JP4821163B2 - Epoxy resin composition for fiber reinforced composite materials - Google Patents

Epoxy resin composition for fiber reinforced composite materials Download PDF

Info

Publication number
JP4821163B2
JP4821163B2 JP2005115806A JP2005115806A JP4821163B2 JP 4821163 B2 JP4821163 B2 JP 4821163B2 JP 2005115806 A JP2005115806 A JP 2005115806A JP 2005115806 A JP2005115806 A JP 2005115806A JP 4821163 B2 JP4821163 B2 JP 4821163B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
viscosity
weight
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005115806A
Other languages
Japanese (ja)
Other versions
JP2006291095A (en
Inventor
崇 高坂
友裕 伊藤
充宏 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2005115806A priority Critical patent/JP4821163B2/en
Publication of JP2006291095A publication Critical patent/JP2006291095A/en
Application granted granted Critical
Publication of JP4821163B2 publication Critical patent/JP4821163B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

本発明は、繊維強化複合材料用エポキシ樹脂組成物に関し、さらに詳しくは、耐熱性および靭性に優れた炭素繊維強化複合材料用エポキシ樹脂組成物に関する。   The present invention relates to an epoxy resin composition for fiber reinforced composite materials, and more particularly to an epoxy resin composition for carbon fiber reinforced composite materials having excellent heat resistance and toughness.

エポキシ樹脂組成物は、繊維強化複合材料用のマトリックス樹脂として広く使用されている。特に、炭素繊維を強化基材とする炭素繊維強化プラスチック(CFRP)は、比強度、比弾性率が高いことから、その特徴を生かして民間航空機において機体を軽量化するための構造材料として使用されている。このCFRPのマトリックス樹脂には、N,N,N’,N’−テトラグリシジルジアミノジフェニルメタンに代表される多官能性グリシジルアミンを主成分とするエポキシ樹脂と、ジアミノジフェニルスルホンを硬化剤とするエポキシ樹脂組成物を用いる例が多い。   Epoxy resin compositions are widely used as matrix resins for fiber reinforced composite materials. In particular, carbon fiber reinforced plastic (CFRP), which uses carbon fiber as a reinforced base material, has high specific strength and specific elastic modulus. Therefore, it is used as a structural material to reduce the weight of aircraft in commercial aircraft by taking advantage of its characteristics. ing. The CFRP matrix resin includes an epoxy resin mainly composed of polyfunctional glycidylamine represented by N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane, and an epoxy resin containing diaminodiphenylsulfone as a curing agent. There are many examples using the composition.

しかし多官能性グリシジルアミン型エポキシ樹脂を主成分とするエポキシ樹脂組成物を硬化した樹脂硬化物は、弾性率および耐熱性は高いという特徴を有するが、伸びが低くて硬く、脆いという問題があった。一般にエポキシ樹脂組成物は、耐熱性が優れたものは靭性が低く、逆に靭性の高いものは耐熱性が劣るという傾向にあるため、両方の特性を備えたエポキシ樹脂組成を見出すことは難しい状況にある。   However, a cured resin obtained by curing an epoxy resin composition containing a polyfunctional glycidylamine type epoxy resin as a main component is characterized by high modulus of elasticity and heat resistance, but has a problem of low elongation, hardness and brittleness. It was. In general, epoxy resin compositions tend to have low toughness for those with excellent heat resistance, and inferior heat resistance to those with high toughness, so it is difficult to find an epoxy resin composition with both characteristics It is in.

このため、特許文献1は、テトラグリシジルアミノジフェニルメタン等の多官能のエポキシ樹脂に、1〜2官能のエポキシ樹脂や熱可塑性樹脂を加え、靭性と剛性とのバランス改善を提案している。しかし、低官能性エポキシ樹脂および熱可塑性樹脂の配合により、伸びや靭性の改良は見られるが、未だ十分なレベルではなく、さらに熱可塑性樹脂のためにタック性およびドレープ性等のプリプレグ作業性が著しく低下する問題が発生する。
特開2004−277481号公報
For this reason, Patent Document 1 proposes improving the balance between toughness and rigidity by adding a 1-2 functional epoxy resin or a thermoplastic resin to a polyfunctional epoxy resin such as tetraglycidylaminodiphenylmethane. However, although the improvement of elongation and toughness can be seen by the combination of low-functional epoxy resin and thermoplastic resin, it is not yet sufficient level, and because of thermoplastic resin, prepreg workability such as tackiness and draping property is A problem that significantly decreases occurs.
Japanese Patent Laid-Open No. 2004-277481

本発明の目的は、繊維強化複合材料のマトリックス樹脂として、耐熱性および靭性を高いレベルで両立し、かつプリプレグ作業性を改良する繊維強化複合材料用エポキシ樹脂組成物を提供することにある。   An object of the present invention is to provide an epoxy resin composition for a fiber-reinforced composite material that has both high heat resistance and toughness as a matrix resin of a fiber-reinforced composite material and improves prepreg workability.

上記目的を達成する本発明の繊維強化複合材料用エポキシ樹脂組成物は、一分子中に少なくとも3個のエポキシ基を有する多官能性エポキシ樹脂(A)を75〜85重量%と、ビスフェノールF型エポキシ樹脂(B)を15〜25重量%とから構成されるエポキシ樹脂成分100重量部に対して、前記エポキシ樹脂成分に可溶する熱可塑性樹脂(C)を40〜60重量部、および硬化剤(D)を配合するエポキシ樹脂組成物であって、前記多官能性エポキシ樹脂(A)が、温度25℃における粘度が1000mPa・s以下である低粘度のトリグリシジルアミノフェノールを重量割合で3/5以上を含有しており、前記ビスフェノールF型エポキシ樹脂(B)の温度25℃における粘度が5000mPa・s以下であり、前記熱可塑性樹脂(C)がポリエーテルスルホン樹脂、ポリエーテルイミド、ポリイミド、ポリアミド、ポリアミドイミドから選ばれることを特徴とするThe epoxy resin composition for fiber-reinforced composite material of the present invention that achieves the above object comprises 75 to 85% by weight of a polyfunctional epoxy resin (A) having at least three epoxy groups in one molecule, and a bisphenol F type. 40 to 60 parts by weight of the thermoplastic resin (C) soluble in the epoxy resin component and 100 parts by weight of the epoxy resin component composed of 15 to 25% by weight of the epoxy resin (B), and a curing agent An epoxy resin composition containing (D), wherein the polyfunctional epoxy resin (A) contains a low-viscosity triglycidylaminophenol having a viscosity at a temperature of 25 ° C. of 1000 mPa · s or less in a weight ratio of 3 / 5 and contain more state, and are viscosity 5000 mPa · s or less at a temperature 25 ° C. of the bisphenol F type the epoxy resin (B), the said thermoplastic resin ( ) Polyether sulfone resin, polyether imide, and wherein polyimide, polyamide, to be selected from polyamideimide.

本発明の繊維強化複合材料用エポキシ樹脂組成物は、特定の粘度を有するエポキシ樹脂成分および熱可塑性樹脂を特定の組成で配合することにより、樹脂硬化物の耐熱性および靭性を高いレベルで両立させながら、熱可塑性樹脂を添加することに伴うプレプレグ作業性の悪化を、改善することができるものである。   The epoxy resin composition for fiber-reinforced composite material of the present invention is compatible with a high level of heat resistance and toughness of a cured resin by blending an epoxy resin component having a specific viscosity and a thermoplastic resin with a specific composition. However, the deterioration of the prepreg workability associated with the addition of the thermoplastic resin can be improved.

本発明の繊維強化複合材料用エポキシ樹脂組成物において、一分子中に少なくとも3個のエポキシ基を有する多官能性エポキシ樹脂(A)は、樹脂硬化物の耐熱性および剛性を高めるために有用であり、一分子中に3〜4のエポキシ基を持つことがより好ましい。一分子中のエポキシ基が3個未満であると、樹脂硬化物の耐熱性および剛性を高くすることができず、好ましくない。   In the epoxy resin composition for fiber-reinforced composite material of the present invention, the polyfunctional epoxy resin (A) having at least 3 epoxy groups in one molecule is useful for increasing the heat resistance and rigidity of the cured resin. It is more preferable to have 3 to 4 epoxy groups in one molecule. When the number of epoxy groups in one molecule is less than 3, it is not preferable because the heat resistance and rigidity of the resin cured product cannot be increased.

本発明において、多官能性エポキシ樹脂(A)は、温度25℃における粘度が1000mPa・s以下である低粘度のトリグリシジルアミノフェノールを、3/5以上、好ましくは7/10〜9/10の重量割合で含有するものである。低粘度のトリグリシジルアミノフェノールを含有する重量割合は、3/5以上であればよく、多官能性エポキシ樹脂(A)の全量が、低粘度のトリグリシジルアミノフェノールであってもよい。 In the present invention, the polyfunctional epoxy resin (A) is a low-viscosity triglycidylaminophenol having a viscosity at a temperature of 25 ° C. of 1000 mPa · s or less of 3/5 or more, preferably 7/10 to 9/10. It contains by weight. The weight ratio of the low-viscosity triglycidylaminophenol may be 3/5 or more, and the total amount of the polyfunctional epoxy resin (A) may be low-viscosity triglycidylaminophenol .

温度25℃における粘度が1000mPa・s以下である低粘度のトリグリシジルアミノフェノールは、温度25℃で液状であり、流動性を確保して、プリプレグの十分なタック性およびドレープ性を保持するために有用である。 The low-viscosity triglycidylaminophenol having a viscosity at a temperature of 25 ° C. of 1000 mPa · s or less is liquid at a temperature of 25 ° C. to ensure fluidity and maintain sufficient tackiness and draping properties of the prepreg. Useful.

低粘度のトリグリシジルアミノフェノールにおいて、温度25℃における粘度は、1000mPa・s以下、好ましくは850mPa・s以下、より好ましくは550〜700mPa・sである。低粘度のトリグリシジルアミノフェノールの温度25℃における粘度が、上記範囲を超えると、エポキシ樹脂組成物の粘度が高くなり、そのエポキシ樹脂組成物をマトリックスとするプリプレグのタック性およびドレープ性等の作業性が低下する虞がある。また、粘度が550mPa・s未満であると、エポキシ樹脂組成物を硬化する際に、揮発性が高くなり、十分な耐熱性および剛性を有する樹脂硬化物が得られ難くなる虞があるIn the low-viscosity triglycidylaminophenol, the viscosity at a temperature of 25 ° C. is 1000 mPa · s or less, preferably 850 mPa · s or less, more preferably 550 to 700 mPa · s. If the viscosity of the low-viscosity triglycidylaminophenol at 25 ° C. exceeds the above range, the viscosity of the epoxy resin composition increases, and work such as tackiness and draping properties of the prepreg using the epoxy resin composition as a matrix There is a risk that the performance will be reduced. Further, when the viscosity is less than 550 mPa · s, when curing the epoxy resin composition, the volatile becomes high, there is a possibility that it becomes difficult cured resin having sufficient heat resistance and rigidity is obtained.

本発明において、多官能性エポキシ樹脂(A)は、低粘度のトリグリシジルアミノフェノール以外に、一分子中に少なくとも3個のエポキシ基を有する多官能性エポキシ樹脂を、2/5未満の重量割合で含有していてもよい。すなわち、多官能性エポキシ樹脂(A)中に、温度25℃における粘度が1000mPa・sを超える高粘度の多官能性エポキシ樹脂を含有していてもよいが、含有していなくてもよい。多官能性エポキシ樹脂(A)が、高粘度の多官能性エポキシ樹脂を含有する場合、高粘度の多官能性エポキシ樹脂の重量割合が2/5未満、好ましくは1/6以上2/5未満である。高粘度の多官能性エポキシ樹脂の重量割合が、2/5を超えると、流動性およびプリプレグの作業性が低下し、好ましくない。重量割合が1/6以上2/5未満であると、流動性およびプリプレグ作業性を損なうことなく、樹脂硬化物の耐熱性および機械強度を向上、または維持させることができる。 In the present invention, the polyfunctional epoxy resin (A) is a polyfunctional epoxy resin having at least three epoxy groups in one molecule in addition to the low-viscosity triglycidylaminophenol , and the weight ratio is less than 2/5. It may contain. That is, the polyfunctional epoxy resin (A) may contain a high-viscosity polyfunctional epoxy resin having a viscosity at a temperature of 25 ° C. exceeding 1000 mPa · s, but it may not be contained. When the polyfunctional epoxy resin (A) contains a polyfunctional epoxy resin having a high viscosity, the weight ratio of the polyfunctional epoxy resin having a high viscosity is less than 2/5, preferably 1/6 or more and less than 2/5. It is. When the weight ratio of the polyfunctional epoxy resin having a high viscosity exceeds 2/5, the fluidity and workability of the prepreg are deteriorated, which is not preferable. When the weight ratio is less than 1/6 or more 2/5, without impairing the flow properties and the prepreg workability, Ru can improve the heat resistance and mechanical strength of the cured resin, or to maintain.

多官能性エポキシ樹脂(A)は、好ましくはグリシジルアミン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、グリシジルエーテル型エポキシ樹脂を挙げることができ、とりわけグリシジルアミン型エポキシ樹脂が好ましい。グリシジルアミン型エポキシ樹脂のなかでも、テトラグリシジルジアミノジフェニルメタン、トリグリシジルアミノフェノール、トリグリシジルアミノクレゾール、テトラグリシジルm−キシリレンジアミン、N,N−ジグリシジルアニリン等が好ましく、特に、低粘度のトリグリシジルアミノフェノールとして、N,N,O−トリグリシジル−p−アミノフェノール樹脂が好ましく、粘度が高い多官能性エポキシ樹脂として、耐熱性が高いためN,N,N′,N′−テトラグリシジルジアミノジフェニルメタンが、好ましい。 The polyfunctional epoxy resin (A) is preferably a glycidylamine type epoxy resin, a phenol novolac type epoxy resin, a cresol novolac type epoxy resin, or a glycidyl ether type epoxy resin, and a glycidylamine type epoxy resin is particularly preferable. Among the glycidylamine type epoxy resins, tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol, triglycidylaminocresol, tetraglycidyl m-xylylenediamine, N, N-diglycidylaniline and the like are preferable, and particularly low viscosity triglycidyl. as aminophenol, N, N, O-triglycidyl -p- aminophenol resins are preferred, as high viscosity polyfunctional epoxy resins, N because of its high heat resistance, N, N ', N'- tetraglycidyl diaminodiphenylmethane Is preferred.

本発明の樹脂組成物に使用する多官能性エポキシ樹脂(A)の配合量は、75〜85重量%、好ましくは75〜80重量%、より好ましくは75重量%以上80重量%未満である。多官能性エポキシ樹脂(A)の配合量が、上記未満であると樹脂硬化物の耐熱性および剛性が低下する虞があり、上記範囲を超えると樹脂硬化物の強度、伸びおよび靭性が低下する虞がある。   The compounding quantity of the polyfunctional epoxy resin (A) used for the resin composition of this invention is 75 to 85 weight%, Preferably it is 75 to 80 weight%, More preferably, it is 75 weight% or more and less than 80 weight%. If the blending amount of the polyfunctional epoxy resin (A) is less than the above, the heat resistance and rigidity of the cured resin may be reduced, and if it exceeds the above range, the strength, elongation and toughness of the cured resin will be reduced. There is a fear.

本発明の繊維強化複合材料用エポキシ樹脂組成物に使用するビスフェノールF型エポキシ樹脂(B)は、伸びおよび靭性を改善する役割を果たすものである。   The bisphenol F type epoxy resin (B) used for the epoxy resin composition for fiber-reinforced composite materials of the present invention plays a role of improving elongation and toughness.

本発明において、ビスフェノールF型エポキシ樹脂(B)は、温度25℃で液状であり、液状であることは、流動性を確保して、プリプレグの十分なタック性、ドレープ性を保持するために有用である。   In the present invention, the bisphenol F type epoxy resin (B) is liquid at a temperature of 25 ° C., and the liquid state is useful for ensuring fluidity and maintaining sufficient tackiness and draping properties of the prepreg. It is.

ビスフェノールF型エポキシ樹脂(B)の温度25℃における粘度は、5000mPa・s以下、好ましくは4000mPa・s以下、より好ましくは1000〜3000mPa・sである。上記範囲を超えると、エポキシ樹脂組成物の粘度が高くなり、そのエポキシ樹脂組成物をマトリックスとするプリプレグのタック性およびドレープ性等の作業性が低下する虞がある。また、粘度が1000mPa・s未満であると、樹脂硬化物の伸びおよび靭性が低下する虞がある。   The viscosity of the bisphenol F-type epoxy resin (B) at a temperature of 25 ° C. is 5000 mPa · s or less, preferably 4000 mPa · s or less, more preferably 1000 to 3000 mPa · s. When the above range is exceeded, the viscosity of the epoxy resin composition becomes high, and workability such as tackiness and draping property of the prepreg using the epoxy resin composition as a matrix may be lowered. Moreover, there exists a possibility that elongation and toughness of a resin cured material may fall that a viscosity is less than 1000 mPa * s.

なお、多官能性エポキシ樹脂(A)およびビスフェノールF型エポキシ樹脂(B)の粘度は、BH型回転粘度計を用いた粘度測定値であり、具体的には、エポキシ樹脂の入った缶を温度25℃の恒温槽に入れ、BH型回転粘度計の負荷が安定した目盛りをもって、測定値とした値である。なお、粘度が高いエポキシ樹脂を測定する場合には、例えば、恒温槽の温度50℃として、測定温度50℃の値とする。   The viscosity of the polyfunctional epoxy resin (A) and the bisphenol F type epoxy resin (B) is a viscosity measurement value using a BH type rotational viscometer. It is a value obtained by placing it in a constant temperature bath at 25 ° C. and making a scale with a stable load of the BH type rotational viscometer as a measured value. In addition, when measuring an epoxy resin with a high viscosity, it is set as the value of the measurement temperature of 50 degreeC as the temperature of a thermostat 50 degreeC, for example.

ビスフェノールF型エポキシ樹脂(B)の配合量は、15〜25重量%、好ましくは20〜25重量%、より好ましくは20重量%を超えて25重量%以下である。ビスフェノールF型エポキシ樹脂(B)の配合量が、上記未満であると樹脂硬化物の伸びおよび靭性が低下する虞があり、上記範囲を超えると樹脂硬化物の耐熱性および剛性が低下する虞がある。   The blending amount of the bisphenol F type epoxy resin (B) is 15 to 25% by weight, preferably 20 to 25% by weight, more preferably more than 20% by weight and 25% by weight or less. If the blending amount of the bisphenol F-type epoxy resin (B) is less than the above, the elongation and toughness of the cured resin may be reduced, and if it exceeds the above range, the heat resistance and rigidity of the cured resin may be reduced. is there.

本発明のエポキシ樹脂組成物において、上記(A)および(B)のエポキシ樹脂から構成されるエポキシ樹脂成分の合計は、100重量%であり、熱可塑性樹脂(C)は、エポキシ樹脂成分100重量部に対して、それぞれの配合量を重量規定するものである。   In the epoxy resin composition of the present invention, the total of the epoxy resin components composed of the epoxy resins (A) and (B) is 100% by weight, and the thermoplastic resin (C) is 100% by weight of the epoxy resin component. The amount of each compound is regulated by weight with respect to parts.

本発明の繊維強化複合材料用エポキシ樹脂組成物に使用する熱可塑性樹脂(C)は、エポキシ樹脂成分との相溶性または親和性が高く、エポキシ樹脂成分に可溶する熱可塑性樹脂であり、ポリエーテルスルホン樹脂(PES)、ポリエーテルイミド(PEI)、ポリイミド、ポリアミド、ポリアミドイミドから選ばれる。とりわけポリエーテルスルホン樹脂(PES)が、エポキシ樹脂成分に可溶であり、樹脂硬化物の耐熱性を高いレベルで維持しながら、靭性および伸び等の物性を向上させることができるため、好ましい。 Thermoplastic resins for use in fiber-reinforced composite material epoxy resin composition of the present invention (C) has a high compatibility or affinity with the epoxy resin component, Ri thermoplastic resin der that soluble in the epoxy resin component, It is selected from polyethersulfone resin (PES), polyetherimide (PEI), polyimide, polyamide, and polyamideimide . In particular, polyethersulfone resin (PES) is preferable because it is soluble in the epoxy resin component and can improve physical properties such as toughness and elongation while maintaining the heat resistance of the cured resin at a high level.

熱可塑性樹脂(C)をエポキシ樹脂成分に溶解させる方法は、特に制限はないが、好ましくは、エポキシ樹脂成分を、温度120〜130℃に設定したプラネタリミキサを用いて、均一な溶液になるまで撹拌・混合してから、熱可塑性樹脂(C)を、この溶液中に加え、熱可塑性樹脂(C)の粉体が均一に溶解するまで約1〜3時間、撹拌・混合する。   The method for dissolving the thermoplastic resin (C) in the epoxy resin component is not particularly limited, but preferably, until the epoxy resin component is made into a uniform solution using a planetary mixer set at a temperature of 120 to 130 ° C. After stirring and mixing, the thermoplastic resin (C) is added to this solution and stirred and mixed for about 1 to 3 hours until the powder of the thermoplastic resin (C) is uniformly dissolved.

本発明に使用する熱可塑性樹脂(C)は、微細粒子であることが好ましい。熱可塑性樹脂(C)を微細粒子とすることにより、エポキシ樹脂成分に可溶化する際に、均一に溶解することができるため、樹脂硬化物の剛性および靭性を高いレベルで両立させることができ、好ましい。熱可塑性樹脂(C)の微細粒子大きさは、エポキシ樹脂成分に均一に可溶化することができれば特に制限がないが、平均粒子径が、好ましくは200μm以下、より好ましくは10〜200μm、さらに好ましくは30〜100μmである。平均粒子径が、上記範囲を超えると、熱可塑性樹脂(C)の粒子を、エポキシ樹脂成分に均一に溶解できない場合があり、好ましくない。   The thermoplastic resin (C) used in the present invention is preferably fine particles. By making the thermoplastic resin (C) fine particles, when solubilized in the epoxy resin component, it can be dissolved uniformly, so that the rigidity and toughness of the cured resin can be compatible at a high level, preferable. The fine particle size of the thermoplastic resin (C) is not particularly limited as long as it can be uniformly solubilized in the epoxy resin component, but the average particle size is preferably 200 μm or less, more preferably 10 to 200 μm, still more preferably. Is 30-100 μm. If the average particle diameter exceeds the above range, the thermoplastic resin (C) particles may not be uniformly dissolved in the epoxy resin component, which is not preferable.

本発明の樹脂組成物において、熱可塑性樹脂(C)の配合量は、上記(A)および(B)のエポキシ樹脂成分100重量部に対して、40〜60重量部、好ましくは43〜57重量部、より好ましくは46〜54重量部である。熱可塑性樹脂(C)の配合量が、上記範囲未満であると樹脂硬化物の伸びおよび靭性を改良する十分な効果が得られない虞があり、上記範囲を超えると樹脂硬化物の剛性が低下するとともに、さらにエポキシ樹脂組成物の粘度が高くなるため、そのエポキシ樹脂組成物を用いて作製したプリプレグにおけるタック性やドレープ性等の作業性が低下する傾向があり、好ましくない。   In the resin composition of the present invention, the blending amount of the thermoplastic resin (C) is 40 to 60 parts by weight, preferably 43 to 57 parts by weight with respect to 100 parts by weight of the epoxy resin component (A) and (B). Parts, more preferably 46 to 54 parts by weight. If the blending amount of the thermoplastic resin (C) is less than the above range, there is a possibility that a sufficient effect of improving the elongation and toughness of the cured resin product may not be obtained. In addition, since the viscosity of the epoxy resin composition is further increased, workability such as tackiness and draping properties in a prepreg produced using the epoxy resin composition tends to decrease, which is not preferable.

本発明において、硬化剤(D)は、エポキシ基と反応し得る活性基を有する化合物であれば、特に限定されるものではないが、ジアミノジフェニルメタン、ジアミノジフェニルスルホンのような芳香族アミン、脂肪族アミン、イミダゾール誘導体、ジシアンジアミド、テトラメチルグアニジン、チオ尿素付加アミン、メチルヘキサヒドロフタル酸無水物のようなカルボン酸無水物、カルボン酸ヒドラジド、カルボン酸アミド、ポリフェノール化合物、ノボラック樹脂、ポリメルカプタン等が好ましく挙げられる。とりわけ樹脂硬化物の耐熱性向上の観点からジアミノジフェニルスルホンを使用することが好ましい。具体的には、3,3’ジアミノジフェニルスルホン(3,3’−DDS)および/または4,4’ジアミノジフェニルスルホン(4,4’−DDS)が好ましい。硬化剤(D)は、3,3’−DDSおよび4,4’−DDSのいずれか一方を使用してもよいし、両者をともに使用してもよい。   In the present invention, the curing agent (D) is not particularly limited as long as it is a compound having an active group capable of reacting with an epoxy group, but is not limited to aromatic amines such as diaminodiphenylmethane and diaminodiphenylsulfone, and aliphatic groups. Preferred are amines, imidazole derivatives, dicyandiamide, tetramethylguanidine, thiourea-added amines, carboxylic acid anhydrides such as methylhexahydrophthalic anhydride, carboxylic acid hydrazides, carboxylic acid amides, polyphenol compounds, novolak resins, polymercaptans, etc. Can be mentioned. In particular, diaminodiphenyl sulfone is preferably used from the viewpoint of improving the heat resistance of the cured resin. Specifically, 3,3′diaminodiphenylsulfone (3,3′-DDS) and / or 4,4′diaminodiphenylsulfone (4,4′-DDS) are preferable. As the curing agent (D), either one of 3,3′-DDS and 4,4′-DDS may be used, or both may be used together.

本発明の樹脂組成物において、硬化剤(D)の配合量は、上記(A)および(B)のエポキシ樹脂成分のエポキシ当量に対して、硬化剤が有する活性水素当量の比が、好ましくは0.7当量以上、より好ましくは0.7〜0.9当量、さらに好ましくは0.75〜0.85当量である。硬化剤(D)の配合量が、上記範囲未満であると樹脂硬化物の十分な耐熱性を得ることができない虞があり、上記範囲を超えるとエポキシ樹脂の架橋点数は増加するが、架橋密度が低下して、樹脂硬化物の剛性および耐熱性が低下する傾向があり、好ましくない。   In the resin composition of the present invention, the amount of the curing agent (D) is preferably the ratio of the active hydrogen equivalent of the curing agent to the epoxy equivalent of the epoxy resin components (A) and (B) above. 0.7 equivalent or more, more preferably 0.7 to 0.9 equivalent, and still more preferably 0.75 to 0.85 equivalent. If the blending amount of the curing agent (D) is less than the above range, sufficient heat resistance of the resin cured product may not be obtained, and if it exceeds the above range, the number of crosslinking points of the epoxy resin increases, but the crosslinking density Decreases, and the rigidity and heat resistance of the resin cured product tend to decrease, which is not preferable.

本発明の繊維強化複合材料用エポキシ樹脂組成物は、特定の粘度を有するエポキシ樹脂成分および熱可塑性樹脂を特定の組成で配合することにより、樹脂硬化物の耐熱性および靭性を高いレベルで両立させながら、熱可塑性樹脂を添加することに伴うプレプレグ作業性の悪化を、大幅に改善することができるものである。   The epoxy resin composition for fiber-reinforced composite material of the present invention is compatible with a high level of heat resistance and toughness of a cured resin by blending an epoxy resin component having a specific viscosity and a thermoplastic resin with a specific composition. However, the deterioration of the prepreg workability associated with the addition of the thermoplastic resin can be greatly improved.

本発明の繊維強化複合材料用エポキシ樹脂組成物は、上記(A)〜(D)成分を必須とするものであるが、本発明の効果を損なわない範囲で、必要に応じて上記(A)〜(D)成分以外の公知の硬化剤、熱硬化性樹脂、充填剤、安定剤、難燃剤、顔料等の各種添加剤を含有させてもよい。   The epoxy resin composition for a fiber-reinforced composite material of the present invention essentially comprises the above components (A) to (D), but the above (A) is necessary as long as the effects of the present invention are not impaired. Various additives such as known curing agents, thermosetting resins, fillers, stabilizers, flame retardants, and pigments other than the component (D) may be contained.

本発明のプリプレグは、強化繊維基材に本発明のエポキシ樹脂組成物を含浸させることによって得られる。強化繊維基材は、炭素繊維、黒鉛繊維、アラミド繊維、ガラス繊維等を好ましく挙げることができる。これらの強化繊維のうち、炭素繊維を強化繊維基材に使用することが、特に好ましい。   The prepreg of the present invention can be obtained by impregnating the reinforcing fiber base material with the epoxy resin composition of the present invention. Preferred examples of the reinforcing fiber base include carbon fiber, graphite fiber, aramid fiber, and glass fiber. Of these reinforcing fibers, it is particularly preferable to use carbon fibers for the reinforcing fiber substrate.

プリプレグ中のエポキシ樹脂組成物の割合は、好ましくは30〜50質量%、より好ましくは32〜42質量%である。エポキシ樹脂組成物の割合がこの範囲であれば、プリプレグを熱硬化させて得られる炭素繊維強化複合材料の耐熱性および靭性を高いレベルで両立することができる。   The ratio of the epoxy resin composition in the prepreg is preferably 30 to 50% by mass, more preferably 32 to 42% by mass. When the ratio of the epoxy resin composition is within this range, the heat resistance and toughness of the carbon fiber reinforced composite material obtained by thermosetting the prepreg can be compatible at a high level.

本発明のプリプレグを製造する方法は、本発明のエポキシ樹脂組成物を離型紙の上に薄いフィルム状に塗布したいわゆる樹脂フィルムを、強化繊維基材の上下に配置し、加熱及び加圧することでエポキシ樹脂組成物を強化繊維基材に含浸させるホットメルト法を、好ましく挙げることができる。本発明のプリプレグは、前記特定のエポキシ樹脂組成物を使用することから、タック性およびドレープ性に優れており、プリプレグ作業性が良好であることから、プリプレグの生産効率を向上させることができる。   The method for producing the prepreg of the present invention is by placing so-called resin films in which the epoxy resin composition of the present invention is applied on a release paper in a thin film form above and below the reinforcing fiber base, and heating and pressing. A hot melt method in which the reinforcing fiber base material is impregnated with the epoxy resin composition can be preferably exemplified. Since the prepreg of the present invention uses the specific epoxy resin composition, the prepreg is excellent in tackiness and draping property, and has good prepreg workability, so that the production efficiency of the prepreg can be improved.

本発明のプリプレグを通常のオートクレーブ成形またはホットプレス成形等の熱硬化成形することにより、繊維強化複合材料を製造することができる。このようにして得られた繊維強化複合材料は、耐熱性および靭性を高いレベルで両立する優れた特性を有するものである。   A fiber-reinforced composite material can be produced by subjecting the prepreg of the present invention to thermosetting molding such as ordinary autoclave molding or hot press molding. The fiber-reinforced composite material obtained in this way has excellent characteristics that achieve both high heat resistance and toughness.

以下、実施例によって本発明をさらに説明するが、本発明の範囲をこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, the scope of the present invention is not limited to these Examples.

実施例および比較例中に示される一方向プリプレグおよび一方向繊維強化成形板の作製方法およびプリプレグ作業性の評価、炭素繊維強化複合材料のガラス転移温度の測定、層間せん断強度、0°引張強度、面内せん断強度の測定は、次のとおり実施した。   Production method of unidirectional prepreg and unidirectional fiber reinforced molding plate shown in Examples and Comparative Examples and evaluation of workability of prepreg, measurement of glass transition temperature of carbon fiber reinforced composite material, interlaminar shear strength, 0 ° tensile strength, The in-plane shear strength was measured as follows.

〔一方向プリプレグの作製方法〕
エポキシ樹脂組成物を用いて離型紙上に樹脂フィルムを形成し、このフィルムを一方向配列炭素繊維(東邦テナックス社製IM−600)に、樹脂含有量が35重量%となるように加熱加圧して転写し、樹脂目付190g/mの一方向プリプレグを得た。
[Production method of unidirectional prepreg]
A resin film is formed on a release paper using an epoxy resin composition, and this film is heated and pressurized to unidirectionally arranged carbon fibers (IM-600 manufactured by Toho Tenax Co., Ltd.) so that the resin content is 35% by weight. And unidirectional prepreg having a resin basis weight of 190 g / m 2 was obtained.

〔一方向繊維強化成形板の作製方法〕
得られた一方向プリプレグを[0°]の方向に10枚積層し、この積層物に真空パックを適用してオートクレーブ内で、温度180℃で2時間加熱し、硬化させて一方向繊維強化成形板を作製した。この間、オートクレーブ内を圧空で0.32MPaに加圧した。
[Production Method of Unidirectional Fiber Reinforced Molded Plate]
10 sheets of the obtained unidirectional prepregs were laminated in the direction of [0 °], and a vacuum pack was applied to the laminate and heated in an autoclave at a temperature of 180 ° C. for 2 hours to be cured and unidirectional fiber reinforced molding. A plate was made. During this time, the inside of the autoclave was pressurized to 0.32 MPa with compressed air.

〔エポキシ樹脂の粘度測定方法〕
エポキシ樹脂の入った缶を温度25℃の恒温槽に入れ、BH型回転粘度計を用いてエポキシ樹脂の粘度を、前述の方法により測定した。なお、高粘度のエポキシ樹脂を測定する場合には、測定温度を50℃とした。
[Method of measuring viscosity of epoxy resin]
The can containing the epoxy resin was placed in a thermostatic bath at a temperature of 25 ° C., and the viscosity of the epoxy resin was measured by the above-described method using a BH type rotational viscometer. When measuring a highly viscous epoxy resin, the measurement temperature was 50 ° C.

〔炭素繊維強化複合材料(CFRP)のガラス転移温度〕
得られた一方向繊維強化成形板を、3mm×3mmの寸法に加工し、熱機械分析装置(TMA装置)により、試験片加工直後のガラス転移温度を、昇温速度10℃/分の条件で測定した。
[Glass transition temperature of carbon fiber reinforced composite material (CFRP)]
The obtained unidirectional fiber reinforced molded plate was processed into a size of 3 mm × 3 mm, and the glass transition temperature immediately after the test piece was processed with a thermomechanical analyzer (TMA apparatus) under conditions of a heating rate of 10 ° C./min. It was measured.

〔プリプレグの作業性−タック性・ドレープ性の評価〕
各プリプレグを触手により、タック性およびドレープ性を10段階評価した。評点方法は、標準的なタック性・ドレープ性を有するプリプレグを別途準備し、これの評点を5とした相対評価により決定した。粘着性の強いプリプレグのタック性に高い得点、および柔軟性の高いプリプレグのドレープ性に高い得点を与えた。
[Evaluation of workability of prepreg-tack and drape]
Each of the prepregs was evaluated with ten levels of tackiness and drapeability by using tentacles. The scoring method was determined by a relative evaluation in which a prepreg having standard tackiness and draping properties was separately prepared and the score was 5. A high score was given to the tackiness of a highly tacky prepreg, and a high score was given to the drapeability of a highly flexible prepreg.

〔90°引張強度〕
得られた一方向繊維強化成形板を、所定の寸法に加工して、EN−2597に準拠して、90°引張強度を測定した。
[90 ° tensile strength]
The obtained unidirectional fiber reinforced molded plate was processed into a predetermined size, and the 90 ° tensile strength was measured according to EN-2597.

〔層間せん断強度〕
得られた一方向繊維強化成形板を、所定の寸法に加工して、EN−2563に準拠して、層間せん断強度を測定した。
[Interlaminar shear strength]
The obtained unidirectional fiber-reinforced molded plate was processed into a predetermined size, and the interlayer shear strength was measured according to EN-2563.

〔CFRPの面内せん断強度〕
プリプレグを[+45°/−45°]の方向に鏡面対称に16枚積層し、この積層物に真空パックを適用してオートクレーブ内で、温度180℃で2時間加熱し、硬化させて成形板を作製した。この間、オートクレーブ内を圧空で0.32MPaに加圧した。得られた成形板を、所定の寸法に加工して、ASTM D−3518に準拠して、面内せん断強度を測定した。
[In-plane shear strength of CFRP]
Sixteen prepregs are laminated mirror-symmetrically in the direction of [+ 45 ° / −45 °], a vacuum pack is applied to this laminate, and it is heated in an autoclave at a temperature of 180 ° C. for 2 hours and cured to form a molded plate Was made. During this time, the inside of the autoclave was pressurized to 0.32 MPa with compressed air. The obtained molded plate was processed into a predetermined dimension, and the in-plane shear strength was measured according to ASTM D-3518.

実施例1〜7および比較例1〜4において、以下に示す原材料を使用した。
・多官能性エポキシ樹脂(A)
樹脂A−1:N,N,O−トリグリシジル−p−アミノフェノール樹脂(ハンツマン・アドバンスト・マテリアルズ社製MY−0510)温度25℃における粘度550〜850mPa・s。
樹脂A−2:N,N,N’,N’−テトラグリシジルジアミノジフェニルメタン樹脂(ハンツマン・アドバンスト・マテリアルズ社製MY−721)温度50℃における粘度3600〜5000mPa・s。
・ビスフェノール型エポキシ樹脂(B)
樹脂B−1:ビスフェノールF型エポキシ樹脂(常温液状型、東都化成社製YDF−170)温度25℃における粘度2000〜5000mPa・s。
樹脂B−2:ビスフェノールA型エポキシ樹脂(常温液状型、東都化成社製YD−8125)温度25℃における粘度4000〜5000mPa・s。
・熱可塑性樹脂(C)
樹脂C−1:ポリエーテルスルホン樹脂(住友化学社製スミカエクセルPES5003P)衝撃粉砕により、平均粒子径45μmの微細粒子品。
・硬化剤(D)
硬化剤D−1:3,3’−ジアミノジフェニルスルホン(小西化学工業社製3,3’−DAS)
In Examples 1 to 7 and Comparative Examples 1 to 4, the raw materials shown below were used.
・ Polyfunctional epoxy resin (A)
Resin A-1: N, N, O-triglycidyl-p-aminophenol resin (MY-0510 manufactured by Huntsman Advanced Materials) Viscosity of 550 to 850 mPa · s at a temperature of 25 ° C.
Resin A-2: N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane resin (MY-721 manufactured by Huntsman Advanced Materials) Viscosity of 3600 to 5000 mPa · s at a temperature of 50 ° C.
・ Bisphenol type epoxy resin (B)
Resin B-1: Bisphenol F type epoxy resin (room temperature liquid type, YDF-170 manufactured by Tohto Kasei Co., Ltd.) Viscosity of 2000 to 5000 mPa · s at a temperature of 25 ° C.
Resin B-2: Bisphenol A type epoxy resin (room temperature liquid type, YD-8125 manufactured by Tohto Kasei Co., Ltd.) Viscosity of 4000 to 5000 mPa · s at a temperature of 25 ° C.
・ Thermoplastic resin (C)
Resin C-1: Polyether sulfone resin (Sumitomo Chemical Co., Ltd., SUMIKAEXCEL PES5003P) is a fine particle product having an average particle diameter of 45 μm by impact pulverization.
・ Curing agent (D)
Curing agent D-1: 3,3′-diaminodiphenyl sulfone (3,3′-DAS manufactured by Konishi Chemical Industry Co., Ltd.)

実施例1〜7
表1に示す配合のエポキシ樹脂(A)および(B)の全量を、温度125℃に設定したプラネタリミキサを用いて、均一な溶液になるまで撹拌・混合した。次に熱可塑性樹脂(C)の全量を、この溶液中に加え、樹脂(C)の粉体が均一に溶解するまで約2時間、撹拌・混合した。その後、このプラネタリミキサの温度を95℃に設定し、樹脂温度が均一になったところで、硬化剤(D)を投入して、約1時間、撹拌・混合してエポキシ樹脂組成物を調整した。
Examples 1-7
The total amount of the epoxy resins (A) and (B) having the composition shown in Table 1 was stirred and mixed using a planetary mixer set at a temperature of 125 ° C. until a uniform solution was obtained. Next, the entire amount of the thermoplastic resin (C) was added to this solution, and the mixture was stirred and mixed for about 2 hours until the powder of the resin (C) was uniformly dissolved. Thereafter, the temperature of the planetary mixer was set to 95 ° C. When the resin temperature became uniform, the curing agent (D) was added, and the epoxy resin composition was prepared by stirring and mixing for about 1 hour.

なお(A)および(B)のエポキシ樹脂成分の単位は、重量%であり、これらの合計は、100重量%である。(C)成分の配合は、(A)および(B)のエポキシ樹脂成分100重量部に対する重量部により表した。また(D)成分の配合は、エポキシ樹脂成分のエポキシ基当量に対する硬化剤の当量により表した。   In addition, the unit of the epoxy resin component of (A) and (B) is weight%, and these sum total is 100 weight%. The blending of the component (C) was expressed by parts by weight with respect to 100 parts by weight of the epoxy resin components (A) and (B). Moreover, the blending of the component (D) was expressed by the equivalent of the curing agent with respect to the epoxy group equivalent of the epoxy resin component.

得られたエポキシ樹脂組成物を用いてプリプレグおよび繊維強化成形板を作成した。さらに、前記の方法でガラス転移温度、炭素繊維強化複合材料の層間せん断強度、0°引張強度、面内せん断強度、プリプレグのタック性およびドレープ性を前記の方法で測定した。その測定結果を表1に示す。   Using the obtained epoxy resin composition, a prepreg and a fiber reinforced molded plate were prepared. Further, the glass transition temperature, the interlaminar shear strength, the 0 ° tensile strength, the in-plane shear strength, the tack property and draping property of the prepreg were measured by the above methods. The measurement results are shown in Table 1.

Figure 0004821163
Figure 0004821163

比較例1〜4
エポキシ樹脂組成物を表2のように変更したことを除き、実施例と同様に調製して、各種評価を行った。その測定結果を表2に示す。
Comparative Examples 1-4
Except having changed the epoxy resin composition as shown in Table 2, it was prepared in the same manner as in the Examples, and various evaluations were performed. The measurement results are shown in Table 2.

Figure 0004821163
Figure 0004821163

本発明のエポキシ樹脂組成物(実施例1〜7)は、特定の粘度を有するエポキシ樹脂成分および熱可塑性樹脂を特定の組成で配合することにより、樹脂硬化物の耐熱性および靭性を高いレベルで両立させながら、タック性およびドレープ性のプリプレグ作業性にも優れ、その実用的価値が高いことが確認された。一方、本発明のいずれかの要件を満たさない比較例では、伸びおよび靭性の改良効果が不十分であるか、プリプレグ作業性に劣ることが確認された。   The epoxy resin composition (Examples 1 to 7) of the present invention has a high level of heat resistance and toughness of the cured resin by blending an epoxy resin component having a specific viscosity and a thermoplastic resin with a specific composition. While achieving both, it was confirmed that the prepreg workability of the tack property and the drape property was excellent and its practical value was high. On the other hand, in the comparative example not satisfying any of the requirements of the present invention, it was confirmed that the effect of improving the elongation and toughness was insufficient or the prepreg workability was poor.

したがって、本発明のエポキシ樹脂組成物を用いることで、樹脂硬化物の耐熱性および靭性を高いレベルで両立できること、さらに作業性が良好なプリプレグが得られることが認められた。   Therefore, by using the epoxy resin composition of the present invention, it was recognized that the heat resistance and toughness of the cured resin product can be compatible at a high level, and that a prepreg with good workability can be obtained.

Claims (5)

一分子中に少なくとも3個のエポキシ基を有する多官能性エポキシ樹脂(A)を75〜85重量%と、ビスフェノールF型エポキシ樹脂(B)を15〜25重量%とから構成されるエポキシ樹脂成分100重量部に対して、前記エポキシ樹脂成分に可溶する熱可塑性樹脂(C)を40〜60重量部、および硬化剤(D)を配合するエポキシ樹脂組成物であって、前記多官能性エポキシ樹脂(A)が、温度25℃における粘度が1000mPa・s以下である低粘度のトリグリシジルアミノフェノールを重量割合で3/5以上を含有しており、前記ビスフェノールF型エポキシ樹脂(B)の温度25℃における粘度が5000mPa・s以下であり、前記熱可塑性樹脂(C)がポリエーテルスルホン樹脂、ポリエーテルイミド、ポリイミド、ポリアミド、ポリアミドイミドから選ばれることを特徴とする繊維強化複合体用エポキシ樹脂組成物。 An epoxy resin component composed of 75 to 85% by weight of polyfunctional epoxy resin (A) having at least three epoxy groups in one molecule and 15 to 25% by weight of bisphenol F type epoxy resin (B) An epoxy resin composition comprising 40 to 60 parts by weight of a thermoplastic resin (C) soluble in the epoxy resin component and 100 parts by weight of a curing agent (D), the polyfunctional epoxy The resin (A) contains 3/5 or more by weight of low-viscosity triglycidylaminophenol having a viscosity at a temperature of 25 ° C. of 1000 mPa · s or less, and the temperature of the bisphenol F-type epoxy resin (B) Ri der viscosity of 5000 mPa · s or less at 25 ° C., the thermoplastic resin (C) is polyether sulfone resin, polyether imide, polyimide, Po Amides, fiber-reinforced composite-body epoxy resin composition you wherein a is selected from polyamideimide. 前記熱可塑性樹脂(C)が、平均粒子径200μm以下の微細粒子である請求項1に記載の繊維強化用エポキシ樹脂組成物。   The epoxy resin composition for fiber reinforcement according to claim 1, wherein the thermoplastic resin (C) is fine particles having an average particle diameter of 200 μm or less. 前記熱可塑性樹脂(C)が、ポリエーテルスルホン樹脂である請求項1または2に記載の繊維強化用エポキシ樹脂組成物。   The epoxy resin composition for fiber reinforcement according to claim 1 or 2, wherein the thermoplastic resin (C) is a polyethersulfone resin. 前記硬化剤(D)が3,3’ジアミノジフェニルスルホンおよび/または4,4’ジアミノジフェニルスルホンであり、該硬化剤の配合量が前記エポキシ樹脂成分のエポキシ基に対して0.7当量以上である、請求項1〜3のいずれかに記載の繊維強化用エポキシ樹脂組成物。   The curing agent (D) is 3,3 ′ diaminodiphenyl sulfone and / or 4,4 ′ diaminodiphenyl sulfone, and the blending amount of the curing agent is 0.7 equivalent or more with respect to the epoxy group of the epoxy resin component. The epoxy resin composition for fiber reinforcement according to any one of claims 1 to 3. 請求項1〜4のいずれかに記載のエポキシ樹脂組成物を使用する炭素繊維プリプレグ。
The carbon fiber prepreg which uses the epoxy resin composition in any one of Claims 1-4.
JP2005115806A 2005-04-13 2005-04-13 Epoxy resin composition for fiber reinforced composite materials Expired - Fee Related JP4821163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005115806A JP4821163B2 (en) 2005-04-13 2005-04-13 Epoxy resin composition for fiber reinforced composite materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005115806A JP4821163B2 (en) 2005-04-13 2005-04-13 Epoxy resin composition for fiber reinforced composite materials

Publications (2)

Publication Number Publication Date
JP2006291095A JP2006291095A (en) 2006-10-26
JP4821163B2 true JP4821163B2 (en) 2011-11-24

Family

ID=37412010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005115806A Expired - Fee Related JP4821163B2 (en) 2005-04-13 2005-04-13 Epoxy resin composition for fiber reinforced composite materials

Country Status (1)

Country Link
JP (1) JP4821163B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4857587B2 (en) * 2005-04-13 2012-01-18 横浜ゴム株式会社 Epoxy resin composition for fiber reinforced composite materials
JP4829766B2 (en) * 2006-12-13 2011-12-07 横浜ゴム株式会社 Epoxy resin composition for fiber reinforced composite materials
JP4910684B2 (en) * 2006-12-25 2012-04-04 横浜ゴム株式会社 Epoxy resin composition for fiber reinforced composite materials
JP2008201971A (en) 2007-02-22 2008-09-04 Shin Etsu Chem Co Ltd Liquid addition-curable silicone composition for fiber-reinforced composite material, fiber reinforced silicone composite material and method of producing the same
CA2683073A1 (en) 2007-04-13 2008-11-06 Yasuyuki Yokoe Resin composition, and prepreg
EP2311892A1 (en) * 2008-06-25 2011-04-20 Toho Tenax CO., LTD. Epoxy resin composition and prepreg using same
EP2366742A4 (en) * 2008-11-13 2013-01-02 Toho Tenax Co Ltd Thermosetting resin composition and prepreg utilizing same
JP7047243B2 (en) * 2016-02-12 2022-04-05 富士電機株式会社 Resin composition and electronic components
KR20210022664A (en) * 2018-06-26 2021-03-03 도레이 카부시키가이샤 Prepreg and its manufacturing method, slit tape prepreg, carbon fiber reinforced composite material
CN114196167B (en) * 2021-12-31 2023-11-24 安徽善孚新材料科技股份有限公司 Epoxy resin for glass fiber composite material, preparation method and application thereof, and glass fiber composite material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068341B2 (en) * 1985-08-12 1994-02-02 東レ株式会社 Epoxy resin composition for prepreg
JPH0778138B2 (en) * 1985-12-16 1995-08-23 東レ株式会社 Resin composition for fiber reinforced prepreg
JPH0655808B2 (en) * 1988-01-29 1994-07-27 三菱レイヨン株式会社 Epoxy resin composition
DE4039715A1 (en) * 1990-12-13 1992-06-17 Basf Ag Epoxy resin compositions for fiber composite materials
JP4475880B2 (en) * 2003-03-13 2010-06-09 東邦テナックス株式会社 Epoxy resin composition

Also Published As

Publication number Publication date
JP2006291095A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
JP4821163B2 (en) Epoxy resin composition for fiber reinforced composite materials
JP4141487B2 (en) Epoxy resin composition for fiber reinforced composite materials
JP5761366B2 (en) Epoxy resin composition, and film, prepreg, and fiber reinforced plastic using the same
JP5768893B2 (en) Epoxy resin composition and film, prepreg, fiber reinforced plastic using the same
JP4141478B2 (en) Epoxy resin composition for fiber reinforced composite materials
US10344132B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
WO2009157295A1 (en) Epoxy resin composition and prepreg using same
JP7200928B2 (en) Thermosetting resin compositions, prepregs and fiber-reinforced composites
JP6710972B2 (en) Epoxy resin composition, prepreg, cured resin and fiber reinforced composite material
JP6771885B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
JP4475880B2 (en) Epoxy resin composition
JP5017794B2 (en) Epoxy resin composition for fiber reinforced composite materials
JP2010202727A (en) Epoxy resin composition for fiber-reinforced composite material and fiber-reinforced composite material using the same
JP4894339B2 (en) Epoxy resin composition for fiber reinforced composite materials
JP4428978B2 (en) Epoxy resin composition
JP2006291094A (en) Epoxy resin composition for reinforced composite material
JP4857587B2 (en) Epoxy resin composition for fiber reinforced composite materials
WO2020217894A1 (en) Epoxy resin composition, intermediate substrate, and fiber-reinforced composite material
JP2011231187A (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP2012136568A (en) Epoxy resin composition, and fiber-reinforced composite material using the same
JP2010100696A (en) Epoxy resin composition
JP5385011B2 (en) Prepreg
JP4344662B2 (en) Epoxy resin composition, prepreg and molded body, and method for producing epoxy resin composition
JP2017088652A (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP2015108052A (en) Epoxy resin composition, prepreg and fiber reinforced composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

R150 Certificate of patent or registration of utility model

Ref document number: 4821163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees