat with the indoor circulation air by the precooling coil 102 is conveyed to the heat exchanger 104 and exchanges heat with the cooling water in the free cooling cooling water circulation path 131. The cooling water is conveyed to a free cooling cooling tower (CT3) 105 by a circulation pump (P3) 106, and the first free cooling cooling tower (CT3) 105 has a wet bulb temperature and a cooling tower at that time. The water is cooled to a temperature close to the set water temperature of 18 ° C. depending on the relationship of the capacities. This cooling water is conveyed to the cooling tower (CT2) 115 for the second stage second refrigerator through the first flow path 11. In the cooling tower (CT 2) 115 for the second stage second refrigerator, the cooling water cooled in the first stage is cooled to a set water temperature of 18 ° C. or less, and heat is exchanged again through the second flow path 12. To the container 104. At this time, in the latter stage chilled water coil 107, the building load is eliminated and the outside air cooling load is eliminated in the intermediate period, so that the indoor load is small. The cooling of the first refrigerator (R1) 108 can cover the chilled water pump (CP1) 110. A part of the cold water transported in is introduced, and the air is cooled to a set room temperature of 26 ° C.

次に、図6に基づいて冬季の動作を説明する。ここで、冬季は外気湿球温度が5℃未満(東京の気象データでは年間2300時間)とした。
この季節では、冷却水の水温18℃以下での外気湿球温度T1の設定2(5℃)となるので、図3のステップS8に示すように、第一のバルブ(V1)13が開き、第二のバルブ(V2)14、第三のバルブ(V3)15、第四のバルブ(V4)16が閉まり、フリークーリング用の冷却塔(CT3)105と冷却塔用の循環ポンプ(P3)106と予冷用の循環ポンプ(P4)103とを運転する。空調機101の予冷コイル102で室内循環空気と熱交換し温められた冷水は、熱交換器104へ搬送され冷却水と熱交換する。この冷却水は、循環ポンプ(P3)106によってフリークーリング用の冷却塔(CT3)105へ搬送される。その搬送された冷却水は、フリークーリング用の冷却塔(CT3)105によって冷却水設定水温18℃以下に冷却されて再度熱交換器104へ搬送される。この時の後段の冷水コイル107では、冬期の場合建物負荷が無くなり、外気冷却負荷もなくなるので室内負荷が小さく、冷凍機1台の冷却でまかなえ、冷水ポンプ(CP1)110で搬送される冷水の一部が導入され、設定室温になるように空気を冷却する。
Next, the winter operation will be described with reference to FIG. Here, the outdoor wet bulb temperature was less than 5 ° C. in winter (2300 hours per year in Tokyo weather data).
In this season, the setting is 2 (5 ° C.) for setting the outside air wet bulb temperature T1 at a cooling water temperature of 18 ° C. or lower, so that the first valve (V1) 13 is opened as shown in step S8 of FIG. The second valve (V2) 14, the third valve (V3) 15, and the fourth valve (V4) 16 are closed, and a cooling tower (CT3) 105 for free cooling and a circulation pump (P3) 106 for the cooling tower. And the pre-cooling circulation pump (P4) 103 are operated. The cold water heated by exchanging heat with the indoor circulation air by the pre-cooling coil 102 of the air conditioner 101 is conveyed to the heat exchanger 104 and exchanges heat with the cooling water. This cooling water is conveyed to a cooling tower (CT3) 105 for free cooling by a circulation pump (P3) 106. The conveyed cooling water is cooled to a cooling water set water temperature of 18 ° C. or lower by a cooling tower (CT 3) 105 for free cooling, and is again conveyed to the heat exchanger 104. In the chilled water coil 107 at this time, the building load is eliminated in the winter, and the outside air cooling load is also eliminated, so that the indoor load is small and the cooling of one chiller can cover the chilled water conveyed by the chilled water pump (CP1) 110. A part is introduced and the air is cooled down to the set room temperature.

以上のように、本実施形態によれば、冬季や中間期の低熱負荷により遊休している第二の冷凍機用の冷却塔(CT2)115とフリークーリング用の冷却塔(CT3)105を直列に配置することによって二段に冷却することができるので、従来より冷水温度を下がることができる。
なお、本実施形態では、熱源機器容量は冷凍機は1台につき400RT、冷却塔は冷凍機用冷却水製造時としては定格運転520RTである。この冷却塔がフリークーリングを行う時は80%水量運転で足りる(コンプレッサー仕事分の冷却熱量減)。
As described above, according to the present embodiment, the cooling tower (CT2) 115 for the second refrigerator and the cooling tower (CT3) 105 for free cooling that are idle due to the low heat load in the winter or intermediate period are connected in series. Since it can cool in two steps by arrange | positioning to, cold water temperature can be lowered | hung conventionally.
In this embodiment, the capacity of the heat source equipment is 400 RT per refrigerator, and the cooling tower is rated operation 520 RT when manufacturing cooling water for the refrigerator. When this cooling tower performs free cooling, 80% water operation is sufficient (reduction of cooling heat for compressor work).

中間期や冬期に室内熱負荷が減少した場合の1台余っている第二の冷凍機用の冷却塔(CT2)115を2台直列に配置し、1台目で23℃の冷却水を20℃まで冷却し、2台目で20℃の冷却水を18℃まで冷却した。その時の湿球温度は13℃以下である。
次に、冬季や中間期の低熱負荷により遊休している第二の冷凍機用の冷却塔(CT2)115とフリークーリング用の冷却塔(CT3)105を直列にして冷却する理論について説明する。
Two cooling towers (CT2) 115 for the second freezer when the indoor heat load is reduced in the intermediate period or winter season are arranged in series, and the cooling water of 23 ° C. is 20 in the first unit. Cooling to 20 ° C., cooling water at 20 ° C. was cooled to 18 ° C. in the second unit. The wet bulb temperature at that time is 13 ° C. or less.
Next, a theory will be described in which the cooling tower (CT2) 115 for the second refrigerator and the cooling tower (CT3) 105 for free cooling, which are idle due to a low heat load in the winter or intermediate period, are cooled in series.

ここでは、電算室118の床吹出温度は17〜20℃で設定する。これは電算機119が結露を嫌うためこの範囲で抑える。空調機101の還り空気の温度は室内を経由して還りダクト内で1℃ぐらい上昇して24〜27℃で戻ってくる。
1.空調機101の還り空気を冷却する予冷水は、空気と水の温度差が小さければ空調機101内の予冷コイル102の伝熱面積が大きくなりイニシャルコストが増えるのに伴って、送風機の圧力抵抗が増え、ランニングコストも増える。また、スペースも増えてイニシャルが増える。
Here, the floor blowing temperature of the computer room 118 is set at 17 to 20 ° C. This is suppressed in this range because the computer 119 dislikes condensation. The temperature of the return air of the air conditioner 101 rises by about 1 ° C. in the return duct via the room and returns at 24-27 ° C.
1. The pre-cooling water that cools the return air of the air conditioner 101 has a larger heat transfer area of the pre-cooling coil 102 in the air conditioner 101 and a larger initial cost as the temperature difference between the air and water becomes smaller. And running costs also increase. Also, the space will increase and the initials will increase.

フリークーリング用の冷却塔(CT3)105としては、冷却塔送水温度が高くなるので年間の使用時間も増え、ランニングコストは減る。これらのランニングコストとイニシャルコストの兼ね合いで空気と予冷水の温度差ΔTを決め、予冷コイル102を選定する。本実施形態では、ΔT=2℃とした場合兼ね合いが良かったので、空調機101の還り空気の温度27℃に対して予冷水の熱交換器104の還り水温を25℃とした。   As the cooling tower (CT3) 105 for free cooling, since the cooling tower water supply temperature becomes high, the annual usage time increases and the running cost decreases. The temperature difference ΔT between air and precooling water is determined based on the balance between the running cost and the initial cost, and the precooling coil 102 is selected. In this embodiment, since the balance was good when ΔT = 2 ° C., the return water temperature of the pre-cooling water heat exchanger 104 was set to 25 ° C. with respect to the return air temperature of 27 ° C. of the air conditioner 101.

2.予冷水の熱交換器104の還り冷却水温が決まったので、予冷水の熱交換器104の往き温度を決定する。予冷水の入出口の温度差は小さいと搬送の水量が大きくなり、空調機101内の予冷コイル102が大きくなり、イニシャルが増え、ランニングコストも増えるので、その兼ね合いで決めた予冷水入出口温度差を5〜7℃で決める。本実施形態では、温度差を5℃として20℃とした。   2. Since the return cooling water temperature of the pre-cooling water heat exchanger 104 has been determined, the forward temperature of the pre-cooling water heat exchanger 104 is determined. If the temperature difference between the inlet and outlet of the precooling water is small, the amount of water to be transferred becomes large, the precooling coil 102 in the air conditioner 101 becomes large, the initials increase, and the running cost also increases. The difference is determined at 5-7 ° C. In the present embodiment, the temperature difference is 5 ° C. and is 20 ° C.

3.予冷水の送水温度を2.で決めたら、フリークーリング用の冷却塔105の冷却水でできるだけ高い温度として使用したいため、熱交換器104において2.で決めた予冷水送水温度取り出し可能な温度によって冷却水温度を決定する。この時、予冷水送水温度と冷却水送水温度の差はランニングコストとイニシャルコストの兼ね合いで決定するが、1〜2℃の最少温度差でもあまり大きくイニシャルコストに影響を受けない。本実施形態では、予冷水と冷却水の温度差を2℃として熱交換器104の予冷水還り水温に対して熱交換器104の冷却水出口水温(冷却塔入口水温)を23℃、熱交換器104の予冷水往き水温に対して熱交換器104の冷却水入口温度(冷却塔出口水温)を18℃とし、冷却水入出口温度差を5℃とし。   3. 1. Supply water temperature of pre-cooled water In the heat exchanger 104, it is desired to use the cooling water of the cooling tower 105 for free cooling as high as possible. The cooling water temperature is determined according to the temperature at which the pre-cooling water supply temperature can be taken out. At this time, the difference between the pre-cooling water supply temperature and the cooling water supply temperature is determined based on the balance between the running cost and the initial cost, but even the minimum temperature difference of 1 to 2 ° C. is not so large and affected by the initial cost. In this embodiment, the temperature difference between the precooling water and the cooling water is 2 ° C., the cooling water outlet water temperature (cooling tower inlet water temperature) of the heat exchanger 104 is 23 ° C., and the heat exchange is performed with respect to the precooling water return water temperature of the heat exchanger 104. The cooling water inlet temperature (cooling tower outlet water temperature) of the heat exchanger 104 is set to 18 ° C., and the cooling water inlet / outlet temperature difference is set to 5 ° C. with respect to the pre-cooling water going water temperature of the condenser 104.

4.フリークーリング用の冷却塔105の能力は、遊休している冷凍機もしくは本冷水を製造している冷凍機1台以上の冷却能力を有する。
上記のことから整理すると、フリークーリングでの仮の条件として、フリークーリング用の冷却塔105の冷却水入口温度23℃、フリークーリング用の冷却塔105の冷却水出口温度18℃が仮に規定できた。
4). The cooling tower 105 for free cooling has a cooling capacity of one or more freezers that produce idle water or main cold water.
To summarize from the above, as provisional conditions for free cooling, the cooling water inlet temperature 23 ° C. of the cooling tower 105 for free cooling and the cooling water outlet temperature 18 ° C. of the cooling tower 105 for free cooling could be provisionally defined. .

以下に外気湿球温度による第一の設定値、第二の設定値が図9の2本の曲線で規定できることを以下に示す。図9の2本の曲線を求めるために、図7とU/Nの式を用いて以下に展開する。
先ず、冷却塔2台直列冷却の概論について説明する。
冷却塔の空気と水の交換熱量は、空気のエンタルピーhと入口水温と同温での飽和空気のエンタルピーhwとの差Δhに比例し、空気のエンタルピーhおよび湿球温度t′以下には冷却が不可能である。言い換えれば、水に熱を与えなければ湿球温度付近まで冷却可能である。冷却塔2台を直列で冷却した時の水と空気の状態を図7に示す。ここで1台の冷却塔である水温での水を冷却させるとすると、冷却塔の冷却熱量と水が空調機や装置のコイルから受けた熱量の熱収支は等しくなり、冷却された水は湿球温度までは到達せずに水温tW1と湿球温度t1′の途中の状態にある。また、この時の空気は熱交換を行うことによって、出口に近いほどエンタルピーが増え、湿球温度が上がる。このことで冷却塔の高さを増し、交換器を増やしても効果が見られない。それで、1台目で冷却された水をさらに別の冷却塔で冷却すると、新鮮空気(外気)を取り入れることにより湿球温度の低い空気と熱交換が可能となり、前段で冷却された水温tW2以下の状態にすることが可能となる。
The following shows that the first set value and the second set value based on the outside wet bulb temperature can be defined by the two curves in FIG. In order to obtain the two curves in FIG. 9, the following is developed using FIG. 7 and the equation of U / N.
First, an overview of serial cooling of two cooling towers will be described.
The amount of heat exchanged between the cooling tower air and water is proportional to the difference Δh between the enthalpy h of air and the enthalpy hw of saturated air at the same temperature as the inlet water temperature, and cooling is performed below the enthalpy h of air and the wet bulb temperature t ′. Is impossible. In other words, if the water is not heated, it can be cooled to near the wet bulb temperature. The state of water and air when two cooling towers are cooled in series is shown in FIG. Here, if the water at the water temperature of one cooling tower is cooled, the cooling heat amount of the cooling tower is equal to the heat balance of the amount of heat the water receives from the coil of the air conditioner or device, and the cooled water is wet. The ball temperature is not reached and the water temperature t W1 and the wet bulb temperature t 1 ′ are in the middle. In addition, the air at this time exchanges heat, so that the closer to the outlet, the enthalpy increases and the wet bulb temperature rises. Even if the height of the cooling tower is increased and the number of exchangers is increased, there is no effect. Therefore, when the water cooled in the first unit is further cooled in another cooling tower, it becomes possible to exchange heat with air having a low wet bulb temperature by taking in fresh air (outside air), and the water temperature t W2 cooled in the previous stage The following state can be obtained.

次に、2台冷却塔直列での計算について説明する。
計算に用いる各種記号を以下のように決定する。
w1=1台目冷却塔冷却水入口水温[℃]
w2=1台目冷却塔冷却水出口水温[℃]
w3=2台目冷却塔冷却水出口水温[℃]
w1=1台目冷却塔冷却水入口水温と同じ飽和空気のエンタルピー[kJ/kgDA]
w2=1台目冷却塔冷却水出口水温と同じ飽和空気のエンタルピー[kJ/kgDA]
w3=2台目冷却塔冷却水出口水温と同じ飽和空気のエンタルピー[kJ/kgDA]
1=1台目、2台目冷却塔入口空気エンタルピー[kJ/kgDA]
2=1台目冷却塔出口空気エンタルピー[kJ/kgDA]
3=2台目冷却塔出口空気エンタルピー[kJ/kgDA]
Cρ=水の比重[kJ/kg]
Ka=エンタルピー基準総括面積熱伝達係数[kJ/m2・ΔI・h]
C=冷却塔固有の比例定数
L=循環水量[kg/h]
G=冷却塔風量[kg/h]
A=空気の流動方向に垂直な塔断面積[m2
Z=充填物高さ[m]
α,β=充填物によって決定される定数
N=水空気比L/G
X=近似的に算出した塔特性U/N
1=対数平均法で算出した塔特性U/N
2=チェビショフの公式で算出した塔特性U/N
冷却塔による水の冷却は、一般の熱交換器の冷却と異なり、水と空気の直接接触によって熱交換が行われる。そのため顕熱移動だけでなく水蒸気の移動が生じ、複雑な解析が生じる。しかし、ここで冷却塔に対しての冷水の蒸発量は1%未満と非常に少ないため、移動した水蒸気流量にについては、無視できる大きさである。そこで冷却塔の冷水が大気に与える熱量と冷水が冷却される熱収支の熱量Qは次式で与えられる。
Next, calculation in series with two cooling towers will be described.
Various symbols used for calculation are determined as follows.
t w1 = first cooling tower cooling water inlet water temperature [° C]
t w2 = cooling water outlet water temperature of the first cooling tower [° C]
t w3 = cooling water outlet water temperature of the second cooling tower [° C]
h w1 = Saturated air enthalpy of the first cooling tower cooling water inlet water temperature [kJ / kgDA]
h w2 = Saturated air enthalpy of the first cooling tower cooling water outlet water temperature [kJ / kgDA]
h w3 = Saturated air enthalpy of the second cooling tower cooling water outlet water temperature [kJ / kgDA]
h 1 = 1st and 2nd cooling tower inlet air enthalpy [kJ / kgDA]
h 2 = the first cooling tower outlet air enthalpy [kJ / kgDA]
h 3 = 2nd cooling tower outlet air enthalpy [kJ / kgDA]
Cρ = specific gravity of water [kJ / kg]
Ka = enthalpy standard overall area heat transfer coefficient [kJ / m 2 · ΔI · h]
C = Proportional constant specific to cooling tower L = Circulating water volume [kg / h]
G = cooling tower airflow [kg / h]
A = Tower cross section perpendicular to the direction of air flow [m 2 ]
Z = height of packing [m]
α, β = constant determined by packing N = water / air ratio L / G
X = approximately calculated tower characteristic U / N
Y 1 = tower characteristic U / N calculated by logarithmic average method
Y 2 = Tower characteristic U / N calculated by Chebyshoff formula
The cooling of water by the cooling tower is different from the cooling of a general heat exchanger, and heat exchange is performed by direct contact between water and air. Therefore, not only sensible heat transfer but also water vapor transfer occurs, resulting in complicated analysis. However, since the evaporation amount of the cold water with respect to the cooling tower is as small as less than 1%, the transferred water vapor flow rate is negligible. Therefore, the amount of heat given to the atmosphere by the cooling water of the cooling tower and the amount of heat Q of the heat balance by which the cooling water is cooled are given by the following equations.

dQ=G×(dh)=(−Cρ)×L×(dTw) ・・・(1)
図8では、対向流型冷却塔での入口水温tw1、出口水温tw2、入口空気湿球温度t1′、出口空気湿球温度t2′と比エンタルピーの関係を表わし、水と空気が熱交換する状態を表わす。入口空気はL/Gである勾配線(操作線)によって変化してゆく。また、対向流冷却塔の微小高さdZについての熱交換を考えた場合、微小高さにおける微小な熱交換量 Qは、その部分での水温twに等しい温度の飽和空気比エンタルピーhwと空気の比エンタルピーhとの差(hw−h)に比例し、次式で与えられる。
dQ = G × (dh) = (− Cρ) × L × (dT w ) (1)
FIG. 8 shows the relationship between the inlet water temperature t w1 , the outlet water temperature t w2 , the inlet air wet bulb temperature t 1 ′, the outlet air wet bulb temperature t 2 ′ and the specific enthalpy in the counterflow type cooling tower. Indicates the state of heat exchange. The inlet air changes with a gradient line (operation line) which is L / G. Also, when considering the heat exchanger for small height dZ of counterflow cooling towers, small amount of heat exchange Q in the minute height, and the water temperature t saturated air ratio enthalpy of w equal temperature h w in that part It is proportional to the difference (h w −h) from the specific enthalpy h of air and is given by the following equation.

dQ=Ka×(hw−h)×dZ×A ・・・(2)
(1)式、(2)式より(3)式を求める。
dQ=G×(dh)=(−Cρ)×L×(dTw)=Ka×(hw−h)×dZ×A ・・・(3)
(3)式を変形して、(4)式、(5)式を求める。
dQ = Ka × (h w −h) × dZ × A (2)
Equation (3) is obtained from equations (1) and (2).
dQ = G × (dh) = (− Cρ) × L × (dT w ) = Ka × (h w −h) × dZ × A (3)
Equation (3) is modified to obtain equations (4) and (5).

Ka×dZ×A/G=(dh)/(hw−h) ・・・(4)
Ka×dZ×A/L=(−Cρ)×(dTw)/(hw−h) ・・・(5)
(4)式、(5)式を充填物高さZについて積分すると、(6)式、(7)式が求められる。
Ka × dZ × A / G = (dh) / (h w −h) (4)
Ka × dZ × A / L = (− Cρ) × (dT w ) / (h w −h) (5)
When the equations (4) and (5) are integrated with respect to the packing height Z, the equations (6) and (7) are obtained.

Figure 0004829147
Figure 0004829147

Figure 0004829147
Figure 0004829147

(6)、(7)式が対向流型冷却塔の基本式で、Uは移動単位数でN0はL/Gの初期値に置き換えた数値である。U/Nは塔特性(tower performance factor)と呼ばれている。その求め方は近似して(7)式の積分記号内の変数の平均値を計算する方法で、代表して対数平均法の場合と、チェビシェフの公式(適当に4分割して、1/(hw−h)の平均値を計算する)の場合でU、U/Nを求めることができる。 Equations (6) and (7) are basic equations of the counter-flow cooling tower, U is the number of moving units, and N 0 is a numerical value replaced with the initial value of L / G. U / N is called tower performance factor. The calculation method is approximated by calculating the average value of the variables in the integral symbol of equation (7). Representatively, in the case of the logarithmic average method and Chebyshev's formula (appropriately divided into four, 1 / ( In the case of calculating the average value of h w −h), U and U / N can be obtained.

対数平均法の場合を(8)式に示す。   The case of the logarithmic average method is shown in equation (8).

Figure 0004829147
Figure 0004829147

ただし、ここでのΔh1とΔh2は以下とする。
Δh1=hW2−h1
Δh2=hW1−h2
チェビシェフの公式を用いた場合も対数平均法の場合と同様に計算結果として(9)式に記載した。
Here, Δh 1 and Δh 2 are as follows.
Δh 1 = h W2 −h 1
Δh 2 = h W1 −h 2
In the case of using Chebyshev's formula, the calculation result is shown in the equation (9) as in the case of the logarithmic average method.

U/N=(Cρ×Δtw/4)×{(1/Δh1)+(1/Δh2)+(1/Δh3
+(1/Δh4)} ・・・(9)
ただし、ここでのΔh1〜Δh4は以下とする。
Δh1= tW2+0.1ΔtWにおける(hW−h)の値
Δh2= tW2+0.4ΔtWにおける(hW−h)の値
Δh3= tW2−0.4ΔtWにおける(hW−h)の値
Δh4= tW2−0.1ΔtWにおける(hW−h)の値
熱特性Kaは充填材の性能を表わす数値で、塔内の水と空気の流れが複雑なため理論的に求めるのは困難である。そこでKaはあらかじめ充填物ごとに実験式で求められ、その実験式は(L/A)と(G/A)の関数として(10)式で求められる。
U / N = (Cρ × Δt w / 4) × {(1 / Δh 1 ) + (1 / Δh 2 ) + (1 / Δh 3 )
+ (1 / Δh 4 )} (9)
Here, Δh 1 to Δh 4 are as follows.
Δh 1 = t W2 + 0.1Δt W in (h W -h) value Δh 2 = t W2 + 0.4Δt W in (h W -h) value Δh 3 = t W2 -0.4Δt W in (h W -H) value Δh 4 = t W2 -0.1 Δt W value (h W -h) The thermal characteristic Ka is a numerical value representing the performance of the packing material, and the theory is that the flow of water and air in the tower is complicated. It is difficult to ask for. Therefore, Ka is obtained in advance by an empirical formula for each packing, and the empirical formula is obtained by formula (10) as a function of (L / A) and (G / A).

Ka=C(L/A)α(G/A)β ・・・(10)
ここでα+β≒1である。
(10)式を(7)式のU/Nに代入すると、(11)式が求められる。
U/N=Ka×A×Z/L=CZ〔L/A〕α-1〔G/A〕-(α-1)=CZNα-1
・・・(11)
ここでCZを定数Kと置くと、(12)式が求められる。
Ka = C (L / A) α (G / A) β ... (10)
Here, α + β≈1.
Substituting equation (10) into U / N in equation (7) yields equation (11).
U / N = Ka × A × Z / L = CZ [L / A] α −1 [G / A] − ( α −1) = CZNα −1
(11)
Here, when CZ is set as a constant K, equation (12) is obtained.

U/N=KNα-1 ・・・(12)
冷却塔メーカー定格能力値がわかれば、U/Nを求めN、Kが求まる。αは0.4前後をとり、(12)式のU/Nが求まる。
(例えば、定格水量L、定格風量G、定格外気湿球温度t1´、定格入口水温tW1、出口水温tW2の冷却塔からN=L/Gを求め、定格時の水温tW1、tW2の定格格外気湿球温度からのh1と計算値h2を使って(8)式を逆算してU/Nを求め冷却塔のK=を導く。)
ここで、(12)式で求めた塔特性U/Nと入口水温tw1を0.1℃ずつ変化させた値を(8)式もしくは(9)式のtw2に代入し、U/Nが等しくなるような点tw2を計算結果として求めることができる。
U / N = KNα −1 (12)
If the cooling tower manufacturer's rated capacity value is known, U / N is obtained and N and K are obtained. α takes around 0.4, and U / N in the equation (12) is obtained.
(For example, N = L / G is obtained from the cooling tower of rated water volume L, rated air volume G, rated outdoor wet bulb temperature t 1 ′, rated inlet water temperature t W1 , outlet water temperature t W2 , and rated water temperatures t W1 , t with the h 1 and calculated values h 2 from the rated rated outside air wet-bulb temperature of W2 (8) and calculated back expression leads to K = cooling tower seeking U / N.)
Here, the value obtained by changing the tower characteristic U / N obtained by the equation (12) and the inlet water temperature tw1 by 0.1 ° C. is substituted into tw2 of the equation (8) or (9), and the U / N can be obtained as a calculation result points t w2 such are equal.

以上から求まるtw2を1台目の冷却塔出口水温とする。
次に、2台目冷却塔の出口水温tW3を求める。2台冷却塔2台直列の水と空気の状態を新図2に示す。ここで、1台目冷却塔の出口水温tW2を2台目冷却塔の入口水温となるので、(8)式もしくは(9)式の各温度状態は以下のように置き換わる。
W1→tW2
W2→tW3
W1→hW2
W2→hW3
2→h3
よって、U/Nの近似式は、対数平均法の場合は(13)式となり、チェビシェフの公式の場合は(14)式となる。
The tw2 obtained from the above is the water temperature at the outlet of the first cooling tower.
Next, the outlet water temperature t W3 of the second cooling tower is obtained. The state of water and air in series of two cooling towers is shown in FIG. Here, since the outlet water temperature t W2 of the first cooling tower becomes the inlet water temperature of the second cooling tower, each temperature state of the formula (8) or the formula (9) is replaced as follows.
t W1 → t W2
t W2 → t W3
h W1 → h W2
h W2 → h W3
h 2 → h 3
Therefore, the approximate expression of U / N is the expression (13) in the case of the logarithmic average method, and the expression (14) in the case of the Chebyshev formula.

Figure 0004829147
Figure 0004829147

ただし、ここでのΔh1とΔh2は以下とする。
Δh1=hW3−h1
Δh2=hW2−h3
チェビシェフの公式を用いた場合も対数平均法の場合と同様に計算結果として(14)式に記載した。
Here, Δh 1 and Δh 2 are as follows.
Δh 1 = h W3 −h 1
Δh 2 = h W2 −h 3
In the case of using Chebyshev's formula, the calculation result is described in the equation (14) as in the case of the logarithmic average method.

U/N=(Cρ×Δtw/4)×{(1/Δh1)+(1/Δh2)+(1/Δh3
+(1/Δh4)} ・・・(14)
ただし、ここでのΔh1〜Δh4は以下とする。
Δh1= tW3+0.1ΔtWにおける(hW−h)の値
Δh2= tW2+0.4ΔtWにおける(hW−h)の値
Δh3= tW2−0.4ΔtWにおける(hW−h)の値
Δh4= tW2−0.1ΔtWにおける(hW−h)の値
また、2台目の冷却塔の(12)式による塔特性U/Nを求めるが、この時のN、K値は2台目冷却塔の能力によって変わる。仮に1台目冷却塔と同じ能力であればN、K値は同じとなり、それで1台目の冷却塔と同様(12)式で求めた塔特性U/Nと入口水温tw2を0.1℃ずつ変化させた値を(13)式もしくは(14)式のtw3に代入し、U/Nが等しくなるような点tw3を計算結果として付した。
U / N = (Cρ × Δt w / 4) × {(1 / Δh 1 ) + (1 / Δh 2 ) + (1 / Δh 3 )
+ (1 / Δh 4 )} (14)
Here, Δh 1 to Δh 4 are as follows.
Δh 1 = t W3 + 0.1Δt W in (h W -h) value Δh 2 = t W2 + 0.4Δt W in (h W -h) value Δh 3 = t W2 -0.4Δt W in (h W -H) value Δh 4 = t W2 -0.1 Δt W (h W -h) value Further, the tower characteristic U / N according to the equation (12) of the second cooling tower is obtained. N and K values vary depending on the capacity of the second cooling tower. If the capacity is the same as that of the first cooling tower, the N and K values will be the same, so that the tower characteristic U / N and the inlet water temperature tw2 determined by the equation (12) are 0.1 as in the first cooling tower. A value changed by ° C. was substituted for tw3 in the equation (13) or (14), and a point tw3 at which U / N becomes equal was attached as a calculation result.

以上から求まるtw3を2台目の冷却塔出口水温とする。
図9に同じ能力の冷却塔2台直列の1台目冷却塔入口水温23℃の時の外気湿球温度と出口水温の関係を示す。冷却水出口水温18℃を取り出せる外気湿球温度は、冷却塔1台では5℃以下であり、これは東京の気象データでは年間2300時間以下であった。しかし、冷却塔2台直列では外気湿球温度13℃以下で良く、東京の気象データでは年間4400時間であった。
The tw3 obtained from the above is taken as the second cooling tower outlet water temperature.
FIG. 9 shows the relationship between the outdoor wet bulb temperature and the outlet water temperature when the inlet water temperature of the first cooling tower in series of two cooling towers of the same capacity is 23 ° C. The outside air wet bulb temperature at which the cooling water outlet water temperature of 18 ° C. can be taken out is 5 ° C. or less in one cooling tower, which is 2300 hours or less per year in Tokyo weather data. However, in the case of two cooling towers in series, the outside wet bulb temperature may be 13 ° C. or less, and the Tokyo weather data was 4400 hours per year.

本実施形態では、図9に示すチャート、すなわち、出口水温を縦軸、外気湿球温度を横軸とする座標に、フリークーリング用の冷却塔105の出口温度と外気湿球温度とで規定する第一の線図(冷却塔1台)と、フリークーリング用の冷却塔105と第二の冷凍機用の冷却塔115とをフリークーリング用切替機構10の切替制御によって直列に接続した出口温度と外気湿球温度とで規定する第二の線図(冷却塔2台直列)とを、当てはめたチャートを、制御装置に格納する。   In this embodiment, the chart shown in FIG. 9, that is, the coordinates where the outlet water temperature is the vertical axis and the outdoor wet bulb temperature is the horizontal axis, is defined by the outlet temperature of the free cooling cooling tower 105 and the outdoor wet bulb temperature. A first diagram (one cooling tower), a cooling tower 105 for free cooling, and a cooling tower 115 for a second refrigerator are connected in series by the switching control of the free cooling switching mechanism 10; A chart obtained by fitting the second diagram (two cooling towers in series) defined by the outside wet bulb temperature is stored in the control device.

つまり、フリークーリング用冷却水循環路の熱交換器へ供給する冷却水往き温度をTs、熱交換器から還ってくる冷却水還り温度をTrとした際に、フリークーリング用の冷却塔冷却水入口水温(これはTr温度と等しい)℃をTw1、同冷却塔冷却水出口水温℃をTw2、第二流路を流れる第二の冷凍機用の冷却塔冷却水出口水温℃をTw3、Tw1℃における飽和空気のエンタルピーkJ/kgDAをhw1、Tw2℃における飽和空気のエンタルピーkJ/kgDAをhw2、Tw3℃における飽和空気のエンタルピーkJ/kgDAをhw3、フリークーリング用の冷却塔固有の比例定数C1、フリークーリング用の冷却塔充填物高さZ1、フリークーリング用の冷却塔水空気比L/GをN1、第二の冷凍機用の冷却塔固有の比例定数C2、第二の冷凍機用の冷却塔充填物高さZ2、第二の冷凍機用の冷却塔水空気比L/GをN2と規定して近似して表すことができる塔特性を、下記のフリークーリング用の冷却塔特性の対数平均法式および第二の冷凍機用の冷却塔特性の対数平均法式により、冷却塔を流れる空気湿球温度毎に算出したTw2と、冷却塔を流れる空気湿球温度毎に算出したTw3とを、縦軸に前記フリークーリング用の冷却塔冷却水出口水温℃を取り、横軸に前記フリークーリング用の冷却塔を流れる空気湿球温度℃を取ったグラフに、Tw2とTw3とをそれぞれプロットしプロット点を結んだ二つの冷却塔出口水温線を作成し、第二の冷凍機用の冷却塔出口水温線とグラフの縦軸のフリークーリング用の冷却塔冷却水出口水温℃を横軸と平行に引かれたTs温度線との交点の空気湿球温度℃を外気湿球温度の第一の設定値とし、フリークーリング用の冷却塔出口水温線とグラフの縦軸のフリークーリング用の冷却塔冷却水出口水温℃を横軸と平行に引かれたTs温度線との交点の空気湿球温度℃を外気湿球温度の第二の設定値とするチャートを、制御装置に格納するのである。 That is, when the cooling water supply temperature supplied to the heat exchanger of the free cooling cooling water circulation path is T s and the return temperature of the cooling water returning from the heat exchanger is T r , the cooling tower cooling water for free cooling The inlet water temperature (which is equal to the Tr temperature) ° C is T w1 , the cooling tower cooling water outlet water temperature ° C is T w2 , and the cooling tower cooling water outlet water temperature ° C for the second refrigerator flowing through the second channel is T saturating air enthalpy kJ / kgDA at w3 , T w1 ℃ h w1 , enthalpy kJ / kgDA of saturated air at T w2 ℃ h w2 , enthalpy kJ / kgDA of saturated air at T w3 ℃ h w3 , for free cooling Specific constant C 1 of the cooling tower, the height Z 1 of the cooling tower packing for free cooling, the cooling tower water / air ratio L / G for free cooling N 1 , the cooling tower specific for the second refrigerator Proportional constant C 2 , second The cooling tower filling height Z 2 for the refrigerator and the cooling tower water-to-air ratio L / G for the second refrigerator can be approximated by N 2. Tw2 calculated for each temperature of the air wet bulb flowing through the cooling tower and the temperature of the air wet bulb flowing through the cooling tower by the logarithmic average formula of the cooling tower characteristics for the second refrigerator and the logarithmic average formula of the cooling tower characteristics for the second refrigerator T w3 calculated every time is a graph in which the vertical axis represents the cooling tower cooling water outlet water temperature ° C for free cooling, and the horizontal axis represents the temperature of air wet bulb flowing through the free cooling cooling tower ° C. Tw2 and Tw3 are plotted and two cooling tower outlet water temperature lines are created by connecting the plot points. The cooling tower outlet water temperature line for the second refrigerator and the cooling tower for free cooling on the vertical axis of the graph. empty intersection of the cooling water outlet temperature ℃ the horizontal axis parallel to drawn the T s temperature line Set the air / wet bulb temperature ° C as the first set value of the outside air / wet bulb temperature, and set the cooling tower outlet water temperature line for free cooling and the cooling tower outlet water temperature ° C for free cooling on the vertical axis of the graph in parallel with the horizontal axis. A chart in which the air wet bulb temperature ° C at the intersection with the drawn T s temperature line is the second set value of the outdoor wet bulb temperature is stored in the control device.

フリークーリング用の冷却塔特性の対数平均法式    Logarithmic average formula of cooling tower characteristics for free cooling

Figure 0004829147
Figure 0004829147

ただし、ここでのΔh1とΔh2は以下とする。
Δh1=hW2−h1
Δh2=hW1−h2
(U/N)1=C111α-1、0.3≦α≦0.5
第二の冷凍機用の冷却塔特性の対数平均法式
Here, Δh 1 and Δh 2 are as follows.
Δh 1 = h W2 −h 1
Δh 2 = h W1 −h 2
(U / N) 1 = C 1 Z 1 N 1 α −1 , 0.3 ≦ α ≦ 0.5
Logarithmic average formula of cooling tower characteristics for the second refrigerator.

Figure 0004829147
Figure 0004829147

ただし、ここでのΔh1とΔh2は以下とする。
Δh1=hW3−h1
Δh2=hW2−h3
(U/N)2=C222α-1、0.3≦α≦0.5
また、対数平均方式を、チェビシェフの公式に替えたチャートでも良い。
Here, Δh 1 and Δh 2 are as follows.
Δh 1 = h W3 −h 1
Δh 2 = h W2 −h 3
(U / N) 2 = C 2 Z 2 N 2 α −1 , 0.3 ≦ α ≦ 0.5
Also, a chart in which the logarithmic average method is replaced with the Chebyshev formula may be used.

この制御装置に接続するキーボード、テンキーボードなどの入力装置によって、Ts、Tr、C1、Z1、N1、C2、Z2、N2、αなどを所定の値に設定でき、その条件で、Tw2、Tw3、の外気湿球温度毎に演算を行い、外気湿球温度の第一の設定値、および外気湿球温度の第二の設定値を求めることができるものである。
ここで、入力装置によって上記の条件値に所定の値(例えば、図9に示すように、Ts=18℃、Tr=23℃など)が設定されると、制御装置は、Ts設定値と第一の線図と第二の線図との交点それぞれの外気湿球温度、つまり外気湿球温度の第一の設定値、および外気湿球温度の第二の設定値の間(図9では5℃と13℃との間)でフリークーリング用の冷却塔105と第二の冷凍機用の冷却塔115とを直列に接続するように、フリークーリング用切替機構10の切替制御を行う。
T s , T r , C 1 , Z 1 , N 1 , C 2 , Z 2 , N 2 , α, etc. can be set to predetermined values by an input device such as a keyboard or a numeric keyboard connected to the control device, Under this condition, calculation can be performed for each outdoor wet bulb temperature of T w2 and T w3 to obtain the first set value of the outdoor wet bulb temperature and the second set value of the outdoor wet bulb temperature. is there.
Here, when a predetermined value (for example, T s = 18 ° C., T r = 23 ° C. as shown in FIG. 9) is set to the above condition value by the input device, the control device sets the T s setting. Between the first set value of the outside air wet bulb temperature and the second set value of the outside wet bulb temperature at each intersection of the value and the first diagram and the second diagram (see FIG. 9 is between 5 ° C. and 13 ° C.), the switching control of the free cooling switching mechanism 10 is performed so that the cooling tower 105 for free cooling and the cooling tower 115 for the second refrigerator are connected in series. .

次に、2台目の冷却塔能力が大きい場合を示す。1台目と同じ水量を2台目の能力が大きい冷却塔に通すと水量Lは変わらないが、風量Gが大きいのでNは小さくなり、塔特性(12)式U/Nは大きくなる。つまり、Z2>Z1、N2<N1である、第二の冷凍機用の冷却塔を備えるものである。よって、近似式の(13)式もしくは(14)式の2台目冷却塔出口温度tw3は低くなることができる。このような傾向にあることを考慮して新たに2台目冷却塔のN、K値を求め、上記同様に塔特性(12)式と近似式(13)式もしくは(14)式により2台目冷却塔出口温度tw3を計算できる。 Next, the case where the capacity of the second cooling tower is large will be described. If the same amount of water as the first unit is passed through a cooling tower with a large capacity of the second unit, the amount of water L does not change. However, since the amount of air G is large, N is small and the tower characteristic (12) equation U / N is large. That is, a cooling tower for the second refrigerator that satisfies Z 2 > Z 1 and N 2 <N 1 is provided. Therefore, the exit temperature tw3 of the second cooling tower in the approximate expression (13) or (14) can be lowered. Considering this tendency, the N and K values of the second cooling tower are newly obtained, and two units are obtained by the tower characteristics (12) and the approximate expression (13) or (14) in the same manner as described above. The eye cooling tower outlet temperature tw3 can be calculated.

図10に仮に2台目冷却塔の能力を1.0〜2.0倍にした場合での冷却塔入口水温23℃の外気湿球温度と冷却塔出口温度の関係を示す。2台目の冷却塔の能力が1台目の冷却塔と同じ能力の場合は、冷却塔出口水温18℃にするには、外気湿球温度13℃未満が必要であり、東京の気象データでは年間4400時間であったが、2台目の冷却塔の能力が1台目の能力の2倍であれば、外気湿球温度15℃未満であればよく、東京の気象データで年間4800時間であった。   FIG. 10 shows the relationship between the outside air wet bulb temperature at the cooling tower inlet water temperature of 23 ° C. and the cooling tower outlet temperature when the capacity of the second cooling tower is 1.0 to 2.0 times. If the capacity of the second cooling tower is the same as the capacity of the first cooling tower, an outside air wet bulb temperature of less than 13 ° C is required to bring the cooling tower outlet water temperature to 18 ° C. If the capacity of the second cooling tower is twice the capacity of the first one, the temperature of the outside wet bulb temperature should be less than 15 ° C. there were.

室内温度条件もしくは床下吹出温度条件によって空調機の還り温度が変わるので、予冷水温度条件、冷却水温度条件が変わる。今度は冷却水入口水温が23℃では無く、21℃となり熱交換器へ16℃で送水しなければならない条件の時は、上記の計算により図11の外気湿球温度と冷却塔出口水温の関係となる。2台目の冷却塔の能力が1台目の冷却塔と同じ能力の場合は冷却塔出口水温16℃にするには、外気湿球温度11℃未満が必要であった東京の気象データで年間3600時間が、2台目の冷却塔の能力が1台目の能力の2倍であれば、外気湿球温度13℃未満であればよく4400時間であった。   Since the return temperature of the air conditioner varies depending on the indoor temperature condition or the underfloor blowing temperature condition, the precooling water temperature condition and the cooling water temperature condition vary. Next, when the cooling water inlet water temperature is 21 ° C. instead of 23 ° C. and the water must be fed to the heat exchanger at 16 ° C., the relationship between the outside wet bulb temperature and the cooling tower outlet water temperature in FIG. It becomes. When the capacity of the second cooling tower is the same as that of the first cooling tower, it was necessary to have an outdoor wet bulb temperature of less than 11 ° C to bring the cooling tower outlet water temperature to 16 ° C. If the capacity of the second cooling tower was twice the capacity of the first one for 3600 hours, the outside wet-bulb temperature should be less than 13 ° C., and it was 4400 hours.

これらのことにより冷却塔2台直列による年間のフリークーリング運転時間の延長可能とさらに冷却塔能力アップによるフリークーリング運転時間延長により、年間のエネルギー消費が抑えられ、ランニングコストが削減される。これらは実際に冷却塔能力アップによるイニシャルコストアップとフリークーリングが長くできることによるランニングコストダウンと兼ね合いによってシステムを決定する。   As a result, the annual free cooling operation time can be extended by connecting two cooling towers in series, and the free cooling operation time can be extended by increasing the cooling tower capacity, thereby reducing annual energy consumption and reducing running costs. These systems are actually determined by balancing the initial cost increase due to the cooling tower capacity increase and the running cost reduction due to the long free cooling.

次に、本実施形態における冷凍機の分割の最適値について説明する。
冷凍機の台数は、分割した場合のランニング効果が分割したイニシャル増を5年以内で回収するように決定する。ただし、危険分散についても十分考慮する。ランニング効果は、外気、建物伝熱負荷等の熱負荷を冷却する冷凍機が中間期、冬季に停止可能にするか、部分負荷に対して高効率な冷凍機の場合は最も効率の良い部分負荷で運転可能なように計画するかである。全体熱負荷に対して2〜3台以上になるように決定する。
Next, the optimum value for the division of the refrigerator in this embodiment will be described.
The number of refrigerators is determined so that the initial increase divided by the running effect when divided is collected within five years. However, sufficient consideration should be given to risk dispersion. The running effect is that the refrigerator that cools the heat load such as outside air and building heat transfer load can be stopped in the middle and winter seasons, or the most efficient partial load when the refrigerator is highly efficient against partial load. It is planned to be able to drive at. It is determined to be 2 to 3 units or more with respect to the total heat load.

次に、フリークーリング用の冷却塔(CT3)105の冷却能力とその機器設計条件について説明する。
フリークーリング用の冷却塔(CT3)105の冷却効果による全熱源機器のランニングコスト低減と、フリークーリング用の冷却塔(CT3)105のファンと循環ポンプ(P3)106との消費動力と、フリークーリング用の冷却塔(CT3)105を設けたことによるイニシャルコスト増による兼ね合いで、コスト的に5年以内で回収できるように決定する。ランニングコスト低減による効果は、フリークーリング用の冷却塔(CT3)105の冷却水が予冷水を冷却して空気を予冷することにより、第二の冷凍機(R2)109を停止できることである。それには少なくとも冷凍機1台、最も多くとも負荷に対する冷凍機総台数の半分以下の冷凍機台数と同じ冷却能力になるよう決定する。冷却水温度の決定は、室内空気温度条件によって空調機101の還り温度が変わり、還り空気を冷却できる予冷水を熱交換器104との兼ね合いから冷却できる冷却水温度とする。
Next, the cooling capacity and equipment design conditions of the cooling tower (CT3) 105 for free cooling will be described.
Reduction of running cost of all heat source equipment due to cooling effect of cooling tower (CT3) 105 for free cooling, power consumption of fan and circulating pump (P3) 106 of cooling tower (CT3) 105 for free cooling, and free cooling In consideration of the increase in initial cost due to the provision of the cooling tower (CT3) 105, the cost is determined so that it can be recovered within five years in terms of cost. The effect of reducing the running cost is that the second refrigerator (R2) 109 can be stopped when the cooling water of the cooling tower (CT3) 105 for free cooling cools the precooled water and precools the air. For this purpose, it is determined that the cooling capacity is the same as that of at least one refrigerator and at most half the total number of refrigerators with respect to the load. In determining the cooling water temperature, the return temperature of the air conditioner 101 varies depending on the indoor air temperature condition, and the pre-cooling water that can cool the return air is set to the cooling water temperature that can be cooled in combination with the heat exchanger 104.

本実施形態において、電算室118の床下空間121への吹出温度は、電算機119の結露を防止するため、18〜20℃で設定する(本実施形態では、20℃)。空調室123からの還り空気温度は室内を経由してダクト内で1℃ぐらい上昇して25〜27℃で戻って来る(本実施形態では、27℃)。
1)これを冷却する予冷水は、空気と予冷水の温度差ΔTが小さければ、空調機101内コイルの伝熱面積が大きくなり、イニシャルコストが増えるのに伴って、空調機の送風機の圧力抵抗が増え、ランニングコストも増える。また、スペースも増えてイニシャルが増える。フリークーリング用の冷却塔(CT3)105は、冷却塔送水温度が高くなるので、年間の使用時間も増え、ランニングは有利になる。これらのランニングコストとイニシャルの兼ね合いで、空気と予冷水の温度差ΔTを決める。
In this embodiment, the blowing temperature to the underfloor space 121 of the computer room 118 is set to 18 to 20 ° C. (20 ° C. in the present embodiment) in order to prevent condensation of the computer 119. The return air temperature from the air conditioning room 123 rises by about 1 ° C. in the duct through the room and returns at 25 to 27 ° C. (in this embodiment, 27 ° C.).
1) If the temperature difference ΔT between the air and the precooling water is small, the heat transfer area of the coil in the air conditioner 101 increases and the initial cost increases as the precooling water for cooling the air increases. Increases resistance and running costs. Also, the space will increase and the initials will increase. The cooling tower (CT3) 105 for free cooling has a higher cooling tower water supply temperature, so that the annual use time is increased and running is advantageous. The temperature difference ΔT between the air and the precooling water is determined by the balance between the running cost and the initial.

2)予冷水の入出口の温度差が小さいと、搬送の水量が大きくなり、イニシャルが増え、ランニングも増えるので、その兼ね合いで温度差ΔTaを5〜7℃とした。
3)予冷水の送水温度を2)で決めたら、フリークーリング用の冷却塔(CT3)105の冷却水でできるだけ高い温度として使いたいため、熱交換器104において2)で決めた予冷水送水温度取り出し可能な温度によって冷却水温度とする。この時、予冷水送水温度と冷却水送水温度との差は、ランニングとイニシャルの兼ね合いで決められるが、1〜2℃の最少温度差でもあまり影響を受けない。
2) If the temperature difference between the inlet and outlet of the pre-cooling water is small, the amount of water transported increases, initials increase, and running also increases. Therefore, the temperature difference ΔTa is set to 5 to 7 ° C.
3) When the feed temperature of the precooling water is determined in 2), the cooling water for the free cooling cooling tower (CT3) 105 is used as high as possible in the cooling water. Therefore, the precooling water feed temperature determined in 2) in the heat exchanger 104 The cooling water temperature is determined according to the temperature that can be taken out. At this time, the difference between the pre-cooling water supply temperature and the cooling water supply temperature is determined by the balance between running and initial, but even the minimum temperature difference of 1 to 2 ° C. is not significantly affected.

ここで、還り空気温度27℃を冷却する時、予冷水と空気の温度差ΔTを2℃以上必要とすることより、空調機101からの予冷水出口水温の上限を25℃以下とし、予冷水の入出口水温差をΔTa=5℃にとると、予冷水入口水温が20℃となる。予冷水入口水温を20℃に冷却するのに熱交換器104の冷却水入口の水温を18℃とした。これを設計条件としてフリークーリング用の冷却塔(CT3)105を決定する。   Here, when the return air temperature of 27 ° C. is cooled, the temperature difference ΔT between the pre-cooling water and the air needs to be 2 ° C. or more, so that the upper limit of the pre-cooling water outlet water temperature from the air conditioner 101 is 25 ° C. or less. If the inlet / outlet water temperature difference is ΔTa = 5 ° C., the pre-cooled water inlet water temperature is 20 ° C. In order to cool the precooling water inlet water temperature to 20 ° C., the water temperature at the cooling water inlet of the heat exchanger 104 was set to 18 ° C. With this as a design condition, a cooling tower (CT3) 105 for free cooling is determined.

本実施形態では、電算機室120の温度を27℃(空調機還り温度27℃)、フリークーリング用の冷却塔(CT3)105の冷却能力1375kW(冷凍機で400RT)とした。また、水流量計F1が4000L/min、湿球温度T1が5℃で予冷コイル102の出口空気温度T7が23.5℃、フリークーリング用の冷却塔(CT3)105の冷水温度T6が18℃であった。   In the present embodiment, the temperature of the computer room 120 is 27 ° C. (air conditioner return temperature 27 ° C.), and the cooling capacity of the cooling tower (CT3) 105 for free cooling is 1375 kW (400 RT for the refrigerator). In addition, the water flow meter F1 is 4000 L / min, the wet bulb temperature T1 is 5 ° C., the outlet air temperature T7 of the pre-cooling coil 102 is 23.5 ° C., and the cold water temperature T6 of the cooling tower (CT3) 105 for free cooling is 18 ° C. Met.

次に、空調機101の予冷コイル102、冷却コイル107の割合について説明する。
予冷コイル102の冷却能力が空調機101内で占める割合は、本実施形態ではフリークーリング用の冷却塔(CT3)105の冷却能力を全熱負荷の50%として決めたので、空調機101の冷却コイル107の能力の50%以上とする。上限は、予冷コイル102の列数が増えると入口予冷水温と出口空気温度とを近ずけることができるが、予冷コイル102の列数が増えることによる空調機101内送風機に対する圧力損失の増加による消費動力の増加を考慮して決定する。
Next, the ratio of the pre-cooling coil 102 and the cooling coil 107 of the air conditioner 101 will be described.
The ratio of the cooling capacity of the pre-cooling coil 102 in the air conditioner 101 is determined by setting the cooling capacity of the cooling tower (CT3) 105 for free cooling as 50% of the total heat load in this embodiment. The capacity of the coil 107 is 50% or more. The upper limit is that when the number of rows of precooling coils 102 increases, the inlet precooling water temperature and the outlet air temperature can be brought closer to each other. Decide in consideration of the increase in power consumption.

予冷コイル102の入口水温(循環ポンプ(P4)103からの送り水温)は、フリークーリング用の冷却塔(CT3)106で決定した20℃とし、予冷コイル102の冷却コイルが空調機101の冷却コイル能力の50%の冷却能力の時は、空調機101の空気入口温度27℃と出口温度20℃のちょうど中間空気温度23.5以下になるように予冷コイル102の能力を決定する。   The inlet water temperature of the precooling coil 102 (the feed water temperature from the circulation pump (P4) 103) is 20 ° C. determined by the cooling tower (CT3) 106 for free cooling, and the cooling coil of the precooling coil 102 is the cooling coil of the air conditioner 101. When the cooling capacity is 50% of the capacity, the capacity of the pre-cooling coil 102 is determined so that the intermediate air temperature between the air inlet temperature 27 ° C. and the outlet temperature 20 ° C. of the air conditioner 101 is exactly 23.5 or less.

次に、フリ−クーリング用の冷却塔(CT3)105と後段の第二の冷凍機用の冷却塔(CT2)115の関係について説明する。
フリークーリング用の冷却塔(CT3)105はターボ式の第二の冷凍機(R2)109と同じ冷却能力を持ち、後段の第二の冷凍機用の冷却塔(CT2)115は夏季のターボ式の第二の冷凍機(R2)109用の冷却水を冷却するため、第二の冷凍機(R2)109の冷却熱量とコンプレッサー仕事熱当量を合わせた能力520RTを要する。そのため直列に接続するフリークリング用の冷却塔(CT3)105の能力が400RTなので、フリークーリング時には400RT/520RT=0.8となり80%の水量で行う。この場合、専用機に対して伝熱面積も大きいので、冷却するのに有利かつ搬送動力も小さくて良い。
Next, the relationship between the free cooling cooling tower (CT3) 105 and the second cooling tower (CT2) 115 for the second stage will be described.
The cooling tower for free cooling (CT3) 105 has the same cooling capacity as the second turbo refrigerator (R2) 109, and the second cooling tower for the second refrigerator (CT2) 115 is a turbocharger in summer. In order to cool the cooling water for the second refrigerator (R2) 109, a capacity of 520RT that combines the cooling heat amount of the second refrigerator (R2) 109 and the compressor work heat equivalent is required. Therefore, since the capacity of the free-cooling cooling tower (CT3) 105 connected in series is 400 RT, 400 RT / 520 RT = 0.8 at the time of free cooling, and the water amount is 80%. In this case, since the heat transfer area is large with respect to the dedicated machine, it is advantageous for cooling and the conveyance power may be small.

(第二実施形態)
本実施例に係る空気調和設備1Aは、外気、建物負荷が全体に占める割合が大きい場合に適用される。
そのため、本実施形態では、図12に示すように、電算室118の空調室123に外気熱負荷を冷却するための空調機20を新たに設置するとともに、電算機負荷用の冷凍機140と冷却塔141を設置した。
(Second embodiment)
The air-conditioning equipment 1A according to the present embodiment is applied when the ratio of outside air and building load to the whole is large.
Therefore, in this embodiment, as shown in FIG. 12, an air conditioner 20 for cooling the outside air heat load is newly installed in the air conditioning chamber 123 of the computer room 118, and the computer load refrigerator 140 and the cooling unit are cooled. Tower 141 was installed.

空調機20は、冷却コイル21を有し、冷水循環路132の往き路132aに連絡する往き路22と還り路24とを介して往きヘッダ112と還りヘッダ113とポンプ144とに連絡している。また、往き路22にはバルブ23が設けてある。このバルブ23は、バルブ125と同様に電算室118の床下空間121に吹出空気温度T5に基づいて比例制御される。   The air conditioner 20 has a cooling coil 21 and communicates with the forward header 112, the return header 113, and the pump 144 via the forward path 22 and the return path 24 that communicate with the forward path 132 a of the chilled water circulation path 132. . Further, a valve 23 is provided in the outgoing path 22. Like the valve 125, the valve 23 is proportionally controlled in the underfloor space 121 of the computer room 118 based on the blown air temperature T5.

電算機負荷用の冷凍機140には、冷却塔141と循環ポンプ142とが冷却水循環路143を介して連絡している。
以上のように、本実施形態によれば、第一実施形態と同様に、冬季や中間期の低熱負荷により遊休している第二の冷凍機用の冷却塔(CT2)115とフリークーリング用の冷却塔(CT3)105を直列に配置することによって二段に冷却することができるので、従来より冷水温度を下がることができる。
A cooling tower 141 and a circulation pump 142 communicate with the refrigerator 140 for computer load via a cooling water circulation path 143.
As described above, according to the present embodiment, as in the first embodiment, the cooling tower (CT2) 115 for the second refrigerator that is idle due to the low heat load in the winter or intermediate period and the free cooling Since the cooling tower (CT3) 105 can be cooled in two stages by arranging the cooling tower (CT3) 105 in series, the chilled water temperature can be lowered than before.

本実施形態において、予冷コイル102の冷却能力が空調機20内で占める割合は、フリークーリング用の冷却塔(CT3)105の冷却能力を電算機熱負荷の50%以上(全体熱負荷の37.5%)とし、上限は予冷コイル102の列数が増えると入口予冷水温と出口空気温度とを近ずけることができるが、予冷コイル102の列数が増えることによる空調機101内送風機に対する圧力損失の増加による消費動力の増加を考慮して決定する。   In the present embodiment, the ratio of the cooling capacity of the pre-cooling coil 102 in the air conditioner 20 is that the cooling capacity of the cooling tower (CT3) 105 for free cooling is 50% or more of the computer heat load (37. 5%), and the upper limit is that when the number of rows of the precooling coils 102 increases, the inlet precooling water temperature and the outlet air temperature can be approached, but the pressure on the blower in the air conditioner 101 due to the increase in the number of rows of the precooling coils 102 Determined considering the increase in power consumption due to the increase in loss.

予冷コイル102の入口水温(循環ポンプ(P4)103からの送り水温)はフリークーリング用の冷却塔(CT3)105で決定した20℃とし、予冷コイル102が電算機熱負荷と専用の冷却塔(CT3)105との割合で決めた場合は空調機101の空気入口温度27℃と出口温度20℃の間で入口温度からみたその割合分の空気温度差27−7℃×50%となるように予冷コイル出口空気温度を決定する。   The inlet water temperature of the precooling coil 102 (the feed water temperature from the circulation pump (P4) 103) is 20 ° C. determined by the cooling tower (CT3) 105 for free cooling, and the precooling coil 102 is connected to the computer heat load and the dedicated cooling tower ( CT3) When the ratio is determined to be 105, the air temperature difference between the air inlet temperature 27 ° C. and the outlet temperature 20 ° C. of the air conditioner 101 is 27-7 ° C. × 50% corresponding to the inlet temperature. Determine the precooling coil outlet air temperature.

なお、上記各実施形態において、フリークーリング用冷却水循環路131と予冷水循環路130とを熱交換器104を介して連結した場合について説明したが、本発明はこれに限らず、フリークーリング用冷却塔を密閉型とすることによって、熱交換器104と循環ポンプ(P4)103を省いても良い。
(第三実施形態)
本実施形態に係る空気調和設備1Bは、室温の設定が少し低く、フリークーリング用冷却水循環路131の冷却水供給温度および冷却水還り温度と、予冷コイル102の入口温度および出口温度をそれぞれ同じにでき、かつ予冷コイル102内の水質が問題ない場合に適用される。
In each of the above embodiments, the case where the free cooling cooling water circulation path 131 and the precooling water circulation path 130 are connected via the heat exchanger 104 has been described. However, the present invention is not limited to this, and the free cooling cooling tower By using a closed type, the heat exchanger 104 and the circulation pump (P4) 103 may be omitted.
(Third embodiment)
In the air conditioning equipment 1B according to the present embodiment, the room temperature setting is slightly low, and the cooling water supply temperature and the cooling water return temperature of the free cooling cooling water circulation path 131 are the same as the inlet temperature and the outlet temperature of the precooling coil 102, respectively. This is applied when there is no problem with the water quality in the pre-cooling coil 102.

そのため、本実施形態では、図13に示すように、電算室118の空調機101の予冷コイル102にフリークーリング用冷却水循環路131を直接接続した。
その他の構成は、第一実施形態と同じであるから、同一の符号を付し、その説明は省略する。
本実施形態によれば、第一実施形態と同様に、冬季や中間期の低熱負荷により遊休している第二の冷凍機用の冷却塔(CT2)115とフリークーリング用の冷却塔(CT3)105を直列に配置することによって二段に冷却することができるので、従来より冷水温度を下がることができる。
(第四実施形態)
本実施形態に係る空気調和設備1Cは、例えば、クリーンルームなどで精密温調を行う際に、湿度の管理を外気調和機など1箇所に限定するため、循環系の冷却コイル107をその空気側表面で水分結露を起こさないドライコイルとするため、通常の冷水ではなく、高温の冷水(例えば、室内の温調条件が露点11℃ならば、冷水供給温度13℃〜冷水還り温度18℃である冷水)で運転する場合があり、これに適用される。
Therefore, in this embodiment, as shown in FIG. 13, the free cooling cooling water circulation path 131 is directly connected to the precooling coil 102 of the air conditioner 101 in the computer room 118.
Since other configurations are the same as those of the first embodiment, the same reference numerals are given and the description thereof is omitted.
According to this embodiment, as in the first embodiment, the cooling tower (CT2) 115 for the second refrigerator and the cooling tower (CT3) for free cooling that are idle due to the low heat load in the winter season or the intermediate period. Since 105 can be cooled in two stages by arranging them in series, the chilled water temperature can be lowered than before.
(Fourth embodiment)
The air-conditioning equipment 1C according to the present embodiment, for example, when performing precise temperature control in a clean room or the like, restricts the humidity control to one place such as an outdoor air conditioner, so that the cooling coil 107 of the circulation system is provided on the air-side surface. In order to obtain a dry coil that does not cause moisture condensation, high temperature cold water (for example, if the indoor temperature control condition is a dew point of 11 ° C., cold water having a cold water supply temperature of 13 ° C. to a cold water return temperature of 18 ° C.) ) And may apply to this.

そのため、本実施形態では、図14に示すように、冷凍機で冷凍される水温も上昇し冷凍機入口18℃、出口13℃として成績係数の向上を見込め、冷凍機と並列にフリークーリング用の熱交換器104を備えるものである。
本実施形態においては、熱交換器104にはポンプ144によりヘッダ113と繋がる管路151とヘッダ112と繋がる管路152とが接続している。
Therefore, in this embodiment, as shown in FIG. 14, the temperature of the water frozen in the freezer also rises and the improvement of the coefficient of performance is expected as the freezer inlet 18 ° C. and the outlet 13 ° C., and for free cooling in parallel with the freezer A heat exchanger 104 is provided.
In the present embodiment, a pipe 151 connected to the header 113 and a pipe 152 connected to the header 112 are connected to the heat exchanger 104 by a pump 144.

また、本実施形態では、空調機101において床下空間121から戻ってくる空気と冷水コイル107の冷水とを熱交換し、空調室123から電算室118の天井空間122から電算室118に冷気を吹き出し、床下空間121から空調機101が設置されている空調室123に戻る経路を空気が流れるように構成されている。
その他の構成は、第一実施形態と同じであるから、同一の符号を付し、その説明は省略する。
In this embodiment, the air returning from the underfloor space 121 and the cold water in the cold water coil 107 are heat-exchanged in the air conditioner 101, and cold air is blown from the air conditioning chamber 123 to the computer room 118 from the ceiling space 122 of the computer room 118. The air flows from the underfloor space 121 back to the air conditioning chamber 123 where the air conditioner 101 is installed.
Since other configurations are the same as those of the first embodiment, the same reference numerals are given and the description thereof is omitted.

本実施形態によれば、第一実施形態と同様に、冬季や中間期の低熱負荷により遊休している第二の冷凍機用の冷却塔(CT2)115とフリークーリング用の冷却塔(CT3)105を直列に配置することによって二段に冷却することができるので、従来より冷水温度を下がることができる。   According to this embodiment, as in the first embodiment, the cooling tower (CT2) 115 for the second refrigerator and the cooling tower (CT3) for free cooling that are idle due to the low heat load in the winter season or the intermediate period. Since 105 can be cooled in two stages by arranging them in series, the chilled water temperature can be lowered than before.

本発明の第一実施形態に係る空気調和設備の機器構成を示す説明図である。It is explanatory drawing which shows the apparatus structure of the air conditioning equipment which concerns on 1st embodiment of this invention. 図1の空気調和設備の制御系統を示す説明図である。It is explanatory drawing which shows the control system of the air conditioning equipment of FIG. 図1の空気調和設備のフローチャートをである。It is a flowchart of the air conditioning equipment of FIG. 図1の空気調和設備の夏季の動作を示す説明図である。It is explanatory drawing which shows the operation | movement of the summer of the air conditioning equipment of FIG. 図1の空気調和設備の中間期の動作を示す説明図である。It is explanatory drawing which shows the operation | movement of the intermediate period of the air conditioning equipment of FIG. 図1の空気調和設備の冬季の動作を示す説明図である。It is explanatory drawing which shows the operation | movement in winter of the air conditioning equipment of FIG. 図1の空気調和設備により冬季や中間期の低熱負荷により遊休している第二の冷凍機用の冷却塔(CT2)115とフリークーリング用の冷却塔(CT3)105とを直列にして冷却する理論を説明するグラフである。The cooling tower (CT2) 115 for the second refrigerator and the cooling tower (CT3) 105 for free cooling, which are idle due to the low heat load in the winter or intermediate period, are cooled in series by the air conditioning equipment of FIG. It is a graph explaining a theory. フリークーリング用の冷却塔(CT3)105での外気湿球温度と飽和空気のエントロピーとの関係を示すグラフである。It is a graph which shows the relationship between the external wet-bulb temperature in the cooling tower (CT3) 105 for free cooling, and the entropy of saturated air. 同じ能力のフリークーリング用の冷却塔(CT3)105と第二の冷凍機用の冷却塔(CT2)115とを直列に入口水温23℃時の外気湿球温度と出口水温との関係を示すグラフである。The graph which shows the relationship between the external wet-bulb temperature at the time of 23 degreeC of inlet water temperature, and the outlet water temperature in series with the cooling tower (CT3) 105 for free cooling of the same capacity | capacitance, and the cooling tower (CT2) 115 for the 2nd freezer It is. 2台目の冷却塔の能力が大きい冷却塔2台直列での入口水温23℃時の外気湿球温度と出口水温との関係を示すグラフである。It is a graph which shows the relationship between the outside wet-bulb temperature at the time of the inlet water temperature of 23 degreeC in series with two cooling towers with a large capability of the 2nd cooling tower, and an outlet water temperature. 2台目の冷却塔の能力が大きい冷却塔2台直列での入口水温21℃時の外気湿球温度と出口水温との関係を示すグラフである。It is a graph which shows the relationship between the external air wet-bulb temperature at the time of 21 degreeC of inlet water temperature and outlet water temperature in series with two cooling towers with the large capability of the 2nd cooling tower. 本発明の第二実施形態に係る空気調和設備の機器構成を示す説明図である。It is explanatory drawing which shows the apparatus structure of the air conditioning equipment which concerns on 2nd embodiment of this invention. 本発明の第三実施形態に係る空気調和設備の機器構成を示す説明図である。It is explanatory drawing which shows the apparatus structure of the air conditioning equipment which concerns on 3rd embodiment of this invention. 本発明の第四実施形態に係る空気調和設備の機器構成を示す説明図である。It is explanatory drawing which shows the apparatus structure of the air conditioning equipment which concerns on 4th embodiment of this invention. 従来の空気調和設備の機器構成を示す説明図である。It is explanatory drawing which shows the apparatus structure of the conventional air conditioning equipment. 図15空気調和設備の制御系統を示す説明図である。15 is an explanatory diagram showing a control system of the air conditioning equipment. 図15の空気調和設備のフローチャートである。It is a flowchart of the air conditioning equipment of FIG. 図15の空気調和設備の夏季、中間期の動作を示す説明図である。It is explanatory drawing which shows the operation | movement of the summer of the air conditioning equipment of FIG. 図15の空気調和設備の冬季の動作を示す説明図である。It is explanatory drawing which shows the operation | movement of the air conditioning equipment of FIG. 15 in winter.

符号の説明Explanation of symbols

1,1A 空気調和設備
10 フリークーリング用切替機構
11 第一の流路
11a,12a,12b 分岐点
12 第二の流路
13 第一のバルブ(V1)
14 第二のバルブ(V2)
15 第三のバルブ(V3)
16 第四のバルブ(V4)
20 空調機
21 冷却コイル
22 往き路
23 バルブ
24 還り路
101 空調機
102 予冷コイル
103 循環ポンプ(P4)
104 熱交換器
105 フリークーリング用の冷却塔(CT3)
106 循環ポンプ(P3)
107 冷却コイル
108 冷凍機(R1)
109 第二の冷凍機(R2)
110 循環ポンプ(CP1)
111 循環ポンプ(CP1)
114 冷却塔(CT1)
115 第二の冷凍機用の冷却塔(CT2)
116 循環ポンプ(P1)
117 循環ポンプ(P2)
118 電算室
119 電算機
120 電算機室
121 床下空間
122 天井空間
123 空調室
124 コントローラ
125 バルブ(VE1)
126 バルブ
127 熱量演算コントローラ
130 予冷水循環路
131 フリークーリング用冷却水循環路
131a フリークーリング用冷却水循環路131の往き路
132 冷水循環路
132a 冷水循環路132の往き路
132b 冷水循環路132の還り路
133 冷却水循環路
134 第二の冷却水循環路
134a 第二の冷却水循環路134の往き路
134b 第二の冷却水循環路134の還り路
140 冷凍機
141 冷却塔
142 循環ポンプ
F1,F2,F3 流量計
F1C1,F1C2,FIC3 流量調節器
TIC1、TIC2,TIC3,TIC4,TIC5,TIC6,TIC7 温度調節器

1, 1A Air conditioning equipment 10 Free cooling switching mechanism 11 First flow path 11a, 12a, 12b Branch point 12 Second flow path 13 First valve (V1)
14 Second valve (V2)
15 Third valve (V3)
16 Fourth valve (V4)
20 Air Conditioner 21 Cooling Coil 22 Outgoing Path 23 Valve 24 Return Path 101 Air Conditioner 102 Precooling Coil 103 Circulation Pump (P4)
104 Heat exchanger 105 Cooling tower for free cooling (CT3)
106 Circulation pump (P3)
107 Cooling coil 108 Refrigerator (R1)
109 Second refrigerator (R2)
110 Circulation pump (CP1)
111 Circulation pump (CP1)
114 Cooling tower (CT1)
115 Cooling tower for the second refrigerator (CT2)
116 Circulation pump (P1)
117 Circulation pump (P2)
118 Computer room 119 Computer 120 Computer room 121 Underfloor space 122 Ceiling space 123 Air conditioning room 124 Controller 125 Valve (VE1)
126 Valve 127 Calorific value calculation controller 130 Precooling water circulation path 131 Free cooling cooling water circulation path 131a Outgoing path 132 of free cooling cooling water circulation path 131 Chilled water circulation path 132a Outbound path 132b of cold water circulation path 132 Return path 133 of cooling water circulation path 132 Cooling Water circulation path 134 Second cooling water circulation path 134a Outward path 134b of second cooling water circulation path 134 Return path 140 of second cooling water circulation path 134 Refrigerator 141 Cooling tower 142 Circulation pumps F1, F2, F3 Flowmeters F1C1, F1C2 , FIC3 Flow controller TIC1, TIC2, TIC3, TIC4, TIC5, TIC6, TIC7 Temperature controller

Claims (13)

予冷コイルと冷却コイルとを設けた空調機と、
外気湿球温度計と、
前記外気湿球温度計によって測定された外気湿球温度に拘わらず運転する第一の冷凍機と、
前記外気湿球温度計によって測定された外気湿球温度に拘わらず運転する前記第一の冷凍機用の冷却塔と、
液ポンプを設け、前記第一の冷凍機と前記第一の冷凍機用の冷却塔とを連絡する第一の冷却水循環路と、
前記外気湿球温度計によって測定された外気湿球温度と前記冷却コイルの冷却要求に応じて発停する少なくとも1つ以上の第二の冷凍機と、
前記外気湿球温度計によって測定された外気湿球温度と前記冷却コイルの冷却要求に応じて発停する前記第二の冷凍機用の冷却塔と、
液ポンプを設け、前記第二の冷凍機と前記第二の冷凍機用の冷却塔とを連絡する第二の冷却水循環路と、
液ポンプを設け、前記第一の冷凍機および前記第二の冷凍機と前記空調機の冷却コイルとを連絡する冷水循環路と、
フリークーリング用の冷却塔と、
液ポンプを設け、前記フリークーリング用の冷却塔に連絡するフリークーリング用冷却水循環路と、
液ポンプを設け、前記空調機の予冷コイルと連絡する予冷コイル用冷却水循環路と、
前記フリークーリング用冷却水循環路と前記予冷コイル用冷却水循環路との間に配される熱交換器と、
前記第二の冷却水循環路と前記フリークーリング用冷却水循環路との間に設け、前記フリークーリング用の冷却塔と前記第二の冷凍機用の冷却塔とを直列に接続するフリークーリング用切替機構と、
前記外気湿球温度計によって測定される外気湿球温度に、フリークーリングを行えない第一の設定値とフリークーリングを行える第二の設定値とを設定するとともに、前記フリークーリング用切替機構の切替制御を行う制御装置とを備え、
前記フリークーリング用切替機構は、
前記フリークーリング用冷却水循環路の往き路と前記第二の冷却水循環路の還り路とを結ぶ第一の流路と、
前記フリークーリング用冷却水循環路の往き路と前記第二の冷却水循環路の往き路とを結ぶ第二の流路と、
前記第一の流路の前記フリークーリング用冷却水循環路の往き路側の分岐点と前記第二の流路の前記フリークーリング用冷却水循環路の往き路側の分岐点との間の前記フリークーリング用冷却水循環路の往き路に設けた第一のバルブと、
前記第一の流路に設けた第二のバルブと、
前記第二の流路に設けた第三のバルブと、
前記第二の流路の前記第二の冷却水循環路の往き路側の分岐点より前記第二の冷凍機側に設けた第四のバルブとを備え、
前記制御装置は、
前記外気湿球温度計によって測定された外気湿球温度が第一の設定値以上になると、前記第一のバルブ、前記第二のバルブおよび前記第三のバルブを閉じ、前記第四のバルブを開いて前記第二の冷凍機および前記第二の冷凍機用の冷却塔を運転する制御を行い、
前記外気湿球温度計によって測定された外気湿球温度が前記第一の設定値より低くかつ第二の設定値以上になると、前記第二の冷凍機を停止し、前記第二のバルブおよび前記第三のバルブを開き、前記第一のバルブおよび前記第四のバルブを閉じて前記フリークーリング用冷却塔と前記第二の冷凍機用の冷却塔とを直列に連絡して前記フリークーリング用冷却水循環路の冷却水を二段階に冷却する制御を行い、
前記外気湿球温度計によって測定された外気湿球温度が前記第二の設定値より低くなると、前記第二の冷凍機用の冷却塔を停止し、前記第一のバルブを開き、前記第二のバルブおよび第三のバルブを閉じ、前記フリークーリング用冷却水循環路の冷却水を一段冷却する制御を行い、
前記フリークーリング用冷却水循環路を介して前記熱交換器に冷却水を搬送する制御を行う
ことを特徴とする空気調和設備。
An air conditioner provided with a pre-cooling coil and a cooling coil;
An outside air wet bulb thermometer,
A first refrigerator that operates regardless of the outside air wet bulb temperature measured by the outside air wet bulb thermometer;
A cooling tower for the first refrigerator that operates regardless of the outside air wet bulb temperature measured by the outside air wet bulb thermometer;
A first cooling water circulation path for providing a liquid pump and communicating the first refrigerator and the cooling tower for the first refrigerator;
At least one or more second refrigerators that start and stop in response to the outside air wet bulb temperature measured by the outside air wet bulb thermometer and the cooling requirement of the cooling coil;
A cooling tower for the second refrigerator that starts and stops in response to a cooling request of the cooling coil and the temperature of the outdoor wet bulb measured by the outdoor wet bulb thermometer;
A second cooling water circulation path for providing a liquid pump and communicating the second refrigerator and the cooling tower for the second refrigerator;
A chilled water circuit that provides a liquid pump and communicates the first refrigerator and the second refrigerator with the cooling coil of the air conditioner;
A cooling tower for free cooling,
A cooling water circuit for free cooling that is provided with a liquid pump and communicates with the cooling tower for free cooling;
A liquid pump, and a cooling water circuit for the precooling coil that communicates with the precooling coil of the air conditioner;
A heat exchanger disposed between the cooling water circuit for free cooling and the cooling water circuit for the precooling coil;
A switching mechanism for free cooling provided between the second cooling water circulation path and the cooling water circulation path for free cooling, and connecting the cooling tower for free cooling and the cooling tower for the second refrigerator in series. When,
A first set value for which free cooling cannot be performed and a second set value for which free cooling can be performed are set in the outside wet bulb temperature measured by the outside air wet bulb thermometer, and switching of the free cooling switching mechanism is performed. A control device for controlling,
The switching mechanism for free cooling is
A first flow path connecting the outgoing path of the cooling water circulation path for free cooling and the return path of the second cooling water circulation path;
A second flow path connecting the outgoing path of the cooling water circulation path for free cooling and the outgoing path of the second cooling water circulation path;
The cooling for free cooling between the branch point on the forward path side of the free cooling cooling water circulation path of the first flow path and the branch point on the forward path side of the free cooling cooling water circulation path of the second flow path. A first valve provided in the water circulation path,
A second valve provided in the first flow path;
A third valve provided in the second flow path;
A fourth valve provided on the second refrigerator side from a branch point on the outgoing path side of the second cooling water circulation path of the second flow path,
The controller is
When the outdoor wet bulb temperature measured by the outdoor wet bulb thermometer is equal to or higher than a first set value, the first valve, the second valve, and the third valve are closed, and the fourth valve is opened. Open and perform control to operate the second refrigerator and the cooling tower for the second refrigerator,
When the outside air wet bulb temperature measured by the outside air wet bulb thermometer is lower than the first set value and equal to or higher than the second set value, the second refrigerator is stopped, the second valve and the Open the third valve, close the first valve and the fourth valve, and connect the cooling tower for free cooling and the cooling tower for the second refrigerator in series to cool the cooling for free cooling. Control the cooling water in the water circuit in two stages,
When the outdoor wet bulb temperature measured by the outdoor wet bulb thermometer becomes lower than the second set value, the cooling tower for the second refrigerator is stopped, the first valve is opened, and the second valve is opened. The valve and the third valve are closed, and control is performed to cool the cooling water in the free cooling cooling water circulation path one step,
Air conditioning equipment, wherein control is performed to convey cooling water to the heat exchanger via the cooling water circulation path for free cooling.
予冷コイルと冷却コイルとを設けた空調機と、
外気湿球温度計と、
前記外気湿球温度計によって測定された外気湿球温度に拘わらず運転する第一の冷凍機と、
前記外気湿球温度計によって測定された外気湿球温度に拘わらず運転する前記第一の冷凍機用の冷却塔と、
液ポンプを設け、前記第一の冷凍機と前記第一の冷凍機用の冷却塔とを連絡する第一の冷却水循環路と、
前記外気湿球温度計によって測定された外気湿球温度と前記冷却コイルの冷却要求に応じて発停する少なくとも1つ以上の第二の冷凍機と、
前記外気湿球温度計によって測定された外気湿球温度と前記冷却コイルの冷却要求に応じて発停する前記第二の冷凍機用の冷却塔と、
液ポンプを設け、前記第二の冷凍機と前記第二の冷凍機用の冷却塔とを連絡する第二の冷却水循環路と、
液ポンプを設け、前記第一の冷凍機および前記第二の冷凍機と前記空調機の冷却コイルとを連絡する冷水循環路と、
フリークーリング用の冷却塔と、
液ポンプを設け、前記フリークーリング用の冷却塔と前記空調機の予冷コイルとを連絡するフリークーリング用冷却水循環路と、
前記第二の冷却水循環路と前記フリークーリング用冷却水循環路との間に設け、前記フリークーリング用の冷却塔と前記第二の冷凍機用の冷却塔とを直列に接続するフリークーリング用切替機構と、
前記外気湿球温度計によって測定される外気湿球温度に、フリークーリングを行えない第一の設定値とフリークーリングを行える第二の設定値とを設定するとともに、前記フリークーリング用切替機構の切替制御を行う制御装置とを備え、
前記フリークーリング用切替機構は、
前記フリークーリング用冷却水循環路の往き路と前記第二の冷却水循環路の還り路とを結ぶ第一の流路と、
前記フリークーリング用冷却水循環路の往き路と前記第二の冷却水循環路の往き路とを結ぶ第二の流路と、
前記第一の流路の前記フリークーリング用冷却水循環路の往き路側の分岐点と前記第二の流路の前記フリークーリング用冷却水循環路の往き路側の分岐点との間の前記フリークーリング用冷却水循環路の往き路に設けた第一のバルブと、
前記第一の流路に設けた第二のバルブと、
前記第二の流路に設けた第三のバルブと、
前記第二の流路の前記第二の冷却水循環路の往き路側の分岐点より前記第二の冷凍機側に設けた第四のバルブとを備え、
前記制御装置は、
前記外気湿球温度計によって測定された外気湿球温度が第一の設定値以上になると、前記第一のバルブ、前記第二のバルブおよび前記第三のバルブを閉じ、前記第四のバルブを開いて前記第二の冷凍機および前記第二の冷凍機用の冷却塔を運転する制御を行い、
前記外気湿球温度計によって測定された外気湿球温度が前記第一の設定値より低くかつ第二の設定値以上になると、前記第二の冷凍機を停止し、前記第二のバルブおよび前記第三のバルブを開き、前記第一のバルブおよび前記第四のバルブを閉じて前記フリークーリング用冷却塔と前記第二の冷凍機用の冷却塔とを直列に連絡して前記フリークーリング用冷却水循環路の冷却水を二段階に冷却する制御を行い、
前記外気湿球温度計によって測定された外気湿球温度が前記第二の設定値より低くなると、前記第二の冷凍機用の冷却塔を停止し、前記第一のバルブを開き、前記第二のバルブおよび第三のバルブを閉じ、前記フリークーリング用冷却水循環路の冷却水を一段冷却する制御を行い、
前記フリークーリング用冷却水循環路を介して前記予冷コイルに冷却水を搬送する制御を行う
ことを特徴とする空気調和設備。
An air conditioner provided with a pre-cooling coil and a cooling coil;
An outside air wet bulb thermometer,
A first refrigerator that operates regardless of the outside air wet bulb temperature measured by the outside air wet bulb thermometer;
A cooling tower for the first refrigerator that operates regardless of the outside air wet bulb temperature measured by the outside air wet bulb thermometer;
A first cooling water circulation path for providing a liquid pump and communicating the first refrigerator and the cooling tower for the first refrigerator;
At least one or more second refrigerators that start and stop in response to the outside air wet bulb temperature measured by the outside air wet bulb thermometer and the cooling requirement of the cooling coil;
A cooling tower for the second refrigerator that starts and stops in response to a cooling request of the cooling coil and the temperature of the outdoor wet bulb measured by the outdoor wet bulb thermometer;
A second cooling water circulation path for providing a liquid pump and communicating the second refrigerator and the cooling tower for the second refrigerator;
A chilled water circuit that provides a liquid pump and communicates the first refrigerator and the second refrigerator with the cooling coil of the air conditioner;
A cooling tower for free cooling,
A liquid pump, and a cooling water circulation path for free cooling that communicates the cooling tower for free cooling and the precooling coil of the air conditioner;
A switching mechanism for free cooling provided between the second cooling water circulation path and the cooling water circulation path for free cooling, and connecting the cooling tower for free cooling and the cooling tower for the second refrigerator in series. When,
A first set value for which free cooling cannot be performed and a second set value for which free cooling can be performed are set in the outside wet bulb temperature measured by the outside air wet bulb thermometer, and switching of the free cooling switching mechanism is performed. A control device for controlling,
The switching mechanism for free cooling is
A first flow path connecting the outgoing path of the cooling water circulation path for free cooling and the return path of the second cooling water circulation path;
A second flow path connecting the outgoing path of the cooling water circulation path for free cooling and the outgoing path of the second cooling water circulation path;
The cooling for free cooling between the branch point on the forward path side of the free cooling cooling water circulation path of the first flow path and the branch point on the forward path side of the free cooling cooling water circulation path of the second flow path. A first valve provided in the water circulation path,
A second valve provided in the first flow path;
A third valve provided in the second flow path;
A fourth valve provided on the second refrigerator side from a branch point on the outgoing path side of the second cooling water circulation path of the second flow path,
The controller is
When the outdoor wet bulb temperature measured by the outdoor wet bulb thermometer is equal to or higher than a first set value, the first valve, the second valve, and the third valve are closed, and the fourth valve is opened. Open and perform control to operate the second refrigerator and the cooling tower for the second refrigerator,
When the outside air wet bulb temperature measured by the outside air wet bulb thermometer is lower than the first set value and equal to or higher than the second set value, the second refrigerator is stopped, the second valve and the Open the third valve, close the first valve and the fourth valve, and connect the cooling tower for free cooling and the cooling tower for the second refrigerator in series to cool the cooling for free cooling. Control the cooling water in the water circuit in two stages,
When the outdoor wet bulb temperature measured by the outdoor wet bulb thermometer becomes lower than the second set value, the cooling tower for the second refrigerator is stopped, the first valve is opened, and the second valve is opened. The valve and the third valve are closed, and control is performed to cool the cooling water in the free cooling cooling water circulation path one step,
Air conditioning equipment, wherein control is performed to convey cooling water to the precooling coil via the cooling water circulation path for free cooling.
冷却コイルを備えた空調機と、
外気湿球温度計と、
前記外気湿球温度計によって測定された外気湿球温度に拘わらず運転する第一の冷凍機と、
前記外気湿球温度計によって測定された外気湿球温度に拘わらず運転する前記第一の冷凍機用の冷却塔と、
液ポンプを設け、前記第一の冷凍機と前記第一の冷凍機用の冷却塔とを連絡する第一の冷却水循環路と、
前記外気湿球温度計によって測定された外気湿球温度と前記冷却コイルの冷却要求に応じて発停する少なくとも一つ以上の第二の冷凍機と、
前記外気湿球温度計によって測定された外気湿球温度と前記冷却コイルの冷却要求に応じて発停する前記第二の冷凍機の冷却塔と、
液ポンプを設け、前記第二の冷凍機と前記第二の冷凍機用の冷却塔とを連絡する第二の冷却水循環路と、
フリークーリング用の冷却塔と、
液ポンプと熱交換器とを設け、前記フリークーリング用の冷却塔に連絡するフリークーリング用冷却水循環路と、
液ポンプを設け、前記第一の冷凍機および前記第二の冷凍機及び前記熱交換器と前記空調機の冷却コイルとを連絡する冷水循環路と、
前記第二の冷却水循環路と前記フリークーリング用冷却水循環路との間に設け、前記フリークーリング用の冷却塔と前記第二の冷凍機用の冷却塔とを直列に接続するフリークーリング用切替機構と、
前記外気湿球温度計によって測定される外気湿球温度に、フリークーリングを行えない第一の設定値とフリークーリングを行える第二の設定値とを設定するとともに、前記フリークーリング用切替機構の切替制御を行う制御装置とを備え、
前記フリークーリング用切替機構は、
前記フリークーリング用冷却水循環路の往き路と前記第二の冷却水循環路の還り路とを結ぶ第一の流路と、
前記フリークーリング用冷却水循環路の往き路と前記第二の冷却水循環路の往き路とを結ぶ第二の流路と、
前記第一の流路の前記フリークーリング用冷却水循環路の往き路側の分岐点と前記第二の流路の前記フリークーリング用冷却水循環路の往き路側の分岐点との間の前記フリークーリング用冷却水循環路の往き路に設けた第一のバルブと、
前記第一の流路に設けた第二のバルブと、
前記第二の流路に設けた第三のバルブと、
前記第二の流路の前記第二の冷却水循環路の往き路側の分岐点より前記第二の冷凍機側に設けた第四のバルブとを備え、
前記制御装置は、
前記外気湿球温度計によって測定された外気湿球温度が第一の設定値以上になると、前記第一のバルブ、前記第二のバルブおよび前記第三のバルブを閉じ、前記第四のバルブを開いて前記第二の冷凍機および前記第二の冷凍機用の冷却塔を運転する制御を行い、
前記外気湿球温度計によって測定された外気湿球温度が前記第一の設定値より低くかつ第二の設定値以上になると、前記第二の冷凍機を停止し、前記第二のバルブおよび前記第三のバルブを開き、前記第一のバルブおよび前記第四のバルブを閉じて前記フリークーリング用冷却塔と前記第二の冷凍機用の冷却塔とを直列に連絡して前記フリークーリング用冷却水循環路の冷却水を二段階に冷却する制御を行い、
前記外気湿球温度計によって測定された外気湿球温度が前記第二の設定値より低くなると、前記第二の冷凍機用の冷却塔を停止し、前記第一のバルブを開き、前記第二のバルブ及び第三のバルブを閉じ、前記フリークーリング用冷却水循環路の冷却水を一段冷却する制御を行い、
前記フリークーリング用冷却水循環路を介して前記熱交換器に冷却水を搬送する制御を行う
ことを特徴とする空気調和設備。
An air conditioner with a cooling coil;
An outside air wet bulb thermometer,
A first refrigerator that operates regardless of the outside air wet bulb temperature measured by the outside air wet bulb thermometer;
A cooling tower for the first refrigerator that operates regardless of the outside air wet bulb temperature measured by the outside air wet bulb thermometer;
A first cooling water circulation path for providing a liquid pump and communicating the first refrigerator and the cooling tower for the first refrigerator;
At least one second refrigerator that starts and stops in response to the outside air wet bulb temperature measured by the outside air wet bulb thermometer and the cooling requirement of the cooling coil;
The cooling tower of the second refrigerator that starts and stops in response to the temperature of the outside air wet bulb measured by the outside air wet bulb thermometer and the cooling requirement of the cooling coil;
A second cooling water circulation path for providing a liquid pump and communicating the second refrigerator and the cooling tower for the second refrigerator;
A cooling tower for free cooling,
Providing a liquid pump and a heat exchanger, a cooling water circulation path for free cooling that communicates with the cooling tower for free cooling,
A chilled water circuit that provides a liquid pump and communicates the first refrigerator, the second refrigerator, the heat exchanger, and a cooling coil of the air conditioner;
A switching mechanism for free cooling provided between the second cooling water circulation path and the cooling water circulation path for free cooling, and connecting the cooling tower for free cooling and the cooling tower for the second refrigerator in series. When,
A first set value for which free cooling cannot be performed and a second set value for which free cooling can be performed are set in the outside wet bulb temperature measured by the outside air wet bulb thermometer, and switching of the free cooling switching mechanism is performed. A control device for controlling,
The switching mechanism for free cooling is
A first flow path connecting the outgoing path of the cooling water circulation path for free cooling and the return path of the second cooling water circulation path;
A second flow path connecting the outgoing path of the cooling water circulation path for free cooling and the outgoing path of the second cooling water circulation path;
The cooling for free cooling between the branch point on the forward path side of the free cooling cooling water circulation path of the first flow path and the branch point on the forward path side of the free cooling cooling water circulation path of the second flow path. A first valve provided in the water circulation path,
A second valve provided in the first flow path;
A third valve provided in the second flow path;
A fourth valve provided on the second refrigerator side from a branch point on the outgoing path side of the second cooling water circulation path of the second flow path,
The controller is
When the outdoor wet bulb temperature measured by the outdoor wet bulb thermometer is equal to or higher than a first set value, the first valve, the second valve, and the third valve are closed, and the fourth valve is opened. Open and perform control to operate the second refrigerator and the cooling tower for the second refrigerator,
When the outside air wet bulb temperature measured by the outside air wet bulb thermometer is lower than the first set value and equal to or higher than the second set value, the second refrigerator is stopped, the second valve and the Open the third valve, close the first valve and the fourth valve, and connect the cooling tower for free cooling and the cooling tower for the second refrigerator in series to cool the cooling for free cooling. Control the cooling water in the water circuit in two stages,
When the outdoor wet bulb temperature measured by the outdoor wet bulb thermometer becomes lower than the second set value, the cooling tower for the second refrigerator is stopped, the first valve is opened, and the second valve is opened. The valve and the third valve are closed, and control is performed to cool the cooling water in the cooling water circulation path for free cooling one step,
Air conditioning equipment, wherein control is performed to convey cooling water to the heat exchanger via the cooling water circulation path for free cooling.
請求項1または請求項3記載の空気調和設備において、
前記制御装置は、
前記フリークーリング用冷却水循環路の熱交換器へ供給する冷却水往き温度をTs、熱交換器から還ってくる冷却水還り温度をTrとした際に、
前記フリークーリング用の冷却塔冷却水入口水温(これはTr温度と等しい)℃をTw1、前記フリークーリング用の冷却塔冷却水出口水温℃をTw2、前記第二流路を流れる前記第二の冷凍機用の冷却塔冷却水出口水温℃をTw3、Tw1℃における飽和空気のエンタルピーkJ/kgDAをhw1、Tw2℃における飽和空気のエンタルピーkJ/kgDAをhw2、Tw3℃における飽和空気のエンタルピーkJ/kgDAをhw3、前記フリークーリング用の冷却塔固有の比例定数C1、前記フリークーリング用の冷却塔充填物高さZ1、前記フリークーリング用の冷却塔水空気比L/GをN1、前記第二の冷凍機用の冷却塔固有の比例定数C2、前記第二の冷凍機用の冷却塔充填物高さZ2、前記第二の冷凍機用の冷却塔水空気比L/GをN2と規定して近似して表せる塔特性を求める、下記に示すフリークーリング用の冷却塔特性の対数平均法式および第二の冷凍機用の冷却塔特性の対数平均法式により、前記フリークーリング用の冷却塔を流れる空気湿球温度毎に算出したTw2と、前記第二の冷凍機用の冷却塔を流れる空気湿球温度毎に算出したTw3とを求め、
フリークーリング用の冷却塔特性の対数平均法式
Figure 0004829147
ただし、ここでのΔh1とΔh2は以下とする。
Δh1=hW2−h1
Δh2=hW1−h2
(U/N)1=C111α-1、0.3≦α≦0.5
第二の冷凍機用の冷却塔特性の対数平均法式
Figure 0004829147
ただし、ここでのΔh1とΔh2は以下とする。
Δh1=hW3−h1
Δh2=hW2−h3
(U/N)2=C222α-1、0.3≦α≦0.5
縦軸に前記フリークーリング用の冷却塔冷却水入口/出口水温℃を取り、横軸に前記フリークーリング用の冷却塔に導入される空気湿球温度℃を取ったグラフに、前記フリークーリング用の冷却塔に導入される空気湿球温度毎に算出したTw2と前記第二の冷凍機用の冷却塔に導入される空気湿球温度毎に算出したTw3とをそれぞれプロットしプロット点を結んだ二つの冷却塔出口水温線を作成し、
前記第二の冷凍機用の冷却塔出口水温線と前記グラフの縦軸の前記フリークーリング用の冷却塔冷却水出口水温℃を横軸と平行に引かれたTs温度線との交点の空気湿球温度℃を外気湿球温度の第一の設定値とし、
前記フリークーリング用の冷却塔出口水温線と前記グラフの縦軸の前記フリークーリング用の冷却塔冷却水出口水温℃を横軸と平行に引かれたTs温度線との交点の空気湿球温度℃を外気湿球温度の第二の設定値とする
ことを特徴とする空気調和装置。
In the air conditioning equipment according to claim 1 or 3,
The controller is
When the cooling water return temperature supplied to the heat exchanger of the cooling water circulation path for free cooling is T s and the cooling water return temperature returned from the heat exchanger is T r ,
The free cooling cooling tower cooling water inlet water temperature (which is equal to the Tr temperature) ° C. is T w1 , the free cooling cooling tower cooling water outlet water temperature is T w2 , and the second flow through the second flow path. Cooling tower cooling water outlet water temperature for the second refrigerator is T w3 , saturated air enthalpy kJ / kgDA at T w1 ° C is h w1 , saturated air enthalpy at T w2 ° C is kJ / kgDA is h w2 , T w3 ° C Enthalpy of saturated air at kJ / kgDA is h w3 , proportional constant C 1 inherent to the cooling tower for free cooling, cooling tower packing height Z 1 for free cooling, cooling tower water / air ratio for free cooling L / G is N 1 , proportional constant C 2 inherent to the cooling tower for the second refrigerator, cooling tower packing height Z 2 for the second refrigerator, cooling for the second refrigerator Tower water / air ratio L / G is N 2 The cooling tower for free cooling is obtained by the following logarithmic average formula of the cooling tower characteristics for free cooling and the logarithmic average formula of the cooling tower characteristics for the second refrigerator shown below to obtain the tower characteristics that can be specified and approximated. And T w2 calculated for each air wet bulb temperature flowing through the cooling tower and T w3 calculated for each air wet bulb temperature flowing through the cooling tower for the second refrigerator,
Logarithmic average formula of cooling tower characteristics for free cooling
Figure 0004829147
Here, Δh 1 and Δh 2 are as follows.
Δh 1 = h W2 −h 1
Δh 2 = h W1 −h 2
(U / N) 1 = C 1 Z 1 N 1 α −1 , 0.3 ≦ α ≦ 0.5
Logarithmic average formula of cooling tower characteristics for the second refrigerator.
Figure 0004829147
Here, Δh 1 and Δh 2 are as follows.
Δh 1 = h W3 −h 1
Δh 2 = h W2 −h 3
(U / N) 2 = C 2 Z 2 N 2 α −1 , 0.3 ≦ α ≦ 0.5
A graph in which the vertical axis represents the cooling tower cooling water inlet / outlet water temperature ° C for free cooling, and the horizontal axis represents the air wet bulb temperature ° C introduced into the free cooling cooling tower, the free cooling Tw2 calculated for each air wet bulb temperature introduced to the cooling tower and T w3 calculated for each air wet bulb temperature introduced to the cooling tower for the second refrigerator are respectively plotted to connect plot points. Create two cooling tower outlet water temperature lines,
Air intersection between the second refrigerator of the cooling tower outlet water temperature line and T s the temperature line of the cooling tower cooling water outlet temperature ℃ for free cooling of the vertical axis drawn parallel to the horizontal axis of the graph Wet bulb temperature ° C is the first set value for outdoor wet bulb temperature,
Air wet-bulb temperature of the intersection of the T s temperature line of the cooling tower cooling water outlet temperature ℃ for free cooling of the vertical axis drawn parallel to the horizontal axis of the graph and the cooling tower outlet water temperature lines for the free cooling An air conditioner characterized in that ° C is a second set value of the outside air wet bulb temperature.
請求項1または請求項3記載の空気調和設備において、
前記制御装置は、
前記フリークーリング用冷却水循環路の熱交換器へ供給する冷却水往き温度をTs、熱交換器から還ってくる冷却水還り温度をTrとした際に、
前記フリークーリング用の冷却塔冷却水入口水温(これはTr温度と等しい)℃をTw1、前記フリークーリング用の冷却塔冷却水出口水温℃をTw2、前記第二流路を流れる前記第二の冷凍機用の冷却塔冷却水出口水温℃をTw3、Tw1℃における飽和空気のエンタルピーkJ/kgDAをhw1、Tw2℃における飽和空気のエンタルピーkJ/kgDAをhw2、Tw3℃における飽和空気のエンタルピーkJ/kgDAをhw3、前記フリークーリング用の冷却塔固有の比例定数C1、前記フリークーリング用の冷却塔充填物高さZ1、前記フリークーリング用の冷却塔水空気比L/GをN1、前記第二の冷凍機用の冷却塔固有の比例定数C2、前記第二の冷凍機用の冷却塔充填物高さZ2、前記第二の冷凍機用の冷却塔水空気比L/GをN2と規定して近似して表せる塔特性を求める、下記に示すフリークーリング用の冷却塔特性のチェビシェフの公式により、前記フリークーリング用の冷却塔を流れる空気湿球温度毎に算出したTw2と、前記第二の冷凍機用の冷却塔を流れる空気湿球温度毎に算出したTw3とを求め、
フリークーリング用の冷却塔特性のチェビシェフの公式
U/N=(Cρ×Δtw/4)×{(1/Δh1)+(1/Δh2)+(1/Δh3
+(1/Δh4)}
ただし、ここでのΔh1〜Δh4は以下とする。
Δh1= tW2+0.1ΔtWにおける(hW−h)の値
Δh2= tW2+0.4ΔtWにおける(hW−h)の値
Δh3= tW2−0.4ΔtWにおける(hW−h)の値
Δh4= tW2−0.1ΔtWにおける(hW−h)の値
(U/N)1=C111α-1、0.3≦α≦0.5
第二の冷凍機用の冷却塔特性のチェビシェフの公式
U/N=(Cρ×Δtw/4)×{(1/Δh1)+(1/Δh2)+(1/Δh3
+(1/Δh4)}
ただし、ここでのΔh1〜Δh4は以下とする。
Δh1= tW3+0.1ΔtWにおける(hW−h)の値
Δh2= tW2+0.4ΔtWにおける(hW−h)の値
Δh3= tW2−0.4ΔtWにおける(hW−h)の値
Δh4= tW2−0.1ΔtWにおける(hW−h)の値
(U/N)2=C222α-1、0.3≦α≦0.5
縦軸に前記フリークーリング用の冷却塔冷却水入口/出口水温℃を取り、横軸に前記フリークーリング用の冷却塔に導入される空気湿球温度℃を取ったグラフに、前記フリークーリング用の冷却塔に導入される空気湿球温度毎に算出したTw2と前記第二の冷凍機用の冷却塔に導入される空気湿球温度毎に算出したTw3とをそれぞれプロットしプロット点を結んだ二つの冷却塔出口水温線を作成し、
前記第二の冷凍機用の冷却塔出口水温線と前記グラフの縦軸の前記フリークーリング用の冷却塔冷却水出口水温℃を横軸と平行に引かれたTs温度線との交点の空気湿球温度℃を外気湿球温度の第一の設定値とし、
前記フリークーリング用の冷却塔出口水温線と前記グラフの縦軸の前記フリークーリング用の冷却塔冷却水出口水温℃を横軸と平行に引かれたTs温度線との交点の空気湿球温度℃を外気湿球温度の第二の設定値とする
ことを特徴とする空気調和装置。
In the air conditioning equipment according to claim 1 or 3,
The controller is
When the cooling water return temperature supplied to the heat exchanger of the cooling water circulation path for free cooling is T s and the cooling water return temperature returned from the heat exchanger is T r ,
The free cooling cooling tower cooling water inlet water temperature (which is equal to the Tr temperature) ° C. is T w1 , the free cooling cooling tower cooling water outlet water temperature is T w2 , and the second flow through the second flow path. Cooling tower cooling water outlet water temperature for the second refrigerator is T w3 , saturated air enthalpy kJ / kgDA at T w1 ° C is h w1 , saturated air enthalpy at T w2 ° C is kJ / kgDA is h w2 , T w3 ° C Enthalpy of saturated air at kJ / kgDA is h w3 , proportional constant C 1 inherent to the cooling tower for free cooling, cooling tower packing height Z 1 for free cooling, cooling tower water / air ratio for free cooling L / G is N 1 , proportional constant C 2 inherent to the cooling tower for the second refrigerator, cooling tower packing height Z 2 for the second refrigerator, cooling for the second refrigerator Tower water / air ratio L / G is N 2 According to Chebyshev's formula for the cooling tower characteristics for free cooling shown below to obtain tower characteristics that can be specified and approximated, T w2 calculated for each air wet bulb temperature flowing through the cooling tower for free cooling, Obtain T w3 calculated for each air wet bulb temperature flowing through the cooling tower for the second refrigerator,
Chebyshev formula for cooling tower characteristics for free cooling U / N = (Cρ × Δt w / 4) × {(1 / Δh 1 ) + (1 / Δh 2 ) + (1 / Δh 3 )
+ (1 / Δh 4 )}
Here, Δh 1 to Δh 4 are as follows.
Δh 1 = t W2 + 0.1Δt W in (h W -h) value Δh 2 = t W2 + 0.4Δt W in (h W -h) value Δh 3 = t W2 -0.4Δt W in (h W the value of the values Δh 4 = t W2 -0.1Δt W of -h) (h W -h) ( U / N) 1 = C 1 Z 1 N 1 α -1, 0.3 ≦ α ≦ 0.5
Chebyshev formula for cooling tower characteristics for second refrigerator U / N = (Cρ × Δt w / 4) × {(1 / Δh 1 ) + (1 / Δh 2 ) + (1 / Δh 3 )
+ (1 / Δh 4 )}
Here, Δh 1 to Δh 4 are as follows.
Δh 1 = t W3 + 0.1Δt W in (h W -h) value Δh 2 = t W2 + 0.4Δt W in (h W -h) value Δh 3 = t W2 -0.4Δt W in (h W the value of the values Δh 4 = t W2 -0.1Δt W of -h) (h W -h) ( U / N) 2 = C 2 Z 2 N 2 α -1, 0.3 ≦ α ≦ 0.5
A graph in which the vertical axis represents the cooling tower cooling water inlet / outlet water temperature ° C for free cooling, and the horizontal axis represents the air wet bulb temperature ° C introduced into the free cooling cooling tower, the free cooling Tw2 calculated for each air wet bulb temperature introduced to the cooling tower and T w3 calculated for each air wet bulb temperature introduced to the cooling tower for the second refrigerator are respectively plotted to connect plot points. Create two cooling tower outlet water temperature lines,
Air intersection between the second refrigerator of the cooling tower outlet water temperature line and T s the temperature line of the cooling tower cooling water outlet temperature ℃ for free cooling of the vertical axis drawn parallel to the horizontal axis of the graph Wet bulb temperature ° C is the first set value for outdoor wet bulb temperature,
Air wet-bulb temperature of the intersection of the T s temperature line of the cooling tower cooling water outlet temperature ℃ for free cooling of the vertical axis drawn parallel to the horizontal axis of the graph and the cooling tower outlet water temperature lines for the free cooling An air conditioner characterized in that ° C is a second set value of the outside air wet bulb temperature.
請求項2記載の空気調和設備において、
前記制御装置は、
前記フリークーリング用冷却水循環路の予冷コイルへ供給する冷却水往き温度をTs、予冷コイルから還ってくる冷却水還り温度をTrとした際に、
前記フリークーリング用の冷却塔冷却水入口水温(これはTr温度と等しい)℃をTw1、前記フリークーリング用の冷却塔冷却水出口水温℃をTw2、前記第二流路を流れる前記第二の冷凍機用の冷却塔冷却水出口水温℃をTw3、Tw1℃における飽和空気のエンタルピーkJ/kgDAをhw1、Tw2℃における飽和空気のエンタルピーkJ/kgDAをhw2、Tw3℃における飽和空気のエンタルピーkJ/kgDAをhw3、前記フリークーリング用の冷却塔固有の比例定数C1、前記フリークーリング用の冷却塔充填物高さZ1、前記フリークーリング用の冷却塔水空気比L/GをN1、前記第二の冷凍機用の冷却塔固有の比例定数C2、前記第二の冷凍機用の冷却塔充填物高さZ2、前記第二の冷凍機用の冷却塔水空気比L/GをN2と規定して近似して表せる塔特性を求める、下記に示すフリークーリング用の冷却塔特性の対数平均法式および第二の冷凍機用の冷却塔特性の対数平均法式により、前記フリークーリング用の冷却塔を流れる空気湿球温度毎に算出したTw2と、前記第二の冷凍機用の冷却塔を流れる空気湿球温度毎に算出したTw3とを求め、
フリークーリング用の冷却塔特性の対数平均法式
Figure 0004829147
ただし、ここでのΔh1とΔh2は以下とする。
Δh1=hW2−h1
Δh2=hW1−h2
(U/N)1=C111α-1、0.3≦α≦0.5
第二の冷凍機用の冷却塔特性の対数平均法式
Figure 0004829147
ただし、ここでのΔh1とΔh2は以下とする。
Δh1=hW3−h1
Δh2=hW2−h3
(U/N)2=C222α-1、0.3≦α≦0.5
フリークーリング用の冷却塔特性の対数平均法式
縦軸に前記フリークーリング用の冷却塔冷却水入口/出口水温℃を取り、横軸に前記フリークーリング用の冷却塔に導入される空気湿球温度℃を取ったグラフに、前記フリークーリング用の冷却塔に導入される空気湿球温度毎に算出したTw2と前記第二の冷凍機用の冷却塔に導入される空気湿球温度毎に算出したTw3とをそれぞれプロットしプロット点を結んだ二つの冷却塔出口水温線を作成し、
前記第二の冷凍機用の冷却塔出口水温線と前記グラフの縦軸の前記フリークーリング用の冷却塔冷却水出口水温℃を横軸と平行に引かれたTs温度線との交点の空気湿球温度℃を外気湿球温度の第一の設定値とし、
前記フリークーリング用の冷却塔出口水温線と前記グラフの縦軸の前記フリークーリング用の冷却塔冷却水出口水温℃を横軸と平行に引かれたTs温度線との交点の空気湿球温度℃を外気湿球温度の第二の設定値とする
ことを特徴とする空気調和装置。
In the air conditioning equipment according to claim 2,
The controller is
When the cooling water going temperature supplied to the pre-cooling coil of the cooling circuit for free cooling is T s and the cooling water return temperature returned from the pre-cooling coil is T r ,
The free cooling cooling tower cooling water inlet water temperature (which is equal to the Tr temperature) ° C. is T w1 , the free cooling cooling tower cooling water outlet water temperature is T w2 , and the second flow through the second flow path. Cooling tower cooling water outlet water temperature for the second refrigerator is T w3 , saturated air enthalpy kJ / kgDA at T w1 ° C is h w1 , saturated air enthalpy at T w2 ° C is kJ / kgDA is h w2 , T w3 ° C Enthalpy of saturated air at kJ / kgDA is h w3 , proportional constant C 1 inherent to the cooling tower for free cooling, cooling tower packing height Z 1 for free cooling, cooling tower water / air ratio for free cooling L / G is N 1 , proportional constant C 2 inherent to the cooling tower for the second refrigerator, cooling tower packing height Z 2 for the second refrigerator, cooling for the second refrigerator Tower water / air ratio L / G is N 2 The cooling tower for free cooling is obtained by the following logarithmic average formula of the cooling tower characteristics for free cooling and the logarithmic average formula of the cooling tower characteristics for the second refrigerator shown below to obtain the tower characteristics that can be specified and approximated. And T w2 calculated for each air wet bulb temperature flowing through the cooling tower and T w3 calculated for each air wet bulb temperature flowing through the cooling tower for the second refrigerator,
Logarithmic average formula of cooling tower characteristics for free cooling
Figure 0004829147
Here, Δh 1 and Δh 2 are as follows.
Δh 1 = h W2 −h 1
Δh 2 = h W1 −h 2
(U / N) 1 = C 1 Z 1 N 1 α −1 , 0.3 ≦ α ≦ 0.5
Logarithmic average formula of cooling tower characteristics for the second refrigerator.
Figure 0004829147
Here, Δh 1 and Δh 2 are as follows.
Δh 1 = h W3 −h 1
Δh 2 = h W2 −h 3
(U / N) 2 = C 2 Z 2 N 2 α −1 , 0.3 ≦ α ≦ 0.5
Logarithmic average formula of cooling tower characteristics for free cooling The vertical axis represents the cooling tower cooling water inlet / outlet water temperature ° C for free cooling, and the horizontal axis represents the temperature of air wet bulb introduced into the free cooling cooling tower ° C In the graph, the Tw2 calculated for each air wet bulb temperature introduced into the cooling tower for free cooling and the air wet bulb temperature introduced into the cooling tower for the second refrigerator were calculated. Plot Tw3 and create two cooling tower outlet water temperature lines connecting the plot points.
Air intersection between the second refrigerator of the cooling tower outlet water temperature line and T s the temperature line of the cooling tower cooling water outlet temperature ℃ for free cooling of the vertical axis drawn parallel to the horizontal axis of the graph Wet bulb temperature ° C is the first set value for outdoor wet bulb temperature,
Air wet-bulb temperature of the intersection of the T s temperature line of the cooling tower cooling water outlet temperature ℃ for free cooling of the vertical axis drawn parallel to the horizontal axis of the graph and the cooling tower outlet water temperature lines for the free cooling An air conditioner characterized in that ° C is a second set value of the outside air wet bulb temperature.
請求項2記載の空気調和設備において、
前記制御装置は、
前記フリークーリング用冷却水循環路の予冷コイルへ供給する冷却水往き温度をTs、予冷コイルから還ってくる冷却水還り温度をTrとした際に、
前記フリークーリング用の冷却塔冷却水入口水温(これはTr温度と等しい)℃をTw1、前記フリークーリング用の冷却塔冷却水出口水温℃をTw2、前記第二流路を流れる前記第二の冷凍機用の冷却塔冷却水出口水温℃をTw3、Tw1℃における飽和空気のエンタルピーkJ/kgDAをhw1、Tw2℃における飽和空気のエンタルピーkJ/kgDAをhw2、Tw3℃における飽和空気のエンタルピーkJ/kgDAをhw3、前記フリークーリング用の冷却塔固有の比例定数C1、前記フリークーリング用の冷却塔充填物高さZ1、前記フリークーリング用の冷却塔水空気比L/GをN1、前記第二の冷凍機用の冷却塔固有の比例定数C2、前記第二の冷凍機用の冷却塔充填物高さZ2、前記第二の冷凍機用の冷却塔水空気比L/GをN2と規定して近似して表せる塔特性を求める、下記に示すフリークーリング用の冷却塔特性のチェビシェフの公式により、前記フリークーリング用の冷却塔を流れる空気湿球温度毎に算出したTw2と、前記第二の冷凍機用の冷却塔を流れる空気湿球温度毎に算出したTw3とを求め、
フリークーリング用の冷却塔特性のチェビシェフの公式
U/N=(Cρ×Δtw/4)×{(1/Δh1)+(1/Δh2)+(1/Δh3
+(1/Δh4)}
ただし、ここでのΔh1〜Δh4は以下とする。
Δh1= tW2+0.1ΔtWにおける(hW−h)の値
Δh2= tW2+0.4ΔtWにおける(hW−h)の値
Δh3= tW2−0.4ΔtWにおける(hW−h)の値
Δh4= tW2−0.1ΔtWにおける(hW−h)の値
(U/N)1=C111α-1、0.3≦α≦0.5
第二の冷凍機用の冷却塔特性のチェビシェフの公式
U/N=(Cρ×Δtw/4)×{(1/Δh1)+(1/Δh2)+(1/Δh3
+(1/Δh4)}
ただし、ここでのΔh1〜Δh4は以下とする。
Δh1= tW3+0.1ΔtWにおける(hW−h)の値
Δh2= tW2+0.4ΔtWにおける(hW−h)の値
Δh3= tW2−0.4ΔtWにおける(hW−h)の値
Δh4= tW2−0.1ΔtWにおける(hW−h)の値
(U/N)2=C222α-1、0.3≦α≦0.5
縦軸に前記フリークーリング用の冷却塔冷却水入口/出口水温℃を取り、横軸に前記フリークーリング用の冷却塔に導入される空気湿球温度℃を取ったグラフに、前記フリークーリング用の冷却塔に導入される空気湿球温度毎に算出したTw2と前記第二の冷凍機用の冷却塔に導入される空気湿球温度毎に算出したTw3とをそれぞれプロットしプロット点を結んだ二つの冷却塔出口水温線を作成し、
前記第二の冷凍機用の冷却塔出口水温線と前記グラフの縦軸の前記フリークーリング用の冷却塔冷却水出口水温℃を横軸と平行に引かれたTs温度線との交点の空気湿球温度℃を外気湿球温度の第一の設定値とし、
前記フリークーリング用の冷却塔出口水温線と前記グラフの縦軸の前記フリークーリング用の冷却塔冷却水出口水温℃を横軸と平行に引かれたTs温度線との交点の空気湿球温度℃を外気湿球温度の第二の設定値とする
ことを特徴とする空気調和装置。
In the air conditioning equipment according to claim 2,
The controller is
When the cooling water going temperature supplied to the pre-cooling coil of the cooling circuit for free cooling is T s and the cooling water return temperature returned from the pre-cooling coil is T r ,
The free cooling cooling tower cooling water inlet water temperature (which is equal to the Tr temperature) ° C. is T w1 , the free cooling cooling tower cooling water outlet water temperature is T w2 , and the second flow through the second flow path. Cooling tower cooling water outlet water temperature for the second refrigerator is T w3 , saturated air enthalpy kJ / kgDA at T w1 ° C is h w1 , saturated air enthalpy at T w2 ° C is kJ / kgDA is h w2 , T w3 ° C Enthalpy of saturated air at kJ / kgDA is h w3 , proportional constant C 1 inherent to the cooling tower for free cooling, cooling tower packing height Z 1 for free cooling, cooling tower water / air ratio for free cooling L / G is N 1 , proportional constant C 2 inherent to the cooling tower for the second refrigerator, cooling tower packing height Z 2 for the second refrigerator, cooling for the second refrigerator Tower water / air ratio L / G is N 2 According to Chebyshev's formula for the cooling tower characteristics for free cooling shown below to obtain tower characteristics that can be specified and approximated, T w2 calculated for each air wet bulb temperature flowing through the cooling tower for free cooling, Obtain T w3 calculated for each air wet bulb temperature flowing through the cooling tower for the second refrigerator,
Chebyshev formula for cooling tower characteristics for free cooling U / N = (Cρ × Δt w / 4) × {(1 / Δh 1 ) + (1 / Δh 2 ) + (1 / Δh 3 )
+ (1 / Δh 4 )}
Here, Δh 1 to Δh 4 are as follows.
Δh 1 = t W2 + 0.1Δt W in (h W -h) value Δh 2 = t W2 + 0.4Δt W in (h W -h) value Δh 3 = t W2 -0.4Δt W in (h W the value of the values Δh 4 = t W2 -0.1Δt W of -h) (h W -h) ( U / N) 1 = C 1 Z 1 N 1 α -1, 0.3 ≦ α ≦ 0.5
Chebyshev formula for cooling tower characteristics for second refrigerator U / N = (Cρ × Δt w / 4) × {(1 / Δh 1 ) + (1 / Δh 2 ) + (1 / Δh 3 )
+ (1 / Δh 4 )}
Here, Δh 1 to Δh 4 are as follows.
Δh 1 = t W3 + 0.1Δt W in (h W -h) value Δh 2 = t W2 + 0.4Δt W in (h W -h) value Δh 3 = t W2 -0.4Δt W in (h W the value of the values Δh 4 = t W2 -0.1Δt W of -h) (h W -h) ( U / N) 2 = C 2 Z 2 N 2 α -1, 0.3 ≦ α ≦ 0.5
A graph in which the vertical axis represents the cooling tower cooling water inlet / outlet water temperature ° C for free cooling, and the horizontal axis represents the air wet bulb temperature ° C introduced into the free cooling cooling tower, the free cooling Tw2 calculated for each air wet bulb temperature introduced to the cooling tower and T w3 calculated for each air wet bulb temperature introduced to the cooling tower for the second refrigerator are respectively plotted to connect plot points. Create two cooling tower outlet water temperature lines,
Air intersection between the second refrigerator of the cooling tower outlet water temperature line and T s the temperature line of the cooling tower cooling water outlet temperature ℃ for free cooling of the vertical axis drawn parallel to the horizontal axis of the graph Wet bulb temperature ° C is the first set value for outdoor wet bulb temperature,
Air wet-bulb temperature of the intersection of the T s temperature line of the cooling tower cooling water outlet temperature ℃ for free cooling of the vertical axis drawn parallel to the horizontal axis of the graph and the cooling tower outlet water temperature lines for the free cooling An air conditioner characterized in that ° C is a second set value of the outside air wet bulb temperature.
請求項4ないし請求項7の何れか記載の空気調和設備において、
2=C1、Z2=Z1、N2=N1である、第二の冷凍機用の冷却塔を備えた
ことを特徴とする空気調和設備。
In the air conditioning equipment according to any one of claims 4 to 7,
An air-conditioning facility comprising a cooling tower for a second refrigerator in which C 2 = C 1 , Z 2 = Z 1 , and N 2 = N 1 .
請求項4ないし請求項7の何れか記載の空気調和設備において、
2>Z1、N2<N1である、第二の冷凍機用の冷却塔を備えた
ことを特徴とする空気調和設備。
In the air conditioning equipment according to any one of claims 4 to 7,
An air conditioner comprising a cooling tower for a second refrigerator, wherein Z 2 > Z 1 and N 2 <N 1 .
請求項1ないし請求項9の何れか記載の空気調和設備において、
前記フリークーリング用冷却水循環路は、往き路に前記液ポンプを設け、前記液ポンプと前記第一の流路の前記フリークーリング用冷却水循環路の往き路側の分岐点との間に第一の流量計を設け、還り路に第二の流量計を設けている
ことを特徴とする空気調和設備。
In the air conditioning equipment according to any one of claims 1 to 9,
The free cooling cooling water circulation path is provided with the liquid pump in the forward path, and a first flow rate between the liquid pump and the branch point of the free cooling cooling water circulation path on the forward path side. Air conditioning equipment, characterized by a meter and a second flow meter on the return path.
請求項1ないし請求項9の何れか記載の空気調和設備において、
前記冷却コイルに連絡する冷却コイルを設けた空調機をさらに備えた
ことを特徴とする空気調和設備。
In the air conditioning equipment according to any one of claims 1 to 9,
An air conditioner further comprising an air conditioner provided with a cooling coil connected to the cooling coil.
請求項4または請求項5記載の空気調和設備において、
前記フリークーリング用冷却水循環路の熱交換器へ供給する冷却水往き温度Tsと、前記熱交換器から還ってくる冷却水還り温度をTrとに所定の値を設定する入力装置をさらに備え、
前記制御装置は、前記外気湿球温度の第一の設定値および前記外気湿球温度の第二の設定値を算出演算する演算部を格納し、前記入力装置で入力された所定の値を演算した結果で、前記フリークーリング用切替機構、前記フリークーリング用冷却塔、前記第二の冷凍機、前記第二の冷凍機用の冷却塔の制御を行う
ことを特徴とする空気調和設備。
In the air conditioning equipment according to claim 4 or 5,
The apparatus further includes an input device for setting a predetermined value to the cooling water return temperature T s supplied to the heat exchanger of the free cooling cooling water circuit and the cooling water return temperature returned from the heat exchanger to T r. ,
The control device stores a calculation unit that calculates and calculates a first set value of the outdoor wet bulb temperature and a second set value of the outdoor wet bulb temperature, and calculates a predetermined value input by the input device As a result, control of the switching mechanism for free cooling, the cooling tower for free cooling, the second refrigerator, and the cooling tower for the second refrigerator is performed.
請求項6または請求項7記載の空気調和設備において、
前記フリークーリング用冷却水循環路の予冷コイルへ供給する冷却水往き温度Tsと、前記熱予冷コイルから還ってくる冷却水還り温度をTrとに所定の値を設定する入力装置をさらに備え、
前記制御装置は、前記外気湿球温度の第一の設定値および外気湿球温度の第二の設定値を算出演算する演算部を格納し、前記入力装置で入力された所定の値を演算した結果で、前記フリークーリング用切替機構、前記フリークーリング用冷却塔、前記第二の冷凍機、前記第二の冷凍機用の冷却塔の制御を行う
ことを特徴とする空気調和設備。
In the air conditioning equipment according to claim 6 or 7,
An input device for setting a predetermined value to the cooling water return temperature T s supplied to the pre-cooling coil of the cooling water circuit for free cooling and the cooling water return temperature returned from the thermal pre-cooling coil to Tr ;
The control device stores a calculation unit that calculates and calculates a first set value of the outdoor wet bulb temperature and a second set value of the outdoor wet bulb temperature, and calculates a predetermined value input by the input device As a result, control of the free cooling switching mechanism, the free cooling cooling tower, the second refrigerator, and the cooling tower for the second refrigerator is performed.
JP2007051523A 2007-03-01 2007-03-01 Air conditioning equipment Active JP4829147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007051523A JP4829147B2 (en) 2007-03-01 2007-03-01 Air conditioning equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007051523A JP4829147B2 (en) 2007-03-01 2007-03-01 Air conditioning equipment

Publications (2)

Publication Number Publication Date
JP2008215679A JP2008215679A (en) 2008-09-18
JP4829147B2 true JP4829147B2 (en) 2011-12-07

Family

ID=39835924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007051523A Active JP4829147B2 (en) 2007-03-01 2007-03-01 Air conditioning equipment

Country Status (1)

Country Link
JP (1) JP4829147B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276004A (en) * 2008-05-15 2009-11-26 Hitachi Building Systems Co Ltd Free cooling effectiveness-determining method for free cooling system
JP2010065912A (en) * 2008-09-10 2010-03-25 Ntt Facilities Inc Air conditioning system
JP5363212B2 (en) * 2008-09-30 2013-12-11 株式会社日立製作所 Air conditioning system
GB0900268D0 (en) * 2009-01-08 2009-02-11 Mewburn Ellis Llp Cooling apparatus and method
JP5336268B2 (en) * 2009-06-09 2013-11-06 株式会社日立製作所 Cooling system and cooling method
CN101650056B (en) * 2009-09-09 2011-09-14 北京康孚环境控制有限公司 Combined cold supply system of cooling towers and water cooling unit and control method thereof
JP5768382B2 (en) * 2011-01-20 2015-08-26 富士電機株式会社 Cooling system
JP5677188B2 (en) * 2011-05-10 2015-02-25 新日鉄住金エンジニアリング株式会社 Air conditioning equipment
JP5503058B2 (en) * 2013-06-26 2014-05-28 ダイダン株式会社 Heat source system
WO2016009498A1 (en) * 2014-07-15 2016-01-21 株式会社インティ Refrigerating system, controller and cooling tower
CN104359182A (en) * 2014-09-19 2015-02-18 孙多斌 Energy-saving design and control method for central air conditioner
CN104534579A (en) * 2014-12-16 2015-04-22 张家港市铭斯特光电科技有限公司 Constant temperature and humidity cooling system for workshop
JP6449009B2 (en) * 2014-12-16 2019-01-09 三機工業株式会社 Air conditioning system
CN106032919B (en) 2015-03-13 2019-09-24 阿里巴巴集团控股有限公司 A kind of freezing water cooling system
US11131476B2 (en) * 2016-10-21 2021-09-28 Mitsubishi Electric Corporation Water cooled-type air conditioning system
CN106765892B (en) * 2016-11-29 2019-07-26 广东美的暖通设备有限公司 Multi-line system and its outdoor heat exchanger temperature-sensitive packet inspection method and device
JP2018151094A (en) * 2017-03-10 2018-09-27 株式会社東芝 Air conditioning system
JP6964482B2 (en) * 2017-10-23 2021-11-10 株式会社コロナ Heat pump type temperature control system
JP7360346B2 (en) * 2020-03-16 2023-10-12 三機工業株式会社 air conditioning system
JP7043573B2 (en) * 2020-11-30 2022-03-29 高砂熱学工業株式会社 Air conditioning system controls, control methods, control programs, and air conditioning systems
CN113188363B (en) * 2021-06-04 2022-09-30 上海美控智慧建筑有限公司 Cooling tower monitoring method, device, equipment and storage medium

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543327A (en) * 1978-09-20 1980-03-27 Hitachi Reiki Kk Cooling tower
JPH04208332A (en) * 1990-11-30 1992-07-30 Kanebo Ltd Air conditioner having cold water making circuit
JP2979061B2 (en) * 1991-01-31 1999-11-15 三機工業株式会社 Natural cooling air conditioner
JP3738993B2 (en) * 2002-05-20 2006-01-25 株式会社前川製作所 Cooling apparatus and process cooling wastewater recovery method using the apparatus
JP4630702B2 (en) * 2005-03-28 2011-02-09 三機工業株式会社 Heat source system optimum operation control device

Also Published As

Publication number Publication date
JP2008215679A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
JP4829147B2 (en) Air conditioning equipment
JP4877988B2 (en) Cooling medium cooling refrigeration equipment
US9188356B2 (en) Air conditioning system and method for managing server room
US8660702B2 (en) Central cooling and circulation energy management control system
US20190383538A1 (en) Air cooled chiller with heat recovery
US20130283837A1 (en) Air conditioning system using outdoor air, indoor air unit, and outdoor air unit thereof, and stack
JP2005501213A (en) Air conditioning system
JPH08233423A (en) Cooling device
US11808483B2 (en) Systems and methods for controlling free cooling and integrated free cooling
KR20110104054A (en) Load handling balance setting device
CA2962291C (en) Micro environmental control system
JP2008215730A (en) Cooling system and method using free cooling
CN109059106A (en) Indoor unit, control method and the air-conditioning system of air-conditioning system
JP2014035090A (en) Air conditioning system
JP6449009B2 (en) Air conditioning system
JP4706836B2 (en) Cooling system
CN206514574U (en) A kind of data center&#39;s refrigeration system
KR20220169042A (en) Data center local cooling system with pre-cooling chiller
JP2011226684A (en) Cooling water producing device, and method of controlling the same
JP6523798B2 (en) Heat source equipment and heat source equipment control method
JP2007127321A (en) Cold water load factor controller for refrigerator
CN113950599B (en) Device management apparatus, heat source system, management apparatus, and device management system
JP2014035091A (en) Air conditioning system
JP6400978B2 (en) Heat medium circulation system
WO2019163042A1 (en) Air conditioning device and air handling unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4829147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250