JP4807128B2 - Electric double layer capacitor using carbon nanotube and method for manufacturing the same - Google Patents
Electric double layer capacitor using carbon nanotube and method for manufacturing the same Download PDFInfo
- Publication number
- JP4807128B2 JP4807128B2 JP2006093205A JP2006093205A JP4807128B2 JP 4807128 B2 JP4807128 B2 JP 4807128B2 JP 2006093205 A JP2006093205 A JP 2006093205A JP 2006093205 A JP2006093205 A JP 2006093205A JP 4807128 B2 JP4807128 B2 JP 4807128B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon nanotube
- current collector
- group
- double layer
- electric double
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 134
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 68
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 68
- 239000003990 capacitor Substances 0.000 title claims abstract description 33
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 238000000034 method Methods 0.000 title claims description 7
- 239000012528 membrane Substances 0.000 claims abstract description 15
- 239000011245 gel electrolyte Substances 0.000 claims description 35
- 239000002243 precursor Substances 0.000 claims description 31
- 239000002608 ionic liquid Substances 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 6
- 238000007789 sealing Methods 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 3
- 238000001879 gelation Methods 0.000 claims description 3
- 238000003825 pressing Methods 0.000 claims description 2
- 239000007788 liquid Substances 0.000 abstract description 5
- 230000005611 electricity Effects 0.000 abstract description 3
- 238000005452 bending Methods 0.000 abstract description 2
- 239000002071 nanotube Substances 0.000 abstract 2
- 239000003349 gelling agent Substances 0.000 description 10
- 229920005569 poly(vinylidene fluoride-co-hexafluoropropylene) Polymers 0.000 description 7
- -1 polypropylene Polymers 0.000 description 7
- 239000003792 electrolyte Substances 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 239000008151 electrolyte solution Substances 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 230000006378 damage Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000005486 organic electrolyte Substances 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 101100029848 Arabidopsis thaliana PIP1-2 gene Proteins 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 description 2
- NIHOUJYFWMURBG-UHFFFAOYSA-N 1-ethyl-1-methylpyrrolidin-1-ium Chemical compound CC[N+]1(C)CCCC1 NIHOUJYFWMURBG-UHFFFAOYSA-N 0.000 description 1
- UINDRJHZBAGQFD-UHFFFAOYSA-O 2-ethyl-3-methyl-1h-imidazol-3-ium Chemical compound CCC1=[NH+]C=CN1C UINDRJHZBAGQFD-UHFFFAOYSA-O 0.000 description 1
- GSBKRFGXEJLVMI-UHFFFAOYSA-N Nervonyl carnitine Chemical compound CCC[N+](C)(C)C GSBKRFGXEJLVMI-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/36—Nanostructures, e.g. nanofibres, nanotubes or fullerenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/56—Solid electrolytes, e.g. gels; Additives therein
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
本発明は、漏液の恐れがなく、薄型で大容量の電気を蓄えることの可能な電気二重層キャパシタおよびその製造方法に関する。 The present invention relates to an electric double layer capacitor capable of storing a large amount of electricity without fear of leakage and a method for manufacturing the same .
従来、電気二重層キャパシタでは、集電体上に活性炭を主とする分極性電極層を形成した一対の分極性電極層の間にポリプロピレン不織布などのセパレータを挟んで素子とし、電極層に電解液を含浸させ、素子を金属容器に収容し、封口板とガスケットにより金属容器を密封した構造がとられていた(特許文献1参照)。 Conventionally, in an electric double layer capacitor, a separator such as a polypropylene non-woven fabric is sandwiched between a pair of polarizable electrode layers in which a polarizable electrode layer mainly composed of activated carbon is formed on a current collector, and an electrolytic solution is applied to the electrode layer. The element was housed in a metal container, and the metal container was sealed with a sealing plate and a gasket (see Patent Document 1).
また、大比表面積を有する活性炭は一般に電気伝導度が小さく、活性炭のみでは分極性電極の内部抵抗が大きくなって大電流が取出せないため、内部抵抗を下げる目的で、分極性電極中にカーボンナノチューブ群を含有させて電気伝導度を上げることにより大容量化を図る試みも行われている(特許文献2参照)。
上記のような電気二重層キャパシタは、従来の電解コンデンサに比べ大容量であり、瞬時充放電特性に優れているため、IC回路のバックアップ電源等で幅広く利用され、近年では、携帯端末等のモバイル機器への適用に向けて、さらに小型軽量かつ大容量の電気二重層キャパシタの開発が進められている。 The electric double layer capacitors as described above have a larger capacity than conventional electrolytic capacitors and are excellent in instantaneous charge / discharge characteristics. Therefore, they are widely used as backup power sources for IC circuits. The development of smaller, lighter and larger capacity electric double layer capacitors is being promoted for application to equipment.
しかしながら、通常の有機系の電解液を用いた電気二重層キャパシタでは、電極構成部材に多孔性のセパレータを使用しており、電解液の保持性や安全性の面から考慮して、50μm程度の厚みが必要になっている。また、液体状の電解液であるために、デバイスの外装に、傷や破壊が生じた場合、電解液が外部に漏れ出すことになり、危険を伴う。 However, in an electric double layer capacitor using a normal organic electrolyte, a porous separator is used as an electrode constituent member, and in view of the electrolyte retention and safety, it is about 50 μm. Thickness is needed. Moreover, since it is a liquid electrolyte solution, when a damage | wound or destruction arises in the exterior of a device, electrolyte solution will leak outside and it is dangerous.
そこで、本発明では、衝撃や曲げ荷重等による変形による漏液の恐れがなく、さらに薄型で大容量の電気を蓄えることの可能な電気二重層キャパシタおよびその製造方法を提供することを課題とする。 Accordingly, it is an object of the present invention to provide an electric double layer capacitor that is capable of storing a large amount of electricity without a risk of leakage due to deformation due to impact or bending load, and a method for manufacturing the same. .
本発明による電気二重層キャパシタは、平板状集電体上に設けられたブラシ毛状カーボンナノチューブ群を覆うように集電体上にゲル状電解質膜を形成してなる正負一対の電極を、容器内に、正極のカーボンナノチューブ群と負極のカーボンナノチューブ群が互いに向き合うようにかつ非接触状に配置するものであり、前記カーボンナノチューブ群は、集電体の平坦な表面に対して同じ方向に傾斜しており、各カーボンナノチューブと集電体とがなす傾斜角度をθ、集電体上の隣接カーボンナノチューブの中心間距離をL 1 として、θ<90かつSinθ>10/L 1 が満たされていることを特徴とするものである。 An electric double layer capacitor according to the present invention comprises a pair of positive and negative electrodes formed by forming a gel electrolyte membrane on a current collector so as to cover a group of brush-like carbon nanotubes provided on a flat plate current collector. The carbon nanotube group of the positive electrode and the carbon nanotube group of the negative electrode are arranged so as to face each other and in a non-contact manner, and the carbon nanotube group is inclined in the same direction with respect to the flat surface of the current collector Θ <90 and Sinθ> 10 / L 1 are satisfied, where θ is the inclination angle between each carbon nanotube and the current collector, and L 1 is the distance between the centers of adjacent carbon nanotubes on the current collector. it is characterized in that there.
本発明では、従来の電極構成部材である有機系電解液を用いず、また、正極・負極を分離するためのセパレータも用いず、これらの代わりに、ゲル状電解質を用いる。カーボンナノチューブを用いた電極とゲル状電解質を組み合わせることにより、これまでにない薄いシート状の電気二重層キャパシタが作製できる。 In the present invention, an organic electrolytic solution that is a conventional electrode constituent member is not used, and a separator for separating the positive electrode and the negative electrode is not used. Instead, a gel electrolyte is used. By combining an electrode using carbon nanotubes with a gel electrolyte, an unprecedented thin sheet-shaped electric double layer capacitor can be produced.
また、ゲル状電解質を用いた電気二重層キャパシタでは、電解質成分は高分子マトリクス中に保持されており、外装材に何らかの破壊が生じた場合においても、液成分が外へ漏出することがない。さらに、ゲル状電解質は多孔性のセパレータでは困難であるような薄い膜を容易に作製できる。このような理由から、ゲル状電解質を用いた電気二重層キャパシタは極めて安全であり、かつ製品の厚さを極めて薄くすることができる。 In the electric double layer capacitor using the gel electrolyte, the electrolyte component is held in the polymer matrix, and the liquid component does not leak to the outside even when some destruction occurs in the exterior material. Furthermore, the gel electrolyte can easily produce a thin film which is difficult with a porous separator. For this reason, the electric double layer capacitor using the gel electrolyte is extremely safe and the thickness of the product can be extremely reduced.
前記カーボンナノチューブ群は、集電体となる基板に対して傾斜するように形成することが好ましい。 The carbon nanotube group is preferably formed so as to be inclined with respect to the substrate serving as a current collector.
このように、ブラシ毛状カーボンナノチューブ群を傾斜状させることによって、
(a)カーボンナノチューブ群の厚さを薄くすることができ、これにより電極厚みを薄くすることができる。結果として、薄膜の電気二重層キャパシタが実現できる。
Thus, by inclining the brush-like carbon nanotube group,
(A) The thickness of the carbon nanotube group can be reduced, whereby the electrode thickness can be reduced. As a result, a thin-film electric double layer capacitor can be realized.
(b)体積当たりのカーボン密度(カーボンナノチューブ密度)が高まることで、体積当たりカーボン表面積が増加し、体積当たりエネルギー密度と体積当たり出力密度がともに高くなる。 (B) By increasing the carbon density per volume (carbon nanotube density), the carbon surface area per volume increases, and both the energy density per volume and the output density per volume increase.
(c)正極集電体と負極集電体間の距離が縮まるので、極間の抵抗成分である溶液抵抗などの直流抵抗成分が小さくなり、電気二重層キャパシタの抵抗が小さくなる。 (C) Since the distance between the positive electrode current collector and the negative electrode current collector is reduced, a direct current resistance component such as a solution resistance that is a resistance component between the electrodes is reduced, and the resistance of the electric double layer capacitor is reduced.
前記ゲル状電解質は、イオン性液体をベースとするゲル前駆体を加熱ゲル化することによって得られる。 The gel electrolyte is obtained by heat-gelling a gel precursor based on an ionic liquid.
イオン性液体とは、イオン性の物質でありながら、室温(15〜25℃程度)で無色透明の液体状態を示す塩類をいい、代表的な例として、
エチルメチルイミダゾリウムテトラフルオロボレート(EMI・BF4)
エチルメチルイミダゾリウムパーフルオロスルホンイミド(EMI・TFSI)
ブチルピリジウムテトラフルオロボレート(BP・BF4)
ブチルピリジウムパーフルオロスルホンイミド(BP・TFSI)
トリメチルプロピルアンモニウムテトラフルオロボレート(TMPA・BF4)
トリメチルプロピルアンモニウムパーフルオロスルホンイミド(TMPA・TFSI)
エチルメチルピロリジニウムテトラフルオロボレート(P12・BF4)
エチルメチルピロリジニウムパーフルオロスルホンイミド(P12・TFSI)
などが挙げられるが、イオン性液体はこれらに限定されるものではない。
An ionic liquid refers to a salt that shows a colorless and transparent liquid state at room temperature (about 15 to 25 ° C.) while being an ionic substance.
Ethylmethylimidazolium tetrafluoroborate (EMI / BF4)
Ethylmethylimidazolium perfluorosulfonimide (EMI / TFSI)
Butylpyridium tetrafluoroborate (BP / BF4)
Butylpyridium perfluorosulfonimide (BP / TFSI)
Trimethylpropylammonium tetrafluoroborate (TMPA / BF4)
Trimethylpropylammonium perfluorosulfonimide (TMPA / TFSI)
Ethylmethylpyrrolidinium tetrafluoroborate (P12 / BF4)
Ethylmethylpyrrolidinium perfluorosulfonimide (P12 / TFSI)
The ionic liquid is not limited to these.
この発明によるカーボンナノチューブを用いた電気二重層キャパシタの製造方法は、上記の電気二重層キャパシタを製造する方法であって、集電体上にカーボンナノチューブ群を設けることで電極を作成する工程と、カーボンナノチューブ付き集電体からなる電極をプレス装置にセットし、カーボンナノチューブを押さえ付けることで、カーボンナノチューブ群を集電体に対して傾斜させる工程と、ゲル前駆体をカーボンナノチューブ側の集電体表面に滴下することで、集電体上に設けられたカーボンナノチューブ群を覆うように集電体上にゲル前駆体膜を形成する工程と、ゲル前駆体をゲル化するために加熱処理する工程と、加熱処理によって得られたゲル状電解質膜を冷却する工程と、カーボンナノチューブ群を有する集電体からなる正負一対の電極を、正極のカーボンナノチューブ群と負極のカーボンナノチューブ群が互いに向き合うように容器内に配置する工程と、容器を密封する工程とを含んでいることを特徴とするものである。A method for producing an electric double layer capacitor using carbon nanotubes according to the present invention is a method for producing the above electric double layer capacitor, the step of creating an electrode by providing a carbon nanotube group on a current collector, A step of tilting the carbon nanotube group with respect to the current collector by setting the electrode made of the current collector with carbon nanotubes in the press device and pressing the carbon nanotube, and the current collector on the carbon nanotube side as the gel precursor A step of forming a gel precursor film on the current collector so as to cover a group of carbon nanotubes provided on the current collector by dropping onto the surface, and a step of heat-treating to gel the gel precursor A step of cooling the gel electrolyte membrane obtained by the heat treatment, and a positive electrode comprising a current collector having a group of carbon nanotubes. A pair of electrodes, is characterized in that it includes a step of carbon nanotube group and the carbon nanotube group negative of the positive electrode is placed in the container so as to face each other, and a step of sealing the container.
本発明では、従来の電極構成部材である有機系電解液を用いず、また、正極・負極を分離するためのセパレータも用いず、これらの代わりに、ゲル状電解質を用いる。カーボンナノチューブを用いた電極とゲル状電解質を組み合わせることにより、これまでにない薄いシート状の電気二重層キャパシタが作製できる。 In the present invention, an organic electrolytic solution that is a conventional electrode constituent member is not used, and a separator for separating the positive electrode and the negative electrode is not used. Instead, a gel electrolyte is used. By combining an electrode using carbon nanotubes with a gel electrolyte, an unprecedented thin sheet-shaped electric double layer capacitor can be produced.
また、ゲル状電解質を用いた電気二重層キャパシタでは、電解質成分は高分子マトリクス中に保持されており、外装材に何らかの破壊が生じた場合においても、液成分が外へ漏出することがない。さらに、ゲル状電解質は多孔性のセパレータでは困難であるような薄い膜を容易に作製できる。このような理由から、ゲル状電解質を用いた電気二重層キャパシタは極めて安全であり、かつ製品の厚さを極めて薄くすることができる。 In the electric double layer capacitor using the gel electrolyte, the electrolyte component is held in the polymer matrix, and the liquid component does not leak to the outside even when some destruction occurs in the exterior material. Furthermore, the gel electrolyte can easily produce a thin film which is difficult with a porous separator. For this reason, the electric double layer capacitor using the gel electrolyte is extremely safe and the thickness of the product can be extremely reduced.
さらに本発明によれば、カーボンナノチューブ電極構造とゲル状電解質の相乗効果が得られる。すなわち、通常の活性炭を使用した電極では、表面積が大きく、細孔径が2nm以下の細孔が非常に沢山炭素表面に存在する。このような細孔には、ゲル電解質はもちろんのこと、電解質のイオンですら染込まない。つまりゲル電解質はこの細孔に染込まず、利用できない細孔になってしまう。 Furthermore, according to the present invention, a synergistic effect of the carbon nanotube electrode structure and the gel electrolyte can be obtained. That is, an electrode using normal activated carbon has a large surface area and a large number of pores having a pore diameter of 2 nm or less on the carbon surface. Such pores are not infused with electrolyte ions as well as gel electrolytes. In other words, the gel electrolyte does not penetrate into the pores, resulting in pores that cannot be used.
カーボンナノチューブは、細孔構造を有しているのではなく、ブラシ状であるがために2nmより小さなスペースは存在せず、むしろ10nm以上の間隔でカーボンナノチューブは存在している。これによって、ゲル電解質のゲル前駆体はカーボンナノチューブ間に含浸することが可能となりうる。 Since the carbon nanotubes are not having a pore structure but are brush-like, there are no spaces smaller than 2 nm. Rather, carbon nanotubes exist at intervals of 10 nm or more. This may allow the gel precursor of the gel electrolyte to be impregnated between the carbon nanotubes.
通常、ゲル状電解質は、溶液を使用した電解液と比較して、イオン伝導性が低くなる。このような電解質を用いると、活性炭を用いた通常の電極では、大きい電流に対する容量の発現が悪くなる(高レート特性時に容量が出ない)。ゲル状電解質である限り同じ現象がカーボンナノチューブ電極においても起こるが、本発明のようにブラシ毛状のカーボンナノチューブ電極とすることで、カーボンナノチューブの構造が略垂直状になり、低いイオン導電性であっても、その移動方向が揃う、もしくは乱れないため、大きい電流に対する容量が活性炭よりも優れている。 Usually, the gel electrolyte has lower ionic conductivity as compared with an electrolytic solution using a solution. When such an electrolyte is used, in a normal electrode using activated carbon, the development of capacity with respect to a large current is deteriorated (capacity is not output during high rate characteristics). As long as it is a gel electrolyte, the same phenomenon occurs in a carbon nanotube electrode. However, by using a brush-like carbon nanotube electrode as in the present invention, the structure of the carbon nanotube becomes substantially vertical, and the ionic conductivity is low. Even if it exists, since the moving direction is aligned or not disturbed, the capacity for a large current is superior to activated carbon.
(1)キャパシタ電極の作成は例えばつぎのように行われる。 (1) The capacitor electrode is produced, for example, as follows.
1)ブラシ毛状カーボンナノチューブ群は化学蒸着法などの公知の方法で基板上に成長させられ、基板から集電体に転写されて電極が作成される(例えばWO03/073440参照)。 1) A group of brush-like carbon nanotubes is grown on a substrate by a known method such as chemical vapor deposition, and transferred from the substrate to a current collector to produce an electrode (see, for example, WO03 / 073440).
2)カーボンナノチューブ群の厚み調整のために、ブラシ毛状カーボンナノチューブ群を集電体に対して傾斜させる。具体的には、ブラシ毛状カーボンナノチューブ付き集電体からなる電極をプレス装置にセットし、2枚のステンレス鋼板で挟み、圧力:400〜1000kg/cm2、保持時間:0.5〜2分程度でブラシ毛状カーボンナノチューブを押さえ付ける。 2) In order to adjust the thickness of the carbon nanotube group, the brush-like carbon nanotube group is inclined with respect to the current collector. Specifically, an electrode made of a current collector with brush-like carbon nanotubes is set in a press device and sandwiched between two stainless steel plates, pressure: 400 to 1000 kg / cm 2 , holding time: 0.5 to 2 minutes Press the brush-like carbon nanotubes to the extent.
傾斜角度については、垂直配向している状態を90°とするとき、傾斜角度は90°未満であればよいが、最小傾斜角度は
Sinθ >10/L1 ……(I)
を満たす角度θである(図1参照)。
As for the tilt angle, when the vertically aligned state is 90 °, the tilt angle may be less than 90 °, but the minimum tilt angle is
Sinθ> 10 / L 1 (I)
Is an angle θ satisfying (see FIG. 1).
ここで、Sinθ = X/L1
θ:傾斜角度
X:カーボンナノチューブ間距離
L1:集電体(1) 上の隣接カーボンナノチューブ(2) の中心間距離(ピッチ)
上記式(I)の導入はつぎのようになされる。
Here, Sinθ = X / L 1
θ: Inclination angle X: Distance between carbon nanotubes L 1 : Distance (pitch) between centers of adjacent carbon nanotubes (2) on the current collector (1)
The above formula (I) is introduced as follows.
前提条件として、Xは最低でも10nm必要である。電気二重層の距離を考慮するとカーボンナノチューブ(2) 間距離は10nm離れる必要があるからである。 As a prerequisite, X must be at least 10 nm. This is because the distance between the carbon nanotubes (2) needs to be 10 nm apart from the distance of the electric double layer.
よって、X =L1×Sinθ>10
すなわち、 Sinθ >10/L1
となる。
Therefore, X = L 1 × Sinθ> 10
That is, Sinθ> 10 / L 1
It becomes.
ブラシ毛状カーボンナノチューブ群の傾斜化は省略してもよい(図3参照)。 The inclination of the bristle-like carbon nanotube group may be omitted (see FIG. 3).
3)ゲル状電解質膜の作製は下記の工程にしたがって行われる。 3) Production of the gel electrolyte membrane is performed according to the following steps.
ゲル前駆体の調製 →カーボンナノチューブ(2) 群上へのゲル前駆体の流し込み→加熱によるゲル化→冷却。 Preparation of gel precursor → Pour of gel precursor onto carbon nanotube (2) group → Gelation by heating → Cooling.
ゲル前駆体は、イオン性液体とゲル化剤を撹拌下に混合して得られる。イオン性液体とゲル化剤の割合はゲル化剤の高分子重合度により異なるが、好ましくは前者:後者=50〜95:50〜5(重量比)である。ゲル化剤は50重量%もあれば十分であり、多すぎるとイオン性液体の濃度が低下しキャパシタの静電容量が低下する。ゲル化剤が5重量%未満であるとイオン性液体がゲル化しないことがある。 The gel precursor is obtained by mixing an ionic liquid and a gelling agent with stirring. The ratio of the ionic liquid and the gelling agent varies depending on the degree of polymer polymerization of the gelling agent, but the former: the latter = 50 to 95:50 to 5 (weight ratio) is preferable. A gelling agent of 50% by weight is sufficient, and if it is too much, the concentration of the ionic liquid is lowered and the capacitance of the capacitor is lowered. If the gelling agent is less than 5% by weight, the ionic liquid may not gel.
ゲル前駆体内に混合している気泡を取り除くためにこれを真空下で静置して脱泡処理する。イオン性液体としては上述したものを1種または2種の組み合わせて用いる。ゲル化剤としては高分子材料が適しており、加熱や架橋反応によって高分子ネットワークを形成するような材料が用いられる。ゲル化剤の代表例としては、ポリアクリロニトリル(PAN)、ポリフッ化ビニリデン−六フッ化プロピレン共重合体(PVdF−HFP)などが挙げられるが、ゲル化剤はこれらの高分子材料に限定されるものではない。 In order to remove bubbles mixed in the gel precursor, this is left to stand under vacuum and defoamed. As the ionic liquid, those described above are used alone or in combination of two. A polymer material is suitable as the gelling agent, and a material that forms a polymer network by heating or a crosslinking reaction is used. Typical examples of the gelling agent include polyacrylonitrile (PAN), polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP) and the like, but the gelling agent is limited to these polymer materials. It is not a thing.
ゲル前駆体調製工程は、露点温度が−60℃以下の環境、例えばドライルーム内もしくはグローブボックス内で行う。 The gel precursor preparation step is performed in an environment having a dew point temperature of −60 ° C. or lower, for example, in a dry room or a glove box.
ゲル状電解質中の電解質濃度は、液状の溶媒を用いた有機系電解液の濃度よりはるかに高くなり、電気二重層の容量増加に対する寄与が大きい。このため、ゲル状電解質を用いた電気二重層キャパシタでは、有機系電解液を用いた電気二重層キャパシタよりも、大きい容量が得られる。 The electrolyte concentration in the gel electrolyte is much higher than the concentration of the organic electrolyte solution using a liquid solvent, and contributes greatly to the increase in capacity of the electric double layer. For this reason, the electric double layer capacitor using the gel electrolyte can provide a larger capacity than the electric double layer capacitor using the organic electrolyte.
カーボンナノチューブ(2) 群上へのゲル前駆体の流し込み工程も、露点温度が−60℃以下の環境、例えばドライルーム内もしくはグローブボックス内で行う。まず、ゲル前駆体をカーボンナノチューブ(2) 側の集電体表面に滴下し、カーボンナノチューブ(2) 群をゲル前駆体で覆う。次いで、これを真空下で60分間静置して脱泡処理する。こうして、集電体上に設けられたカーボンナノチューブ(2) 群を覆うように集電体上にゲル前駆体膜(3) を形成し、ベーカーアプリケーターなどでゲル前駆体膜(3) の厚みを調整する。 The step of pouring the gel precursor onto the carbon nanotube (2) group is also performed in an environment having a dew point temperature of −60 ° C. or lower, for example, in a dry room or glove box. First, the gel precursor is dropped on the surface of the current collector on the carbon nanotube (2) side, and the carbon nanotube (2) group is covered with the gel precursor. Next, this is left to stand for 60 minutes under vacuum to be defoamed. In this way, the gel precursor film (3) is formed on the current collector so as to cover the carbon nanotubes (2) provided on the current collector, and the thickness of the gel precursor film (3) is reduced by a baker applicator or the like. adjust.
その後、ゲル前駆体をゲル化するために、これを加熱処理する。好ましい処理条件は100〜200℃、0.5〜10時間である。加熱温度はゲル化剤の種類によって適宜決められるが、100℃未満であると、ゲル前駆体のゲル化が生じない。加熱温度が200℃を越えるとゲル化剤が分解等により変質する恐れがある。 Then, in order to gelatinize a gel precursor, this is heat-processed. Preferred treatment conditions are 100 to 200 ° C. and 0.5 to 10 hours. The heating temperature is appropriately determined depending on the type of the gelling agent, but if it is less than 100 ° C., gelation of the gel precursor does not occur. If the heating temperature exceeds 200 ° C, the gelling agent may be deteriorated due to decomposition or the like.
次いで、得られたゲル状電解質膜(3) を冷却する。こうして、集電体上に設けられたカーボンナノチューブ(2) 群を覆うように集電体上にゲル状電解質膜(3) を形成する。 Next, the obtained gel electrolyte membrane (3) is cooled. In this way, the gel electrolyte membrane (3) is formed on the current collector so as to cover the carbon nanotubes (2) provided on the current collector.
4)電気二重層キャパシタの作製
カーボンナノチューブ(2) 群を有する集電体からなる正負一対の電極を、例えばパッケージング容器内に、正極のカーボンナノチューブ(2) 群と負極のカーボンナノチューブ(2) 群が互いに向き合うように配置する。正極のカーボンナノチューブ(2) 群と負極のカーボンナノチューブ(2) 群はいずれもゲル状電解質膜(3) で覆われているので、接触することはない。容器は次いで密封され、電気二重層キャパシタが得られる。
4) Fabrication of an electric double layer capacitor A pair of positive and negative electrodes made of a current collector having a carbon nanotube (2) group are placed in, for example, a packaging container, and the positive carbon nanotube (2) group and the negative carbon nanotube (2) Arrange so that the groups face each other. Since the carbon nanotube (2) group of the positive electrode and the carbon nanotube (2) group of the negative electrode are both covered with the gel electrolyte membrane (3), they do not contact each other. The container is then sealed to obtain an electric double layer capacitor.
つぎに、本発明を具体的に説明するために、本発明の実施例を挙げる。 Next, in order to describe the present invention specifically, examples of the present invention will be given.
実施例1
図2において、公知の方法でシリコン基板上に垂直に成長させたブラシ毛状カーボンナノチューブ(2) をアルミニウム箔からなる集電体(1) に転写して電極を作成した。このときのブラシ毛状カーボンナノチューブの長さは、60μmであった。
Example 1
In FIG. 2, brush-like carbon nanotubes (2) grown vertically on a silicon substrate by a known method were transferred to a current collector (1) made of aluminum foil to produce an electrode. At this time, the length of the bristle-like carbon nanotube was 60 μm.
転写後のブラシ毛状カーボンナノチューブ(2) 付き集電体(1) を油圧式プレス装置にセットし、2枚のステンレス鋼板で挟み、圧力:500kg/cm2、保持時間:1.5分程度でブラシ毛状カーボンナノチューブ(2) を押さえ付け、集電体(1) に対し傾斜させた。このときアルミニウム箔にしわが入らないようにした。傾斜状カーボンナノチューブ(2) 群からなる層の厚さは30μmであった。 The transferred current collector (1) with brush-like carbon nanotubes (2) is set in a hydraulic press and sandwiched between two stainless steel plates, pressure: 500 kg / cm 2 , holding time: about 1.5 minutes Then, the brush-like carbon nanotube (2) was pressed and inclined with respect to the current collector (1). At this time, the aluminum foil was not wrinkled. The thickness of the layer made of the inclined carbon nanotube (2) group was 30 μm.
露点温度−60℃以下の環境(具体的には、ドライルーム内もしくはグローブボックス内)で、12gのエチルメチルイミダゾリウムテトラフルオロボレート(EMI・BF4)と3gのポリフッ化ビニリデン−六フッ化プロピレン共重合体(PVdF−HFP)を容器内で攪拌下に3時間混合し、ゲル前駆体を得た。 In an environment with a dew point of −60 ° C. or lower (specifically, in a dry room or glove box), 12 g of ethylmethylimidazolium tetrafluoroborate (EMI • BF4) and 3 g of polyvinylidene fluoride-hexafluoropropylene The polymer (PVdF-HFP) was mixed for 3 hours with stirring in a container to obtain a gel precursor.
ついで、ゲル前駆体内に混入している気泡を取り除くために、これを真空下で60分静置して、脱泡処理を行った。 Next, in order to remove bubbles mixed in the gel precursor, this was left to stand for 60 minutes under vacuum to perform defoaming treatment.
ついで、露点温度が−60℃以下の環境、例えばドライルーム内もしくはグローブボックス内で、まずゲル前駆体をカーボンナノチューブ(2) 側の集電体(1) 表面に滴下し、カーボンナノチューブ(2) 群に含浸し、さらにカーボンナノチューブ(2) 群をゲル前駆体で覆った。次いで、これを真空下で60分間静置して脱泡処理した。こうして、集電体(1) 上のカーボンナノチューブ(2) 群を覆うように集電体(1) 上にゲル前駆体膜(3) を形成した。ベーカーアプリケーターでゲル前駆体膜(3) の厚みを35μmに調整した。 Next, in an environment having a dew point temperature of −60 ° C. or lower, for example, in a dry room or a glove box, first, a gel precursor is dropped on the surface of the current collector (1) on the carbon nanotube (2) side, and the carbon nanotube (2) The group was impregnated and the group of carbon nanotubes (2) was covered with a gel precursor. Subsequently, this was left to stand for 60 minutes under vacuum to perform defoaming treatment. Thus, the gel precursor film (3) was formed on the current collector (1) so as to cover the carbon nanotubes (2) group on the current collector (1). The thickness of the gel precursor film (3) was adjusted to 35 μm with a Baker applicator.
その後、ゲル前駆体をゲル化するために、これを約120℃で1時間加熱処理した。 Then, in order to gelatinize a gel precursor, this was heat-processed at about 120 degreeC for 1 hour.
次いで、得られたゲル状電解質膜(3) を冷却した。 Next, the obtained gel electrolyte membrane (3) was cooled.
こうして、集電体(1) 上のカーボンナノチューブ(2) 群を覆うように集電体(1) 上にゲル状電解質膜(3) を形成した。 Thus, the gel electrolyte membrane (3) was formed on the current collector (1) so as to cover the carbon nanotubes (2) group on the current collector (1).
ゲル状電解質膜(3) 被覆カーボンナノチューブ(2) 群を有する集電体(1) からなる正負一対の電極を、アルミニウムラミネートからなるパッケージング容器内に、正極のカーボンナノチューブ(2) 群と負極のカーボンナノチューブ(2) 群が互いに向き合うように配置した。 Gel electrolyte membrane (3) Coated carbon nanotube (2) A pair of positive and negative electrodes made of a current collector (1) group is placed in a packaging container made of an aluminum laminate and the positive electrode carbon nanotube (2) group and the negative electrode The carbon nanotubes (2) were arranged so as to face each other.
その後、パッケージング容器をインパルスシーラーなどのシール機で封止した。 Thereafter, the packaging container was sealed with a sealing machine such as an impulse sealer.
実施例2
9.5gのエチルメチルイミダゾリウムテトラフルオロボレート(EMI・BF4)と0.5gのポリフッ化ビニリデン−六フッ化プロピレン共重合体(PVdF−HFP)を混合してゲル前駆体を得た以外、実施例1と同様の操作を行い、電気二重層キャパシタを作製した。
Example 2
9.5 g of ethylmethylimidazolium tetrafluoroborate (EMI • BF4) and 0.5 g of polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP) were mixed to obtain a gel precursor. The same operation as in Example 1 was performed to produce an electric double layer capacitor.
このようにイオン性液体の割合を増加させることで、有効なイオン量を増やすことができ、また抵抗成分(PVdF−HFPは絶縁体)を減少させることができた。 Thus, by increasing the proportion of the ionic liquid, the amount of effective ions can be increased, and the resistance component (PVdF-HFP is an insulator) can be decreased.
比較例
図3において、ブラシ毛状カーボンナノチューブ(2) 群を集電体(1) に対し傾斜させる工程を省いた以外、実施例1と同様の操作を行い、電気二重層キャパシタを作製した。ブラシ毛状カーボンナノチューブ(2) 群からなる層の厚さは60μm、これを覆うゲル状電解質膜(3) の厚さは65μmであった。
Comparative Example An electric double layer capacitor was produced in the same manner as in Example 1 except that the step of tilting the bristle-like carbon nanotubes (2) group with respect to the current collector (1) was omitted in FIG. The thickness of the layer composed of the group of brush-like carbon nanotubes (2) was 60 μm, and the thickness of the gel electrolyte membrane (3) covering the layer was 65 μm.
(1) :集電体
(2) :カーボンナノチューブ
(3) :ゲル前駆体膜(ゲル状電解質膜)
(1): Current collector
(2): Carbon nanotube
(3): Gel precursor membrane (gel electrolyte membrane)
Claims (3)
集電体上にカーボンナノチューブ群を設けることで電極を作成する工程と、カーボンナノチューブ付き集電体からなる電極をプレス装置にセットし、カーボンナノチューブを押さえ付けることで、カーボンナノチューブ群を集電体に対して傾斜させる工程と、ゲル前駆体をカーボンナノチューブ側の集電体表面に滴下することで、集電体上に設けられたカーボンナノチューブ群を覆うように集電体上にゲル前駆体膜を形成する工程と、ゲル前駆体をゲル化するために加熱処理する工程と、加熱処理によって得られたゲル状電解質膜を冷却する工程と、カーボンナノチューブ群を有する集電体からなる正負一対の電極を、正極のカーボンナノチューブ群と負極のカーボンナノチューブ群が互いに向き合うように容器内に配置する工程と、容器を密封する工程とを含んでいることを特徴とする、カーボンナノチューブを用いた電気二重層キャパシタの製造方法。 A process of creating an electrode by providing a group of carbon nanotubes on a current collector, and an electrode made of a current collector with carbon nanotubes is set in a press device, and the carbon nanotube group is pressed by pressing the carbon nanotubes. And a gel precursor film on the current collector so as to cover the carbon nanotube group provided on the current collector by dropping the gel precursor onto the surface of the current collector on the carbon nanotube side. A step of forming a gel precursor, a step of heat-treating to gel the gel precursor, a step of cooling the gel electrolyte membrane obtained by the heat-treatment, and a pair of positive and negative consisting of a current collector having a carbon nanotube group Arranging the electrode in the container so that the carbon nanotube group of the positive electrode and the carbon nanotube group of the negative electrode face each other; Characterized in that it includes the step of sealing method of an electric double layer capacitor using a carbon nanotube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006093205A JP4807128B2 (en) | 2006-03-30 | 2006-03-30 | Electric double layer capacitor using carbon nanotube and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006093205A JP4807128B2 (en) | 2006-03-30 | 2006-03-30 | Electric double layer capacitor using carbon nanotube and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007266548A JP2007266548A (en) | 2007-10-11 |
JP4807128B2 true JP4807128B2 (en) | 2011-11-02 |
Family
ID=38639200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006093205A Expired - Fee Related JP4807128B2 (en) | 2006-03-30 | 2006-03-30 | Electric double layer capacitor using carbon nanotube and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4807128B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9512545B2 (en) | 2004-11-09 | 2016-12-06 | Board Of Regents, The University Of Texas System | Nanofiber ribbons and sheets and fabrication and application thereof |
US9784249B2 (en) | 2012-08-01 | 2017-10-10 | The Board Of Regents, The University Of Texas System | Coiled and non-coiled twisted nanofiber yarn torsional and tensile actuators |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9362563B2 (en) * | 2008-04-11 | 2016-06-07 | Panasonic Intellectual Property Management Co., Ltd. | Energy storage device, method for manufacturing the same, and apparatus including the same |
JP5278042B2 (en) * | 2009-02-27 | 2013-09-04 | トヨタ自動車株式会社 | Fuel cell |
US9786444B2 (en) * | 2009-06-25 | 2017-10-10 | Nokia Technologies Oy | Nano-structured flexible electrodes, and energy storage devices using the same |
CN101937774B (en) * | 2010-06-23 | 2012-06-13 | 中国科学院物理研究所 | Preparation method of winding type super capacitor |
WO2021059570A1 (en) * | 2019-09-25 | 2021-04-01 | 株式会社村田製作所 | Nanostructure aggregate and method for manufacturing same |
JP2021117002A (en) * | 2020-01-22 | 2021-08-10 | 学校法人 創価大学 | Hetero-core fiber optic carbon dioxide sensor |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3472133B2 (en) * | 1998-04-17 | 2003-12-02 | Tdk株式会社 | Lithium secondary battery and method of manufacturing electric double layer capacitor |
JP2003234254A (en) * | 2002-02-07 | 2003-08-22 | Hitachi Zosen Corp | Electrical double layer capacitor using carbon nano-tube |
JP2005286008A (en) * | 2004-03-29 | 2005-10-13 | Sanyo Electric Co Ltd | Electric double layer capacitor |
WO2007074654A1 (en) * | 2005-12-28 | 2007-07-05 | Matsushita Electric Industrial Co., Ltd. | Nonaqueous electrolyte secondary battery |
JP4817296B2 (en) * | 2006-01-06 | 2011-11-16 | 独立行政法人産業技術総合研究所 | Aligned carbon nanotube bulk aggregate and method for producing the same |
JP2007280926A (en) * | 2006-03-14 | 2007-10-25 | Matsushita Electric Ind Co Ltd | Manufacturing method of negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using it |
-
2006
- 2006-03-30 JP JP2006093205A patent/JP4807128B2/en not_active Expired - Fee Related
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9512545B2 (en) | 2004-11-09 | 2016-12-06 | Board Of Regents, The University Of Texas System | Nanofiber ribbons and sheets and fabrication and application thereof |
US9605363B2 (en) | 2004-11-09 | 2017-03-28 | The Board Of Regents, The University Of Texas System | Fabrication of nanofiber ribbons and sheets |
US9845554B2 (en) | 2004-11-09 | 2017-12-19 | Board Of Regents, The University Of Texas System | Fabrication and application of nanofiber ribbons and sheets and twisted and non-twisted nanofiber yarns |
US9944529B2 (en) | 2004-11-09 | 2018-04-17 | Board Of Regents, The University Of Texas System | Fabrication and application of nanofiber ribbons and sheets and twisted and non-twisted nanofiber yarns |
US10196271B2 (en) | 2004-11-09 | 2019-02-05 | The Board Of Regents, The University Of Texas System | Fabrication and application of nanofiber ribbons and sheets and twisted and non-twisted nanofiber yarns |
US9784249B2 (en) | 2012-08-01 | 2017-10-10 | The Board Of Regents, The University Of Texas System | Coiled and non-coiled twisted nanofiber yarn torsional and tensile actuators |
US9903350B2 (en) | 2012-08-01 | 2018-02-27 | The Board Of Regents, The University Of Texas System | Coiled and non-coiled twisted polymer fiber torsional and tensile actuators |
US10480491B2 (en) | 2012-08-01 | 2019-11-19 | The Board Of Regents, The University Of Texas System | Coiled, twisted nanofiber yarn and polymer fiber torsional actuators |
US11143169B2 (en) | 2012-08-01 | 2021-10-12 | Board Of Regents, The University Of Texas System | Coiled and twisted nanofiber yarn and polymer fiber actuators |
US11149720B2 (en) | 2012-08-01 | 2021-10-19 | Board Of Regents, The University Of Texas System | Thermally-powered coiled polymer fiber tensile actuator system and method |
US11629705B2 (en) | 2012-08-01 | 2023-04-18 | The Board Of Regents, The University Of Texas System | Polymer fiber actuators |
US12060868B2 (en) | 2012-08-01 | 2024-08-13 | The Board Of Regents, The University Of Texas System | Thermally-powered polymer fiber tensile actuators and articles including same |
Also Published As
Publication number | Publication date |
---|---|
JP2007266548A (en) | 2007-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4807128B2 (en) | Electric double layer capacitor using carbon nanotube and method for manufacturing the same | |
US9691916B2 (en) | Synthesis of three-dimensional graphene foam: use as supercapacitors | |
JP3496338B2 (en) | Electric double layer capacitor | |
US20170244098A1 (en) | Elemental metal and carbon mixtures for energy storage devices | |
US20180290891A1 (en) | Reduced graphene oxide-metal oxynitride aerogel electrodes | |
EP2278597A1 (en) | Conductive adhesive, electric double layer capacitor electrode using the same, and electric double layer capacitor | |
US20170263939A1 (en) | Electrode material and energy storage apparatus | |
JP4173870B2 (en) | Method for producing electrode for electrochemical device | |
JP2007251025A (en) | Electrode for electric double layer capacitor and electric double layer capacitor | |
JPWO2017057603A1 (en) | Composition for gel electrolyte | |
EP2665074B1 (en) | Electrochemical cell | |
US9640333B2 (en) | High surface area carbon materials and methods for making same | |
WO2011016316A1 (en) | Electrochemical capacitor | |
KR101530989B1 (en) | Nitrogen-doped activated carbon electrode materials, its manufacturing method and electric double layer capacitor thereby | |
JP5246697B2 (en) | Method for manufacturing electrode for electric double layer capacitor | |
JP5041977B2 (en) | Method for producing electrode sheet for electric double layer capacitor and electric double layer capacitor | |
JP2022538118A (en) | Methods and apparatus for fabricating electrodes for ionic liquid-based supercapacitors and methods for fabricating such supercapacitors | |
JP4941952B2 (en) | Activated carbon, its production method and its use | |
WO2000022635A2 (en) | Ultracapacitor separator | |
Mitra et al. | Integration of a Flexible, Stretchable, Environment-Benign, and Highly Conductive PVA/H3PO4 Hydrogel as a Quasi Solid-State Electrolyte in Reduced Graphene Oxide Supercapacitors | |
JPH0239513A (en) | Solid electric double-layer capacitor | |
JP4809800B2 (en) | Electric double layer capacitor electrode manufacturing method | |
KR102422011B1 (en) | Graphene cell and manufacturing method | |
JP2004031747A (en) | Electric double-layer capacitor | |
JP2007227572A (en) | Electric double layer capacitor, and method of manufacturing electric double layer capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081225 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101214 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110210 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110705 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110801 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140826 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |