JP4803784B2 - Method for producing quartz glass crucible for pulling silicon single crystal - Google Patents
Method for producing quartz glass crucible for pulling silicon single crystal Download PDFInfo
- Publication number
- JP4803784B2 JP4803784B2 JP2004192684A JP2004192684A JP4803784B2 JP 4803784 B2 JP4803784 B2 JP 4803784B2 JP 2004192684 A JP2004192684 A JP 2004192684A JP 2004192684 A JP2004192684 A JP 2004192684A JP 4803784 B2 JP4803784 B2 JP 4803784B2
- Authority
- JP
- Japan
- Prior art keywords
- quartz glass
- crucible
- ppm
- single crystal
- silica powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims description 156
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims description 54
- 229910052710 silicon Inorganic materials 0.000 title claims description 54
- 239000010703 silicon Substances 0.000 title claims description 54
- 239000013078 crystal Substances 0.000 title claims description 44
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000000843 powder Substances 0.000 claims description 40
- 239000000377 silicon dioxide Substances 0.000 claims description 38
- 229910052782 aluminium Inorganic materials 0.000 claims description 31
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 21
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 18
- 239000011521 glass Substances 0.000 claims description 13
- 238000002844 melting Methods 0.000 claims description 7
- 230000008018 melting Effects 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 238000002425 crystallisation Methods 0.000 description 11
- 230000008025 crystallization Effects 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 9
- -1 aluminum compound Chemical class 0.000 description 4
- 238000010828 elution Methods 0.000 description 4
- 229910052906 cristobalite Inorganic materials 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000006060 molten glass Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 150000003377 silicon compounds Chemical class 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/09—Other methods of shaping glass by fusing powdered glass in a shaping mould
- C03B19/095—Other methods of shaping glass by fusing powdered glass in a shaping mould by centrifuging, e.g. arc discharge in rotating mould
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/10—Crucibles or containers for supporting the melt
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/20—Doped silica-based glasses doped with non-metals other than boron or fluorine
- C03B2201/23—Doped silica-based glasses doped with non-metals other than boron or fluorine doped with hydroxyl groups
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/30—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
- C03B2201/32—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with aluminium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Glass Melting And Manufacturing (AREA)
Description
本発明は、シリコン単結晶引上げに用いる石英ガラスルツボの製造方法、さらに詳しくは、単結晶化の歩留まりが高くシリコン単結晶を引き上げることができるシリコン単結晶引上げ用石英ガラスルツボの製造方法に関する。 The present invention relates to a method for producing a quartz glass crucible used for pulling up silicon single crystal, and more particularly to a method of manufacturing a silicon single crystal for pulling up the quartz glass crucible can yield of single crystallization is high pulling a silicon single crystal.
従来、シリコン単結晶の製造には、いわゆるチョクラルスキー法(CZ法)と呼ばれる方法が広く採用されている。このCZ法は、石英ガラスで製造したルツボ内でシリコン多結晶を溶融し、このシリコン融液にシリコン単結晶の種結晶を浸漬し、ルツボを回転させながら種結晶を徐々に引上げ、シリコン単結晶を種結晶を核として成長させる方法である。 Conventionally, a so-called Czochralski method (CZ method) has been widely used for the production of silicon single crystals. In this CZ method, a silicon polycrystal is melted in a crucible made of quartz glass, a silicon single crystal seed crystal is immersed in the silicon melt, and the seed crystal is gradually pulled up while rotating the crucible. Is grown using seed crystals as nuclei.
上記CZ法で使用する石英ガラスルツボはシリコンウェーハが大型化するにしたがって1400℃以上のシリコン融液に長時間接触するようになってきたが、その内表面がシリコン融液と反応し、内表面の浅い層に結晶化が起こり、褐色のリング状のクリストバライト(以下ブラウンリングという)が現れることが起こる。前記ブラウンリング内はクリストバライト層がないか又はあっても大変薄い層であるが、操業時間の経過とともにブラウンリングはその面積を拡大し、互いに融合しながら成長を続け、遂にはその中心部が浸食され、不規則なガラス溶出面となる。このガラス溶出面が出現すると、シリコン単結晶に転位が起こり易くなり、単結晶引上げの歩留まりに支障をきたすことになる。特に、200mm以上の大口径のウェーハを製造するシリコン単結晶を成長させるにはCZ法の操業を100時間を超えて行う必要があり、前記ガラス溶出面の出現が顕著となる。 The quartz glass crucible used in the CZ method has come into contact with a silicon melt at 1400 ° C. or higher for a long time as the silicon wafer becomes larger. Crystallization occurs in the shallow layer, and a brown ring-shaped cristobalite (hereinafter referred to as brown ring) appears. The brown ring has a cristobalite layer with or without a cristobalite layer, but as the operating time elapses, the brown ring expands its area and continues to grow while fusing with each other. And an irregular glass elution surface. When this glass elution surface appears, dislocations are likely to occur in the silicon single crystal, which hinders the yield of single crystal pulling. In particular, in order to grow a silicon single crystal for producing a wafer having a large diameter of 200 mm or more, it is necessary to carry out the operation of the CZ method for more than 100 hours, and the appearance of the glass elution surface becomes remarkable.
上記ブラウンリングは、ガラス表面の微細な傷や原料粉の溶け残りである結晶質残留部分、ガラス構造の欠陥などを核として発生すると考えられており、その数を減らすには、ガラスの表面状態を良好に保ったり、結晶質残留成分をなくすために溶融時間を高温、長時間化したり、或いは特許文献1に示すように内表面を形成する原料粉として非晶質である合成粉を使用すればよい。しかしながら、ルツボが更に大型になりシリコン単結晶の引上げ時間が長くなることで更なる改善が求められている。また、その一方で上記方法でブラウンリングの発生数を減らすと、単結晶の引上げ時にシリコン融液の表面が振動し易くなり、作業性を悪化させる欠点があった。 The above brown ring is thought to be caused by fine scratches on the glass surface, crystalline residue that is unmelted raw material powder, defects in the glass structure, etc. In order to maintain good quality, to eliminate residual crystalline components, the melting time is increased to a long time, or as shown in Patent Document 1, an amorphous synthetic powder is used as a raw material powder for forming the inner surface. That's fine. However, further improvement is required because the crucible becomes larger and the pulling time of the silicon single crystal becomes longer. On the other hand, if the number of occurrences of brown rings is reduced by the above method, the surface of the silicon melt tends to vibrate when the single crystal is pulled up, and there is a drawback that workability is deteriorated.
上記欠点を解消するため、本発明者は先に天然石英ガラスからなる不透明な外層、その内側に少なくとも石英ガラスからなる透明層を有する石英ガラスルツボにおいて、シリコン単結晶引上げの使用後に、シリコン融液の初期湯面位置から特定の範囲までと残湯位置上特定の範囲までに観測されるブラウンリングの個数の比が特定の割合になるシリコン単結晶引上げ用石英ガラスルツボを提案した(特許文献2)。前記シリコン単結晶引上げ用石英ガラスルツボは、例えば天然シリカ粉を回転する型に導入し、ルツボ形状に成形したのち、アーク電極によりルツボ状成形体の内部キャビティーを高温ガス雰囲気にして少なくとも部分的に溶融ガラス化して不透明なルツボ基体を形成し、次いで高純度の天然シリカ粉または天然合成混合シリカを供給し、溶融ガラス化して天然石英ガラスまたは天然合成混合石英ガラスからなる透明層を初期湯面位置から特定の範囲に、さらに合成石英ガラスからなる透明層を残湯位置上の特定の範囲に形成するなどその製造方法に少し煩雑なところがあり、より簡便な方法で優れた単結晶化率を達成できるシリコン単結晶引上げ用石英ガラスルツボの出現が熱望されていた。
こうした現状に鑑み、本発明者は鋭意研究を続けた結果、天然シリカ粉を溶融して形成した不透明な外層と、合成石英ガラスからなる透明な内層を有する石英ガラスルツボにおいて、前記合成石英ガラスからなる透明な内層が内表面から0.8mmまでの深さにおいて平均アルミニウム濃度が1〜20ppm、平均OH基濃度が150〜300ppmとなるように調整することで、ブラウンリングの発生が抑えられ、その結果、長時間操業してもガラス溶出面の出現が少なくシリコン単結晶の歩留りが良くなること、更に、ブラウンリングが少なくてもシリコン融液表面の振動が抑えられることを見出して、本発明を完成したものである。すなわち、 In view of such a current situation, the present inventor has conducted intensive research, and as a result, in a quartz glass crucible having an opaque outer layer formed by melting natural silica powder and a transparent inner layer made of synthetic quartz glass, By adjusting the transparent inner layer to have an average aluminum concentration of 1 to 20 ppm and an average OH group concentration of 150 to 300 ppm at a depth of 0.8 mm from the inner surface, the occurrence of brown rings can be suppressed, As a result, even when operated for a long time, the appearance of the glass elution surface is small, the yield of the silicon single crystal is improved, and furthermore, the vibration of the surface of the silicon melt can be suppressed even if the brown ring is small. It has been completed. That is,
本発明は、ブラウンリングの発生が少なく、しかもシリコン融液表面の振動がなく、シリコン単結晶を高歩留まりで引上げることができるシリコン単結晶引上げ用石英ガラスルツボの製造方法を提供することを目的とする。 The present invention aims to generation of brown rings is small, yet there is no vibration of the silicon melt surface, to provide a method for manufacturing a silicon single crystal for pulling up the quartz glass crucible capable of pulling a silicon single crystal at high yield And
上記目的を達成する本発明は、天然シリカ粉を回転する型内に供給して形成した石英ガラスルツボ基体の内部キャビティを高温雰囲気にし部分的に溶融して不透明な外層を形成した後もしくは形成中に、天然シリカ粉を導入し、溶融ガラス化し天然シリカ粉からなる透明層を形成し、更に1〜20ppmの平均アルミニウム濃度を有する合成シリカ粉を前記高温雰囲気内に供給し溶融ガラス化して合成石英ガラスからなる透明な内層を厚さ0.8mm〜石英ガラスルツボの肉厚の35%に形成するとともにその形成中の少なくとも一定の期間、水蒸気を導入することを特徴とする、内表面から0.8mmまでの深さにおいて1〜20ppmの平均アルミニウム濃度と150〜300ppmの平均OH基濃度とを有し、かつ、単結晶引上げ後の透明内層の内表面に現われるブラウンリングの個数を0.1〜0.8個/cm2とするシリコン単結晶引上げ用石英ガラスルツボの製造方法に係る。
The present invention that achieves the above object is to form an opaque outer layer after or partially forming an inner cavity of a quartz glass crucible substrate formed by supplying natural silica powder in a rotating mold and partially melting it in a high temperature atmosphere. Natural silica powder is introduced to form a transparent layer made of natural silica powder by melting into glass, and further synthetic silica powder having an average aluminum concentration of 1 to 20 ppm is supplied into the high-temperature atmosphere to form molten glass to form synthetic quartz. A transparent inner layer made of glass is formed to a thickness of 0.8 mm to 35% of the thickness of the quartz glass crucible, and water vapor is introduced for at least a certain period during the formation of the inner surface from the inner surface. It has an average aluminum concentration of 1 to 20 ppm and an average OH group concentration of 150 to 300 ppm at a depth of up to 8 mm, and the permeability after pulling up the single crystal. According to the method for manufacturing a silicon single crystal for pulling up the quartz glass crucible to the number of brown rings that appear in the lining of the inner surface and 0.1 to 0.8 pieces / cm 2.
本発明のシリコン単結晶引上げ用石英ガラスルツボは、上述のとおり合成石英ガラスからなる透明な内層を有し、その厚さは0.8mm以上で石英ガラスルツボの肉厚の35%以下が好ましい。そして、前記合成石英ガラスからなる透明な内層の内表面から0.8mmまでの深さにおいて平均アルミニウム濃度が1〜20ppm、好ましくは3〜8ppmで、かつ平均OH基濃度が150〜300ppmに調整されているルツボである。前記合成石英ガラスからなる透明な内層の厚さが0.8mm未満では、シリコン単結晶引上げ中に石英ガラスがシリコン融液に溶け出し、不透明な石英ガラス層が現れ単結晶化率を著しく低下させてしまう。また、合成石英ガラスからなる透明な内層の厚さをルツボの肉厚の35%を超える厚さに形成することは、ルツボ製造の生産性・経済性の観点から好ましくない。合成石英ガラスからなる透明な内層が前記範囲の平均アルミニウム濃度及び平均OH基濃度を有することでルツボの使用後に発生するブラウンリングの個数が0.1〜0.8個/cm2の範囲となり、シリコン単結晶の歩留りをよくする。その上、合成石英ガラスからなる透明な内層とシリコン融液の濡れ特性が増し、シリコン融液表面の振動が抑えられ、高歩留まりでシリコン単結晶を引上げることができる。ブラウンリングの個数を0.1個/cm2未満とすることは困難であり、またブラウンリングの個数が0.8個/cm2を超えるとシリコン単結晶に転位が多く起こり単結晶化率が低下する。 The silica glass crucible for pulling a silicon single crystal of the present invention has a transparent inner layer made of synthetic quartz glass as described above, and the thickness is preferably 0.8 mm or more and 35% or less of the thickness of the quartz glass crucible. The average aluminum concentration is adjusted to 1 to 20 ppm, preferably 3 to 8 ppm, and the average OH group concentration is adjusted to 150 to 300 ppm at a depth of 0.8 mm from the inner surface of the transparent inner layer made of the synthetic quartz glass. It is a crucible. If the thickness of the transparent inner layer made of the synthetic quartz glass is less than 0.8 mm, the quartz glass dissolves into the silicon melt during the pulling of the silicon single crystal, and an opaque quartz glass layer appears to significantly reduce the single crystallization rate. End up. Moreover, it is not preferable from the viewpoint of productivity and economic efficiency of crucible production that the thickness of the transparent inner layer made of synthetic quartz glass is more than 35% of the thickness of the crucible. The transparent inner layer made of synthetic quartz glass has an average aluminum concentration and an average OH group concentration in the above ranges, so that the number of brown rings generated after use of the crucible is in the range of 0.1 to 0.8 / cm 2 , Improve the yield of silicon single crystal. Moreover, the wettability of the transparent inner layer made of synthetic quartz glass and the silicon melt is increased, the vibration of the silicon melt surface is suppressed, and the silicon single crystal can be pulled up with a high yield. It is difficult to make the number of brown rings less than 0.1 pieces / cm 2 , and when the number of brown rings exceeds 0.8 pieces / cm 2 , many dislocations occur in the silicon single crystal and the single crystallization rate is low. descend.
本発明で使用する合成シリカ粉としては、Na、K、Li、Ti、Fe、Cuなどの不純物濃度が0.1ppm以下であるのがよい。不純物濃度が前記範囲にあることでシリコン単結晶への不純物の悪影響はほとんどない。また、前記範囲の平均アルミニウム濃度を有する合成シリカ粉は、シリカ粉にアルミニウム粉を混合する方法、ケイ素化合物とアルミニウム化合物との均一溶液を加水分解、乾燥、焼成する方法又はシリカ粉をアルミニウム化合物の溶液に浸漬したのち、乾燥し、シリカ粉にアルミニウム化合物の被膜を形成する方法などで製造されるが、特にケイ素化合物とアルミニウム化合物との均一溶液を加水分解、乾燥、焼成する方法は、アルミニウムが均一に含有されて好ましい。 The synthetic silica powder used in the present invention preferably has an impurity concentration of Na, K, Li, Ti, Fe, Cu or the like of 0.1 ppm or less. When the impurity concentration is in the above range, there is almost no adverse effect of impurities on the silicon single crystal. The synthetic silica powder having an average aluminum concentration in the above range is a method of mixing aluminum powder with silica powder, a method of hydrolyzing, drying and firing a uniform solution of a silicon compound and an aluminum compound, or silica powder of an aluminum compound. After being immersed in the solution, it is dried and manufactured by a method of forming a film of an aluminum compound on silica powder. In particular, the method of hydrolyzing, drying and firing a uniform solution of a silicon compound and an aluminum compound is the It is preferably contained uniformly.
上記ブラウンリングの個数は、ルツボの使用後の内表面に現れる数をカウントするものであるが、ルツボのシリコン融液との接触時間が長く、ブラウンリングが成長し易い残湯付近においてはブラウンリングが融合する場合があるので、ルツボの同一高さの水平方向において観測される単独のブラウンリングの平均径から1個当たりの面積を計算し、融合部分の面積を前記1個当たりの面積で割った値を求め、その値と前記単独のブラウンリングの個数の総数とをルツボの内表面積で割った値を単位面積(cm2)当りの個数とする。 The number of brown rings is the number that appears on the inner surface of the crucible after use. However, the length of contact with the silicon melt of the crucible is long and the brown ring is near the remaining hot water where the brown ring tends to grow. Therefore, the area per piece is calculated from the average diameter of a single brown ring observed in the horizontal direction at the same height of the crucible, and the area of the fused portion is divided by the area per piece. A value obtained by dividing the value and the total number of single brown rings by the inner surface area of the crucible is defined as the number per unit area (cm 2 ).
また、上記平均アルミニウム濃度は、石英ガラスルツボの透明な内層から試験片を切出しICP発光分光分析法で測定した値であり、また、平均OH基濃度は、ルツボの内表面の深さ方向1.0mmまでをD.M. DODD and D.B.FRASER,Optical determination of OH in fused silica, Journal of Applied Physics, Vol. 37(1966)p.3911に記載の測定法で測定した値である。 The average aluminum concentration is a value obtained by cutting a test piece from a transparent inner layer of a quartz glass crucible and measuring it by ICP emission spectroscopic analysis, and the average OH group concentration is 1. in the depth direction of the inner surface of the crucible. D. up to 0 mm. M.M. DODD and D.D. B. FRASER, Optical determination of OH in fused silica, Journal of Applied Physics, Vol. 37 (1966) p. It is a value measured by the measurement method described in 3911.
さらに、本発明の石英ガラスルツボは、アルミニウムを含有する合成石英ガラスからなる透明層と天然石英ガラスからなる不透明な外層との間に天然石英ガラスからなる透明層を設けることができる。この天然石英ガラスからなる透明層を設けることで内層と外層との剥離が少なくなる上に、ルツボの変形も少なくなる。前記天然石英ガラスからなる透明層の厚さは0.4〜5.0mm、好ましくは0.7〜4.0mmの範囲がよい。 Furthermore, the quartz glass crucible of the present invention can provide a transparent layer made of natural quartz glass between a transparent layer made of synthetic quartz glass containing aluminum and an opaque outer layer made of natural quartz glass. By providing this transparent layer made of natural quartz glass, peeling between the inner layer and the outer layer is reduced, and deformation of the crucible is reduced. The transparent layer made of natural quartz glass has a thickness of 0.4 to 5.0 mm, preferably 0.7 to 4.0 mm.
本発明のシリコン単結晶引上げ用石英ガラスルツボは、高温での長時間操業においてもルツボの内表面に発生するブラウンリングの個数が少なく、かつシリコン融液表面の振動もなくシリコン単結晶を高歩留まりで引き上げることができる。しかも、前記シリコン単結晶引上げ用石英ガラスルツボは、平均アルミニウム濃度が1〜20ppmの合成シリカ粉を用いて形成した合成石英ガラスからなる透明な内層の形成中に水蒸気を導入し、合成石英ガラスからなる透明な内層が内表面から0.8mmまでの深さにおいて平均アルミニウム濃度が1〜20ppm、
平均OH基濃度が150〜300ppmとなるように調整するという簡便な方法で製造できる。
The silica glass crucible for pulling a silicon single crystal of the present invention has a high yield of silicon single crystal with a small number of brown rings generated on the inner surface of the crucible even during long-time operation at high temperatures and without vibration of the silicon melt surface. Can be pulled up. In addition, the quartz glass crucible for pulling up the silicon single crystal introduces water vapor during the formation of a transparent inner layer made of synthetic silica glass formed using synthetic silica powder having an average aluminum concentration of 1 to 20 ppm, The transparent inner layer has an average aluminum concentration of 1 to 20 ppm at a depth of 0.8 mm from the inner surface,
It can manufacture by the simple method of adjusting so that an average OH group density | concentration may be 150-300 ppm.
次に、本発明の製造方法の実施の態様を図面に基づいて説明するが、本発明はこれに限定されるものではない。 Next, an embodiment of the production method of the present invention will be described with reference to the drawings, but the present invention is not limited to this.
図1に本発明の石英ガラスルツボの製造装置を示す。図1において、1は回転する型、2は不透明な外層、3はシリカ粉供給手段、4は水蒸気導入ノズル、5は板状の蓋体、6はアーク電極、7は高温ガス雰囲気、8はアルミニウムを含有する合成石英ガラスからなる透明な内層である。前記装置を用いて、まず天然シリカ粉を回転する型1に導入し、ルツボ形状に成形したのち、その中にアーク電極6を挿入し、ルツボ状形成体の開口部を板状の蓋体5で覆い、アーク電極6により該ルツボ状形成体の内部キャビティーを高温ガス雰囲気7にし、少なくとも部分的に溶融ガラス化して不透明な外層2を形成し、次いで外層の形成後もしくは形成中にシリカ粉供給手段3から平均アルミニウム濃度が1〜20ppm、好ましくは3〜8ppmの合成シリカ粉を導入し、溶融ガラス化して合成石英ガラスからなる透明な内層8を厚さが0.8mm以上で石英ガラスルツボの肉厚の35%以下に形成する。前記透明な内層の形成の一定期間、水蒸気を水蒸気導入ノズル4から導入し透明な内層が内表面から0.8mmまでの深さにおいて平均アルミニウム濃度が1〜20ppm、平均OH基濃度が150〜300ppmとなるように調整する。水蒸気の導入期間は、内層形成工程の少なくとも25%以上、好ましくは40%以上の段階で行う。必要な水蒸気導入量は、ルツボの大きさにより異なるが、ルツボ外径が40〜63.4cmの場合は、合成シリカ粉100重量部に対し0.5〜40重量部、好ましくは1〜30重量部、ルツボ外径が63.5〜73.9cmの場合は、1〜60重量部、好ましくは1.5〜50重量部、ルツボ外径が74〜125cmの場合には、1.25〜100重量部、好ましくは2〜80重量部とするのがよい。 FIG. 1 shows an apparatus for producing a silica glass crucible of the present invention. In FIG. 1, 1 is a rotating mold, 2 is an opaque outer layer, 3 is a silica powder supply means, 4 is a water vapor introduction nozzle, 5 is a plate-shaped lid, 6 is an arc electrode, 7 is a hot gas atmosphere, and 8 is It is a transparent inner layer made of synthetic quartz glass containing aluminum. Using the apparatus, first, natural silica powder is introduced into a rotating mold 1 and formed into a crucible shape, and then an arc electrode 6 is inserted therein, and the opening of the crucible-shaped formed body is formed into a plate-shaped lid 5. The inner cavity of the crucible-shaped formed body is made into a high-temperature gas atmosphere 7 by the arc electrode 6, and at least partially melted and vitrified to form the opaque outer layer 2, and then the silica powder after or during the formation of the outer layer Synthetic silica powder having an average aluminum concentration of 1 to 20 ppm, preferably 3 to 8 ppm, is introduced from the supply means 3 and is converted into a molten glass to form a transparent inner layer 8 made of synthetic quartz glass having a thickness of 0.8 mm or more and a quartz glass crucible. It is formed to be 35% or less of the wall thickness. During a certain period of formation of the transparent inner layer, water vapor is introduced from the water vapor introduction nozzle 4 and the transparent inner layer has an average aluminum concentration of 1 to 20 ppm and an average OH group concentration of 150 to 300 ppm at a depth of 0.8 mm from the inner surface. Adjust so that The introduction period of the water vapor is performed at a stage of at least 25%, preferably 40% or more of the inner layer forming step. The necessary water vapor introduction amount varies depending on the size of the crucible, but when the outer diameter of the crucible is 40 to 63.4 cm, 0.5 to 40 parts by weight, preferably 1 to 30 parts by weight with respect to 100 parts by weight of the synthetic silica powder. 1 to 60 parts by weight, preferably 1.5 to 50 parts by weight when the outer diameter of the crucible is 63.5 to 73.9 cm, and 1.25 to 100 when the outer diameter of the crucible is 74 to 125 cm. The weight is preferably 2 to 80 parts by weight.
上記製造方法において、合成石英ガラスからなる透明な内層と天然石英ガラスからなる不透明な外層との間に天然石英ガラスからなる透明層を設ける場合には、不透明な外層を形成したのち、天然シリカ粉をシリカ粉供給手段3から供給し溶融ガラス化し天然石英ガラスからなる透明層を形成し、ついでシリカ粉供給手段3から上記アルミニウムを含有する合成シリカ粉を導入して製造するのがよい。 In the above production method, when a transparent layer made of natural quartz glass is provided between a transparent inner layer made of synthetic quartz glass and an opaque outer layer made of natural quartz glass, the natural silica powder is formed after forming the opaque outer layer. The silica powder supply means 3 is supplied to melt glass to form a transparent layer made of natural quartz glass, and the silica powder supply means 3 is then introduced with the synthetic silica powder containing aluminum.
図1に示す装置を用い、回転する型1内に純化処理した高純度の天然シリカ粉を投入し、遠心力によりルツボ状成形体に形成し、その内にアーク電極6を挿入し、開口部を板状の蓋体5で覆い、アーク電極6により内部キャビティー内を高温ガス雰囲気7とし、溶融ガラス化し、冷却して厚さ8〜10mmの不透明な外層2を作成した。次いで型1を回転させながら平均アルミニウム濃度5ppm、平均OH基濃度が50ppmの合成シリカ粉をシリカ粉供給手段3から100g/minで供給し、溶融して厚さ1〜3mm合成石英ガラスからなる透明な内層を形成し24インチの石英ガラスルツボを10個製造した。前記合成シリカ粉の供給開始とともに水蒸気を20ml/分で30分間、計600mlを導入した。得られた石英ガラスルツボの内表面深さ方向0.8mmまでの平均OH基濃度は220ppm、平均アルミニウム濃度は5ppmであった。前記石英ガラスルツボを用いてCZ法でシリコン単結晶の引上げを行った。引上げ後のルツボ内表面のブラウンリングの個数は0.3〜0.5個/cm2にあった。また、シリコン融液表面の振動がなく、平均単結晶化率は98%と高かった。
(比較例1)
Using the apparatus shown in FIG. 1, purified high-purity natural silica powder is put into a rotating mold 1, formed into a crucible shaped body by centrifugal force, an arc electrode 6 is inserted into the crucible-shaped body, and an opening Was covered with a plate-like lid 5, and the inside cavity was made into a high-temperature gas atmosphere 7 by an arc electrode 6, melted into glass, and cooled to prepare an opaque outer layer 2 having a thickness of 8 to 10 mm. Next, while rotating the mold 1, synthetic silica powder having an average aluminum concentration of 5 ppm and an average OH group concentration of 50 ppm is supplied from the silica powder supply means 3 at 100 g / min, and is melted to be transparent made of synthetic quartz glass having a thickness of 1 to 3 mm. An inner layer was formed, and ten 24-inch quartz glass crucibles were manufactured. A total of 600 ml of water vapor was introduced at 20 ml / min for 30 minutes with the start of the supply of the synthetic silica powder. The obtained quartz glass crucible had an average OH group concentration of 220 ppm and an average aluminum concentration of 5 ppm up to 0.8 mm in the inner surface depth direction. The silicon single crystal was pulled by the CZ method using the quartz glass crucible. The number of brown rings on the inner surface of the crucible after the pulling was 0.3 to 0.5 / cm 2 . Moreover, there was no vibration of the silicon melt surface, and the average single crystallization rate was as high as 98%.
(Comparative Example 1)
実施例1において、平均アルミニウム濃度が0.1ppm以下、平均OH基濃度が50ppmの合成シリカ粉を用い、水蒸気導入を行うことなく、実施例1と同様にして24インチの石英ガラスルツボを10個製造した。得られた石英ガラスルツボの内表面深さ方向0.8mmまでの平均OH基濃度は80ppm、平均アルミニウム濃度は0.1ppm以下であった。前記石英ガラスルツボを用いてCZ法でシリコン単結晶の引上げを行った。ルツボ内表面のブラウンリングの個数は0.9〜1.1個/cm2であり、平均単結晶化率は88%であった。シリコン単結晶の引上げの初期に若干シリコン融液表面の振動がみられた。
(比較例2)
In Example 1, synthetic silica powder having an average aluminum concentration of 0.1 ppm or less and an average OH group concentration of 50 ppm was used, and 10 pieces of 24-inch quartz glass crucibles were introduced in the same manner as in Example 1 without introducing water vapor. Manufactured. The obtained quartz glass crucible had an average OH group concentration of 80 ppm up to 0.8 mm in the inner surface depth direction, and an average aluminum concentration of 0.1 ppm or less. The silicon single crystal was pulled by the CZ method using the quartz glass crucible. The number of brown rings on the inner surface of the crucible was 0.9 to 1.1 pieces / cm 2 , and the average single crystallization rate was 88%. A slight vibration of the surface of the silicon melt was observed at the initial stage of pulling the silicon single crystal.
(Comparative Example 2)
実施例1において、平均アルミニウム濃度が5ppm、平均OH基濃度が50ppmの合成シリカ粉を用い、かつ水蒸気の導入を行うことなく、実施例1と同様にして24インチの石英ガラスルツボを10個製造した。得られた石英ガラスルツボの内表面深さ方向0.8mmまでの平均OH基濃度は80ppm、平均アルミニウム濃度が5ppmであった。前記石英ガラスルツボを用いてCZ法でシリコン単結晶の引上げを行った。ルツボ内表面のブラウンリングの個数は1.0〜1.2個/cm2であり、平均単結晶化率は89%であった。比較例1に比べれば少ないが、シリコン融液表面の振動が若干みられた。
(比較例3)
In Example 1, 10 synthetic silica glass crucibles having the average aluminum concentration of 5 ppm and the average OH group concentration of 50 ppm were produced in the same manner as in Example 1 without introducing water vapor. did. The obtained quartz glass crucible had an average OH group concentration of up to 0.8 mm in the inner surface depth direction of 80 ppm and an average aluminum concentration of 5 ppm. The silicon single crystal was pulled by the CZ method using the quartz glass crucible. The number of brown rings on the inner surface of the crucible was 1.0 to 1.2 pieces / cm 2 , and the average single crystallization rate was 89%. Although there were few compared with the comparative example 1, some vibrations of the silicon melt surface were seen.
(Comparative Example 3)
実施例1において、平均アルミニウム濃度が0.1ppm以下、平均OH基濃度が50ppmの合成シリカ粉を用いた以外、実施例1と同様に水蒸気を導入して24インチの石英ガラスルツボを10個製造した。得られた石英ガラスルツボの内表面深さ方向0.8mmまでの平均OH基濃度は220ppm、平均アルミニウム濃度は0.1ppm以下であった。前記石英ガラスルツボを用いてCZ法でシリコン単結晶の引上げを行った。ルツボ内表面のブラウンリングの個数は0.9〜1.1個/cm2であり、平均単結晶化率は90%であった。比較例1、比較例2に比べれば少ないがごくわずかシリコン融液表面の振動がみられた。
(比較例4)
In Example 1, 10 24-inch quartz glass crucibles were produced by introducing water vapor in the same manner as in Example 1 except that synthetic silica powder having an average aluminum concentration of 0.1 ppm or less and an average OH group concentration of 50 ppm was used. did. The obtained quartz glass crucible had an average OH group concentration of up to 0.8 mm in the inner surface depth direction of 220 ppm and an average aluminum concentration of 0.1 ppm or less. The silicon single crystal was pulled by the CZ method using the quartz glass crucible. The number of brown rings on the inner surface of the crucible was 0.9 to 1.1 pieces / cm 2 , and the average single crystallization rate was 90%. Compared to Comparative Example 1 and Comparative Example 2, the vibration of the surface of the silicon melt was very small.
(Comparative Example 4)
図1に示す装置を用い、回転する型1内に純化処理した天然シリカ粉を投入し、遠心力によりルツボ状成形体に形成し、その内にアーク電極6を挿入し、開口部を板状の蓋体5で覆い、アーク電極6により内部キャビティー内を高温ガス雰囲気7とし、溶融ガラス化し、冷却して厚さ8〜10mmの不透明な外層2を作成した。次いで型1を回転させながら平均アルミニウム濃度が5ppmの天然シリカ粉をシリカ粉供給手段3から100g/minで供給し、溶融して厚さ1〜3mm天然石英ガラス透明内層を形成して24インチの石英ガラスルツボを10個製造した。得られた石英ガラスルツボの内表面深さ方向0.8mmまでの平均OH基濃度は50ppm、平均アルミニウム濃度は5ppmであった。前記石英ガラスルツボを用いてCZ法でシリコン単結晶の引上げを行った。ルツボ内表面のブラウンリングの個数は2.8〜4.7個/cm2であり、平均単結晶化率は68%であった。
(比較例5)
Using the apparatus shown in FIG. 1, purified natural silica powder is put into a rotating mold 1 and formed into a crucible shaped body by centrifugal force, and an arc electrode 6 is inserted therein, and the opening is plate-shaped. The inner cavity was made into a high-temperature gas atmosphere 7 by the arc electrode 6, melted into glass, and cooled to form an opaque outer layer 2 having a thickness of 8 to 10 mm. Next, while rotating the mold 1, natural silica powder having an average aluminum concentration of 5 ppm is supplied from the silica powder supply means 3 at 100 g / min and melted to form a natural quartz glass transparent inner layer having a thickness of 1 to 3 mm. Ten quartz glass crucibles were produced. The obtained quartz glass crucible had an average OH group concentration of up to 0.8 mm in the inner surface depth direction of 50 ppm and an average aluminum concentration of 5 ppm. The silicon single crystal was pulled by the CZ method using the quartz glass crucible. The number of brown rings on the inner surface of the crucible was 2.8 to 4.7 / cm 2 , and the average single crystallization rate was 68%.
(Comparative Example 5)
比較例4において、天然石英ガラスからなる透明内層を形成中、天然シリカ粉の供給開始と同時に水蒸気を20ml/分で30分間、計600mlを導入した。得られた石英ガラスルツボの内表面深さ方向0.8mmまでの平均OH基濃度は200ppm、平均アルミニウム濃度は5ppmであった。前記石英ガラスルツボを用いてCZ法でシリコン単結晶の引上げを行った。ルツボ内表面のブラウンリングの個数は3.0〜4.3/cm2であり、平均単結晶化率は74%であった。 In Comparative Example 4, while forming a transparent inner layer made of natural quartz glass, water vapor was introduced at a rate of 20 ml / min for 30 minutes simultaneously with the start of the supply of natural silica powder, for a total of 600 ml. The obtained quartz glass crucible had an average OH group concentration of 200 ppm and an average aluminum concentration of 5 ppm up to 0.8 mm in the inner surface depth direction. The silicon single crystal was pulled by the CZ method using the quartz glass crucible. The number of brown rings on the inner surface of the crucible was 3.0 to 4.3 / cm 2 , and the average single crystallization rate was 74%.
本発明のシリコン単結晶引上げ用石英ガラスルツボは、大型のシリコン単結晶を高歩留まりで引き上げることができ、シリコン単結晶の引上げの技術分野で有用である。 The silica glass crucible for pulling a silicon single crystal of the present invention can pull a large silicon single crystal with a high yield, and is useful in the technical field of pulling a silicon single crystal.
1:回転する型
2:不透明な外層
3:シリカ粉供給手段
4:水蒸気導入ノズル
5:板状の蓋体
6:アーク電極
7:高温雰囲気
8:合成石英ガラスからなる透明な内層
1: rotating mold 2: opaque outer layer 3: silica powder supply means 4: water vapor introduction nozzle 5: plate-like lid 6: arc electrode 7: high temperature atmosphere 8: transparent inner layer made of synthetic quartz glass
Claims (1)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004192684A JP4803784B2 (en) | 2004-06-30 | 2004-06-30 | Method for producing quartz glass crucible for pulling silicon single crystal |
KR1020050057032A KR100731831B1 (en) | 2004-06-30 | 2005-06-29 | Quartz glass crucible for growing silicon single crystal, and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004192684A JP4803784B2 (en) | 2004-06-30 | 2004-06-30 | Method for producing quartz glass crucible for pulling silicon single crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005231986A JP2005231986A (en) | 2005-09-02 |
JP4803784B2 true JP4803784B2 (en) | 2011-10-26 |
Family
ID=35015327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004192684A Expired - Lifetime JP4803784B2 (en) | 2004-06-30 | 2004-06-30 | Method for producing quartz glass crucible for pulling silicon single crystal |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4803784B2 (en) |
KR (1) | KR100731831B1 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100919625B1 (en) * | 2007-08-31 | 2009-09-30 | 서울대학교산학협력단 | The composition comprising the extract or purified extract of Magnolia cortex for preventing and treating fatty liver diseases, and a method for preparing purified extract |
JP4671999B2 (en) | 2007-11-30 | 2011-04-20 | ジャパンスーパークォーツ株式会社 | Test method for quartz glass crucible |
JP2011088755A (en) * | 2008-03-14 | 2011-05-06 | Japan Siper Quarts Corp | Quartz glass crucible and method for manufacturing the same |
JP5136253B2 (en) * | 2008-07-11 | 2013-02-06 | 株式会社Sumco | Method for growing silicon single crystal |
JP4975012B2 (en) | 2008-12-29 | 2012-07-11 | ジャパンスーパークォーツ株式会社 | Silica glass crucible for pulling silicon single crystal and manufacturing method thereof |
JP5043048B2 (en) * | 2009-01-21 | 2012-10-10 | 株式会社Sumco | Silica glass crucible for pulling silicon single crystal and manufacturing method thereof |
KR101079824B1 (en) | 2010-12-22 | 2011-11-03 | 노영호 | Method for fabricating quartz-crucible |
JP6681269B2 (en) * | 2016-05-19 | 2020-04-15 | クアーズテック株式会社 | Quartz glass crucible |
KR102165896B1 (en) * | 2016-09-13 | 2020-10-14 | 가부시키가이샤 사무코 | Quartz glass crucible and manufacturing method thereof |
JP6301441B2 (en) * | 2016-12-28 | 2018-03-28 | 株式会社Sumco | Method for producing silica glass crucible for pulling silicon single crystal and method for producing silicon single crystal |
CN108585450A (en) * | 2018-04-09 | 2018-09-28 | 江阴龙源石英制品有限公司 | 6 axis of one kind linkage silica crucible melting machine and its melting method |
KR102243264B1 (en) | 2018-12-13 | 2021-04-21 | 쿠어스택 가부시키가이샤 | Vitreous silica crucible and manufacturing method thereof |
CN110863241A (en) * | 2019-10-12 | 2020-03-06 | 内蒙古中环光伏材料有限公司 | Manufacturing process of quartz crucible for prolonging minority carrier lifetime of silicon single crystal |
CN114230139B (en) * | 2021-12-28 | 2024-03-29 | 宁夏盾源聚芯半导体科技股份有限公司 | Preparation device and method for improving quality of quartz crucible |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2508546B2 (en) * | 1990-08-06 | 1996-06-19 | 三菱マテリアル株式会社 | Quartz crucible for pulling silicon single crystal |
JP3124674B2 (en) * | 1993-12-28 | 2001-01-15 | 東芝セラミックス株式会社 | Method for manufacturing quartz glass crucible for pulling silicon single crystal |
JP2840195B2 (en) * | 1994-05-31 | 1998-12-24 | 信越石英株式会社 | Method for producing quartz glass crucible for single crystal pulling |
JP3764776B2 (en) * | 1996-03-18 | 2006-04-12 | 信越石英株式会社 | Quartz glass crucible for pulling single crystal and manufacturing method thereof |
JP3621282B2 (en) * | 1999-02-25 | 2005-02-16 | 東芝セラミックス株式会社 | Quartz glass crucible and method for producing the same |
JP4592037B2 (en) * | 2000-05-31 | 2010-12-01 | 信越石英株式会社 | Method for producing quartz glass crucible |
JP4447738B2 (en) * | 2000-05-31 | 2010-04-07 | 信越石英株式会社 | Method for producing a quartz glass crucible having a multilayer structure |
JP2003095678A (en) * | 2001-07-16 | 2003-04-03 | Heraeus Shin-Etsu America | Doped quartz glass crucible for producing silicon single crystal and method for manufacturing the same |
-
2004
- 2004-06-30 JP JP2004192684A patent/JP4803784B2/en not_active Expired - Lifetime
-
2005
- 2005-06-29 KR KR1020050057032A patent/KR100731831B1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
JP2005231986A (en) | 2005-09-02 |
KR20060048701A (en) | 2006-05-18 |
KR100731831B1 (en) | 2007-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4948504B2 (en) | Silicon single crystal pulling method | |
KR100818679B1 (en) | Quartz glass crucible and method for the production thereof | |
JP4803784B2 (en) | Method for producing quartz glass crucible for pulling silicon single crystal | |
JP4702898B2 (en) | Method for producing quartz glass crucible for pulling silicon single crystal | |
EP2067883B1 (en) | Method for producing a vitreous silica crucible | |
JP4678667B2 (en) | Silica glass crucible for pulling silicon single crystal and method for producing the same | |
JP4233059B2 (en) | Silica glass crucible for pulling silicon single crystal and method for producing the same | |
JP2010280567A (en) | Method for producing silica glass crucible | |
JP5741163B2 (en) | Quartz glass crucible, method for producing the same, and method for producing silicon single crystal | |
JPH02188489A (en) | Method for regenerating quartz crucible for pulling up silicon single crystal | |
JP2008162865A (en) | Quartz glass crucible | |
JP6324837B2 (en) | Manufacturing method of quartz glass crucible for pulling single crystal silicon | |
JP4549008B2 (en) | Hydrogen-doped silica powder and quartz glass crucible for pulling silicon single crystal using the same | |
JP5685894B2 (en) | Quartz glass crucible, method for producing the same, and method for producing silicon single crystal | |
JP4931106B2 (en) | Silica glass crucible | |
JPH0748200A (en) | Production of single crystal | |
US9328009B2 (en) | Vitreous silica crucible for pulling silicon single crystal, and method for manufacturing the same | |
JP2006213556A (en) | Quartz glass crucible for pulling silicon single crystal and production method therefor, and method for taking out the crucible | |
JP3123696B2 (en) | Method for manufacturing quartz glass crucible | |
JP2018035029A (en) | Quartz glass crucible producing method and quartz glass crucible | |
JP5488519B2 (en) | Quartz glass crucible, method for producing the same, and method for producing silicon single crystal | |
JP2014065621A (en) | Manufacturing method of silica glass crucible for pulling silicon single crystal and manufacturing apparatus for the same | |
JPS62167213A (en) | Production of silicon polycrystalline ingot | |
JP2017206416A (en) | Quartz glass crucible |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050617 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070601 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100831 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101004 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110126 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110415 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20110422 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110520 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110520 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110808 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110808 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4803784 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140819 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |