JP4827859B2 - Air conditioner and operation method thereof - Google Patents

Air conditioner and operation method thereof Download PDF

Info

Publication number
JP4827859B2
JP4827859B2 JP2008001285A JP2008001285A JP4827859B2 JP 4827859 B2 JP4827859 B2 JP 4827859B2 JP 2008001285 A JP2008001285 A JP 2008001285A JP 2008001285 A JP2008001285 A JP 2008001285A JP 4827859 B2 JP4827859 B2 JP 4827859B2
Authority
JP
Japan
Prior art keywords
compressor
expander
compression
refrigerant
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008001285A
Other languages
Japanese (ja)
Other versions
JP2009162438A (en
Inventor
裕輔 島津
多佳志 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008001285A priority Critical patent/JP4827859B2/en
Publication of JP2009162438A publication Critical patent/JP2009162438A/en
Application granted granted Critical
Publication of JP4827859B2 publication Critical patent/JP4827859B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は空気調和装置およびその運転方法に関するものであり、特に、圧縮機と膨張機とを同軸で連結して膨張機で動力を回収する空気調和装置およびその運転方法に関するものである。   The present invention relates to an air conditioner and an operating method thereof, and more particularly to an air conditioner and a method of operating the air conditioner in which a compressor and an expander are connected coaxially and power is recovered by the expander.

オゾン破壊係数がゼロであり、かつ地球温暖化係数もフロン類に比べれば格段に小さい二酸化炭素(以下、COという)を冷媒として用いる空気調和装置が近年着目されているが、CO冷媒は、臨界温度が31.06℃と低く、この温度よりも高い温度を利用する場合には、空気調和装置の高圧側(圧縮機出口〜放熱器〜減圧器入口)ではCO冷媒の凝縮が生じない超臨界状態となり、従来の冷媒に比べて、空気調和装置の運転効率(COP)が低下する。したがって、CO冷媒を用いた空気調和装置にあっては、COPを向上させる手段が重要である。 Ozone depletion potential is zero, and much less carbon dioxide compared to even chlorofluorocarbon global warming potential (hereinafter, referred to CO 2) is an air conditioning apparatus using a refrigerant have been focused in recent years, CO 2 refrigerant When the critical temperature is as low as 31.06 ° C. and a temperature higher than this temperature is used, condensation of the CO 2 refrigerant occurs on the high pressure side (compressor outlet to radiator to decompressor inlet) of the air conditioner. It becomes a non-supercritical state, and the operating efficiency (COP) of the air conditioner is reduced as compared with the conventional refrigerant. Therefore, means for improving COP is important in an air conditioner using a CO 2 refrigerant.

このような手段として、減圧器の代わりに膨張機を設け、膨張時の圧力エネルギーを回収して動力とする冷凍サイクルが提案されている。ここで、容積式の圧縮機と膨張機を一軸に連結した構成の空気調和装置では、圧縮機のシリンダ容積をVC、膨張機のシリンダ容積をVEとすると、VC/VE(設計容積比)により圧縮機および膨張機のそれぞれを流れる体積循環量の比が決定される。蒸発器出口の冷媒(圧縮機に流入する冷媒)の密度をDC、放熱器出口の冷媒(膨張機に流入する冷媒)の密度をDEとすると、圧縮機、膨張機のそれぞれを流れる質量循環量は等しいことから、「VC×DC=VE×DE」、すなわち、「VC/VE=DE/DC」の関係が成立する。VC/VE(設計容積比)は機器の設計時に定まる定数であるので、DE/DC(密度比)が常に一定となるように冷凍サイクルはバランスしようとする。(以下、このことを「密度比一定の制約」と呼ぶ。)   As such means, there has been proposed a refrigeration cycle in which an expander is provided instead of the decompressor, and the pressure energy at the time of expansion is recovered and used as power. Here, in an air conditioner having a configuration in which a positive displacement compressor and an expander are connected to one shaft, if the cylinder volume of the compressor is VC and the cylinder volume of the expander is VE, VC / VE (design volume ratio) A ratio of volumetric circulation flowing through each of the compressor and expander is determined. When the density of the refrigerant at the outlet of the evaporator (refrigerant flowing into the compressor) is DC and the density of the refrigerant at the outlet of the radiator (refrigerant flowing into the expander) is DE, the mass circulation amount that flows through each of the compressor and the expander Are equal, “VC × DC = VE × DE”, that is, the relationship “VC / VE = DE / DC” is established. Since VC / VE (design volume ratio) is a constant determined at the time of designing the device, the refrigeration cycle tries to balance so that DE / DC (density ratio) is always constant. (Hereinafter, this is called “constant density ratio constraint”.)

しかし、空気調和装置の使用条件は必ずしも一定ではないので、設計時に想定した設計容積比と実際の運転状態での密度比が異なる場合には、「密度比一定の制約」のために、最良な高圧側圧力に調整することが困難となる。   However, since the usage conditions of the air conditioner are not necessarily constant, if the design volume ratio assumed at the time of design differs from the density ratio in the actual operation state, the best condition is due to the “constant density ratio constraint”. It becomes difficult to adjust to the high pressure side pressure.

そこで、膨張機をバイパスするバイパス流路を設け、膨張機に流入する冷媒量を制御することで、最良な高圧側圧力に調整する構成や制御方法が提案されている(例えば特許文献1参照)。   Therefore, a configuration and a control method have been proposed in which a bypass flow path for bypassing the expander is provided and the amount of refrigerant flowing into the expander is controlled to adjust to the best high-pressure side pressure (see, for example, Patent Document 1). .

また、膨張機に流入する冷媒と圧縮機に流入する冷媒を熱交換させる内部熱交換器とそのバイパス流路を設け、熱交換の有無を切替て膨張機に流入する冷媒量を制御することで、最良な高圧側圧力に調整する構成も提案されている(例えば特許文献2参照)。   In addition, an internal heat exchanger that exchanges heat between the refrigerant flowing into the expander and the refrigerant flowing into the compressor and a bypass flow path thereof are provided, and the amount of refrigerant flowing into the expander is controlled by switching the presence or absence of heat exchange. A configuration for adjusting to the best high pressure side pressure has also been proposed (see, for example, Patent Document 2).

特許第3708536号公報(第10頁〜第12頁、図1)Japanese Patent No. 3708536 (pages 10 to 12, FIG. 1) 特開平2006−90639号公報(第18頁〜第19頁、図9)Japanese Unexamined Patent Publication No. 2006-90639 (pages 18-19, FIG. 9)

ところが、上記特許文献1には、実際の運転状態での密度比が設計容積比より小さい場合には、膨張機をバイパスするバイパス流路に冷媒を流すことで、最良な高圧側圧力に調整できる構成や制御方法が記載されているが、バイパス流路に冷媒が流れると膨張機で回収する動力が低下するため、空気調和装置の運転効率(COP)が低下するという課題が生じていた。   However, in the above-mentioned Patent Document 1, when the density ratio in the actual operation state is smaller than the design volume ratio, it is possible to adjust to the best high pressure side pressure by flowing the refrigerant through the bypass flow path that bypasses the expander. Although the configuration and the control method are described, since the power collected by the expander decreases when the refrigerant flows through the bypass flow path, there has been a problem that the operating efficiency (COP) of the air conditioner decreases.

また膨張機をバイパスする量が大きい場合は膨張機回転数が低く摺動部での潤滑状態が悪化し、膨張機の回転数が極端に小さくなると膨張機の経路内に油が滞留し圧縮機内の油枯渇や、再起動時の冷媒寝込み起動などにより信頼性が低下するという課題があった。   In addition, when the amount bypassing the expander is large, the expansion speed of the expander is low and the lubrication state at the sliding portion is deteriorated. When the rotation speed of the expander is extremely small, oil stays in the path of the expander and There was a problem that the reliability was lowered due to oil depletion of the oil and the start of refrigerant stagnation at the time of restart.

また、上記特許文献2には、膨張機流入する冷媒と圧縮機に流入する冷媒の熱交換の有無を切替えることで、冷房と暖房といった運転モードの違いによる大まかな密度比の違いに対応可能であるが、同一モードにおいて外気や室温が変化して最適な高圧側圧力が変動した場合には対応できないため、空気調和装置の運転効率(COP)が低下するといった課題が生じていた。   Further, in Patent Document 2, it is possible to cope with a rough difference in density ratio due to a difference in operation mode such as cooling and heating by switching the presence or absence of heat exchange between the refrigerant flowing into the expander and the refrigerant flowing into the compressor. However, there is a problem that the operating efficiency (COP) of the air conditioner decreases because it cannot cope with the change in the optimum high-pressure side pressure due to changes in the outside air or room temperature in the same mode.

また膨張機と圧縮機と駆動源がすべて一体化されており、駆動源・膨張機・圧縮機一体集約機は、機構・シール部が複雑で部品点数が多く、加工や組立て工程での高精度および複雑さが要求されるという設計上または製造上の課題が生じていた。   The expander, compressor, and drive source are all integrated, and the drive source / expander / compressor integrated machine has a complicated mechanism and seal, and has a large number of parts, and high precision in the machining and assembly processes. In addition, there has been a design or manufacturing problem that requires complexity.

従って、本発明の目的は、実際の運転状態での密度比が設計容積比より小さい場合でも、最良な高圧側圧力調整ができ、かつ膨張機をバイパスせずに空気調和装置の運転効率を向上させた空気調和装置およびその運転方法を得ることである。   Therefore, the object of the present invention is to achieve the best high pressure side pressure adjustment even when the density ratio in the actual operation state is smaller than the design volume ratio, and to improve the operation efficiency of the air conditioner without bypassing the expander. It is to obtain an air conditioner and an operation method thereof.

本発明に係わる空気調和装置は、主圧縮機と、放熱器と、膨張機と、蒸発器とを順に接続し、膨張機と一本の軸に連結される副圧縮機とを備えた空気調和装置において、主圧縮機での圧縮過程の中間から圧縮過程完了後までをバイパスする圧縮バイパス流路と、前記圧縮バイパス流路上に設けられた副圧縮機と、前記圧縮バイパス流路上に主圧縮機と副圧縮機の間にある圧縮バイパス弁と、前記圧縮バイパス弁の動作の制御を操作する制御装置とを備え、前記制御装置が、前記圧縮バイパス弁の開度を変更することで、高圧側圧力を調整することを特徴とするものである。   An air conditioner according to the present invention includes a main compressor, a radiator, an expander, and an evaporator in order, and an air conditioner including an expander and a subcompressor coupled to a single shaft. In the apparatus, a compression bypass passage for bypassing from the middle of the compression process in the main compressor to after completion of the compression process, a sub-compressor provided on the compression bypass passage, and a main compressor on the compression bypass passage A compression bypass valve located between the compressor and the sub-compressor, and a control device for operating control of the operation of the compression bypass valve, the control device changing the opening of the compression bypass valve, The pressure is adjusted.

また、本発明に係わる空気調和装置は、主圧縮機と、副圧縮機と、放熱器と、膨張機と、蒸発器とを順に接続し、膨張機と副圧縮機を一本の軸に連結される空気調和装置において、主圧縮機流入側の冷媒が、膨張機流入側の冷媒と熱交換する内部熱交換器と、膨張機流入側の内部熱交換器をバイパスする熱交バイパス流路と、前記熱交バイパス流路上に設けられた熱交バイパス弁と、前記熱交バイパス弁の動作の制御を操作する制御装置とを備え、前記制御装置が、前記熱交バイパス弁の開度を変更することで、高圧側圧力を調整することを特徴とするものである。   In addition, the air conditioner according to the present invention connects a main compressor, a sub compressor, a radiator, an expander, and an evaporator in order, and connects the expander and the sub compressor to a single shaft. In the air conditioner, an internal heat exchanger that exchanges heat between the refrigerant on the main compressor inflow side and the refrigerant on the expander inflow side, and a heat exchange bypass flow path that bypasses the internal heat exchanger on the expander inflow side A heat exchange bypass valve provided on the heat exchange bypass flow path and a control device for operating control of the heat exchange bypass valve, wherein the control device changes an opening degree of the heat exchange bypass valve. Thus, the high-pressure side pressure is adjusted.

また、本発明に係わる空気調和装置は、副圧縮機と、主圧縮機と、放熱器と、膨張機と、蒸発器とを順に接続し、膨張機と副圧縮機を一本の軸に連結される空気調和装置において、副圧縮機流入側の冷媒が、膨張機流入側の冷媒と熱交換する内部熱交換器と、膨張機流入側の内部熱交換器をバイパスする熱交バイパス流路と、前記熱交バイパス流路上に設けられた熱交バイパス弁と、前記熱交バイパス弁の動作の制御を操作する制御装置とを備え、前記制御装置が、前記熱交バイパス弁の開度を変更することで、高圧側圧力を調整することを特徴とするものである。   The air conditioner according to the present invention includes a sub-compressor, a main compressor, a radiator, an expander, and an evaporator connected in order, and the expander and the sub-compressor are connected to a single shaft. In the air conditioner, the refrigerant on the inflow side of the sub compressor exchanges heat with the refrigerant on the inflow side of the expander, and a heat exchange bypass flow path that bypasses the internal heat exchanger on the inflow side of the expander A heat exchange bypass valve provided on the heat exchange bypass flow path and a control device for operating control of the heat exchange bypass valve, wherein the control device changes an opening degree of the heat exchange bypass valve. Thus, the high-pressure side pressure is adjusted.

本発明によれば、密度比一定の制約により最良な高圧側圧力に調整することが困難である膨張機を用いた空気調和装置であっても、広い運転範囲において動力回収を常に行い、効率のよい運転が可能な空気調和装置および空気調和装置の運転方法が得られる。   According to the present invention, even in an air conditioner using an expander that is difficult to adjust to the best high pressure side pressure due to a constant density ratio restriction, power recovery is always performed in a wide operating range, and efficiency is improved. An air conditioner capable of good operation and an operation method of the air conditioner are obtained.

実施の形態1.
図1〜図4にはこの発明の空気調和装置を示し、図1は空気調和装置の冷媒回路図であり、図2は主圧縮機1の断面図であり、図3は制御装置が行う制御のフローチャート、図4は圧縮バイパス弁と予膨張弁との連携制御を示す動作図である。この発明の空気調和装置は空気と直接熱交換して冷房、暖房の各運転を実施できるヒートポンプ機であり、図1において1は主圧縮機、2は圧縮バイパス流路、3は圧縮バイパス弁、4は副圧縮機、5は第1四方弁、6は室外熱交換器、7は第2四方弁、8は予膨張弁、9は膨張機、10は駆動軸、11a、11bは膨張弁、12a、12bは室内熱交換器である。13は室外機であり、室外機13は主圧縮機1、圧縮バイパス流路2、圧縮バイパス弁3、副圧縮機4、第1四方弁5、室外熱交換器6、第2四方弁7、予膨張弁8、膨張機9および駆動軸10から構成されている。14a、14bは室内機であり、室内機14a、14bは室内膨張弁11a、11bおよび室内熱交換器12a、12bより構成されている。室外機13と室内機14a、14bは途中で分岐した冷媒配管にて接続されている。本実施例では室内機を2台接続した場合を記載したが、1台でもよいし、3台以上であっても構わない。また、室内膨張弁11a、11bは膨張機9と室内熱交換器12a、12bの間であれば、室外機12内にあっても良いし、分岐する前の冷媒配管に1つだけあっても良い。
Embodiment 1 FIG.
1 to 4 show an air conditioner of the present invention, FIG. 1 is a refrigerant circuit diagram of the air conditioner, FIG. 2 is a cross-sectional view of a main compressor 1, and FIG. 3 is a control performed by a control device. FIG. 4 is an operation diagram showing cooperative control between the compression bypass valve and the pre-expansion valve. The air conditioner of the present invention is a heat pump machine that can perform cooling and heating operations by directly exchanging heat with air. In FIG. 1, 1 is a main compressor, 2 is a compression bypass passage, 3 is a compression bypass valve, 4 is a sub compressor, 5 is a first four-way valve, 6 is an outdoor heat exchanger, 7 is a second four-way valve, 8 is a pre-expansion valve, 9 is an expander, 10 is a drive shaft, 11a and 11b are expansion valves, 12a and 12b are indoor heat exchangers. 13 is an outdoor unit. The outdoor unit 13 includes a main compressor 1, a compression bypass passage 2, a compression bypass valve 3, a sub compressor 4, a first four-way valve 5, an outdoor heat exchanger 6, a second four-way valve 7, It comprises a pre-expansion valve 8, an expander 9, and a drive shaft 10. Reference numerals 14a and 14b denote indoor units, and the indoor units 14a and 14b include indoor expansion valves 11a and 11b and indoor heat exchangers 12a and 12b. The outdoor unit 13 and the indoor units 14a and 14b are connected by a refrigerant pipe branched in the middle. In the present embodiment, the case where two indoor units are connected is described, but one or three or more indoor units may be used. Further, the indoor expansion valves 11a and 11b may be in the outdoor unit 12 as long as they are between the expander 9 and the indoor heat exchangers 12a and 12b, or only one refrigerant pipe before branching may be provided. good.

副圧縮機4および膨張機9は容積式であり、例えばスクロール式などの形態をとる。主圧縮機1はモータ等の駆動源により駆動される。副圧縮機4と膨張機9は駆動軸10で連結されており、膨張機9で冷媒を膨張することにより得られた駆動動力は駆動軸10を介して副圧縮機4で冷媒を圧縮することに使用され、空気調和装置の入力を低減することができる。   The sub-compressor 4 and the expander 9 are positive displacement types, and take, for example, a scroll type. The main compressor 1 is driven by a drive source such as a motor. The sub compressor 4 and the expander 9 are connected by a drive shaft 10, and the driving power obtained by expanding the refrigerant by the expander 9 compresses the refrigerant by the sub compressor 4 via the drive shaft 10. The input of the air conditioner can be reduced.

また、第2四方弁7は膨張機9の冷媒流れ方向、回転方向を運転状態によらず同一にするための流路切替器として用いられており、第1四方弁5と同期して流路が切り替わる。冷媒としては二酸化炭素が用いられている。15は制御装置である。16は主圧縮機1と副圧縮機4の合流した冷媒ガスの温度を検知する温度センサ、17a、17bは室内熱交換器12a、12bの中間冷媒温度を検知する温度センサ、18a、18bは室内熱交換器12a、12bの冷房時出口冷媒温度を検知する温度センサ、19a、19bは室内熱交換器12a、12bの暖房時出口冷媒温度を検知する温度センサである。温度センサ16、17a、17b、18a、18b、19a、19bで得られた情報に基づいて、制御装置15によって、この空気調和装置の運転制御が行われ、主圧縮機1の運転、回転数や各熱交換器の送風機風量、第1四方弁5、第2四方弁7、の切替、圧縮バイパス弁3、予膨張弁8、室内膨張弁11a、11bの開度などを制御する。   In addition, the second four-way valve 7 is used as a flow path switching device for making the refrigerant flow direction and the rotation direction of the expander 9 the same regardless of the operating state, and the flow path is synchronized with the first four-way valve 5. Switches. Carbon dioxide is used as the refrigerant. Reference numeral 15 denotes a control device. 16 is a temperature sensor for detecting the temperature of the refrigerant gas joined by the main compressor 1 and the sub compressor 4, 17a and 17b are temperature sensors for detecting the intermediate refrigerant temperature of the indoor heat exchangers 12a and 12b, and 18a and 18b are indoors. The temperature sensors 19a and 19b detect the cooling outlet refrigerant temperature of the heat exchangers 12a and 12b, and the temperature sensors 19a and 19b detect the heating outlet refrigerant temperature of the indoor heat exchangers 12a and 12b. Based on the information obtained by the temperature sensors 16, 17 a, 17 b, 18 a, 18 b, 19 a, 19 b, the operation control of the air conditioner is performed by the control device 15, and the operation of the main compressor 1, the rotational speed, The air flow rate of each heat exchanger, switching between the first four-way valve 5 and the second four-way valve 7, the opening degree of the compression bypass valve 3, the pre-expansion valve 8, and the indoor expansion valves 11a and 11b are controlled.

図2は主圧縮機1の断面図である。101はシェル、102は駆動源であるモータ、103はシャフト、104は搖動スクロール、105は固定スクロール、106は流入配管、112は流出配管、114はバイパス配管である。108は低圧空間であり、流入配管106と導通している。111は高圧空間であり、流出配管112と導通している。108、109は圧縮室であり、スクロール形状を有する搖動スクロール104と固定スクロール105が互いに組み合わされることで複数形成されている。圧縮室109はスクロール形状の中央部にあり、圧縮室108は圧縮室109より外側に位置し、圧縮過程の中間に位置する。110は流出ポートであり、固定スクロール105に設けられており、圧縮室109と高圧空間111を導通する。113は圧縮バイパス配管であり、固定スクロール105に設けられており、圧縮室108と、固定スクロール105に固定されたバイパス配管114とを導通する。流出ポートの位置は次の式(1)を満たす位置とする。

(主圧縮機1の流出ポート導通直後の圧縮室容積)/(主圧縮機1の行程容積)
×(副圧縮機4の組込容積比)≒(主圧縮機1の組込容積比) ・・・(式1)
FIG. 2 is a cross-sectional view of the main compressor 1. Reference numeral 101 denotes a shell, 102 denotes a motor as a drive source, 103 denotes a shaft, 104 denotes a peristaltic scroll, 105 denotes a fixed scroll, 106 denotes an inflow pipe, 112 denotes an outflow pipe, and 114 denotes a bypass pipe. Reference numeral 108 denotes a low pressure space, which is electrically connected to the inflow pipe 106. Reference numeral 111 denotes a high-pressure space that is electrically connected to the outflow pipe 112. Reference numerals 108 and 109 denote compression chambers, which are formed by combining a scroll scroll 104 having a scroll shape and a fixed scroll 105 with each other. The compression chamber 109 is in the center of the scroll shape, and the compression chamber 108 is located outside the compression chamber 109 and is located in the middle of the compression process. Reference numeral 110 denotes an outflow port, which is provided in the fixed scroll 105 and conducts the compression chamber 109 and the high-pressure space 111. Reference numeral 113 denotes a compression bypass pipe, which is provided in the fixed scroll 105 and conducts the compression chamber 108 and the bypass pipe 114 fixed to the fixed scroll 105. The position of the outflow port is a position that satisfies the following equation (1).

(Compression chamber volume immediately after the outlet port of the main compressor 1 is connected) / (stroke volume of the main compressor 1)
X (Built-in volume ratio of sub-compressor 4) ≒ (Built-in volume ratio of main compressor 1)

流入配管106は主圧縮機1の流入口であり、第1四方弁5と接続されている。流出配管112は主圧縮機1の流出口であり、副圧縮機4の流出口と合流して第1四方弁5と接続されている。バイパス配管114は圧縮バイパス流路2と接続されている。   The inflow pipe 106 is an inlet of the main compressor 1 and is connected to the first four-way valve 5. The outflow pipe 112 is an outlet of the main compressor 1 and joins with the outlet of the sub compressor 4 and is connected to the first four-way valve 5. The bypass pipe 114 is connected to the compression bypass channel 2.

次に、上述のように構成された冷凍サイクル装置の運転時の動作について、副圧縮機4の行程容積をVC、膨張機9の行程容積をVE、副圧縮機4の流入冷媒密度をDC、膨張機9の流入冷媒密度をDEとして説明する。   Next, regarding the operation at the time of operation of the refrigeration cycle apparatus configured as described above, the stroke volume of the sub compressor 4 is VC, the stroke volume of the expander 9 is VE, the inflow refrigerant density of the sub compressor 4 is DC, The inflow refrigerant density of the expander 9 will be described as DE.

(DE/DC)≒(VC/VE)での冷房運転
まず、実際の運転状態での密度比(DE/DC)が、設計時に想定した設計容積比(VC/VE)と略同等である冷房運転の場合について説明する。第1四方弁5、第2四方弁7は図1の実線のように設定され、室外熱交換器6が放熱器(凝縮器)、室内熱交換器12a、12bが蒸発器として作用する。
Cooling operation with (DE / DC) ≈ (VC / VE) First, the cooling is such that the density ratio (DE / DC) in the actual operation state is substantially equal to the design volume ratio (VC / VE) assumed at the time of design. The case of driving will be described. The first four-way valve 5 and the second four-way valve 7 are set as shown by the solid lines in FIG. 1, and the outdoor heat exchanger 6 functions as a radiator (condenser) and the indoor heat exchangers 12a and 12b function as an evaporator.

主圧縮機1の内部の運転動作について説明する。主圧縮機1に電源供給されると、駆動源であるモータ102に回転動力が発生し、シャフト103を介して搖動スクロール104に伝えられる。搖動スクロール104は回転動力と図示しないオルダムリングにより固定スクロール105に対して搖動運動を行い、複数ある圧縮室は容積を減少させながら、スクロール形状の外周側から中央部へ移動する。流入配管106より流入した冷媒は、低圧空間107を通り外周側圧縮室に入り、圧縮過程で圧力を上昇して圧縮室109に至り高圧となる。その後流出ポート110、高圧空間111を通過して、流出配管112より圧縮機外部へ流出する。   The operation inside the main compressor 1 will be described. When power is supplied to the main compressor 1, rotational power is generated in the motor 102, which is a driving source, and is transmitted to the peristaltic scroll 104 via the shaft 103. The peristaltic scroll 104 performs peristaltic motion with respect to the fixed scroll 105 by rotational power and an Oldham ring (not shown), and the plurality of compression chambers move from the outer peripheral side of the scroll shape to the center while reducing the volume. The refrigerant flowing in from the inflow pipe 106 passes through the low-pressure space 107 and enters the outer peripheral side compression chamber, and in the compression process, the pressure rises to the compression chamber 109 and becomes high pressure. Thereafter, it passes through the outflow port 110 and the high-pressure space 111 and flows out of the compressor through the outflow pipe 112.

また、圧縮過程の中間に位置する圧縮室108に存在する冷媒の一部は、圧縮バイパスポート113を通過してバイパス配管114より圧縮機外部へ流出する。バイパス配管114での冷媒圧力は、流入配管106での冷媒圧力と、流出配管112での冷媒圧力の間の大きさである。圧縮バイパスポート113の位置をスクロール形状の中央側に変更すると、圧縮バイパス配管113での冷媒圧力は、流出配管112での冷媒圧力に近くなる。   A part of the refrigerant existing in the compression chamber 108 located in the middle of the compression process passes through the compression bypass port 113 and flows out of the compressor from the bypass pipe 114. The refrigerant pressure in the bypass pipe 114 is a magnitude between the refrigerant pressure in the inflow pipe 106 and the refrigerant pressure in the outflow pipe 112. When the position of the compression bypass port 113 is changed to the center side of the scroll shape, the refrigerant pressure in the compression bypass pipe 113 becomes close to the refrigerant pressure in the outflow pipe 112.

空気調和装置の運転動作について説明する。主圧縮機1の流入口(流入配管106)より流入した低圧冷媒の一部は、圧縮過程をすべて経て高圧冷媒となり、主圧縮機1の流出口(流出配管112)より流出する。残りの冷媒は、圧縮過程の中途でバイパス配管114より、高圧と低圧の中間である中間圧の冷媒として圧縮バイパス流路2へ流出される。バイパスされた冷媒は圧縮バイパス弁3を通り流量を調整されて副圧縮機4に流入する。副圧縮機4内で冷媒は中間圧力から高圧に圧縮され、主圧縮機1の流出後の冷媒と合流して、第1四方弁5を通り室外熱交換器6に至る。室外熱交換器6にて外気と熱交換し、冷却され温度が低下する。その後、第2四方弁7、予膨張弁8を通過し膨張機9に流入し、冷媒は高圧から低圧まで減圧され低圧の二相状態となる。その後、第2四方弁7を経て、分岐して、膨張弁11a、11bを通過し、室内熱交換器12a、12bで室内空気より吸熱し冷房運転を実施し、第1四方弁5を通過して主圧縮機1に流入する。   The operation of the air conditioner will be described. A part of the low-pressure refrigerant flowing in from the inlet (inflow pipe 106) of the main compressor 1 becomes high-pressure refrigerant through the entire compression process, and flows out from the outlet (outflow pipe 112) of the main compressor 1. The remaining refrigerant flows out from the bypass pipe 114 to the compression bypass passage 2 as an intermediate-pressure refrigerant that is between the high pressure and the low pressure in the middle of the compression process. The bypassed refrigerant passes through the compression bypass valve 3, the flow rate is adjusted, and the refrigerant flows into the sub compressor 4. In the sub-compressor 4, the refrigerant is compressed from the intermediate pressure to the high pressure, merges with the refrigerant after flowing out of the main compressor 1, passes through the first four-way valve 5, and reaches the outdoor heat exchanger 6. The outdoor heat exchanger 6 exchanges heat with the outside air and is cooled to lower the temperature. Thereafter, the refrigerant passes through the second four-way valve 7 and the pre-expansion valve 8 and flows into the expander 9, and the refrigerant is depressurized from high pressure to low pressure to be in a low pressure two-phase state. Thereafter, it branches through the second four-way valve 7, passes through the expansion valves 11a and 11b, absorbs heat from the indoor air in the indoor heat exchangers 12a and 12b, performs a cooling operation, and passes through the first four-way valve 5. Into the main compressor 1.

(DE/DC)≒(VC/VE)での暖房運転
次に実際の運転状態での密度比(DE/DC)が、設計時に想定した設計容積比(VC/VE)と略同等である暖房運転の場合について説明する。第1四方弁5、第2四方弁7は図1の破線のように設定され、室外熱交換器6が蒸発器、室内熱交換器12a、12bが放熱器(凝縮器)として作用する。主圧縮機1の内部の運転動作は冷房運転時と同一なので省略し、空気調和装置の運転動作について説明する。
Heating operation with (DE / DC) ≈ (VC / VE) Next, the density ratio (DE / DC) in the actual operation state is approximately equal to the design volume ratio (VC / VE) assumed at the time of design. The case of driving will be described. The first four-way valve 5 and the second four-way valve 7 are set as indicated by broken lines in FIG. 1, and the outdoor heat exchanger 6 functions as an evaporator and the indoor heat exchangers 12a and 12b function as radiators (condensers). Since the internal operation of the main compressor 1 is the same as that during the cooling operation, it will be omitted and the operation of the air conditioner will be described.

主圧縮機1、副圧縮機4の圧縮過程を経て高圧冷媒となった冷媒は第1四方弁5を通過して分岐し、室内熱交換器12a、12bにて室内空気を加熱し暖房運転を実施する。その後、室内膨張弁11a、11bを通過して集約し、第2四方弁7、予膨張弁8を通過し膨張機9に流入し、冷媒は高圧から低圧まで減圧され低圧の二相状態となる。その後、第2四方弁7を通過し、室外熱交換器6にて外気と熱交換し、第1四方弁5を通過して主圧縮機1に流入される。   The refrigerant that has become high-pressure refrigerant through the compression process of the main compressor 1 and the sub compressor 4 passes through the first four-way valve 5 and branches, and the indoor air is heated by the indoor heat exchangers 12a and 12b. carry out. Thereafter, the air passes through the indoor expansion valves 11a and 11b and is collected, passes through the second four-way valve 7 and the pre-expansion valve 8, flows into the expander 9, and the refrigerant is decompressed from high pressure to low pressure to be in a low pressure two-phase state. . Thereafter, it passes through the second four-way valve 7, exchanges heat with the outside air in the outdoor heat exchanger 6, passes through the first four-way valve 5, and flows into the main compressor 1.

(DE/DC)>(VC/VE)での冷房運転
次に、実際の運転状態での密度比(DE/DC)が、設計時に想定した設計容積比(VC/VE)より大きい冷房運転の場合について説明する。第1四方弁5、第2四方弁7は図1の実線のように設定され、室外熱交換器6が放熱器(凝縮器)、室内熱交換器12a、12bが蒸発器として作用する。この場合には密度比一定の制約のため、膨張機9の入口冷媒密度(DE)が小さくなるように、冷凍サイクルは高圧圧力を低下させた状態でバランスしようとする。ところが、高圧圧力が望ましい圧力より低下した状態では運転効率が低下する。
Cooling operation with (DE / DC)> (VC / VE) Next, the density ratio (DE / DC) in the actual operation state is larger than the design volume ratio (VC / VE) assumed at the time of design. The case will be described. The first four-way valve 5 and the second four-way valve 7 are set as shown by the solid lines in FIG. 1, and the outdoor heat exchanger 6 functions as a radiator (condenser) and the indoor heat exchangers 12a and 12b function as an evaporator. In this case, due to the restriction of a constant density ratio, the refrigeration cycle tries to balance in a state where the high-pressure pressure is reduced so that the inlet refrigerant density (DE) of the expander 9 becomes small. However, the operating efficiency is reduced when the high pressure is lower than the desired pressure.

このため、圧縮バイパス弁3が全閉状態でなければ、圧縮バイパス弁3を閉方向に操作し、副圧縮機4で圧縮して流出する冷媒を主圧縮機1で圧縮して流出させる。この操作により副圧縮機4の必要圧縮動力が減少し膨張機9の回転数が増加しようとするので、膨張機9の入口密度が低下して安定する。   For this reason, if the compression bypass valve 3 is not in the fully closed state, the compression bypass valve 3 is operated in the closing direction, and the refrigerant compressed and discharged by the sub-compressor 4 is compressed and discharged by the main compressor 1. By this operation, the required compression power of the sub-compressor 4 is reduced and the rotational speed of the expander 9 is increased, so that the inlet density of the expander 9 is lowered and stabilized.

あるいは、圧縮バイパス弁3が全閉状態であれば、予膨張弁8を閉方向に操作し、膨張機9に流入する冷媒を膨張させ、冷媒密度を低下させる。   Alternatively, if the compression bypass valve 3 is in the fully closed state, the pre-expansion valve 8 is operated in the closing direction, the refrigerant flowing into the expander 9 is expanded, and the refrigerant density is reduced.

これらの動作により、高圧側圧力を上昇させ望ましい圧力に調整でき、なおかつ膨張機をバイパスする冷媒が無いため、効率の良い運転を行うことができる。なお高圧側圧力は、主圧縮機1と副圧縮機4のいずれかの流出口から予膨張弁8までの圧力であれば、任意である。   By these operations, the high-pressure side pressure can be increased and adjusted to a desired pressure, and since there is no refrigerant that bypasses the expander, an efficient operation can be performed. The high-pressure side pressure is arbitrary as long as it is a pressure from one of the main compressor 1 and the sub-compressor 4 to the pre-expansion valve 8.

(DE/DC)<(VC/VE)での冷房運転
逆に、実際の運転状態での密度比(DE/DC)が、設計時に想定した設計容積比(VC/VE)より小さい冷房運転の場合について説明する。第1四方弁5、第2四方弁7は図1の実線のように設定され、室外熱交換器6が放熱器(凝縮器)、室内熱交換器12a、12bが蒸発器として作用する。この場合には密度比一定の制約のため、膨張機9の入口冷媒密度(DE)が大きくなるように、冷凍サイクルは高圧圧力を上昇させた状態でバランスしようとする。ところが、高圧圧力が望ましい圧力より上昇した状態では運転効率が低下する。
On the contrary, in the cooling operation with (DE / DC) <(VC / VE), the density ratio (DE / DC) in the actual operation state is smaller than the design volume ratio (VC / VE) assumed at the time of design. The case will be described. The first four-way valve 5 and the second four-way valve 7 are set as shown by the solid lines in FIG. 1, and the outdoor heat exchanger 6 functions as a radiator (condenser) and the indoor heat exchangers 12a and 12b function as an evaporator. In this case, due to the restriction of the constant density ratio, the refrigeration cycle tries to balance with the high pressure increased so that the inlet refrigerant density (DE) of the expander 9 is increased. However, the operating efficiency is reduced when the high pressure is higher than the desired pressure.

このため、予膨張弁8が全開状態でなければ、予膨張弁8を開方向に操作し、膨張機9に流入する冷媒を膨張しないようにさせ、冷媒密度を上昇させる。   For this reason, if the pre-expansion valve 8 is not fully opened, the pre-expansion valve 8 is operated in the opening direction so that the refrigerant flowing into the expander 9 is not expanded, and the refrigerant density is increased.

あるいは予膨張弁8が全開状態であれば、圧縮バイパス弁3を開方向に操作し、主圧縮機1で圧縮して流出させる冷媒を副圧縮機4で圧縮して流出させる。この操作により副圧縮機4の必要圧縮動力が増加し膨張機9の回転数が低下しようとするので、膨張機9の入口密度が上昇して安定する。   Alternatively, if the pre-expansion valve 8 is in a fully open state, the compression bypass valve 3 is operated in the opening direction, and the refrigerant to be compressed and discharged by the main compressor 1 is compressed and discharged by the sub compressor 4. This operation increases the required compression power of the sub-compressor 4 and attempts to reduce the rotational speed of the expander 9, so that the inlet density of the expander 9 is increased and stabilized.

これらの動作により、高圧側圧力を低下させ望ましい圧力に調整でき、なおかつ膨張機をバイパスする冷媒が無いため、効率の良い運転を行うことができる。   By these operations, the high-pressure side pressure can be reduced and adjusted to a desired pressure, and since there is no refrigerant that bypasses the expander, efficient operation can be performed.

(DE/DC)≠(VC/VE)での暖房運転
他に、実際の運転状態での密度比(DE/DC)が、設計時に想定した設計容積比(VC/VE)と異なる暖房運転の場合があるが、冷房運転と膨張機9と副圧縮機4の動作が同様のため省略する。
In addition to the heating operation when (DE / DC) ≠ (VC / VE), the density ratio (DE / DC) in the actual operation state is different from the design volume ratio (VC / VE) assumed at the time of design. In some cases, the cooling operation and the operations of the expander 9 and the sub-compressor 4 are the same and will be omitted.

次に、圧縮バイパス弁3と予膨張弁8の具体的な操作方法として、制御装置15が行う制御について、図3に示すフローチャートに基づいて説明する。   Next, as a specific operation method of the compression bypass valve 3 and the pre-expansion valve 8, the control performed by the control device 15 will be described based on the flowchart shown in FIG.

この空気調和装置の制御では、高圧側圧力と吐出温度との相関関係を利用して、計測するには高コストなセンサが必要な高圧側圧力によらず、比較的安価に計測の可能な吐出温度により圧縮バイパス弁3及び予膨張弁8の制御を行う。   This air conditioner control uses a correlation between the high-pressure side pressure and the discharge temperature to measure the discharge that can be measured relatively inexpensively, regardless of the high-pressure side pressure, which requires a high-cost sensor to measure. The compression bypass valve 3 and the pre-expansion valve 8 are controlled by the temperature.

冷凍サイクル装置の運転時には、最適な高圧側圧力は常に一定ではなく、運転時の外気、必要負荷能力等を元に制御装置15に予めROM等にテーブルとして記憶されており、目標吐出温度が決定される(ステップ200)。つぎに温度センサ16からの検出値(吐出温度)(ステップ201)が取り込まれる。目標吐出温度とステップ201で取り込んだ吐出温度とを比較する(ステップ202)。   During operation of the refrigeration cycle device, the optimum high-pressure side pressure is not always constant, and is stored in advance as a table in the ROM or the like in the control device 15 based on the outside air during operation, the required load capacity, etc., and the target discharge temperature is determined. (Step 200). Next, the detected value (discharge temperature) (step 201) from the temperature sensor 16 is captured. The target discharge temperature is compared with the discharge temperature taken in step 201 (step 202).

吐出温度が目標吐出温度より低い場合には、高圧側圧力が最適な圧力より低い傾向にあるため、まず、圧縮バイパス弁3が全閉となっているか否かを判定する(ステップ203)。圧縮バイパス弁3が全閉である場合には、予膨張弁8を閉方向に操作し(ステップ204)、膨張機9に流入する冷媒を減圧し、冷媒密度を低下させ、高圧側圧力および吐出温度を上昇させる。また、圧縮バイパス弁3が全閉でない場合には、圧縮バイパス弁3を閉方向に操作し(ステップ205)、副圧縮機4で圧縮して流出する冷媒を主圧縮機1で圧縮して流出させ、高圧側圧力及び吐出温度を上昇させる。   When the discharge temperature is lower than the target discharge temperature, the high-pressure side pressure tends to be lower than the optimum pressure, so it is first determined whether or not the compression bypass valve 3 is fully closed (step 203). When the compression bypass valve 3 is fully closed, the pre-expansion valve 8 is operated in the closing direction (step 204), the refrigerant flowing into the expander 9 is decompressed, the refrigerant density is reduced, and the high-pressure side pressure and discharge are reduced. Increase temperature. If the compression bypass valve 3 is not fully closed, the compression bypass valve 3 is operated in the closing direction (step 205), and the refrigerant compressed and discharged by the sub compressor 4 is compressed and discharged by the main compressor 1. To increase the high-pressure side pressure and the discharge temperature.

逆に、吐出温度が目標吐出温度より高い場合には、高圧側圧力が最適な圧力より高い傾向にあるため、まず、予膨張弁8が全開となっているか否かを判定する(ステップ206)。予膨張弁8が全開である場合には、圧縮バイパス弁3を開方向に操作し(ステップ207)、主圧縮機1で圧縮して流出する冷媒を副圧縮機4で圧縮して流出させ、高圧側圧力および吐出温度を低下させる。また、予膨張弁8が全開でない場合には、予膨張弁8を開方向に操作し(ステップ208)、膨張機9に流入する冷媒を減圧しないようにして、冷媒密度を低下させないようにすることで、高圧側圧力及び吐出温度を低下させる。   On the other hand, when the discharge temperature is higher than the target discharge temperature, the high-pressure side pressure tends to be higher than the optimum pressure, so it is first determined whether or not the pre-expansion valve 8 is fully open (step 206). . When the pre-expansion valve 8 is fully open, the compression bypass valve 3 is operated in the opening direction (step 207), and the refrigerant compressed and discharged by the main compressor 1 is compressed and discharged by the sub compressor 4. Reduce the high pressure and discharge temperature. Further, when the pre-expansion valve 8 is not fully opened, the pre-expansion valve 8 is operated in the opening direction (step 208) so that the refrigerant flowing into the expander 9 is not decompressed so as not to reduce the refrigerant density. As a result, the high-pressure side pressure and the discharge temperature are reduced.

以上のステップの後、ステップ200に戻り、以後ステップ200からステップ208まで繰り返すことにより、図4に示すように、圧縮バイパス弁3と予膨張弁8とを連携させた制御を行う。   After the above steps, the process returns to step 200, and thereafter repeats from step 200 to step 208, thereby performing control in which the compression bypass valve 3 and the pre-expansion valve 8 are linked as shown in FIG.

以上説明したように、図1〜図4に示す空気調和装置(実施の形態1)では、密度比一定の制約のために、最適な高圧側圧力を維持することが困難である膨張機を用いた冷凍サイクル装置において、実際の運転状態での密度比(DE/DC)が、設計時に想定した設計容積比(VC/VE)より小さい場合でも、大きい場合でも、圧縮バイパス弁3と予膨張弁8の開度操作により、望ましい高圧側圧力に調整し、なおかつ膨張機をバイパスさせることなく動力回収を確実に行うため、運転効率や能力を低下させることなく運転でき、さらには膨張機や圧縮機の信頼性を確保できる空気調和装置が提供される。   As described above, the air conditioner (Embodiment 1) shown in FIGS. 1 to 4 uses an expander that is difficult to maintain an optimum high-pressure side pressure due to a constant density ratio restriction. In the conventional refrigeration cycle apparatus, the compression bypass valve 3 and the pre-expansion valve are used regardless of whether the density ratio (DE / DC) in the actual operation state is smaller or larger than the design volume ratio (VC / VE) assumed at the time of design. In order to adjust the pressure to the desired high pressure side by opening operation of 8 and reliably recover the power without bypassing the expander, it is possible to operate without lowering the operation efficiency and capacity. An air conditioner that can ensure the reliability of the above is provided.

また膨張機をバイパスする量が大きい場合に懸念される、膨張機回転数が低く摺動部での潤滑状態悪化、膨張さらには膨張機の経路内に油が滞留する圧縮機内油枯渇、再起動時の冷媒寝込み起動など、といった信頼性低下を低減することができる。   Also, there is a concern when the amount bypassing the expander is large, the expansion speed of the expander is low, the lubrication state at the sliding part deteriorates, the expansion further, the oil stays in the path of the expander, the exhaustion of the oil in the compressor, restart It is possible to reduce a decrease in reliability such as the start of stagnation of the refrigerant.

また、主圧縮機1の流出ポート110の位置は(式1)を満たしているため、主圧縮機1の流入配管106から流入し圧縮行程を完了して流出配管112から流出する冷媒と、主圧縮機1の圧縮行程中間よりバイパスしてバイパス配管114より流出し副圧縮機4にて再度圧縮行程を経て流出する冷媒では、どちらも組込み容積比が概ね同じであり、一方が過圧縮で、他方が不足圧縮といった状況が無く効率よく冷媒を圧縮することができる。   Further, since the position of the outflow port 110 of the main compressor 1 satisfies (Equation 1), the refrigerant flowing in from the inflow pipe 106 of the main compressor 1 and completing the compression stroke and out of the outflow pipe 112, In the refrigerant that bypasses from the middle of the compression stroke of the compressor 1 and flows out from the bypass pipe 114 and flows out again through the compression stroke in the sub-compressor 4, both of the built-in volume ratios are substantially the same, and one is overcompressed, On the other hand, there is no situation such as insufficient compression, and the refrigerant can be efficiently compressed.

また、駆動源のある主圧縮機1と、膨張機9の膨張動力により駆動する副圧縮機4に機能が分割されて構成されている。構造設計や機能設計も分割できるため、駆動源・膨張機・圧縮機一体集約機と比較して設計上または製造上の課題が少ない。   The function is divided into a main compressor 1 having a drive source and a sub-compressor 4 driven by the expansion power of the expander 9. Since structural design and functional design can also be divided, there are fewer design and manufacturing issues compared to a drive source / expander / compressor integrated unit.

なお、圧縮バイパス弁3、予膨張弁8が全開、または、全閉であるとの判定は、物理的に弁が全開、または、全閉となっていなくてもよく、弁の信頼性等を考慮して予め定めた全開、または、全閉に近い最大開度、または、最小開度となったことで判定してもよい。   Note that the determination that the compression bypass valve 3 and the pre-expansion valve 8 are fully opened or fully closed may not require the valves to be physically fully opened or fully closed. The determination may be made based on the maximum opening or the minimum opening close to the fully-opened or fully-closed predetermined in consideration.

また、この空気調和装置の冷媒は二酸化炭素(CO)であるとして説明したが、他の冷媒、例えば、R410A等でも同様の効果が得られる。 Although the refrigerant of the air conditioner has been described as a carbon dioxide (CO 2), and other refrigerants, for example, the same effect can R410A, etc. is obtained.

実施の形態2.
図5〜図7に示すこの発明の別の空気調和装置は、図1〜図4に示す空気調和装置と同様の構成をしており、同一機能部品については同一の符号を記して説明を省略する。図5は空気調和装置の冷媒回路図である。図6は空気調和装置の制御方法を示すフローチャートである。図7は空気調和装置の制御手段の動作図である。
Embodiment 2. FIG.
Another air conditioner of the present invention shown in FIGS. 5 to 7 has the same configuration as the air conditioner shown in FIGS. 1 to 4, and the same functional parts are denoted by the same reference numerals and description thereof is omitted. To do. FIG. 5 is a refrigerant circuit diagram of the air conditioner. FIG. 6 is a flowchart showing a control method of the air conditioner. FIG. 7 is an operation diagram of the control means of the air conditioner.

図5において、20は主圧縮機であり、駆動源により駆動される。図1〜図4に示す空気調和装置と比較すると、圧縮過程の中途から流出口までバイパスする経路が無く、主圧縮機1の入口配管に設けられた内部熱交換器21と、膨張機9の入口配管に接続された熱交バイパス流路22および熱交バイパス弁23とが設けられていて、その他の構成は同じである。   In FIG. 5, 20 is a main compressor, which is driven by a drive source. Compared with the air conditioner shown in FIGS. 1 to 4, there is no path to bypass from the middle of the compression process to the outlet, and the internal heat exchanger 21 provided in the inlet pipe of the main compressor 1 and the expander 9 A heat exchange bypass channel 22 and a heat exchange bypass valve 23 connected to the inlet pipe are provided, and the other configurations are the same.

次に、上述のように構成された冷凍サイクル装置の運転時の動作について、副圧縮機4の行程容積をVC、膨張機9の行程容積をVE、副圧縮機4の流入冷媒密度をDC、膨張機9の流入冷媒密度をDEとして説明する。   Next, regarding the operation at the time of operation of the refrigeration cycle apparatus configured as described above, the stroke volume of the sub compressor 4 is VC, the stroke volume of the expander 9 is VE, the inflow refrigerant density of the sub compressor 4 is DC, The inflow refrigerant density of the expander 9 will be described as DE.

(DE/DC)≒(VC/VE)での冷房運転
まず、実際の運転状態での密度比(DE/DC)が、設計時に想定した設計容積比(VC/VE)と略同等である冷房運転の場合について説明する。第1四方弁5、第2四方弁7は図5の実線のように設定され、室外熱交換器6が放熱器(凝縮器)、室内熱交換器12a、12bが蒸発器として作用する。
Cooling operation with (DE / DC) ≈ (VC / VE) First, the cooling is such that the density ratio (DE / DC) in the actual operation state is substantially equal to the design volume ratio (VC / VE) assumed at the time of design. The case of driving will be described. The first four-way valve 5 and the second four-way valve 7 are set as shown by the solid lines in FIG. 5, and the outdoor heat exchanger 6 acts as a radiator (condenser) and the indoor heat exchangers 12a and 12b act as evaporators.

内部熱交換器21に流入した冷媒は加熱され、主圧縮機20に流入し圧縮過程を経て中間圧力の冷媒となり、副圧縮機4に流入してさらに圧縮過程を経て高圧の冷媒となる。第1四方弁5を通過し室外熱交換器で外気と熱交換して冷却される。次に第2四方弁7を通過し、内部熱交換器21冷却される。内部熱交換器21を通過しない冷媒は、熱交バイパス流路22を通り、熱交バイパス弁23で流量を調整されて、内部熱交換器21を流出した冷媒と合流する。その後予膨張弁8を通過し、膨張機9で低圧に膨張する。その後、第2四方弁7、予膨張弁8を通過し膨張機9に流入し、冷媒は高圧から低圧まで減圧され低圧の二相状態となる。その後、第2四方弁7、分岐して膨張弁11a、11bを通過し室内熱交換器12a、12bで室内空気より吸熱し冷房運転を実施し、第1四方弁5を通過して主圧縮機1に流入する。   The refrigerant flowing into the internal heat exchanger 21 is heated, flows into the main compressor 20, passes through a compression process, becomes an intermediate-pressure refrigerant, flows into the sub-compressor 4, and further passes through a compression process to become a high-pressure refrigerant. It passes through the first four-way valve 5 and is cooled by exchanging heat with the outside air in the outdoor heat exchanger. Next, it passes through the second four-way valve 7 and is cooled by the internal heat exchanger 21. The refrigerant that does not pass through the internal heat exchanger 21 passes through the heat exchange bypass flow path 22, is adjusted in flow rate by the heat exchange bypass valve 23, and merges with the refrigerant that has flowed out of the internal heat exchanger 21. Thereafter, it passes through the pre-expansion valve 8 and is expanded to a low pressure by the expander 9. Thereafter, the refrigerant passes through the second four-way valve 7 and the pre-expansion valve 8 and flows into the expander 9, and the refrigerant is depressurized from high pressure to low pressure to be in a low pressure two-phase state. After that, the second four-way valve 7 is branched and passes through the expansion valves 11a and 11b, and the indoor heat exchangers 12a and 12b absorb the heat from the room air to perform the cooling operation, and passes through the first four-way valve 5 and passes through the main compressor. Flows into 1.

(DE/DC)>(VC/VE)での冷房運転
次に、実際の運転状態での密度比(DE/DC)が、設計時に想定した設計容積比(VC/VE)より大きい冷房運転の場合について説明する。第1四方弁5、第2四方弁7は図5の実線のように設定され、室外熱交換器6が放熱器(凝縮器)、室内熱交換器12a、12bが蒸発器として作用する。この場合には密度比一定の制約のため、膨張機9の入口冷媒密度(DE)が小さくなるように、冷凍サイクルは高圧圧力を低下させた状態でバランスしようとする。ところが、高圧圧力が望ましい圧力より低下した状態では運転効率が低下する。
Cooling operation with (DE / DC)> (VC / VE) Next, the density ratio (DE / DC) in the actual operation state is larger than the design volume ratio (VC / VE) assumed at the time of design. The case will be described. The first four-way valve 5 and the second four-way valve 7 are set as shown by the solid lines in FIG. 5, and the outdoor heat exchanger 6 acts as a radiator (condenser) and the indoor heat exchangers 12a and 12b act as evaporators. In this case, due to the restriction of a constant density ratio, the refrigeration cycle tries to balance in a state where the high-pressure pressure is reduced so that the inlet refrigerant density (DE) of the expander 9 becomes small. However, the operating efficiency is reduced when the high pressure is lower than the desired pressure.

このため、熱交バイパス弁23が全開状態でなければ、熱交バイパス弁23を開方向に操作し、内部熱交換器21を通過する冷媒を減少させるので、熱交換量が低下し、膨張機9の入口密度が低下して安定する。   For this reason, if the heat exchanger bypass valve 23 is not fully open, the heat exchanger bypass valve 23 is operated in the opening direction to reduce the refrigerant passing through the internal heat exchanger 21, so that the heat exchange amount is reduced and the expander The inlet density of 9 is lowered and stabilized.

あるいは、熱交バイパス弁23が全開状態であれば、予膨張弁8を閉方向に操作し、膨張機9に流入する冷媒を膨張させ、冷媒密度を低下させる。   Or if the heat exchanger bypass valve 23 is a full open state, the pre-expansion valve 8 will be operated in a closing direction, the refrigerant | coolant which flows in into the expander 9 will be expanded, and a refrigerant density will be reduced.

これらの動作により、高圧側圧力を上昇させ望ましい圧力に調整でき、なおかつ膨張機をバイパスする冷媒が無いため、効率の良い運転を行うことができる。   By these operations, the high-pressure side pressure can be increased and adjusted to a desired pressure, and since there is no refrigerant that bypasses the expander, an efficient operation can be performed.

(DE/DC)<(VC/VE)での冷房運転
逆に、実際の運転状態での密度比(DE/DC)が、設計時に想定した設計容積比(VC/VE)より小さい冷房運転の場合について説明する。第1四方弁5、第2四方弁7は図1の実線のように設定され、室外熱交換器6が放熱器(凝縮器)、室内熱交換器12a、12bが蒸発器として作用する。この場合には密度比一定の制約のため、膨張機9の入口冷媒密度(DE)が大きくなるように、冷凍サイクルは高圧圧力を上昇させた状態でバランスしようとする。ところが、高圧圧力が望ましい圧力より上昇した状態では運転効率が低下する。
On the contrary, in the cooling operation with (DE / DC) <(VC / VE), the density ratio (DE / DC) in the actual operation state is smaller than the design volume ratio (VC / VE) assumed at the time of design. The case will be described. The first four-way valve 5 and the second four-way valve 7 are set as shown by the solid lines in FIG. 1, and the outdoor heat exchanger 6 functions as a radiator (condenser) and the indoor heat exchangers 12a and 12b function as an evaporator. In this case, due to the restriction of the constant density ratio, the refrigeration cycle tries to balance with the high pressure increased so that the inlet refrigerant density (DE) of the expander 9 is increased. However, the operating efficiency is reduced when the high pressure is higher than the desired pressure.

このため、予膨張弁8が全開状態でなければ、予膨張弁8を開方向に操作し、膨張機9に流入する冷媒を膨張しないようにさせ、冷媒密度を上昇させる。   For this reason, if the pre-expansion valve 8 is not fully opened, the pre-expansion valve 8 is operated in the opening direction so that the refrigerant flowing into the expander 9 is not expanded, and the refrigerant density is increased.

あるいは予膨張弁8が全開状態であれば、熱交バイパス弁23を閉方向に操作し、内部熱交換器21を通過する冷媒を増加させるので熱交換量が増加し、膨張機9の入口密度を上昇が上昇して安定する。   Alternatively, if the pre-expansion valve 8 is fully open, the heat exchange bypass valve 23 is operated in the closing direction to increase the amount of refrigerant passing through the internal heat exchanger 21, so that the heat exchange amount increases and the inlet density of the expander 9 increases. The rise will rise and stabilize.

これらの動作により、高圧側圧力を低下させ望ましい圧力に調整でき、なおかつ膨張機をバイパスする冷媒が無いため、効率の良い運転を行うことができる。   By these operations, the high-pressure side pressure can be reduced and adjusted to a desired pressure, and since there is no refrigerant that bypasses the expander, efficient operation can be performed.

他に、暖房運転の場合があるが、動作が図1から図4に示す空気調和装置と同様のため説明を省略する。   In addition, although there is a case of heating operation, the operation is the same as that of the air conditioner shown in FIGS.

次に、熱交バイパス弁23と予膨張弁8の具体的な操作方法として、制御装置15が行う制御について、図6に示すフローチャートに基づいて説明する。   Next, as a specific operation method of the heat exchanger bypass valve 23 and the pre-expansion valve 8, the control performed by the control device 15 will be described based on the flowchart shown in FIG.

冷凍サイクル装置の運転時には、最適な高圧側圧力は常に一定ではなく、運転時の外気、必要負荷能力等を元に制御装置15に予めROM等にテーブルとして記憶されており、目標吐出温度が決定される(ステップ300)。つぎに温度センサ16からの検出値(吐出温度)(ステップ301)が取り込まれる。目標吐出温度とステップ301で取り込んだ吐出温度とを比較する(ステップ302)。   During operation of the refrigeration cycle device, the optimum high-pressure side pressure is not always constant, and is stored in advance as a table in the ROM or the like in the control device 15 based on the outside air during operation, the required load capacity, etc., and the target discharge temperature is determined. (Step 300). Next, the detected value (discharge temperature) (step 301) from the temperature sensor 16 is captured. The target discharge temperature is compared with the discharge temperature taken in step 301 (step 302).

吐出温度が目標吐出温度より低い場合には、高圧側圧力が最適な圧力より低い傾向にあるため、まず、熱交バイパス弁23が全開となっているか否かを判定する(ステップ303)。熱交バイパス弁23が全開である場合には、予膨張弁8を閉方向に操作し(ステップ304)、膨張機9に流入する冷媒を減圧し、冷媒密度を低下させ、高圧側圧力および吐出温度を上昇させる。また、熱交バイパス弁23が全開でない場合には、熱交バイパス弁23を開方向に操作し(ステップ305)、内部熱交換器21での熱交完了を増加させ、高圧側圧力及び吐出温度を上昇させる。   If the discharge temperature is lower than the target discharge temperature, the high-pressure side pressure tends to be lower than the optimum pressure, so it is first determined whether or not the heat exchanger bypass valve 23 is fully open (step 303). When the heat exchanger bypass valve 23 is fully open, the pre-expansion valve 8 is operated in the closing direction (step 304), the refrigerant flowing into the expander 9 is decompressed, the refrigerant density is reduced, and the high-pressure side pressure and discharge are reduced. Increase temperature. If the heat exchanger bypass valve 23 is not fully open, the heat exchanger bypass valve 23 is operated in the opening direction (step 305), the heat exchange completion in the internal heat exchanger 21 is increased, and the high pressure side pressure and discharge temperature are increased. To raise.

逆に、吐出温度が目標吐出温度より高い場合には、高圧側圧力が最適な圧力より高い傾向にあるため、まず、予膨張弁8が全開となっているか否かを判定する(ステップ306)。予膨張弁8が全開である場合には、熱交バイパス弁23を閉方向に操作し(ステップ307)、内部熱交換器21での熱交換量を増加させ、高圧側圧力および吐出温度を低下させる。また、予膨張弁8が全開でない場合には、予膨張弁8を開方向に操作し(ステップ308)、膨張機9に流入する冷媒を減圧しないようにして、冷媒密度を低下させないようにすることで、高圧側圧力及び吐出温度を低下させる。   On the other hand, when the discharge temperature is higher than the target discharge temperature, the high-pressure side pressure tends to be higher than the optimum pressure, so it is first determined whether or not the pre-expansion valve 8 is fully open (step 306). . When the pre-expansion valve 8 is fully open, the heat exchanger bypass valve 23 is operated in the closing direction (step 307), the amount of heat exchange in the internal heat exchanger 21 is increased, and the high-pressure side pressure and discharge temperature are decreased. Let If the pre-expansion valve 8 is not fully opened, the pre-expansion valve 8 is operated in the opening direction (step 308) so that the refrigerant flowing into the expander 9 is not decompressed so that the refrigerant density is not reduced. As a result, the high-pressure side pressure and the discharge temperature are reduced.

以上のステップの後、ステップ300に戻り、以後ステップ300からステップ308まで繰り返すことにより、図7に示すように、熱交バイパス弁23と予膨張弁8とを連携させた制御を行う。   After the above steps, the process returns to step 300 and thereafter repeats from step 300 to step 308, thereby performing control in which the heat exchanger bypass valve 23 and the pre-expansion valve 8 are linked as shown in FIG.

以上説明したように、図5〜図7に示す空気調和装置では、密度比一定の制約のために、最適な高圧側圧力を維持することが困難である膨張機を用いた冷凍サイクル装置において、実際の運転状態での密度比(DE/DC)が、設計時に想定した設計容積比(VC/VE)より小さい場合でも、大きい場合でも、熱交バイパス弁23と予膨張弁8の開度操作により、望ましい高圧側圧力に調整し、なおかつ膨張機をバイパスさせることなく動力回収を確実に行うため、運転効率や能力を低下させることなく運転でき、さらには膨張機や圧縮機の信頼性を確保できる空気調和装置が提供される。   As described above, in the air conditioning apparatus shown in FIGS. 5 to 7, in the refrigeration cycle apparatus using the expander that is difficult to maintain the optimum high-pressure side pressure due to the restriction of a constant density ratio, Regardless of whether the density ratio (DE / DC) in the actual operating state is smaller or larger than the design volume ratio (VC / VE) assumed at the time of designing, the opening operation of the heat exchanger bypass valve 23 and the pre-expansion valve 8 is controlled. Therefore, it is possible to operate without reducing the operation efficiency and capacity, and to ensure the reliability of the expander and compressor, because the power is reliably recovered without adjusting the desired high-pressure side pressure and bypassing the expander. An air conditioner that can be provided is provided.

また膨張機をバイパスする量が大きい場合に懸念される、膨張機回転数が低く摺動部での潤滑状態悪化、膨張さらには膨張機の経路内に油が滞留する圧縮機内油枯渇、再起動時の冷媒寝込み起動など、といった信頼性低下を低減することができる。   Also, there is a concern when the amount bypassing the expander is large, the expansion speed of the expander is low, the lubrication state at the sliding part deteriorates, the expansion further, the oil stays in the path of the expander, the exhaustion of the oil in the compressor, restart It is possible to reduce a decrease in reliability such as the start of stagnation of the refrigerant.

また、駆動源のある主圧縮機20と、膨張機9の膨張動力により駆動する副圧縮機4に機能が分割されて構成されている。構造設計や機能設計も分割できるため、駆動源・膨張機・圧縮機一体集約機と比較して設計上または製造上の課題が少ない。   The function is divided into a main compressor 20 having a drive source and a sub compressor 4 driven by the expansion power of the expander 9. Since structural design and functional design can also be divided, there are fewer design and manufacturing issues compared to a drive source / expander / compressor integrated unit.

また膨張機9で動力回収して駆動される副圧縮機4を高段圧縮機として使用するため、低段圧縮機である主圧縮機20の運転周波数と吸入状態により冷媒循環量が定まるため、サイクル状態を制御しやすい利点がある。   In addition, since the sub-compressor 4 that is recovered and driven by the expander 9 is used as a high-stage compressor, the refrigerant circulation amount is determined by the operating frequency and suction state of the main compressor 20 that is a low-stage compressor. There is an advantage that it is easy to control the cycle state.

実施の形態3.
図8に示す空気調和装置は、図5に示す空気調和装置と比較すると、主圧縮機20と副圧縮機4の接続順序であり、その他の構成は同様であり、同一機能部品については同一の符号を記して説明を省略する。図5の冷媒回路では冷媒が内部熱交換器21、主圧縮機20、副圧縮機4、第1四方弁5の順に通過するが、図8の空気調和装置においては、冷媒が内部熱交換器21、副圧縮機4、主圧縮機20、第1四方弁5の順に通過する。
Embodiment 3 FIG.
The air conditioner shown in FIG. 8 is the connection order of the main compressor 20 and the sub-compressor 4 as compared with the air conditioner shown in FIG. 5, the other configurations are the same, and the same functional parts are the same. A description is omitted with reference numerals. In the refrigerant circuit of FIG. 5, the refrigerant passes through the internal heat exchanger 21, the main compressor 20, the sub compressor 4, and the first four-way valve 5 in this order. However, in the air conditioner of FIG. 8, the refrigerant is the internal heat exchanger. 21, the sub compressor 4, the main compressor 20, and the first four-way valve 5 pass in this order.

次に、上述のように構成された冷凍サイクル装置の運転時の動作について、副圧縮機4の行程容積をVC、膨張機9の行程容積をVE、副圧縮機4の流入冷媒密度をDC、膨張機9の流入冷媒密度をDEとして説明する。   Next, regarding the operation at the time of operation of the refrigeration cycle apparatus configured as described above, the stroke volume of the sub compressor 4 is VC, the stroke volume of the expander 9 is VE, the inflow refrigerant density of the sub compressor 4 is DC, The inflow refrigerant density of the expander 9 will be described as DE.

(DE/DC)≒(VC/VE)での冷房運転
まず、実際の運転状態での密度比(DE/DC)が、設計時に想定した設計容積比(VC/VE)と略同等である冷房運転の場合について説明する。第1四方弁5、第2四方弁7は図8の実線のように設定され、室外熱交換器6が放熱器(凝縮器)、室内熱交換器12a、12bが蒸発器として作用する。
Cooling operation with (DE / DC) ≈ (VC / VE) First, the cooling is such that the density ratio (DE / DC) in the actual operation state is substantially equal to the design volume ratio (VC / VE) assumed at the time of design. The case of driving will be described. The first four-way valve 5 and the second four-way valve 7 are set as shown by the solid lines in FIG. 8, and the outdoor heat exchanger 6 functions as a radiator (condenser) and the indoor heat exchangers 12a and 12b function as an evaporator.

内部熱交換器21に流入した冷媒は加熱され、副圧縮機4に流入し圧縮過程を経て中間圧力の冷媒となり、主圧縮機20に流入してさらに圧縮過程を経て高圧の冷媒となる。第1四方弁5を通過し室外熱交換器で外気と熱交換して冷却される。次に第2四方弁7を通過し、内部熱交換器21冷却される。内部熱交換器21を通過しない冷媒は、熱交バイパス流路22を通り、熱交バイパス弁23で流量を調整されて、内部熱交換器21を流出した冷媒と合流する。その後予膨張弁8を通過し、膨張機9で低圧に膨張する。その後、第2四方弁7、予膨張弁8を通過し膨張機9に流入し、冷媒は高圧から低圧まで減圧され低圧の二相状態となる。その後、第2四方弁7、分岐して膨張弁11a、11bを通過し室内熱交換器12a、12bで室内空気より吸熱し冷房運転を実施し、第1四方弁5を通過して主圧縮機1に流入する。   The refrigerant flowing into the internal heat exchanger 21 is heated, flows into the sub-compressor 4 and becomes a medium-pressure refrigerant through a compression process, and flows into the main compressor 20 and further undergoes a compression process to become a high-pressure refrigerant. It passes through the first four-way valve 5 and is cooled by exchanging heat with the outside air in the outdoor heat exchanger. Next, it passes through the second four-way valve 7 and is cooled by the internal heat exchanger 21. The refrigerant that does not pass through the internal heat exchanger 21 passes through the heat exchange bypass flow path 22, is adjusted in flow rate by the heat exchange bypass valve 23, and merges with the refrigerant that has flowed out of the internal heat exchanger 21. Thereafter, it passes through the pre-expansion valve 8 and is expanded to a low pressure by the expander 9. Thereafter, the refrigerant passes through the second four-way valve 7 and the pre-expansion valve 8 and flows into the expander 9, and the refrigerant is depressurized from high pressure to low pressure to be in a low pressure two-phase state. After that, the second four-way valve 7 is branched and passes through the expansion valves 11a and 11b, and the indoor heat exchangers 12a and 12b absorb the heat from the room air to perform the cooling operation, and passes through the first four-way valve 5 and passes through the main compressor. Flows into 1.

(DE/DC)>(VC/VE)での冷房運転
次に、実際の運転状態での密度比(DE/DC)が、設計時に想定した設計容積比(VC/VE)より大きい冷房運転の場合について説明する。第1四方弁5、第2四方弁7は図8の実線のように設定され、室外熱交換器6が放熱器(凝縮器)、室内熱交換器12a、12bが蒸発器として作用する。この場合には密度比一定の制約のため、膨張機9の入口冷媒密度(DE)が小さくなるように、冷凍サイクルは高圧圧力を低下させた状態でバランスしようとする。ところが、高圧圧力が望ましい圧力より低下した状態では運転効率が低下する。
Cooling operation with (DE / DC)> (VC / VE) Next, the density ratio (DE / DC) in the actual operation state is larger than the design volume ratio (VC / VE) assumed at the time of design. The case will be described. The first four-way valve 5 and the second four-way valve 7 are set as shown by the solid lines in FIG. 8, and the outdoor heat exchanger 6 functions as a radiator (condenser) and the indoor heat exchangers 12a and 12b function as an evaporator. In this case, due to the restriction of a constant density ratio, the refrigeration cycle tries to balance in a state where the high-pressure pressure is reduced so that the inlet refrigerant density (DE) of the expander 9 becomes small. However, the operating efficiency is reduced when the high pressure is lower than the desired pressure.

このため、熱交バイパス弁23が全開状態でなければ、熱交バイパス弁23を開方向に操作し、内部熱交換器21を通過する冷媒を減少させるので、熱交換量が低下し、膨張機9の入口密度が低下して安定する。   For this reason, if the heat exchanger bypass valve 23 is not fully open, the heat exchanger bypass valve 23 is operated in the opening direction to reduce the refrigerant passing through the internal heat exchanger 21, so that the heat exchange amount is reduced and the expander The inlet density of 9 is lowered and stabilized.

あるいは、熱交バイパス弁23が全開状態であれば、予膨張弁8を閉方向に操作し、膨張機9に流入する冷媒を膨張させ、冷媒密度を低下させる。   Or if the heat exchanger bypass valve 23 is a full open state, the pre-expansion valve 8 will be operated in a closing direction, the refrigerant | coolant which flows in into the expander 9 will be expanded, and a refrigerant density will be reduced.

これらの動作により、高圧側圧力を上昇させ望ましい圧力に調整でき、なおかつ膨張機をバイパスする冷媒が無いため、効率の良い運転を行うことができる。   By these operations, the high-pressure side pressure can be increased and adjusted to a desired pressure, and since there is no refrigerant that bypasses the expander, an efficient operation can be performed.

(DE/DC)<(VC/VE)での冷房運転
逆に、実際の運転状態での密度比(DE/DC)が、設計時に想定した設計容積比(VC/VE)より小さい冷房運転の場合について説明する。第1四方弁5、第2四方弁7は図1の実線のように設定され、室外熱交換器6が放熱器(凝縮器)、室内熱交換器12a、12bが蒸発器として作用する。この場合には密度比一定の制約のため、膨張機9の入口冷媒密度(DE)が大きくなるように、冷凍サイクルは高圧圧力を上昇させた状態でバランスしようとする。ところが、高圧圧力が望ましい圧力より上昇した状態では運転効率が低下する。
On the contrary, in the cooling operation with (DE / DC) <(VC / VE), the density ratio (DE / DC) in the actual operation state is smaller than the design volume ratio (VC / VE) assumed at the time of design. The case will be described. The first four-way valve 5 and the second four-way valve 7 are set as shown by the solid lines in FIG. 1, and the outdoor heat exchanger 6 functions as a radiator (condenser) and the indoor heat exchangers 12a and 12b function as an evaporator. In this case, due to the restriction of the constant density ratio, the refrigeration cycle tries to balance with the high pressure increased so that the inlet refrigerant density (DE) of the expander 9 is increased. However, the operating efficiency is reduced when the high pressure is higher than the desired pressure.

このため、予膨張弁8が全開状態でなければ、予膨張弁8を開方向に操作し、膨張機9に流入する冷媒を膨張しないようにさせ、冷媒密度を上昇させる。   For this reason, if the pre-expansion valve 8 is not fully opened, the pre-expansion valve 8 is operated in the opening direction so that the refrigerant flowing into the expander 9 is not expanded, and the refrigerant density is increased.

あるいは予膨張弁8が全開状態であれば、熱交バイパス弁23を閉方向に操作し、内部熱交換器21を通過する冷媒を増加させるので熱交換量が増加し、膨張機9の入口密度を上昇が上昇して安定する。   Alternatively, if the pre-expansion valve 8 is fully open, the heat exchange bypass valve 23 is operated in the closing direction to increase the amount of refrigerant passing through the internal heat exchanger 21, so that the heat exchange amount increases and the inlet density of the expander 9 increases. The rise will rise and stabilize.

これらの動作により、高圧側圧力を低下させ望ましい圧力に調整でき、なおかつ膨張機をバイパスする冷媒が無いため、効率の良い運転を行うことができる。   By these operations, the high-pressure side pressure can be reduced and adjusted to a desired pressure, and since there is no refrigerant that bypasses the expander, efficient operation can be performed.

暖房運転
他に、暖房運転の場合があるが、動作が図5〜図7の空気調和装置と同様のため説明を省略する。また、熱交バイパス弁23と予膨張弁8の具体的な操作方法である制御装置24が行う制御は図6および図7と同様である。
In addition to the heating operation, there is a case of the heating operation, but the operation is the same as that of the air conditioner of FIGS. Moreover, the control which the control apparatus 24 which is a concrete operation method of the heat exchanger bypass valve 23 and the pre-expansion valve 8 is the same as that of FIG. 6 and FIG.

以上説明したように、この空気調和装置では、密度比一定の制約のために、最適な高圧側圧力を維持することが困難である膨張機を用いた冷凍サイクル装置において、実際の運転状態での密度比(DE/DC)が、設計時に想定した設計容積比(VC/VE)より小さい場合でも、大きい場合でも、熱交バイパス弁23と予膨張弁8の開度操作により、望ましい高圧側圧力に調整し、なおかつ膨張機をバイパスさせることなく動力回収を確実に行うため、運転効率や能力を低下させることなく運転でき、さらには膨張機や圧縮機の信頼性を確保できる空気調和装置が提供される。   As described above, in this air conditioner, in the refrigeration cycle apparatus using an expander that is difficult to maintain the optimum high-pressure side pressure due to the restriction of the constant density ratio, in the actual operation state Regardless of whether the density ratio (DE / DC) is smaller or larger than the design volume ratio (VC / VE) assumed at the time of design, the desired high pressure side pressure can be determined by opening the heat exchange bypass valve 23 and the pre-expansion valve 8. The air conditioner that can be operated without lowering the operation efficiency and capacity, and that can ensure the reliability of the expander and compressor is provided. Is done.

また膨張機をバイパスする量が大きい場合に懸念される、膨張機回転数が低く摺動部での潤滑状態悪化、膨張さらには膨張機の経路内に油が滞留する圧縮機内油枯渇、再起動時の冷媒寝込み起動など、といった信頼性低下を低減することができる。   Also, there is a concern when the amount bypassing the expander is large, the expansion speed of the expander is low, the lubrication state at the sliding part deteriorates, the expansion further, the oil stays in the path of the expander, the exhaustion of the oil in the compressor, restart It is possible to reduce a decrease in reliability such as the start of stagnation of the refrigerant.

また、駆動源のある主圧縮機20と、膨張機9の膨張動力により駆動する副圧縮機4に機能が分割されて構成されている。構造設計や機能設計も分割できるため、駆動源・膨張機・圧縮機一体集約機と比較して設計上または製造上の課題が少ない。   The function is divided into a main compressor 20 having a drive source and a sub compressor 4 driven by the expansion power of the expander 9. Since structural design and functional design can also be divided, there are fewer design and manufacturing issues compared to a drive source / expander / compressor integrated unit.

また膨張機9で動力回収して駆動される副圧縮機4を低圧縮機として使用するため、副圧縮機4内は低圧であり、強度設計上余裕が生じる。   Further, since the sub-compressor 4 that is recovered and driven by the expander 9 is used as a low-compressor, the sub-compressor 4 has a low pressure, and there is a margin in strength design.

この発明の空気調和装置の1つの実施の形態を示す冷媒回路図である。It is a refrigerant circuit figure showing one embodiment of the air harmony device of this invention. 図1に示す空気調和装置の主圧縮機の断面図である。It is sectional drawing of the main compressor of the air conditioning apparatus shown in FIG. 図1に示す空気調和装置の運転方法を示すフローチャートである。It is a flowchart which shows the operating method of the air conditioning apparatus shown in FIG. 図1に示す空気調和装置の制御手段の動作図である。It is an operation | movement diagram of the control means of the air conditioning apparatus shown in FIG. この発明の空気調和装置の別の実施の形態を示す冷媒回路図である。It is a refrigerant circuit figure which shows another embodiment of the air conditioning apparatus of this invention. 図5に示す空気調和装置の運転方法を示すフローチャートである。It is a flowchart which shows the operating method of the air conditioning apparatus shown in FIG. 図5に示す空気調和装置の制御手段の動作図である。It is an operation | movement figure of the control means of the air conditioning apparatus shown in FIG. この発明の空気調和装置の更に別の実施の形態を示す冷媒回路図である。It is a refrigerant circuit figure which shows another embodiment of the air conditioning apparatus of this invention.

符号の説明Explanation of symbols

1、20 主圧縮機、2 圧縮バイパス流路、3 圧縮バイパス弁、4 副圧縮機、5 第1四方弁、6 室外熱交換器、7 第2四方弁、8 予膨張弁、9 膨張機、10 駆動軸、11a、11b 室内膨張弁、12a、12b 室内熱交換器、13 室外機、14a、14b 室内機、15、24 制御装置、16、17a、17b、18a、18b、19a、19b 温度センサ、21 内部熱交換器、22 熱交バイパス流路、23 熱交バイパス弁、101 シェル、102 モータ、103 シャフト、104 揺動スクロール、105 固定スクロール、106 流入配管、107 低圧空間、108 圧縮室、109 圧縮室、110流出ポート、111 高圧空間、112 流出配管、113 圧縮バイパスポート、114 バイパス配管。   1, 20 main compressor, 2 compression bypass flow path, 3 compression bypass valve, 4 subcompressor, 5 first four-way valve, 6 outdoor heat exchanger, 7 second four-way valve, 8 pre-expansion valve, 9 expander, DESCRIPTION OF SYMBOLS 10 Drive shaft, 11a, 11b Indoor expansion valve, 12a, 12b Indoor heat exchanger, 13 Outdoor unit, 14a, 14b Indoor unit, 15, 24 Controller, 16, 17a, 17b, 18a, 18b, 19a, 19b Temperature sensor , 21 Internal heat exchanger, 22 Heat exchange bypass flow path, 23 Heat exchange bypass valve, 101 Shell, 102 Motor, 103 Shaft, 104 Swing scroll, 105 Fixed scroll, 106 Inflow piping, 107 Low pressure space, 108 Compression chamber, 109 compression chamber, 110 outflow port, 111 high pressure space, 112 outflow piping, 113 compression bypass port, 114 bypass piping.

Claims (7)

主圧縮機と、放熱器と、膨張機と、蒸発器とが順に接続された空気調和装置において、
主圧縮機での圧縮過程の中間圧から圧縮過程完了後までをバイパスする圧縮バイパス流路と、
前記圧縮バイパス流路上に設けられ、駆動軸で前記膨張機に連結された副圧縮機と、
前記圧縮バイパス流路上で前記主圧縮機と前記副圧縮機の間に接続された圧縮バイパス弁と、
前記圧縮バイパス弁の開度を変更し、もって高圧側圧力を調整する制御装置とを備えたことを特徴とする空気調和装置。
In an air conditioner in which a main compressor, a radiator, an expander, and an evaporator are connected in order,
A compression bypass passage for bypassing from the intermediate pressure of the compression process in the main compressor to after completion of the compression process;
A sub-compressor provided on the compression bypass flow path and connected to the expander by a drive shaft;
A compression bypass valve connected between the main compressor and the sub-compressor on the compression bypass flow path;
An air conditioner comprising: a control device that adjusts a high-pressure side pressure by changing an opening of the compression bypass valve.
前記膨張機に流入する冷媒を予め膨張させる予膨張弁を設けたことを特徴とする請求項1に記載の空気調和装置。   The air conditioning apparatus according to claim 1, further comprising a pre-expansion valve that expands a refrigerant flowing into the expander in advance. 前記制御装置が、前記圧縮バイパス弁と前記予膨張弁の開度を、前記主圧縮機と前記副圧縮機の合流部の吐出温度または過熱度に基づいて変更することを特徴とする請求項2に記載の空気調和装置。   The said control apparatus changes the opening degree of the said compression bypass valve and the said pre-expansion valve based on the discharge temperature or superheat degree of the confluence | merging part of the said main compressor and the said sub compressor. The air conditioning apparatus described in 1. 前記主圧縮機における行程容積に対するバイパス流路導通終了直後の圧縮室容積の比と、前記副圧縮機の組込容積比との積が、前記主圧縮機の組込容積比に概ね一致することを特徴とする請求項1〜3のいずれか一項に記載の空気調和装置。   The product of the ratio of the compression chamber volume immediately after the bypass passage conduction to the stroke volume in the main compressor and the built-in volume ratio of the sub-compressor substantially matches the built-in volume ratio of the main compressor. The air conditioning apparatus according to any one of claims 1 to 3, wherein: 主圧縮機と、放熱器と、膨張機と、蒸発器とが順に接続され、
主圧縮機での圧縮過程の中間圧から圧縮過程完了後までをバイパスする圧縮バイパス流路と、
前記圧縮バイパス流路上に設けられ、駆動軸で前記膨張機に連結された副圧縮機と、
前記圧縮バイパス流路上で前記主圧縮機と前記副圧縮機の間に接続された圧縮バイパス弁とを備えた空気調和装置の運転方法であって、
前記圧縮バイパス弁の開度を変更し、もって高圧側圧力を調整することを特徴とする空気調和装置の運転方法。
The main compressor, radiator, expander, and evaporator are connected in order,
A compression bypass passage for bypassing from the intermediate pressure of the compression process in the main compressor to after completion of the compression process;
A sub-compressor provided on the compression bypass flow path and connected to the expander by a drive shaft;
An operation method of an air conditioner including a compression bypass valve connected between the main compressor and the sub compressor on the compression bypass flow path,
A method of operating an air conditioner, wherein the opening of the compression bypass valve is changed to adjust the high-pressure side pressure.
前記膨張機に流入する冷媒を予め膨張させる予膨張弁を設け、
前記圧縮バイパス弁と前記予膨張弁の開度を、前記主圧縮機と前記副圧縮機の合流部の吐出温度または過熱度に基づいて変更することを特徴とする請求項5に記載の空気調和装置の運転方法。
Providing a pre-expansion valve for pre-expanding the refrigerant flowing into the expander;
6. The air conditioner according to claim 5 , wherein the opening degrees of the compression bypass valve and the pre-expansion valve are changed based on a discharge temperature or a superheat degree of a joining portion of the main compressor and the sub compressor. How to operate the device.
前記主圧縮機における行程容積に対するバイパス流路導通終了直後の圧縮室容積の比と、前記副圧縮機の組込容積比との積を、前記主圧縮機の組込容積比に概ね一致させることを特徴とする請求項5あるいは6に記載の空気調和装置の運転方法。 The product of the ratio of the compression chamber volume immediately after completion of bypass flow passage conduction to the stroke volume in the main compressor and the built-in volume ratio of the sub-compressor is approximately matched with the built-in volume ratio of the main compressor. how the operation of the air conditioner according to 6 claim 5 Ah Rui, wherein.
JP2008001285A 2008-01-08 2008-01-08 Air conditioner and operation method thereof Active JP4827859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008001285A JP4827859B2 (en) 2008-01-08 2008-01-08 Air conditioner and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008001285A JP4827859B2 (en) 2008-01-08 2008-01-08 Air conditioner and operation method thereof

Publications (2)

Publication Number Publication Date
JP2009162438A JP2009162438A (en) 2009-07-23
JP4827859B2 true JP4827859B2 (en) 2011-11-30

Family

ID=40965263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008001285A Active JP4827859B2 (en) 2008-01-08 2008-01-08 Air conditioner and operation method thereof

Country Status (1)

Country Link
JP (1) JP4827859B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5599403B2 (en) * 2009-09-24 2014-10-01 三菱電機株式会社 Refrigeration cycle equipment
JP5389184B2 (en) * 2009-10-07 2014-01-15 三菱電機株式会社 Refrigeration cycle equipment
EP2551613B1 (en) 2010-03-25 2017-10-11 Mitsubishi Electric Corporation Refrigeration cycle apparatus and method for operating same
WO2013030896A1 (en) 2011-09-01 2013-03-07 三菱電機株式会社 Refrigeration cycle device
CN110887265B (en) * 2019-11-25 2021-01-12 珠海格力电器股份有限公司 Internal circulation superposition heat pump system, control method and heat pump dryer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4410980B2 (en) * 2002-09-19 2010-02-10 三菱電機株式会社 Refrigeration air conditioner
JP3708536B1 (en) * 2004-03-31 2005-10-19 松下電器産業株式会社 Refrigeration cycle apparatus and control method thereof
JP4457831B2 (en) * 2004-09-24 2010-04-28 ダイキン工業株式会社 Refrigeration equipment
JP2007155277A (en) * 2005-12-08 2007-06-21 Valeo Thermal Systems Japan Corp Refrigerating cycle
JP4765675B2 (en) * 2006-03-03 2011-09-07 パナソニック株式会社 Refrigeration cycle equipment
JP2007255889A (en) * 2007-05-24 2007-10-04 Mitsubishi Electric Corp Refrigerating air conditioning device

Also Published As

Publication number Publication date
JP2009162438A (en) 2009-07-23

Similar Documents

Publication Publication Date Title
JP5710007B2 (en) Refrigeration cycle equipment
JP5349686B2 (en) Refrigeration cycle equipment
JP5478715B2 (en) Refrigeration cycle apparatus and operation method thereof
JP4410980B2 (en) Refrigeration air conditioner
JP5306478B2 (en) Heat pump device, two-stage compressor, and operation method of heat pump device
JP4013981B2 (en) Refrigeration air conditioner
JP5698160B2 (en) Air conditioner
JP2007255889A (en) Refrigerating air conditioning device
JP4827859B2 (en) Air conditioner and operation method thereof
JP4906963B2 (en) Refrigeration cycle equipment
US20090007590A1 (en) Refrigeration System
JP2008014602A (en) Refrigeration cycle device
JP5127849B2 (en) Refrigeration cycle equipment
JP4901916B2 (en) Refrigeration air conditioner
JP5659909B2 (en) Heat pump equipment
JP4307878B2 (en) Refrigerant cycle equipment
JP4784385B2 (en) Refrigeration cycle equipment
JP2006234263A (en) Refrigerating cycle device
JP4581795B2 (en) Refrigeration equipment
JP2009133319A (en) Displacement type expansion machine and fluid machine
JP5751119B2 (en) Refrigeration equipment
JP2007147232A (en) Refrigerating device
JP2012107862A (en) Refrigeration cycle device
JP2006284086A (en) Refrigerating device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4827859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250