JP4804900B2 - Oxygen supply pipe structure of reformer - Google Patents
Oxygen supply pipe structure of reformer Download PDFInfo
- Publication number
- JP4804900B2 JP4804900B2 JP2005350758A JP2005350758A JP4804900B2 JP 4804900 B2 JP4804900 B2 JP 4804900B2 JP 2005350758 A JP2005350758 A JP 2005350758A JP 2005350758 A JP2005350758 A JP 2005350758A JP 4804900 B2 JP4804900 B2 JP 4804900B2
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- catalyst layer
- reformer
- supply pipe
- flat tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Hydrogen, Water And Hydrids (AREA)
Description
本発明は原料ガスを水蒸気改質して水素リッチな改質ガスを生成する改質器に関し、特に、改質器が自己酸化内部加熱型のものであって、内部に酸化用空気を供給する酸素供給管構造に関する。 The present invention relates to a reformer that generates a hydrogen-rich reformed gas by steam reforming a raw material gas, and in particular, the reformer is of a self-oxidation internal heating type and supplies oxidizing air therein. The present invention relates to an oxygen supply pipe structure.
従来から、原料ガスと水蒸気の混合物(以下、原料一水蒸気混合物という。)を改質触媒の存在下に水蒸気改質し、水素リッチな改質ガスを生成する改質器が知られている。
改質装置で得られる水素リッチな改質ガスは、更に含まれている僅かなCO(一酸化炭素)をCO低減手段で触媒の存在下に酸素含有ガスと反応させてCO2へ変換し、特に低温で作動する固体高分子電解質型燃料電池用には、数ppmレベルまでCOを低減してからその燃料として好適に利用される。原料ガスには、メタン等の炭化水素、メタノール等の脂肪族アルコール類、或いはジメチルエーテル等のエーテル類、都市ガスなどが用いられる。このような改質器において、メタンを原料ガスとして使用した場合の水蒸気改質の反応式は、CH4+2H2O→CO2+4H2で示すことができ、好ましい改質反応温度は、650〜750℃の範囲である。
2. Description of the Related Art Conventionally, there is known a reformer that generates a hydrogen-rich reformed gas by steam reforming a mixture of a source gas and steam (hereinafter referred to as a source-steam mixture) in the presence of a reforming catalyst.
The hydrogen-rich reformed gas obtained in the reformer is further converted into CO 2 by reacting a small amount of CO (carbon monoxide) contained therein with an oxygen-containing gas in the presence of a catalyst by means of CO reduction means, In particular, for a solid polymer electrolyte fuel cell operating at a low temperature, it is suitably used as a fuel after reducing CO to several ppm level. As the source gas, hydrocarbons such as methane, aliphatic alcohols such as methanol, ethers such as dimethyl ether, city gas, and the like are used. In such a reformer, a reaction formula of steam reforming when methane is used as a raw material gas can be expressed as CH 4 + 2H 2 O → CO 2 + 4H 2 , and a preferable reforming reaction temperature is 650 to The range is 750 ° C.
改質器の改質反応に必要な熱を供給する方式として外部加熱型と、内部加熱型がある。外部加熱型の改質器は、外部に加熱部を設け、その熱源で原料ガスと水蒸気を反応させて改質ガスを生成するようになっている。内部加熱型の改質器はその供給側(上流側)に部分酸化反応層を設け、該部分酸化反応層に酸素供給管を介して酸素を供給し、そこで発生した熱を用いて下流側に配備した水蒸気改質反応層を水蒸気改質反応温度まで加熱し、該加熱された水蒸気改質触媒層で水蒸気改質反応をさせて水素リッチな改質ガスを生成するようになっている。 There are an external heating type and an internal heating type as a system for supplying heat necessary for the reforming reaction of the reformer. The external heating type reformer is provided with a heating unit outside, and a reformed gas is generated by reacting a raw material gas and water vapor with a heat source. The internal heating type reformer is provided with a partial oxidation reaction layer on the supply side (upstream side), oxygen is supplied to the partial oxidation reaction layer through an oxygen supply pipe, and the heat generated there is used on the downstream side. The deployed steam reforming reaction layer is heated to the steam reforming reaction temperature, and the steam reforming reaction is performed in the heated steam reforming catalyst layer to generate a hydrogen-rich reformed gas.
部分酸化反応は、CH4+12・O2→CO+2H2で示すことができ、好ましい部分酸化反応の温度は250℃以上の範囲である。内部加熱型の改質器を改良したものとして自己酸化内部加熱型の改質器が例えば特許文献1,2に記載されている.この特許文献の改質器はいわゆる予備改質室と主改質室を備え、予備改質室には原料−水蒸気混合物の供給部、改質触媒層および排出部が設けられ、主改質室には前記排出部からの流出物を受け入れる供給部、酸素含有ガスの供給部、改質触媒と酸化触媒を混合した混合触媒層、シフト触媒層および改質ガスの排出部が設けられている。
The partial oxidation reaction can be represented by CH 4 + 12 · O 2 → CO + 2H 2 , and the preferred partial oxidation reaction temperature is in the range of 250 ° C. or higher. For example,
図6は従来の自己酸化内部加熱型の改質器を模式的に示す断面図である。改質器1は二重筒状に配置した外側の予備改質室2と内側の主改質室3を備え、予備改質室2に改質触媒層4が設けられ、主改質室3に改質触媒と酸化触媒を混合した混合触媒層5とシフト触媒層6が設けられる。なおシフト触媒層6は高温シフト触媒層7と低温シフト触媒層8により構成される。
FIG. 6 is a cross-sectional view schematically showing a conventional self-oxidation internal heating type reformer. The
改質触媒は原料ガスを水蒸気改質するものであり、例えばNiO−Al2OあるいはNiO−SiO2・Al2O3などのNi系改質反応触媒やWO2−SiO2・A12O3やNiO−WO2・SiO2・A12O3などが使用される。混合触媒層5を構成する改質触媒は上記と同様なものが使用され、それに均一に分散される酸化触媒は原料一水蒸気混合物中の原料ガスを酸化発熱させて水蒸気改質反応に必要な温度を得るもので、例えば白金(Pt)やロジウム(Rh)あるいはルテニウム(Ru)あるいはパラジウム(Pd)が使用される。なお改質触媒に対する酸化触媒の混合割合は、水蒸気改質すべき原料ガスの種類に応じて1〜15%程度の範囲で選択され、例えば原料ガスとしてメタンを使用する場合は5%±2%程度、メタノールの場合は2%±1%程度の混合割合とされる。
The reforming catalyst is a steam reforming of the raw material gas. For example, a Ni-based reforming reaction catalyst such as NiO—Al 2 O or NiO—SiO 2 .Al 2 O 3 or WO 2 —SiO 2 .A1 2 O 3. NiO-WO 2 / SiO 2 / A 1 2 O 3 or the like is used. The reforming catalyst constituting the
予備改質室2の下部に原料―水蒸気混合物の供給部9が設けられ、予備改質室2の上部に予備改質後の流出物が排出する排出部10が設けられる。主改質室3の上部には前記予備改質室2の排出部10に連通する供給部11が設けられ、主改質室3の中央部に酸化用として空気等の酸素含有気体を供給する供給管14が延長される。さらに主改質室3の下部には改質ガスの排出部12が設けられる。
A raw material-steam
主改質室3には上部から下部に順に混合触媒層5、高温シフト触媒層7および低温シフト触媒層8が設けられるが、各触媒層の境界部および排出部12を含む低温シフト触媒層8の下側には触媒粒子を支持する支持板15が配置される。(なお予備改質室2にも同様な支持板15が配置される。)これら支持板15は気体流通性を有するが触媒粒子は通過させない孔径を有しており、通常、板状のパンチメタルやメッシュ等の多孔性の部材が使用される。
The main reforming
排出部12には支持板15の下方空間に設けたマニホールドと、そのマニホールドが改質器1の外側に延長する端部に連接した出口用タンクが存在する。そして排出部12に流出した改質ガスは支持板15を通過してマニホールドに入り、そこから出口タンクを通って外部に排出される。
The
一方、主改質室3の上部には起動用のプレヒーター13が連接される。プレヒーター13はシステム起動時に混合触媒層5を迅速に酸化反応温度まで昇温するものであり、その内部に電気ヒーターが配置されると共に、白金(Pt)やパラジウム(Pd)等の酸化触媒が充填される。そして起動時にプレヒーター13に原料ガスとスタート用の空気が供給され、原料ガスが空気中の酸素により酸化反応し、その酸化熱により発生する高温ガスで混合触媒層5を酸化反応可能な温度まで加熱するようになっている。
On the other hand, a starting
一方、エジェクタにより構成される吸引混合手段の流体導入部には、図示しない水蒸気発生手段からの水蒸気と原料供給部からの原料ガスが導入される。また吸引混合手段の排出部は予備改質室2の供給部9に連通される。
On the other hand, water vapor from a water vapor generating means (not shown) and raw material gas from a raw material supply part are introduced into a fluid introducing part of a suction mixing means constituted by an ejector. Further, the discharge part of the suction mixing means is communicated with the
次に図6の改質器1の作用を概略的に説明する。供給部9から供給される原料―水蒸気混合物は、予備改質室2の改質触媒4の作用でその原料ガスの一部が改質されて水素リッチな改質ガスを生成し、生成した改質ガスと残りの原料―水蒸気混合物は排出部10から主改質室3の供給部11に流入する。
Next, the operation of the
主改質室3に流入した原料―水蒸気混合物は、混合触媒層5に含まれる酸化触媒の作用で原料ガスの一部が空気中の酸素と反応(酸化反応)し、その酸化熱で原料ガスが水蒸気と反応(改質反応)し改質ガスを生成する。生成した改質ガスは高温シフト触媒層7で残存するCO(一酸化炭素)を水素に変換し、次いで低温シフト触媒層8でさらに残存するCOを水素に変換して排出部12から外部に排出される。
The raw material-steam mixture flowing into the main reforming
従来の改質器1における酸化用空気等の酸素含有気体を供給する供給管14は、主改質室3の中央部に延長されている。そして、その供給管の先端部に複数の空気孔があけられ、その空気孔から酸化触媒を含む混合触媒層5に酸素が供給される。この供給管14として丸パイプを用いるのが一般的であるが、混合触媒層5に均一に酸素を供給するには、複数の偏平管に多数の空気孔をあけ、そこから酸素を分散して供給することが好ましい。その場合、外部からその偏平管に接続する配管は断面が円形の丸管とするのが好ましい。丸管の方が小スペースで済むと共に、曲折部等の配設を容易に行えるからである。
A
しかしながら、丸管と複数の偏平管とを接続した場合、複数の偏平管に均一に空気を配分することが難しいと共に、一つの偏平管内でも、その断面の各部に均一に空気を流通させることも難しい。一般にその対策として丸管と偏平管との接続部を漏斗状に接続することが考えられる。あるいは、特別なヘッダを設け、ヘッダ内にバッフルプレート等を設けることも考えられる。しかしそれらの場合、構造が複雑になると共に、部品点数が多くなり、信頼性に欠ける欠点がある。そこで本発明はこれらの問題点を解決することを課題とする。 However, when a round tube and a plurality of flat tubes are connected, it is difficult to evenly distribute air to the plurality of flat tubes, and even within a single flat tube, air can be distributed uniformly to each part of the cross section. difficult. In general, as a countermeasure, it is conceivable to connect the connecting portion between the round tube and the flat tube in a funnel shape. Alternatively, a special header may be provided, and a baffle plate or the like may be provided in the header. In these cases, however, the structure is complicated, the number of parts is increased, and there is a disadvantage that the reliability is insufficient. Therefore, an object of the present invention is to solve these problems.
本発明は、内部に改質触媒と酸化触媒との混合触媒層5および、シフト触媒層6が順に設けられ、その混合触媒層5に酸素供給管を介して酸素を供給しつつ、原料ガスを水蒸気改質して水素リッチな改質ガスを生成する自己酸化内部加熱型の改質器の酸素供給管構造において、
前記酸素供給管は、両端に閉塞端面26を有する偏平管14a と、その偏平管14a内 の流路の下流端部で前記混合触媒層に互いに離間して開口した多数の酸素流出孔27と、その流路の上流端部でその断面の短軸に平行に前記偏平管14a に貫通した酸素供給用の入口パイプ30と、その入口パイプ30の貫通部内で隣接する前記閉塞端面26側に形成され、酸素をその閉塞端面26に向けて噴出し、その閉塞端面26で酸素を反転して分散させる酸素入口孔31と、を具備する改質器の酸素供給管構造である(請求項1)。
In the present invention, a
The oxygen supply pipe includes a
上記構成において、前記偏平管14aを前記各触媒層5,6内に上下方向に立設し、その下端部に前記入口パイプ30を貫通し、入口パイプ30の貫通部の下面側に前記酸素入口孔31を設け、偏平管14a内の流路の中間部にインナーフィン28を設けることができる(請求項2)。
さらには、その構成において、前記偏平管14a を複数並列し、前記入口パイプ30を 夫々の偏平管14a に貫通すると共に、夫々の貫通部に前記酸素入口孔31を設けることができる。(請求項3)。
In the above configuration, the
Further, in the configuration, a plurality of the
本発明の改質器の酸素供給管構造は、偏平管14a内の上流端部に、その断面の短軸に平行に入口パイプ30を偏平管14aに貫通し、その貫通部内で隣接する閉塞端面26側に酸素入口孔31を設け、そこから噴出する酸素を閉塞端面26で反転して分散させるように構成したから、酸素供給用の偏平管14aの横断面の各部に酸素を均一に流通させることができる。それにより、偏平管14aの下流端に設けた多数の酸素流出孔27から夫々均等に酸素を流出して、各部の酸化触媒に均一に酸素を供給し、効率よく原料ガスを水蒸気改質して水素リッチな改質ガスを生成することができる。また、上記の構造は、入口パイプ30を偏平管14aにその短軸に平行に貫通させるものであるから、構造が簡単で且つ信頼性の高いものとなる。
The oxygen supply pipe structure of the reformer of the present invention has a closed end face that penetrates the
上記構成において、偏平管14aを各触媒層5,6内に上下方向に立設し、その下端部に入口パイプ30を取付けるとともに、偏平管14a内にインナーフィン28を設けた場合には、そのインナーフィン28によって効率よく偏平管14a内の酸素を均一に加熱し、その酸素によって酸化触媒の加熱を効率よく行うことができる。それと共に、熱による偏平管の変形を防止できる。
上記構成において、並列した複数の偏平管14aに入口パイプ30を貫通し、その貫通部にそれぞれ酸素入口孔31を設けたものにおいては、各偏平管14aに均一に酸素を分配し、効率のよい改質器を提供できる。
In the above configuration, when the
In the above configuration, in the case where the
次に、図面を参照して本発明を実施するための最良の形態を説明する。図1は本発明の酸素供給管を有する改質器の縦断面図およびその下部拡大図並びに一部を破断したC部拡大斜視図、図2は図1のII−II線断面図、図3は図1のIII−III線断面図、図4は図1(B)のVI−VI断面図である。これらの図において、前述した図6に示す改質器1の各部と同じ部分には同一符号を付し、その構造や作用についての重複する説明はできるだけ省略する。
Next, the best mode for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of a reformer having an oxygen supply pipe according to the present invention, an enlarged view of the lower part thereof, and an enlarged perspective view of a part C cut away, FIG. 2 is a sectional view taken along line II-II in FIG. Is a sectional view taken along line III-III in FIG. 1, and FIG. 4 is a sectional view taken along line VI-VI in FIG. In these drawings, the same parts as those of the
本実施形態の改質器1は、夫々断面矩形の外筒2aとそれに内装された二つの内筒3aとを有し、内筒3aの外側に予備改質室2が設けられ、内筒3aの内側に主改質室3が設けられ、その主改質室3は二つ存在し、両改質室3は下部で互いに連結されている。また外側の予備改質室2は各主改質室3を取り囲み、図3の如く、断面日の字状に接続されている。なお、主改質室を3組以上設けることもできる。外側の予備改質室2の下部に原料―水蒸気混合物の供給部9が設けられ、それに複数の供給孔9aが穿設されている。予備改質室2の上部には排出部10が設けられる。各供給部9には、図示しない吸引混合手段からの原料―水蒸気混合物が流通する共通の配管に接続される。
The
供給部9付近の支持板15上に伝熱粒子層4aが設けられ、その上方に支持板15で支持された改質触媒層4が設けられる。なお伝熱粒子層4aは例えばセラミック粒子の層により形成され、低温シフト触媒層8の熱エネルギーを予備改質室2に伝熱し、改質触媒4および供給される原料―水蒸気混合物を昇温する。
The heat
主改質室3の上部には前記排出部10に連通する供給部11が設けられている。供給部11の下側には混合触媒層5、高温シフト触媒層7、低温シフト触媒層8が順に設けられ、これら高温シフト触媒層7と低温シフト触媒層8でシフト触媒層6が構成される。混合触媒層5はその酸化反応温度、改質反応温度等の監視や制御を行う必要があるので、各混合触媒層5にサーミスタや熱電対等の温度センサー16が設けられる。
A
二つの内筒3aの中央には、それぞれ偏平管14aが図1の如く立設され、それがシフト触媒層6を貫通し、混合触媒層5の上端部に達する。偏平管14aの上端及び下端はそれぞれ閉塞端面26で閉塞されている。この閉塞端面26は、偏平管14aの横断面に整合する端蓋からなる。なお、偏平管14aは、図3に示す如くそれぞれ横断面が矩形の内筒3aの中心線上に配置されている。また、偏平管14a内の中間部にはインナーフィン28が内挿され、そこを通過する酸素29をシフト触媒層の熱により加熱する。それと共に、熱歪みによる偏平管14aの変形を防止する。偏平管14aの下流側である上端部には、図2に示す如く多数の互いに離間した小孔からなる酸素流出孔27が複数列、水平方向に並列されている。そして、その酸素流出孔27が混合触媒層5に開孔する。酸素流出孔27の孔径は、混合触媒層5の粒径よりも小である。
A
偏平管14aの上流側である下端部の平坦な側面中央に図1(C)及び同(B)並びに図2に示す丸パイプからなる入口パイプ30が貫通する。なお、その貫通孔の孔縁部は外側にバーリング加工されている。入口パイプ30の両端は閉塞されるとともに、その長手方向中央に供給管14の一端が連通する。この供給管14はL字状に曲折されている。次に入口パイプ30が偏平管14aを貫通する貫通部には、図1(C)、図1(B)の如く複数の酸素入口孔31が穿設されている。この酸素入口孔31は、入口パイプ30に隣接する閉塞端面26側に、図1(B)及び図2に示す如く、穿設されている。
An
この例では、入口パイプ30の斜め下方向きにハ字上に一対穿設されている。この酸素入口孔31の孔径は入口パイプ30の断面直径に対して十分小さくされ、その酸素入口孔31から噴出される酸素(一般に酸素を含む空気)が対向する閉塞端面26に衝突して反転し、偏平管14aの横断面の各部に均一に分散して流通するように構成されている。その酸素29は偏平管14aのインナーフィン28を通過して加熱され、その下流端に設けられた多数の酸素流出孔27から均一に流出し、混合触媒層5の酸化触媒に供給される。
In this example, a pair of holes are formed on the letter C in a diagonally downward direction of the
次に、それぞれに低温シフト触媒層8の下部が配置される2つの主改質室3の領域は互いに連通されて共通部分12bになっており、それによって2つの低温シフト触媒層8の下部は共通化される。そして、その共通部分12bは改質ガスの排出部12の一部を構成し、その共通部分12bに排出管20が外部から挿入されている。排出管20はその先端が閉塞されると共に、図1(B),図5に示す如く、その共通部分12bの底面12aに対向して、その挿入部に軸線に平行なスリット20aが設けられ、そこから改質ガスが排出管20内に流入する。
Next, the regions of the two main reforming
なお、この細長いスリット20aの代わりに、排出管20の長手方向に互いに離間して図示しない多数の孔を設けることもできる。このスリット20aや多数の孔の大きさ(開口の大きさ)は、前記低温シフト触媒層8に充填された触媒粒子が改質ガスに伴って排出管20内に流入しない範囲に設定される。
Instead of the
スリット20aや孔の大きさを触媒粒子が改質ガスに伴って排出管20内に流入しない範囲に設定する際には、所望の改質ガスの排出管20への流入を妨げて処理能力を低下せず、且つ触媒粒子が流入しない範囲とすることが望ましく、その範囲は実験等により確認することができる。
When setting the size of the
本発明の酸素供給管を有する改質器は、原料ガスを水蒸気改質して水素リッチな改質ガスを生成する自己酸化内部加熱型の改質器に利用できる。なお、酸素供給管内には酸素を含む空気を流通させることができる。 The reformer having an oxygen supply pipe of the present invention can be used for a self-oxidation internal heating type reformer that generates a hydrogen-rich reformed gas by steam reforming a raw material gas. Note that air containing oxygen can be circulated in the oxygen supply pipe.
1 改質器
2 予備改質室
2a 外筒
3 主改質室
3a 内筒
4 改質触媒層
4a 伝熱粒子層
5 混合触媒層
6 シフト触媒層
7 高温シフト触媒層
8 低温シフト触媒層
9 供給部
9a 孔
10 排出部
DESCRIPTION OF
10 Discharge section
11 供給部
12 排出部
12a 底面
12b 共通部分
13 プレヒーター
14 供給管
14a 偏平管
15 支持板
16 温度センサー
20 排出管
20a スリット
26 閉塞端面
27 酸素流出孔
28 インナーフィン
29 酸素
30 入口パイプ
31 酸素入口孔
11 Supply section
12 Discharge section
12a Bottom
12b common parts
13 Preheater
14 Supply pipe
14a flat tube
15 Support plate
16 Temperature sensor
20 discharge pipe
20a slit
26 Closed end face
27 Oxygen outflow hole
28 Inner fin
29 Oxygen
30 inlet pipe
31 Oxygen inlet hole
Claims (3)
前記酸素供給管は、両端に閉塞端面26を有する偏平管14a と、その偏平管14a 内の流路の下流端部で前記混合触媒層に互いに離間して開口した多数の酸素流出孔27と、その流路の上流端部でその断面の短軸に平行に前記偏平管14a に貫通した酸素供給用の入口パイプ30と、その入口パイプ30の貫通部内で隣接する前記閉塞端面26側に形成され、酸素をその閉塞端面26に向けて噴出し、その閉塞端面26で酸素を反転して分散させる酸素入口孔31と、を具備する改質器の酸素供給管構造。 A mixed catalyst layer 5 of a reforming catalyst and an oxidation catalyst and a shift catalyst layer 6 are sequentially provided inside, and the raw material gas is steam reformed while supplying oxygen to the mixed catalyst layer 5 through an oxygen supply pipe. In the oxygen supply pipe structure of a self-oxidation internal heating type reformer that generates hydrogen-rich reformed gas,
The oxygen supply pipe includes a flat tube 14a having closed end faces 26 at both ends, and a plurality of oxygen outflow holes 27 that are opened apart from the mixed catalyst layer at the downstream end of a flow path in the flat tube 14a. An oxygen supply inlet pipe 30 that penetrates the flat tube 14a parallel to the short axis of the cross section at the upstream end of the flow path, and is formed on the closed end face 26 side adjacent in the through portion of the inlet pipe 30. An oxygen supply pipe structure of a reformer comprising: an oxygen inlet hole 31 for injecting oxygen toward the closed end face 26 and inverting and dispersing oxygen at the closed end face 26.
前記偏平管14a が前記各触媒層5,6内に上下方向に立設され、その下端部に前記入口パイプ30が貫通し、入口パイプ30の貫通部の下面側に前記酸素入口孔31が設けられ、その偏平管14a内の流路の中間部にインナーフィン28を設けた改質器の酸素供給管構造。 In claim 1,
The flat tube 14a is erected vertically in the catalyst layers 5 and 6, the inlet pipe 30 penetrates at the lower end thereof, and the oxygen inlet hole 31 is provided on the lower surface side of the through portion of the inlet pipe 30. A reformer oxygen supply pipe structure in which an inner fin 28 is provided in the middle of the flow path in the flat pipe 14a.
前記偏平管14a が複数並列され、前記入口パイプ30 が夫々の偏平管14a を貫通すると共に、夫々の貫通部に前記酸素入口孔31が設けられた改質器の酸素供給管構造。 In claim 2,
A reformer oxygen supply pipe structure in which a plurality of the flat tubes 14a are arranged in parallel, the inlet pipe 30 penetrates each flat tube 14a, and the oxygen inlet hole 31 is provided in each through portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005350758A JP4804900B2 (en) | 2005-12-05 | 2005-12-05 | Oxygen supply pipe structure of reformer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005350758A JP4804900B2 (en) | 2005-12-05 | 2005-12-05 | Oxygen supply pipe structure of reformer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007153665A JP2007153665A (en) | 2007-06-21 |
JP4804900B2 true JP4804900B2 (en) | 2011-11-02 |
Family
ID=38238481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005350758A Expired - Fee Related JP4804900B2 (en) | 2005-12-05 | 2005-12-05 | Oxygen supply pipe structure of reformer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4804900B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4641115B2 (en) * | 2001-03-30 | 2011-03-02 | 東京瓦斯株式会社 | CO remover |
JP4207188B2 (en) * | 2002-11-22 | 2009-01-14 | 株式会社ティラド | Internal heat steam reformer |
JP4620947B2 (en) * | 2003-11-13 | 2011-01-26 | 株式会社ティラド | Auto-oxidation internally heated steam reforming system |
-
2005
- 2005-12-05 JP JP2005350758A patent/JP4804900B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007153665A (en) | 2007-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5015638B2 (en) | Permselective membrane reactor and hydrogen production method | |
JP5015590B2 (en) | Method and apparatus for rapid heating of fuel reforming reactants | |
JP5154272B2 (en) | Fuel cell reformer | |
KR100993081B1 (en) | Autooxidation internal heating type steam reforming system | |
JP5103236B2 (en) | Reformer | |
JPH10106606A (en) | Hydrogen manufacturing device, and manufacture thereof | |
JP4804925B2 (en) | Reformer | |
JP4804900B2 (en) | Oxygen supply pipe structure of reformer | |
JP4189731B2 (en) | Auto-oxidation internally heated steam reforming system and its startup method | |
JP4486832B2 (en) | Steam reforming system | |
JP2007204343A (en) | Reformer and its manufacturing method | |
JP4804883B2 (en) | Reformer | |
JP2006199509A (en) | Reformer | |
JP3515438B2 (en) | CO removal device and fuel cell power generation system | |
JP4891594B2 (en) | Reformer | |
JP5584022B2 (en) | Fuel cell system and starting method thereof | |
JP5307322B2 (en) | Fuel reforming system for solid oxide fuel cell | |
JP4813169B2 (en) | Reformer | |
JP2005239525A (en) | Steam reformer | |
JP2009091181A (en) | Reforming apparatus and fuel cell system | |
JP2006036567A (en) | Steam reforming method and mixed catalyst | |
JP4739704B2 (en) | Hydrogen production equipment for fuel cells | |
JP4476272B2 (en) | Hydrogen production apparatus and hydrogen production method | |
JP2007227237A (en) | Solid oxide fuel battery module | |
JP4837384B2 (en) | Syngas production reactor integrated with waste heat recovery unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080828 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110531 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110712 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110802 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110810 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140819 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |