JP4810997B2 - Heat pipe and manufacturing method thereof - Google Patents

Heat pipe and manufacturing method thereof Download PDF

Info

Publication number
JP4810997B2
JP4810997B2 JP2005344157A JP2005344157A JP4810997B2 JP 4810997 B2 JP4810997 B2 JP 4810997B2 JP 2005344157 A JP2005344157 A JP 2005344157A JP 2005344157 A JP2005344157 A JP 2005344157A JP 4810997 B2 JP4810997 B2 JP 4810997B2
Authority
JP
Japan
Prior art keywords
water
heat pipe
heat
tube
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005344157A
Other languages
Japanese (ja)
Other versions
JP2007147194A (en
Inventor
康 山本
阿部  誠
朋冬 松浮
晋 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2005344157A priority Critical patent/JP4810997B2/en
Publication of JP2007147194A publication Critical patent/JP2007147194A/en
Application granted granted Critical
Publication of JP4810997B2 publication Critical patent/JP4810997B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/04Coatings; Surface treatments hydrophobic

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、密閉された管体の内部に水等の液体を封入し、液体の蒸発と凝縮を利用して熱を輸送するヒートパイプ及びその製造方法に関するものである。   The present invention relates to a heat pipe that encloses a liquid such as water inside a sealed tube and transports heat using evaporation and condensation of the liquid, and a method for manufacturing the same.

液体の蒸発と凝縮に伴う潜熱を利用して熱を輸送するヒートパイプは、熱伝導性が非常に良好な伝熱素子であり、この特性を生かして各種の分野で用いられている。例えば、集積度の大きい半導体素子を使用するコンピュータ等で発生する熱を放散させるための放熱装置として広く実用化されており、また、省エネルギを目的として内燃機関の排熱を回収し、これをスターリングエンジン等の熱源とする際の排熱回収輸送手段としても、ヒートパイプを用いることができる。   A heat pipe that transports heat by using latent heat that accompanies evaporation and condensation of liquid is a heat transfer element that has very good thermal conductivity, and is used in various fields by taking advantage of this characteristic. For example, it has been widely put into practical use as a heat dissipation device for dissipating heat generated by a computer or the like using a semiconductor device with a high degree of integration. A heat pipe can also be used as a waste heat recovery and transportation means when a heat source such as a Stirling engine is used.

ヒートパイプは、管体の内部に水等を封入し真空引きした後両端を密閉して製造する。したがって、管体の内部は飽和水蒸気圧となっており、管体の一方の端部(蒸発部)で加熱され蒸発した水蒸気は、高速で他方の端部(凝縮部)に移動した後、ここで冷却されて凝縮し、液体状態となった水は再び加熱部に移動する。蒸発部への水の還流を促進するため、ヒートパイプの管体の内部には、例えば金属製の網を多層に巻回した、ウイックと呼ばれる目の細かな筒状のメッシュ体が挿入してあり、凝縮した水は毛細管現象を利用して蒸発部に移送される。こうしたヒートパイプは、例えば特開2000−258080号公報に示されている。   The heat pipe is manufactured by sealing water at both ends after filling the tube with water and evacuating it. Therefore, the inside of the pipe body has a saturated water vapor pressure, and the water vapor heated and evaporated at one end (evaporating part) of the pipe moves to the other end (condensing part) at a high speed, The water that has been cooled and condensed in the liquid state is moved to the heating unit again. In order to promote the reflux of water to the evaporation section, a fine cylindrical mesh body called a wick is inserted inside the heat pipe tube, for example, a metal net wound in multiple layers. Yes, the condensed water is transferred to the evaporation section using capillary action. Such a heat pipe is disclosed in, for example, Japanese Patent Application Laid-Open No. 2000-258080.

筒状のメッシュ体によるウイック以外に、蒸発部から凝縮部にかけて管体の内面に軸方向の細かい溝(グルーブ)を形成し、この部分の毛細管現象によって水を還流させる溝式のウイックも知られている。溝式のウイックは、ヒートパイプの管体の内面に簡単な加工を施すことによって設置することが可能であって、ウイックとして単独で使用されることもあり、また、蒸発部への水の還流状態を改善するため、メッシュ体のウイックと組み合わせて使用される場合もある。
特開2000−258080号公報
In addition to the wick made of a cylindrical mesh body, a groove type wick is also known, in which a fine groove in the axial direction is formed on the inner surface of the tube from the evaporation section to the condensation section, and water is circulated by the capillary phenomenon of this section. ing. Groove-type wicks can be installed by applying a simple process to the inner surface of the heat pipe tube, and may be used alone as a wick. It may be used in combination with a mesh wick to improve the condition.
JP 2000-258080 A

ヒートパイプの蒸発部では、管体の壁部を通して加熱源からの熱が水に伝達され、潜熱を吸収した水はここで蒸発する。一方、凝縮部においては、蒸気は管体の壁部を通して潜熱を冷却源に放出して凝縮し、液体の水となる。ヒートパイプの熱伝導性を向上させ熱輸送量を増加させるには、熱輸送の媒体となる水や水蒸気の移動速度を増加させるとともに、蒸発部及び凝縮部における熱伝達の促進を図る必要がある。   In the evaporation part of the heat pipe, the heat from the heating source is transmitted to the water through the wall part of the tube, and the water that has absorbed the latent heat is evaporated here. On the other hand, in the condensing part, the steam releases latent heat to the cooling source through the wall part of the tube body and condenses to become liquid water. In order to improve the heat conductivity of the heat pipe and increase the amount of heat transport, it is necessary to increase the movement speed of water and water vapor as a heat transport medium and to promote heat transfer in the evaporation section and the condensation section. .

熱伝達部である凝縮部では水蒸気が凝縮して液体の水となるが、この水が管体の内面に付着すると、水蒸気から管体表面への熱伝達を阻害する熱抵抗となる。つまり、管体表面と水蒸気との間には熱抵抗に伴う定常的な温度差が発生する。通常のヒートパイプでは、凝縮部の管体表面には凝縮した水が膜状に付着し、これが熱抵抗として作用して凝縮部の放熱性能を低下させている。
本発明は、ヒートパイプの凝縮部における熱伝達を改善し、かつ、熱媒体である水の移動速度を速めてヒートパイプの熱伝導性を向上させること、さらに、そのようなヒートパイプを簡易な方法で製造することを課題とする。
In the condensing part which is a heat transfer part, water vapor is condensed and becomes liquid water. When this water adheres to the inner surface of the pipe body, it becomes a thermal resistance that hinders heat transfer from the water vapor to the pipe body surface. That is, a steady temperature difference due to thermal resistance is generated between the tube surface and water vapor. In an ordinary heat pipe, condensed water adheres to the surface of the tube body of the condensing part in a film shape, which acts as a thermal resistance to reduce the heat radiation performance of the condensing part.
The present invention improves heat transfer in the condensing part of a heat pipe and increases the thermal conductivity of the heat pipe by increasing the moving speed of water as a heat medium. It makes it a subject to manufacture by a method.

上記の課題に鑑み、本発明は、ヒートパイプの管体の内面に軸方向に多数の溝を形成するとともに溝以外の内面に撥水性を有する皮膜を形成して、凝縮部の管体表面における水の付着を防止し熱伝達を向上させるものである。すなわち、本発明は、
「密閉された金属製の管体内に水が封入され、前記管体の両端部には蒸発部と凝縮部とを備えたヒートパイプにおいて、
前記管体の内面には、前記蒸発部と前記凝縮部とを連結し、断面が先細り三角形状をなす複数の溝が形成され、かつ、
少なくとも前記凝縮部の内面には、前記複数の溝以外の表面に撥水性を有する被覆層が設けられているとともに、前記複数の溝の部分では、前記凝縮部から前記蒸発部に亘り管体の金属が露出している
ことを特徴とするヒートパイプとなっている。
In view of the above problems, the present invention forms a large number of grooves in the axial direction on the inner surface of the pipe body of the heat pipe and forms a water-repellent film on the inner surface other than the groove, It prevents the adhesion of water and improves heat transfer. That is, the present invention
"In a heat pipe in which water is enclosed in a sealed metal tube, and an evaporation part and a condensation part are provided at both ends of the tube,
On the inner surface of the tubular body, the evaporation section and the condensation section are connected , a plurality of grooves having a triangular shape with a tapered cross section are formed, and
At least on the inner surface of the condensing part, a coating layer having water repellency is provided on the surface other than the plurality of grooves, and in the part of the plurality of grooves, the tube extends from the condensing part to the evaporation part. The metal is exposed. ''
It is a heat pipe characterized by this.

本発明のヒートパイプの製造方法としては、請求項2に記載のように、前記管体の内面に撥水性を有する被覆層を設けた後、前記複数の溝の切削加工を実施し、さらに、前記管体内に水を封入して密閉する製造方法が好ましい。   As a manufacturing method of the heat pipe of the present invention, as described in claim 2, after providing a coating layer having water repellency on the inner surface of the tubular body, cutting the plurality of grooves, A production method in which water is sealed in the tube body is preferable.

本発明のヒートパイプにおいては、管体の内面に蒸発部と凝縮部とを連結する複数の溝が形成され、かつ、凝縮部の内面には、複数の溝以外の表面に撥水性を有する被覆層が設けられている。管体の内面に形成された複数の溝は、溝式のウイックの溝として機能し、凝縮部で液化した水を毛細管作用によって蒸発部に移送する。このとき、凝縮部においては管体表面の溝以外の部分には被覆層が設けられ撥水性が付与されているので、凝縮した水は、相対的に親水性の大きい溝に速やかに移動し、溝以外の部分に付着して液体の膜を形成することが防止される。そのため、液体の膜による熱抵抗が存在せず、水蒸気と凝縮部の管体とが直接接触して熱伝達が促進される。ここで、水以外の液体を熱媒体として使用するときは、管体表面の「濡れ性」を低下させる被覆層を、溝部分以外の表面に設けるようにすればよい。   In the heat pipe of the present invention, a plurality of grooves for connecting the evaporation section and the condensation section are formed on the inner surface of the tube body, and the inner surface of the condensation section has a water-repellent coating on the surface other than the plurality of grooves A layer is provided. The plurality of grooves formed on the inner surface of the tubular body function as a groove-type wick groove, and transfer water liquefied in the condensing unit to the evaporation unit by capillary action. At this time, in the condensing part, since the coating layer is provided on the portion other than the groove on the surface of the tube body and water repellency is imparted, the condensed water quickly moves to the relatively hydrophilic groove, It is possible to prevent the liquid film from forming on a portion other than the groove. Therefore, there is no thermal resistance due to the liquid film, and the heat transfer is promoted by direct contact between the water vapor and the tube of the condensing part. Here, when a liquid other than water is used as the heat medium, a coating layer for reducing the “wetting property” of the surface of the tubular body may be provided on the surface other than the groove portion.

被覆層が存在しない複数の溝は相対的に親水性が大きいので、凝縮した水の流れ込みが容易であり、流れ込んだ水は、溝の毛細管作用で迅速に蒸発部に導かれる。凝縮部の溝のみならず、凝縮部と蒸発部の中間である断熱部にも、溝以外の表面に撥水性の被覆層を設けると、水は、溝以外の部分には拡がることがなく、溝を通ってスムースに蒸発部に移送されるようになる。その結果、水の移動速度が増し、熱伝導性がより向上する。
ちなみに、特許文献1には、ヒートパイプの管体の内面に撥水性のある合成樹脂の被覆層を設ける技術が記載されている。しかし、この技術はヒートパイプの耐久性の向上を目的とするものであって、ヒートパイプの内面には溝が形成されておらず、本発明のヒートパイプとは目的、構成等において全く相違する技術である。
Since the plurality of grooves having no coating layer are relatively hydrophilic, it is easy for the condensed water to flow in, and the water that has flowed in is quickly guided to the evaporation section by the capillary action of the grooves. When a water-repellent coating layer is provided on the surface other than the groove not only in the groove of the condensing part but also in the heat insulating part that is intermediate between the condensing part and the evaporation part, the water does not spread to the part other than the groove, It is smoothly transferred to the evaporator through the groove. As a result, the moving speed of water is increased and the thermal conductivity is further improved.
Incidentally, Patent Document 1 describes a technique in which a water-repellent synthetic resin coating layer is provided on the inner surface of a heat pipe tube. However, this technique is intended to improve the durability of the heat pipe, and no groove is formed on the inner surface of the heat pipe, which is completely different from the heat pipe of the present invention in terms of purpose, configuration, etc. Technology.

本発明のヒートパイプを製造する際、請求項2の発明のように、管体の内面に撥水性を有する被覆層を設けた後、複数の溝の切削加工を実施すると、簡易な製造方法により本発明のヒートパイプを得ることができる。つまり、被覆層を設けた管体の内面に溝の削り加工を実施すると、溝の部分は撥水性の被覆層が除去されて管体の金属が露出し、溝以外の表面に撥水性を有する被覆層が施された管体が製造される。この方法は、予め形成した溝にマスキング等の処置を行い、残りの部分に撥水加工を実施する方法などに比べ、製造工程が簡易化され製造コストも低減される。   When manufacturing the heat pipe of the present invention, as in the invention of claim 2, after providing a coating layer having water repellency on the inner surface of the tubular body, a plurality of grooves are cut by a simple manufacturing method. The heat pipe of the present invention can be obtained. In other words, when the groove is machined on the inner surface of the tubular body provided with the coating layer, the water-repellent coating layer is removed from the groove portion to expose the metal of the tubular body, and the surface other than the groove has water repellency. A tube body with a coating layer is produced. This method simplifies the manufacturing process and reduces the manufacturing cost compared to a method of performing a masking process or the like on a groove formed in advance and performing water-repellent processing on the remaining portion.

以下、図面に基づいて本発明のヒートパイプ及びその製造方法について説明する。図1は、本発明のヒートパイプの縦断面図及び横断面図(X−X断面)を示すものであリ、図2は、本発明のヒートパイプと従来のヒートパイプとの作用効果の差異を説明する説明図である。また、図3には、本発明のヒートパイプの製造方法を示す。   Hereinafter, the heat pipe of the present invention and the manufacturing method thereof will be described with reference to the drawings. FIG. 1 shows a longitudinal sectional view and a transverse sectional view (XX cross section) of the heat pipe of the present invention, and FIG. 2 shows the difference in action and effect between the heat pipe of the present invention and the conventional heat pipe. It is explanatory drawing explaining these. Moreover, in FIG. 3, the manufacturing method of the heat pipe of this invention is shown.

本発明のヒートパイプの管体1は、銅、アルミニュウム又はステンレス等の熱伝導性の良好な金属材料からなり、両端が蓋体2により閉鎖されて内部が密閉空間となっている。管体1内には熱を輸送する媒体である水が封入されるとともに、真空引きが行われて内部の空気等のガスが排除され、管体1内は飽和水蒸気圧に保たれる。管体1の両端部には凝縮部Aと蒸発部Bとが配置され、その中間部は断熱部Cとなる。管体1の内面には、X−X断面に示すとおり、全長に亘って複数の細い溝3が形成されている。   The pipe body 1 of the heat pipe of the present invention is made of a metal material having good thermal conductivity such as copper, aluminum, or stainless steel, and both ends are closed by the lid body 2 and the inside is a sealed space. Water, which is a medium for transporting heat, is enclosed in the tube body 1 and evacuation is performed to remove gas such as internal air, so that the inside of the tube body 1 is maintained at a saturated water vapor pressure. A condensing part A and an evaporating part B are arranged at both ends of the tube body 1, and an intermediate part thereof becomes a heat insulating part C. A plurality of thin grooves 3 are formed on the inner surface of the tube 1 over the entire length, as shown in the XX cross section.

蒸発部Bで加熱源から伝達された熱によって発生した蒸気は、実線の矢印のように高速で凝縮部Aに移動し、ここで冷却源に熱を放出して液体の水となる。凝縮部Aで液化した水は、複数の細い溝3の毛細管作用によって蒸発部Bに移送されて再び蒸発し、同様なサイクルを繰り返して加熱源の熱が冷却源に伝導される。このような構成及び作用は、一般的な溝式ウイックのヒートパイプと変わりはない。
なお、この実施例では管体1の断面形状は円形となっているが、ヒートパイプの使用目的や使用個所などに応じて、矩形断面、扁平な板状の断面等種々の断面の管体を採用することができる。また、図1の網線部に示されているように、断熱部C等にはメッシュ体によるウイック6を挿入し凝縮した水の還流を助勢することもできる。
The vapor generated by the heat transmitted from the heating source in the evaporation part B moves to the condensing part A at a high speed as indicated by the solid line arrow, where heat is released to the cooling source to become liquid water. The water liquefied in the condensing part A is transferred to the evaporating part B by the capillary action of the plurality of thin grooves 3 and evaporated again, and the heat of the heating source is conducted to the cooling source by repeating the same cycle. Such a configuration and operation are the same as those of a general groove type wick heat pipe.
In this embodiment, the tubular body 1 has a circular cross-sectional shape. However, depending on the purpose of use of the heat pipe and the place of use, the tubular body has various cross sections such as a rectangular cross section and a flat plate-shaped cross section. Can be adopted. Moreover, as shown by the mesh line part of FIG. 1, the wick 6 made of a mesh body can be inserted into the heat insulating part C or the like to assist the reflux of the condensed water.

本発明の管体1においては、凝縮部Aの部分の内面には、溝3の部分を除いて撥水性を有する合成樹脂の被覆層4が設けられ、撥水加工が施されている。撥水性を有する合成樹脂としては、例えば、ポリテトラフルオロエチレン等のフッ素系樹脂あるいはシリコーン樹脂が使用される。撥水性の被覆層4は、凝縮部Aの断面ばかりではなく、断熱部C及び蒸発部Bの内面にも同様に設けることができる。   In the tubular body 1 of the present invention, a synthetic resin coating layer 4 having water repellency is provided on the inner surface of the condensing part A except for the groove 3, and water repellent processing is performed. As the synthetic resin having water repellency, for example, a fluorine resin such as polytetrafluoroethylene or a silicone resin is used. The water-repellent coating layer 4 can be provided not only on the cross section of the condensing part A but also on the inner surfaces of the heat insulating part C and the evaporation part B.

溝3以外の管体1の内面に撥水性を有する合成樹脂の被覆層4を設けることによって、本発明のヒートパイプでは、凝縮部Aでの熱伝達が促進され、また、凝縮された水が迅速に蒸発部Bに移動する。これについて、図2により説明する。
従来のヒートパイプでは、図2(b)に示すように、凝縮部Aでの放熱によって液化した水は、溝3に付着すると同時に溝3の間の管体1の表面に付着する。このような状態で膜状に付着した水は、蒸気から管体1への熱伝達を阻害する熱抵抗となる。一方、本発明のヒートパイプでは、溝3の間における管体1の表面には撥水性の被覆層4が存在するため、図2(a)に示すように、液化した水が溝3に水滴状に付着することとなり、溝3の間の管体1の表面には殆ど付着しない。したがって、付着した液体の水に伴う熱抵抗が除去されて蒸気から管体1への熱伝達が良好となり、また、液化した水は、相対的に親水性の大きい溝3内に迅速に流れ込んで、熱媒体である水の移動速度を増大させる。
By providing the coating layer 4 of the synthetic resin having water repellency on the inner surface of the tubular body 1 other than the groove 3, in the heat pipe of the present invention, heat transfer in the condensing part A is promoted, and the condensed water is It quickly moves to the evaporation part B. This will be described with reference to FIG.
In the conventional heat pipe, as shown in FIG. 2 (b), the water liquefied by the heat radiation in the condensing part A adheres to the grooves 3 and also to the surface of the tube 1 between the grooves 3. The water adhering in the form of a film in such a state becomes a thermal resistance that inhibits heat transfer from the steam to the tube body 1. On the other hand, in the heat pipe of the present invention, since the water-repellent coating layer 4 is present on the surface of the tube 1 between the grooves 3, the liquefied water drops into the grooves 3 as shown in FIG. It adheres in a shape, and hardly adheres to the surface of the tube 1 between the grooves 3. Therefore, the heat resistance accompanying the attached liquid water is removed, heat transfer from the vapor to the tube body 1 is improved, and the liquefied water quickly flows into the relatively hydrophilic groove 3. Increase the moving speed of water, which is a heat medium.

次いで、本発明のヒートパイプの製造方法について説明する。ヒートパイプの管体1にはウイックとして作用する複数の溝3が軸方向に設けられているが、このような管体は、例えば押し出し成形によって製造することが可能である。押し出し成形で溝付き管体を製造して溝の部分にマスキングを行い、撥水性を有する合成樹脂を塗布して被覆層を形成した後、マスキングを除去することにより、溝部分以外の表面に撥水加工が施された本発明のヒートパイプを得ることができる。   Subsequently, the manufacturing method of the heat pipe of this invention is demonstrated. The pipe body 1 of the heat pipe is provided with a plurality of grooves 3 acting as wicks in the axial direction. Such a pipe body can be manufactured by, for example, extrusion molding. A grooved tube is manufactured by extrusion molding, masking the groove, applying a water-repellent synthetic resin to form a coating layer, and then removing the masking to repel the surface other than the groove. The heat pipe of the present invention subjected to water processing can be obtained.

また、管体1の内面全体に、予め撥水性を有する合成樹脂の被覆層を形成した後、溝3の切削加工を行って溝部分の被覆層を削り取り、本発明のヒートパイプとすることもできる。つまり、図3に示すように、内面に撥水性の被覆層4を設けた管体1を準備し、溝3に対応した刃を備えた、図の破線のようなブローチ5を用いて内面の切削加工を実施する。この製造方法では、マスキングの設置、除去等の作業は不要であって、製造工程の簡易化及び製造コストの低減が可能となる。   Moreover, after forming a coating layer of a synthetic resin having water repellency on the entire inner surface of the tube 1 in advance, the groove 3 is cut to remove the coating layer of the groove portion, so that the heat pipe of the present invention is obtained. it can. That is, as shown in FIG. 3, a tube body 1 having a water repellent coating layer 4 provided on the inner surface is prepared, and the inner surface of the inner surface is provided using a broach 5 as shown by a broken line in FIG. Perform cutting. In this manufacturing method, operations such as installation and removal of masking are unnecessary, and the manufacturing process can be simplified and the manufacturing cost can be reduced.

以上詳述したように、本発明は、管体の内面に軸方向に多数の溝を形成し、これをウイックとしたヒートパイプにおいて、溝以外の内面に撥水性を有する被覆層を形成するものである。これによって、凝縮部の管体表面における膜状の水の付着を防止し、熱伝達を向上させるとともに、熱媒体である水の移動速度を速めてヒートパイプの熱伝導性を向上させることができる。上記の実施例においては、熱媒体として水を使用するヒートパイプを取りあげているが、本発明は、他の液体を使用するヒートパイプに対しても適用することが可能であって、この場合には、熱媒体である液体の「濡れ性」を低下させる被覆層を設けることとなる。このように、上記の実施例に対し各種の変更が可能であるのは明らかである。 As described above in detail, the present invention forms a large number of grooves in the axial direction on the inner surface of the tubular body, and forms a coating layer having water repellency on the inner surface other than the grooves in a heat pipe using this as a wick. It is. As a result, it is possible to prevent film-like water from adhering to the tube surface of the condensing part, improve heat transfer, and increase the heat conductivity of the heat pipe by increasing the moving speed of water as a heat medium. . In the above embodiment, a heat pipe that uses water as a heat medium is taken up, but the present invention can also be applied to a heat pipe that uses other liquids. Is provided with a coating layer that reduces the “wetting property” of the liquid as the heat medium. Thus, it is obvious that various modifications can be made to the above-described embodiment.

本発明のヒートパイプの断面図である。It is sectional drawing of the heat pipe of this invention. 本発明のヒートパイプの作用を説明する図である。It is a figure explaining the effect | action of the heat pipe of this invention. 本発明のヒートパイプの製造方法を示す図である。It is a figure which shows the manufacturing method of the heat pipe of this invention.

符号の説明Explanation of symbols

1 管体
2 蓋体
3 溝
4 被覆層
5 ブローチ
1 Tube 2 Lid 3 Groove 4 Covering Layer 5 Brooch

Claims (2)

密閉された金属製の管体(1)内に水が封入され、前記管体(1)の両端部には蒸発部(B)と凝縮部(A)とを備えたヒートパイプにおいて、
前記管体(1)の内面には、前記蒸発部(B)と前記凝縮部(A)とを連結し、断面が先細り三角形状をなす複数の溝(3)が形成され、かつ、
少なくとも前記凝縮部(A)の内面には、前記複数の溝(3)以外の表面に撥水性を有する被覆層(4)が設けられているとともに、前記複数の溝(3)の部分では、前記凝縮部(A)から前記蒸発部(B)に亘り管体(1)の金属が露出していることを特徴とするヒートパイプ。
In a heat pipe in which water is enclosed in a sealed metal tube (1), and an evaporation unit (B) and a condensation unit (A) are provided at both ends of the tube (1),
On the inner surface of the tube (1), the evaporation section (B) and the condensation section (A) are connected to each other, and a plurality of grooves (3) with a tapered section and a triangular shape are formed, and
At least the inner surface of the condensing part (A) is provided with a coating layer (4) having water repellency on the surface other than the plurality of grooves (3), and in the portions of the plurality of grooves (3), The heat pipe, wherein the metal of the tube body (1) is exposed from the condensation section (A) to the evaporation section (B) .
請求項1に記載のヒートパイプの製造方法であって、前記管体(1)の内面に撥水性を有する被覆層(4)を設けた後、前記複数の溝(3)の切削加工を実施し、さらに、前記管体(1)内に水を封入して密閉することを特徴とする製造方法。 It is a manufacturing method of the heat pipe of Claim 1, Comprising: After providing the coating layer (4) which has water repellency in the inner surface of the said pipe body (1), cutting process of these groove | channels (3) is implemented. Further, the manufacturing method is characterized in that water is sealed in the tube body (1).
JP2005344157A 2005-11-29 2005-11-29 Heat pipe and manufacturing method thereof Expired - Fee Related JP4810997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005344157A JP4810997B2 (en) 2005-11-29 2005-11-29 Heat pipe and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005344157A JP4810997B2 (en) 2005-11-29 2005-11-29 Heat pipe and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007147194A JP2007147194A (en) 2007-06-14
JP4810997B2 true JP4810997B2 (en) 2011-11-09

Family

ID=38208797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005344157A Expired - Fee Related JP4810997B2 (en) 2005-11-29 2005-11-29 Heat pipe and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4810997B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2009241159A1 (en) * 2008-04-30 2009-11-05 Daikin Industries, Ltd. Heat exchanger and air conditioning system
JP4881352B2 (en) * 2008-08-11 2012-02-22 ソニー株式会社 HEAT SPREADER, ELECTRONIC DEVICE, AND HEAT SPREADER MANUFACTURING METHOD
JP2013545956A (en) * 2010-02-13 2013-12-26 マクアリスター テクノロジーズ エルエルシー Heat transfer apparatus and related systems and methods
JP5903549B2 (en) * 2011-04-22 2016-04-13 パナソニックIpマネジメント株式会社 COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR
JP6477254B2 (en) 2014-05-30 2019-03-06 三菱マテリアル株式会社 Porous aluminum composite and method for producing porous aluminum composite
JP6237500B2 (en) 2014-07-02 2017-11-29 三菱マテリアル株式会社 Porous aluminum heat exchange member

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5296454A (en) * 1976-02-10 1977-08-13 Ichiro Tanazawa Heat transfer device
JPS54138155U (en) * 1978-03-20 1979-09-25
JPS56128966U (en) * 1980-03-03 1981-09-30
JPS63183388A (en) * 1987-01-22 1988-07-28 Mitsubishi Metal Corp Heat transfer body
JPH05322477A (en) * 1992-05-26 1993-12-07 Matsushita Refrig Co Ltd Boiling heat transfer surface
JP3941606B2 (en) * 2002-06-27 2007-07-04 ソニー株式会社 Cooling device, evaporator substrate, electronic device and cooling device manufacturing method

Also Published As

Publication number Publication date
JP2007147194A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
JP4810997B2 (en) Heat pipe and manufacturing method thereof
US7472479B2 (en) Heat pipe and method of producing the same
US7866373B2 (en) Heat pipe with multiple wicks
EP2713132A1 (en) A vapor-based heat transfer apparatus
US7445039B2 (en) Heat pipe with multiple vapor-passages
JP5196631B2 (en) Multilayer wick for loop heat pipe, loop heat pipe, and method of manufacturing multilayer wick
US20070107878A1 (en) Heat pipe with a tube therein
US20060207750A1 (en) Heat pipe with composite capillary wick structure
US6293333B1 (en) Micro channel heat pipe having wire cloth wick and method of fabrication
US8622117B2 (en) Heat pipe including a main wick structure and at least one auxiliary wick structure
US20120227934A1 (en) Heat pipe having a composite wick structure and method for making the same
US20060169439A1 (en) Heat pipe with wick structure of screen mesh
US20120227935A1 (en) Interconnected heat pipe assembly and method for manufacturing the same
US20200149823A1 (en) Heat pipe
KR20020072344A (en) The heat pipe with woven-wire wick and straight wire wick
JPH10246583A (en) Evaporator and loop type heat pipe employing it
JP2010054121A (en) Variable conductance heat pipe
US20130048250A1 (en) Heat pipe made of composite material and method of manufacturing the same
JP5902404B2 (en) Flat heat pipe and method of manufacturing the same
JP4925597B2 (en) Heat pipe for heat pipe and heat pipe
JP2009115346A (en) Heat pipe
JP7550682B2 (en) Heat pipe
JP2011237156A (en) Vibration type heat pipe
FI110030B (en) A heat exchanger based on thermal energy binding to a working material and a process for producing a heat exchanger based on thermal energy binding to a working material
CN102636059A (en) Heat pipe with compounding capillary and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees