JP4803697B2 - Method for producing porous membrane - Google Patents

Method for producing porous membrane Download PDF

Info

Publication number
JP4803697B2
JP4803697B2 JP2003293471A JP2003293471A JP4803697B2 JP 4803697 B2 JP4803697 B2 JP 4803697B2 JP 2003293471 A JP2003293471 A JP 2003293471A JP 2003293471 A JP2003293471 A JP 2003293471A JP 4803697 B2 JP4803697 B2 JP 4803697B2
Authority
JP
Japan
Prior art keywords
porous membrane
porous
hydrophilic polymer
membrane
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003293471A
Other languages
Japanese (ja)
Other versions
JP2005042074A (en
Inventor
浩之 藤木
繁樹 小川
英明 羽原
博司 稲垣
正樹 倉科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2003293471A priority Critical patent/JP4803697B2/en
Publication of JP2005042074A publication Critical patent/JP2005042074A/en
Application granted granted Critical
Publication of JP4803697B2 publication Critical patent/JP4803697B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は、高透過係数の高い多孔質膜の製造方法に関する。   The present invention relates to a method for producing a porous membrane having a high permeability coefficient.

食品工業分野、医療分野、電子工業分野等の分野において、有用成分の濃縮、回収、不要成分の除去、或いは造水等に、セルロースアセテート、ポリアクリロニトリル、ポリスルホン等からなる精密濾過膜、限外濾過膜、逆浸透膜等が用いられており、これらの膜の多くには、湿式又は乾湿式紡糸により製造させる多孔質中空糸膜が用いられている。   Microfiltration membranes made of cellulose acetate, polyacrylonitrile, polysulfone, etc. for ultraconcentration, concentration, recovery, removal of unnecessary components, or desalination of useful components in the fields of food industry, medical field, electronics industry, etc. Membranes, reverse osmosis membranes and the like are used, and many of these membranes use porous hollow fiber membranes produced by wet or dry wet spinning.

多孔質膜に要求される性能として特に重要な性能の一つに透水性能があるが、透水性能を向上させようとした場合、一般的には膜孔径が大きくなるように紡糸原液の濃度や凝固液を調節する。湿式又は乾湿式紡糸を行う場合、原液は、疎水性ポリマー、親水性ポリマーを溶剤に溶解させたものが用いられている。   One of the particularly important performances required for porous membranes is water permeability, but when trying to improve water permeability, generally the concentration and coagulation of the spinning dope so that the membrane pore size is increased. Adjust the solution. When wet or dry wet spinning is performed, a stock solution in which a hydrophobic polymer and a hydrophilic polymer are dissolved in a solvent is used.

この際、親水性ポリマーとしては、紡糸時における原液粘度を適正な範囲に調整し、製膜状態の安定化を図るために添加されており、ポリエチレングリコールやポリビニルピロリドン等の高分子量の親水性ポリマーを用いることが多い。   At this time, the hydrophilic polymer is added to adjust the stock solution viscosity at the time of spinning to an appropriate range and stabilize the film-forming state, and has a high molecular weight hydrophilic polymer such as polyethylene glycol or polyvinylpyrrolidone. Is often used.

このような湿式又は乾湿式紡糸により製造される多孔質膜は、凝固浴を通過して凝固が完了した段階では、膜中に高分子量の親水性ポリマーが多量に残存しているため、このままでは高透水性の膜としての機能を発揮できない。そのため、凝固完了した後、膜中に残存している高分子量の親水性ポリマーを除去する必要がある。
親水性ポリマーを除去する方法としては、酸化剤又は加水分解剤を用いて親水性ポリマーを除去する方法がある(例えば、特許文献1参照)。
In such a porous membrane produced by wet or dry wet spinning, a large amount of high molecular weight hydrophilic polymer remains in the membrane at the stage where the coagulation is completed after passing through the coagulation bath. The function as a highly permeable membrane cannot be exhibited. Therefore, after completion of solidification, it is necessary to remove the high molecular weight hydrophilic polymer remaining in the film.
As a method of removing the hydrophilic polymer, there is a method of removing the hydrophilic polymer using an oxidizing agent or a hydrolyzing agent (see, for example, Patent Document 1).

多孔質膜の製造は、紡糸、凝固、洗浄までを連続して行うことにより、製造コストの低減が可能となる。この場合、洗浄を長時間行うことが必要なときには、設備を極端に大きくする必要がある。そのため高分子量の親水性ポリマーの除去をできるだけ短時間に行い、透水性能を発現させることが望まれる。   The production of the porous membrane can reduce the production cost by continuously performing spinning, coagulation, and washing. In this case, when it is necessary to perform cleaning for a long time, the equipment needs to be extremely enlarged. For this reason, it is desirable to remove the high molecular weight hydrophilic polymer in as short a time as possible to develop the water permeability.

この処理時間を短縮するためには、酸化剤等の濃度を高くすることが基本的には有効であるが、酸化剤の濃度を高くすると、酸化剤のコストアップにつながるのみならず、洗浄に使用する設備の腐食が激しくなるため、耐食性の材料を使用する必要があると共に、設備更新頻度が多くなる等により、更なるコストアップが生じるという問題がある。   In order to shorten this treatment time, it is basically effective to increase the concentration of the oxidizing agent, etc. However, increasing the concentration of the oxidizing agent not only increases the cost of the oxidizing agent, but also improves cleaning. Since corrosion of the equipment to be used becomes severe, there is a problem that it is necessary to use a corrosion-resistant material, and the cost is further increased due to an increase in the frequency of equipment replacement.

また、酸化剤水溶液の温度をオートクレーブで加圧し、100℃以上として洗浄を行う方法が知られている(例えば、特許文献2参照)。
しかしながら、オートクレーブ加圧をバッチ工程で行うと生産性が悪い。また連続工程で加圧しながら洗浄を行う場合、加圧洗浄装置の出入り口にはシール部が必要となる。こうしたシール部では多孔質膜が擦れる原因となり、多孔質膜がダメージを受けるという問題点があった。
特開平2−302449号公報 特開2002−119833号公報
In addition, a method is known in which the temperature of the oxidant aqueous solution is pressurized with an autoclave and washed at 100 ° C. or higher (see, for example, Patent Document 2).
However, productivity is poor when autoclave pressurization is performed in a batch process. Further, when cleaning is performed while applying pressure in a continuous process, a seal portion is required at the entrance / exit of the pressure cleaning apparatus. Such a seal portion has a problem that the porous membrane is rubbed and the porous membrane is damaged.
JP-A-2-302449 JP 2002-119833 A

本発明は、疎水性ポリマーと親水性ポリマーからなる多孔質膜より、親水性ポリマーを短時間で効率的に除去できる多孔質膜の製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of the porous membrane which can remove a hydrophilic polymer efficiently in a short time from the porous membrane which consists of a hydrophobic polymer and a hydrophilic polymer.

即ち本発明の要旨は、 疎水性ポリマーと親水性ポリマーとからなる多孔質膜に、酸化剤溶液を接触させて酸化剤を保持させる工程(A)と、気相中で加熱し親水性ポリマーを分解する工程(B)とを含む多孔質膜の製造方法、である。
That is, the gist of the present invention is the step (A) in which an oxidant solution is brought into contact with a porous film composed of a hydrophobic polymer and a hydrophilic polymer to hold the oxidant, and the hydrophilic polymer is heated in a gas phase. A method for producing a porous membrane comprising a step (B) of decomposing.

本発明の多孔質膜の製造方法は、疎水性ポリマーと親水性ポリマーとからなる多孔質膜を酸化剤溶液と接触させた後、気相中で加熱することにより、親水性ポリマーを短時間で効率的に除去できる。また、酸化分解に使用する酸化剤の使用量を少なくする事が可能となり、効率のよい洗浄が可能となる。
また、本発明は、連続処理としての使用に適した製造方法を提供できる。さらに、廃液量も軽減できることから、廃液処理への負荷も小さく、環境への影響が小さい方法である。
In the method for producing a porous membrane of the present invention, a porous membrane comprising a hydrophobic polymer and a hydrophilic polymer is brought into contact with an oxidant solution, and then heated in a gas phase, whereby the hydrophilic polymer can be obtained in a short time. Can be removed efficiently. In addition, the amount of oxidant used for oxidative decomposition can be reduced, and efficient cleaning can be achieved.
Moreover, this invention can provide the manufacturing method suitable for use as a continuous process. Furthermore, since the amount of waste liquid can be reduced, the load on waste liquid treatment is small, and the method has little impact on the environment.

以下、中空糸膜の製造方法を例に、本発明の実施の形態を説明する。
なお、本発明により製造される多孔質膜は、中空糸膜の形態に限定されるものではなく、平膜、管状膜等であってもよい。
Hereinafter, an embodiment of the present invention will be described by taking a hollow fiber membrane manufacturing method as an example.
In addition, the porous membrane manufactured by this invention is not limited to the form of a hollow fiber membrane, A flat membrane, a tubular membrane, etc. may be sufficient.

本発明における多孔質膜の製造方法は、中空糸膜に賦形可能な疎水性ポリマーを溶媒に溶解し、この溶液を紡糸原液として、紡糸口金より一旦空気中に紡出した後、疎水性ポリマーの非溶媒中に導き、非溶媒中で凝固させる乾湿式紡糸法が好ましく用いられる。上記工程の他、延伸工程等を含んでも構わないし、空気中に紡糸せずに非溶媒中に直接吐出させても構わない。   In the method for producing a porous membrane in the present invention, a hydrophobic polymer that can be shaped into a hollow fiber membrane is dissolved in a solvent, this solution is used as a spinning stock solution, and is once spun into the air from a spinneret. A dry-wet spinning method is preferably used, which is introduced into a non-solvent and solidified in the non-solvent. In addition to the above steps, a stretching step or the like may be included, or the fibers may be discharged directly into a non-solvent without spinning in the air.

紡糸口金としては、中空糸膜状に賦形し得る任意の紡糸口金が用いられ、例えば二重環状ノズル等を用いることができる。このとき、紡糸口金の中心部に疎水性ポリマーの非溶媒を送り、中空糸膜の内表面を凝固させるようにしてもよい。
また、中空部に溶剤を送り、内部の凝固状態を制御し、孔径の調整を行ってもよい。
As the spinneret, any spinneret that can be shaped into a hollow fiber membrane is used. For example, a double annular nozzle or the like can be used. At this time, a non-solvent of a hydrophobic polymer may be sent to the center portion of the spinneret to solidify the inner surface of the hollow fiber membrane.
Moreover, a solvent may be sent to a hollow part, an internal solidification state may be controlled, and a hole diameter may be adjusted.

本発明に使われる疎水性ポリマーは、湿式、乾湿式紡糸により多孔質中空糸膜を形成し得るものであれば特に限定されるものではなく、ポリスルホンやポリエーテルスルホンなどのポリスルホン系樹脂、ポリアクリロニトリル、セルロース誘導体、ポリフッ化ビニリデンなどのフッ素系樹脂、ポリアミド、ポリエステル、ポリメタクリレート、ポリアクリレートなどが挙げられる。また、これらの樹脂の共重合体や一部に置換基を導入したものであってもよい。さらに、2種以上の樹脂を混合したものであってもよい。   The hydrophobic polymer used in the present invention is not particularly limited as long as it can form a porous hollow fiber membrane by wet and dry wet spinning. Polysulfone resins such as polysulfone and polyethersulfone, and polyacrylonitrile are not limited. , Fluorocarbon resins such as cellulose derivatives and polyvinylidene fluoride, polyamides, polyesters, polymethacrylates, and polyacrylates. In addition, copolymers of these resins or those having a substituent introduced into a part thereof may be used. Furthermore, what mixed 2 or more types of resin may be used.

特にフッ素系樹脂、中でもポリフッ化ビニリデンは、次亜塩素酸塩等の酸化剤に対する耐久性が強く、本発明の製造方法に好ましく用いることができる。   In particular, fluororesin, especially polyvinylidene fluoride, has high durability against oxidizing agents such as hypochlorite and can be preferably used in the production method of the present invention.

本発明における紡糸原液は、疎水性ポリマーを溶媒に均一に溶解させて用いる。この際、疎水性ポリマーの濃度は、薄すぎても、濃すぎても、紡糸安定性が損なわれ、望ましい多孔質構造が得られ難くなる傾向にあるため、下限は10質量%が好ましく、15質量%がより好ましい。また、上限は30質量%が好ましく、25質量%がより好ましい。   The spinning dope in the present invention is used by uniformly dissolving a hydrophobic polymer in a solvent. At this time, if the concentration of the hydrophobic polymer is too thin or too thick, the spinning stability tends to be impaired, and a desirable porous structure tends to be hardly obtained. The mass% is more preferable. Further, the upper limit is preferably 30% by mass, and more preferably 25% by mass.

また、紡糸原液には、相分離を制御するための添加剤として、ポリビニルピロリドン、ポリエチレングリコール、ポリビニルアセテート、ポリビニルアルコールなどの親水性ポリマーを疎水性ポリマーと共に溶解させる。親水性ポリマーの濃度としては、下限は1質量%が好ましく、5質量%がより好ましい。また、上限は20質量%が好ましく、12質量%がより好ましい。   In the spinning dope, hydrophilic polymers such as polyvinyl pyrrolidone, polyethylene glycol, polyvinyl acetate, and polyvinyl alcohol are dissolved together with the hydrophobic polymer as an additive for controlling phase separation. As a density | concentration of a hydrophilic polymer, 1 mass% is preferable and, as for the minimum, 5 mass% is more preferable. Further, the upper limit is preferably 20% by mass, and more preferably 12% by mass.

添加される親水性ポリマーは低分子量であってもよいが、高分子量の親水性ポリマーを用いることが、望ましい多孔質構造を得やすくなるため好ましい。一方、低分子量の親水性ポリマーは、水洗浄だけでも除去することができるという利点を有する。   The hydrophilic polymer to be added may have a low molecular weight, but it is preferable to use a high molecular weight hydrophilic polymer because a desired porous structure is easily obtained. On the other hand, the low molecular weight hydrophilic polymer has an advantage that it can be removed only by washing with water.

従って、本発明の製造方法においては、分子量が100,000を超える親水性ポリマーを用いることが好ましく、分子量が1,000,000を超える親水性ポリマーを用いることがより好ましい。   Therefore, in the production method of the present invention, it is preferable to use a hydrophilic polymer having a molecular weight exceeding 100,000, and it is more preferable to use a hydrophilic polymer having a molecular weight exceeding 1,000,000.

本発明に使われる溶媒は、親水性ポリマー及び疎水性ポリマーを溶解し得るものであれば特に限定されるものではないが、乾湿式紡糸の空走部において原液に吸湿させることから、水と均一に混合可能なものが好ましく、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、N−メチル−2−ピロリドン、N−メチルモルホリン−N−オキシドなどが挙げられ、これらの単独又は混合物、或いはこれら溶媒に、その溶解性を損なわない範囲で非溶媒を加えたものが好ましく用いられる。   The solvent used in the present invention is not particularly limited as long as it can dissolve the hydrophilic polymer and the hydrophobic polymer. However, since the stock solution absorbs moisture in the dry running part of the dry and wet spinning, it is uniform with water. N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, N-methylmorpholine-N-oxide, etc. may be used alone or in combination. A mixture or a mixture obtained by adding a non-solvent to these solvents as long as the solubility is not impaired is preferably used.

なお、ここでいう非溶媒とは、疎水性ポリマーが溶解しない液体をいう。非溶媒としては、水、アルコール類、グリセリン、エチレングリコール等を用いることができ、中でも水が最も好ましい。   The non-solvent here refers to a liquid in which the hydrophobic polymer does not dissolve. As the non-solvent, water, alcohols, glycerin, ethylene glycol and the like can be used, and water is most preferable among them.

紡糸口金から吐出された原液は、空走部を経た後、凝固浴中の非溶媒と接触することにより、多孔質中空糸膜が形成される。凝固浴に使用する非溶媒には、水、アルコール類、グリセリン、エチレングリコール等を、単独或いは混合して用いることができる。また、前述の溶媒を混合させてもよい。   The stock solution discharged from the spinneret passes through the idle running portion, and then comes into contact with the non-solvent in the coagulation bath to form a porous hollow fiber membrane. As the non-solvent used in the coagulation bath, water, alcohols, glycerin, ethylene glycol or the like can be used alone or in combination. Moreover, you may mix the above-mentioned solvent.

以上のような条件で紡糸された多孔質中空糸膜は、孔径が大きく高透水性能を潜在的に有しているが、凝固が完了した段階では、膜中に高分子量の親水性ポリマーが多量に残存しているため、このままでは高透水性の膜としての機能を発揮できない。そのため、凝固完了段階で膜中に残存している高分子量の親水性ポリマーを除去する。   Porous hollow fiber membranes spun under the above conditions have a large pore size and potentially have high water permeability. However, when solidification is completed, a large amount of high molecular weight hydrophilic polymer is present in the membrane. Therefore, the function as a highly water-permeable film cannot be exhibited as it is. Therefore, the high molecular weight hydrophilic polymer remaining in the film is removed at the stage of completion of solidification.

多孔質膜中に残存する親水性ポリマーは、以下の3通りの存在形態が考えられる。
1.分子鎖の全てが多孔質膜基材中に埋没している。
2.分子鎖の全てが細孔部等の表面に存在している。
3.分子鎖の一部は細孔部等の表面に存在し、他は多孔質膜基材中に埋没している。
As the hydrophilic polymer remaining in the porous membrane, the following three forms of existence are conceivable.
1. All of the molecular chains are buried in the porous membrane substrate.
2. All of the molecular chains are present on the surface such as the pores.
3. Part of the molecular chain is present on the surface of the pores and the like, and the other is buried in the porous membrane substrate.

これらのうち、前記2の状態にある親水性ポリマーは、比較的容易に除去され得ることから、工程(A)の前に、まず多孔質膜を洗浄液で洗浄する工程(C)を行うことが好ましい。   Among these, the hydrophilic polymer in the state 2 can be removed relatively easily. Therefore, before the step (A), first, the step (C) of washing the porous membrane with a washing solution is performed. preferable.

工程(C)に使用する洗浄液は、清澄で親水性ポリマーが溶解する液体であれば特に限定されるものではないが、洗浄効果が高いことから水が好ましい。
使用する水としては、水道水、工業用水、河川水、井戸水等が挙げられ、これらにアルコール、無機塩類、酸化剤、界面活性剤等を混ぜても構わない。
The cleaning liquid used in the step (C) is not particularly limited as long as it is a clear liquid in which the hydrophilic polymer is dissolved, but water is preferable because of its high cleaning effect.
Examples of water to be used include tap water, industrial water, river water, well water, and the like, and alcohols, inorganic salts, oxidizing agents, surfactants, and the like may be mixed therewith.

また、疎水性ポリマーの溶媒と水との混合物を洗浄液として用いることもできる。この場合、多孔質膜基材となる疎水性ポリマーを膨潤状態にする事により、前記2の状態に加え、前記3の状態にある親水性ポリマーの溶出を容易にすることができる。このとき、疎水性ポリマーの溶媒の割合が高いほどその効果は大きくなるが、高すぎると多孔質膜が溶解してしまうため、混合物中に占める疎水性ポリマーの溶媒の割合の上限は85%が好ましく、70%がより好ましい。   Also, a mixture of a hydrophobic polymer solvent and water can be used as the cleaning liquid. In this case, by making the hydrophobic polymer serving as the porous membrane substrate into a swollen state, the elution of the hydrophilic polymer in the third state can be facilitated in addition to the second state. At this time, the higher the proportion of the hydrophobic polymer solvent, the greater the effect. However, if it is too high, the porous membrane will dissolve, so the upper limit of the proportion of the hydrophobic polymer solvent in the mixture is 85%. Preferably, 70% is more preferable.

工程(C)での洗浄は、多孔質膜を洗浄液中に浸漬するだけで可能であるが、溶出拡散が律速となるため、高温液や脱気水を使用したり、バブリングやカスケード処理を行って濃度勾配を大きくしたり、洗浄液を強制的に流す等、溶出拡散の効果を高めることが好ましい。これらの処理は、単独で行ってもよいが、併用して行うことがより好ましい。   Cleaning in the step (C) is possible only by immersing the porous membrane in the cleaning liquid. However, since elution and diffusion are rate-limiting, high temperature liquid or degassed water is used, bubbling or cascade processing is performed. It is preferable to increase the elution diffusion effect, for example, by increasing the concentration gradient or forcing the washing solution to flow. These treatments may be performed alone, but are more preferably performed in combination.

工程(C)の洗浄温度は、親水性ポリマーが溶出した液の粘度を低く押えて、溶出速度の低下を防ぐため、高温にすることが好ましい。このため、洗浄温度は50℃以上が好ましく、より好ましくは80℃以上である。さらに、洗浄液を沸騰させながら洗浄を行うことにより、沸騰によるバブリングによって膜の外表面を掻き取ることもできるため、効率のよい洗浄が可能となる。   The washing temperature in the step (C) is preferably set to a high temperature in order to suppress the viscosity of the liquid from which the hydrophilic polymer is eluted and to prevent the elution rate from being lowered. For this reason, the washing temperature is preferably 50 ° C. or higher, more preferably 80 ° C. or higher. Further, by performing cleaning while boiling the cleaning liquid, it is possible to scrape the outer surface of the film by bubbling by boiling, so that efficient cleaning is possible.

工程(C)における洗浄時間は、紡糸原液の組成、膜の構造によって適宜設定されるが、連続処理を行う場合には、5分以下とすることが好ましく、3分以下がより好ましく、1分以下がさらに好ましい。   The washing time in the step (C) is appropriately set depending on the composition of the spinning dope and the structure of the membrane. However, when performing the continuous treatment, it is preferably 5 minutes or less, more preferably 3 minutes or less, and 1 minute. The following is more preferable.

次に、除去が比較的困難な、分子鎖の一部が細孔部等の表面に存在し、他は多孔質膜基材中に埋没している親水性ポリマー(前記3の状態)を除去するため、酸化剤を用いて親水性ポリマーの分解を行う。まず、多孔質膜を酸化剤と接触させ、多孔質膜に酸化剤を保持させる工程(A)を行う。これにより、多孔質膜の微細孔部に酸化剤を浸透させるか、あるいは多孔質膜表面に存在する親水性ポリマーに酸化剤を吸収膨潤させて、酸化剤を多孔質膜中に保持させる。
なお、分子鎖の全てが多孔質膜基材中に埋没している親水性ポリマー(前記1の状態)は、このような酸化剤による処理を行っても除去できないが、多孔質膜基材中に分子鎖の全てが埋没しているため、膜の透過性能に影響を及ぼすことはない。
Next, removal of the hydrophilic polymer (state 3), which is relatively difficult to remove, has a part of the molecular chain on the surface such as the pores and the other is buried in the porous membrane substrate. Therefore, the hydrophilic polymer is decomposed using an oxidizing agent. First, the step (A) is performed in which the porous film is brought into contact with an oxidant to hold the oxidant in the porous film. As a result, the oxidant is permeated into the micropores of the porous film, or the oxidant is absorbed and swollen by the hydrophilic polymer existing on the surface of the porous film, and the oxidant is held in the porous film.
It should be noted that the hydrophilic polymer in which all of the molecular chains are buried in the porous membrane substrate (the state 1) cannot be removed even if the treatment with such an oxidizing agent is performed. In addition, since all of the molecular chains are buried, the permeation performance of the membrane is not affected.

使用する酸化剤は、オゾン、過酸化水素、過マンガン酸塩、重クロム酸塩、過硫酸塩等を使用することもできるが、酸化力が強く分解性能に優れること、取扱い性に優れること、安価なことより次亜塩素酸塩が好ましい。次亜塩素酸塩としては、次亜塩素酸ナトリウム、次亜塩素酸カルシウムなどがあげられるが、特に次亜塩素酸ナトリウムが好ましい。   Oxidizing agent used can be ozone, hydrogen peroxide, permanganate, dichromate, persulfate, etc., but it has strong oxidizing power and excellent decomposition performance, excellent handling properties, Hypochlorite is preferable because it is inexpensive. Examples of the hypochlorite include sodium hypochlorite and calcium hypochlorite, and sodium hypochlorite is particularly preferable.

これら酸化剤は、通常水溶液として使用されるが、水溶液中で親水性ポリマーの分解を行うと、分解された親水性ポリマーが酸化剤水溶液中に溶出して酸化剤を消費するので、酸化剤水溶液の濃度を維持するために、酸化剤を追加しながら行う必要がある。   These oxidizing agents are usually used as aqueous solutions. However, when the hydrophilic polymer is decomposed in the aqueous solution, the decomposed hydrophilic polymer is eluted into the oxidizing agent aqueous solution and consumes the oxidizing agent. In order to maintain the concentration of oxidant, it is necessary to carry out the process while adding an oxidizing agent.

これに対し、本発明のように酸化剤を多孔質膜に保持させたあと、気相中で加熱することにより親水性ポリマーの分解を行うと、酸化剤水溶液中に親水性ポリマーが溶出しないので、酸化剤が無駄に消費されることがなく、より効率的である。   In contrast, if the hydrophilic polymer is decomposed by heating in the gas phase after the oxidant is held in the porous film as in the present invention, the hydrophilic polymer does not elute in the aqueous oxidant solution. The oxidant is not wasted and is more efficient.

多孔質膜に酸化剤を保持させるにあたっては、酸化剤を含む水溶液に多孔質膜を浸漬させることが、必要な量の酸化剤を多孔質膜中に確実に保持させることができるため好ましい。より多くの酸化剤を多孔質膜に保持させるために、浸漬を行う前に多孔質膜を乾燥させてもよい。
浸漬させる方法のほかには、ローラー表面に酸化剤をつけ、多孔質膜をローラーに巻きつけながら酸化剤と接触させ、保持させる方法を用いることもできる。
In holding the oxidizing agent in the porous membrane, it is preferable to immerse the porous membrane in an aqueous solution containing the oxidizing agent because a necessary amount of the oxidizing agent can be reliably held in the porous membrane. In order to retain more oxidizing agent in the porous membrane, the porous membrane may be dried before immersion.
In addition to the dipping method, it is also possible to use a method in which an oxidizing agent is attached to the roller surface, and the porous membrane is brought into contact with the oxidizing agent while being wound around the roller and held.

この工程(A)は、中空糸膜中に酸化剤を保持させることが目的であり、分解が極力起こらないよう諸条件を設定することが好ましい。従って、酸化剤水溶液の温度は、50℃以下の低温にすることが好ましく、30℃以下がより好ましい。50℃より高温にした場合、多孔質膜の浸漬中に酸化分解反応が促進され、酸化剤水溶液中に脱落した親水性ポリマーの更なる酸化分解が進む事になり、酸化剤水溶液の更新負荷及び廃液処理負荷が増加する。   The purpose of this step (A) is to retain the oxidizing agent in the hollow fiber membrane, and it is preferable to set various conditions so that decomposition does not occur as much as possible. Therefore, the temperature of the oxidizing agent aqueous solution is preferably a low temperature of 50 ° C. or lower, and more preferably 30 ° C. or lower. When the temperature is higher than 50 ° C., the oxidative decomposition reaction is accelerated during the immersion of the porous membrane, and the further oxidative decomposition of the hydrophilic polymer dropped into the oxidant aqueous solution proceeds. The waste liquid treatment load increases.

一方、低温では分解反応は低下するものの、あまり低温にまで冷却すると、常温で行う製造工程と比較して、ユーティリティ使用量が増加し、コスト高の一因となるため、酸化剤水溶液の温度は0℃以上が好ましく、10℃以上がより好ましい。
また、酸化剤として次亜塩素酸塩を用いる場合、分解を極力抑えるためには、酸化剤水溶液のpHを11以上とすることが好ましい。
On the other hand, although the decomposition reaction decreases at low temperatures, cooling to a very low temperature increases utility usage and contributes to higher costs compared to the manufacturing process performed at room temperature. 0 degreeC or more is preferable and 10 degreeC or more is more preferable.
Moreover, when using hypochlorite as an oxidizing agent, in order to suppress decomposition as much as possible, it is preferable that the pH of the oxidizing agent aqueous solution is 11 or more.

工程(A)において、多孔質膜と酸化剤の接触時間は、前述の洗浄工程(C)と同様に、紡糸原液の組成、膜の構造によって適宜設定されるが、紡出からの連続処理を行う場合には、2分間以下とすることが好ましく、1分間以下とすることがより好ましい。   In the step (A), the contact time between the porous membrane and the oxidizing agent is appropriately set according to the composition of the spinning stock solution and the membrane structure, as in the above-described washing step (C). When performing, it is preferable to set it as 2 minutes or less, and it is more preferable to set it as 1 minute or less.

酸化剤水溶液中の酸化剤の濃度は、ピックアップ量を少量とし、次工程の酸化分解処理で極力無駄なく酸化剤を消費させることから、適切な範囲とする必要があり、次亜塩素酸塩を使用する場合、有効塩素濃度の下限は2000mg/L以上が好ましく、5000mg/L以上がより好ましい。上限は、120000mg/L以下が好ましく、10000mg/L以下がより好ましい。   The concentration of the oxidizer in the oxidizer aqueous solution needs to be in an appropriate range because the pickup amount is small and the oxidizer is consumed as much as possible in the oxidative decomposition treatment in the next step. When used, the lower limit of the effective chlorine concentration is preferably 2000 mg / L or more, more preferably 5000 mg / L or more. The upper limit is preferably 120,000 mg / L or less, and more preferably 10,000 mg / L or less.

多孔質膜に酸化剤を保持させる工程(A)を経たあと、気相中で加熱する工程(B)を行うことにより、親水性ポリマーの分解を行う。
工程(B)での加熱は、大気圧下で加熱流体を用いて行うことが好ましい。大気圧下での加熱は、連続処理を行う場合、中空糸膜の出入り口に特殊なシール装置が不要で、装置本体も耐圧構造を必要としないため、装置メリットが大きく、操作性も非常に優れている。
The hydrophilic polymer is decomposed by performing the step (B) of heating in the gas phase after the step (A) of holding the oxidizing agent in the porous membrane.
The heating in the step (B) is preferably performed using a heating fluid under atmospheric pressure. Heating under atmospheric pressure does not require a special sealing device at the entrance and exit of the hollow fiber membrane, and the device body does not require a pressure-resistant structure, so the merit of the device is great and the operability is very good. ing.

乾燥空気を用いて加熱を行うと、乾燥処理を兼ねることが可能で、工程簡略のメリットがあり好ましい。また、加熱温度も多孔質膜基材が変質しない程度まで高温での処理が可能となる。しかしながら、乾燥空気中で加熱すると、多孔質膜は数分で乾燥してしまい、次亜塩素酸塩は乾燥状態では分解力が無い。このため分解すべき親水性ポリマー量が多く、分解処理に時間がかかるような場合には、水蒸気を含んだ空気中での加熱が、次亜塩素酸塩が分解力を保ち、効率的な分解処理が可能となるため好ましい。   Heating using dry air is preferable because it can also serve as a drying process and has the advantage of simplifying the process. In addition, the heating temperature can be processed at a high temperature to such an extent that the porous membrane substrate does not change in quality. However, when heated in dry air, the porous membrane dries in a few minutes, and hypochlorite has no decomposability in the dry state. For this reason, when the amount of hydrophilic polymer to be decomposed is large and the decomposition process takes a long time, heating in air containing water vapor reduces the decomposition efficiency of hypochlorite while maintaining the decomposition power. It is preferable because it can be processed.

多孔質膜に含まれる次亜塩素酸塩水溶液は、濃度が大きく希釈されたり、加熱媒体中へ脱落溶出する事がほとんど無いため、多孔質膜中に存在する親水性ポリマーの分解に効率よく使用される。   The hypochlorite aqueous solution contained in the porous membrane can be used efficiently in decomposing the hydrophilic polymer present in the porous membrane because the concentration of the hypochlorite solution is not greatly diluted or almost falls off and elutes into the heating medium. Is done.

加熱を湿熱条件で行う際は、湿度は相対湿度として80%以上が好ましく、90%以上とすることがより好ましく、100%近傍とするのが最も好ましい。加熱温度の下限は、連続処理を行う場合処理時間を短くできることから50℃以上とすることが好ましく、80℃以上がより好ましい。温度の上限は、大気圧状態では100℃である。   When heating is performed under wet heat conditions, the relative humidity is preferably 80% or higher, more preferably 90% or higher, and most preferably near 100%. The lower limit of the heating temperature is preferably 50 ° C. or higher, and more preferably 80 ° C. or higher because the processing time can be shortened when continuous processing is performed. The upper limit of the temperature is 100 ° C. in the atmospheric pressure state.

工程(B)の処理時間は、紡糸原液組成や、膜構造、分解物の量といった種々の諸条件により適宜設定されるが、連続処理を行う場合には、処理時間の上限は5分以下が好ましく、3分以下がより好ましい。
処理時間の下限は、短すぎると親水性ポリマーの分解が不十分となる傾向にあるため、1分以上が好ましい。
The processing time of the step (B) is appropriately set according to various conditions such as the composition of the spinning dope, the membrane structure, and the amount of the decomposed product. Preferably, 3 minutes or less is more preferable.
If the lower limit of the treatment time is too short, the hydrophilic polymer tends to be insufficiently decomposed.

工程(B)を行った後、多孔質膜を洗浄液で洗浄する工程(D)を行うことにより、低分子化された親水性ポリマーを多孔質膜から効率的に除去することができる。   After performing the step (B), by performing the step (D) of washing the porous membrane with a washing liquid, the hydrophilic polymer having a reduced molecular weight can be efficiently removed from the porous membrane.

この工程(D)に使用する洗浄液としては、前述の工程(C)における洗浄液と同様に、水又は疎水性ポリマーの溶媒と水との混合物を用いることができる。疎水性ポリマーの溶媒と水の混合物を用いる場合、その比率は前述の工程(C)と同様の範囲とすればよい。   As the cleaning liquid used in this step (D), water or a mixture of a solvent of a hydrophobic polymer and water can be used as in the cleaning liquid in the above-mentioned step (C). When a mixture of a hydrophobic polymer solvent and water is used, the ratio may be in the same range as in step (C) described above.

工程(D)の洗浄時間は、多孔質膜の組成や構造、親水性ポリマーの分解物の量等によって適宜設定されるが、連続処理を行う場合には、処理時間の上限は10分以下が好ましい。また、処理時間の下限は、短すぎると親水性ポリマーの分解が不十分となる傾向にあるため、5分以上が好ましい。   The washing time in the step (D) is appropriately set depending on the composition and structure of the porous membrane, the amount of the hydrolyzed polymer degradation product, etc., but when performing continuous treatment, the upper limit of the treatment time is 10 minutes or less. preferable. Moreover, since the minimum of processing time exists in the tendency for decomposition | disassembly of a hydrophilic polymer to become insufficient when too short, 5 minutes or more are preferable.

また、前述の工程(C)における洗浄と同様に、溶出拡散が洗浄の律速となるため、高温液や脱気水を使用したり、バブリングやカスケード処理を行って濃度勾配を大きくしたり、洗浄液を強制的に流す等、溶出拡散の効果を高めることが好ましい。これらの処理は、単独で行ってもよいが、併用して行うことがより好ましい。   In addition, as with the washing in the above-mentioned step (C), since elution diffusion becomes the rate-limiting of washing, high temperature liquid or degassed water is used, concentration gradient is increased by bubbling or cascade treatment, and washing liquid It is preferable to enhance the effect of elution diffusion, such as forcibly flowing. These treatments may be performed alone, but are more preferably performed in combination.

工程(D)の洗浄温度は、工程(C)と同様に50℃以上が好ましく、より好ましくは80℃以上である。   The washing temperature in the step (D) is preferably 50 ° C. or higher, more preferably 80 ° C. or higher, as in the step (C).

また、工程(C)と同様に洗浄液体を沸騰させながら洗浄を行うと、沸騰によるバブリングによって膜の外表面を掻き取る効果もあり、効率のよい洗浄が可能となる。   Further, when the cleaning liquid is boiled in the same manner as in the step (C), there is an effect of scraping the outer surface of the film by bubbling due to boiling, and efficient cleaning becomes possible.

本発明の多孔質膜の製造方法は、多孔質膜に酸化剤を保持させる工程(A)と、気相中で加熱する工程(B)とを行うことによって効率的に親水性ポリマーの分解を行うことができるが、多孔質膜の表面の孔径が小さい場合や、緻密層を二層以上有する場合は、工程(A)において酸化剤が多孔質膜内部に含浸し難く、酸化剤のピックアップ量が少なくなると共に、多孔質膜内部に酸化剤が十分に保持されないため、工程(B)において親水性ポリマーの分解が充分に行われなくなる場合がある。   In the method for producing a porous membrane of the present invention, the hydrophilic polymer is efficiently decomposed by performing the step (A) for holding the oxidizing agent in the porous membrane and the step (B) for heating in the gas phase. However, if the pore diameter on the surface of the porous membrane is small or if there are two or more dense layers, it is difficult for the oxidizing agent to impregnate the porous membrane in the step (A), and the amount of the oxidizing agent picked up In addition, since the oxidizing agent is not sufficiently retained inside the porous membrane, the hydrophilic polymer may not be sufficiently decomposed in the step (B).

このような場合、工程(A)、工程(B)の順に、少なくとも工程(A)及び工程(B)を複数回繰り返して行うことが、親水性ポリマーの分解をより効率的に行うことができるため好ましい。
また、工程(A)、工程(B)、工程(D)の順に、これら3つの工程を複数回繰り返すことによって、工程(A)と工程(B)を複数回繰り返してもよい。
In such a case, it is possible to more efficiently decompose the hydrophilic polymer by repeating at least the step (A) and the step (B) a plurality of times in the order of the step (A) and the step (B). Therefore, it is preferable.
Moreover, you may repeat a process (A) and a process (B) in multiple times by repeating these three processes in order of a process (A), a process (B), and a process (D).

工程(A)における酸化剤と多孔質膜との接触時間を充分長くし、工程(B)における親水性ポリマーの分解を行うこともできるが、その分解効率は、工程(A)及び工程(B)を繰り返して処理を行う場合のほうが高い。   The contact time between the oxidizing agent and the porous membrane in the step (A) can be made sufficiently long, and the hydrophilic polymer in the step (B) can be decomposed. However, the decomposition efficiency is determined by the steps (A) and (B ) Is repeated for processing.

上記のように工程を繰り返して行う回数としては、例えば多孔質膜表面の孔径が0.4μm以下の場合や、緻密層を二層以上有する場合には、2回以上が好ましい。繰り返し回数をある回数以上行うと、分解可能な親水性ポリマーは実質的に分解されるため、それ以上繰り返してもその効果は向上しないため、繰り返し回数の上限としては4回程度とすることが好ましい。   As the number of times the process is repeated as described above, for example, when the pore diameter on the surface of the porous membrane is 0.4 μm or less, or when two or more dense layers are provided, it is preferably twice or more. If the number of repetitions is more than a certain number, the degradable hydrophilic polymer is substantially decomposed, and the effect is not improved even if the number of repetitions is repeated further. Therefore, the upper limit of the number of repetitions is preferably about 4 times. .

一方、多孔質膜の表面の孔径が0.4μmを超える場合、このような工程の繰り返しは必ずしも必要では無く、繰り返して行う場合でも、2回行えば充分である。   On the other hand, when the pore diameter on the surface of the porous membrane exceeds 0.4 μm, it is not always necessary to repeat such a process, and even if it is repeated, it is sufficient to perform it twice.

多孔質膜中に残存する親水性ポリマーの量は、多すぎると透水性能の低下を招くが、全く存在しないと多孔質膜が疎水性となるため、水系の液体の濾過を行う場合は、濾過前に多孔質膜をアルコール等に浸漬させるなどの親水化処理が必要となる。一方、多孔質膜中に親水性ポリマーが適度な量で残存すると、親水化処理を行わなくても水系の液体の濾過を行うことが可能となる。   If the amount of the hydrophilic polymer remaining in the porous membrane is too large, the water permeation performance is deteriorated, but if it is not present at all, the porous membrane becomes hydrophobic. A hydrophilic treatment such as immersing the porous membrane in alcohol or the like is necessary. On the other hand, when the hydrophilic polymer remains in an appropriate amount in the porous membrane, it is possible to filter the aqueous liquid without performing the hydrophilic treatment.

本発明の製造方法は、前述の工程(A)、(B)、(C)、(D)の処理条件を適宜調整することにより、多孔質膜に残存する親水性ポリマーの量を制御することが可能である。例えば、工程(A)、(B)による親水性ポリマーの分解を緩和な条件とすることにより多孔質膜に所望する量の親水性ポリマーを残存させることができる。   The production method of the present invention controls the amount of the hydrophilic polymer remaining in the porous membrane by appropriately adjusting the processing conditions of the above-mentioned steps (A), (B), (C), and (D). Is possible. For example, a desired amount of the hydrophilic polymer can be left in the porous membrane by setting the decomposition of the hydrophilic polymer in the steps (A) and (B) under mild conditions.

また、工程(A)、(B)で親水性ポリマーを分解させた後、工程(D)の洗浄条件を適宜調整することにより、多孔質膜中に分解された親水性ポリマーを所望の量残存させることもできる。この場合、多孔質膜中に親水性ポリマーをあまり多く残存させると、洗浄後に行われる乾燥処理において、分解された親水性ポリマーが膜外表面に濃縮されやすく、膜性能の低下を招きやすくなる。   In addition, after decomposing the hydrophilic polymer in the steps (A) and (B), a desired amount of the decomposed hydrophilic polymer remains in the porous membrane by appropriately adjusting the washing conditions in the step (D). It can also be made. In this case, if too much hydrophilic polymer is left in the porous membrane, the decomposed hydrophilic polymer is likely to be concentrated on the outer surface of the membrane in the drying process performed after washing, and the membrane performance is likely to deteriorate.

また、親水性ポリマーとしてポリビニルピロリドンのようなガラス転移温度の高いポリマーを用いた場合、膜表面に濃縮された親水性ポリマーが被膜を形成し、曲げ等によりこの被膜が破壊され、同時に多孔質体も破壊されることにより、膜に欠陥点を生じさせることがある。   In addition, when a polymer having a high glass transition temperature such as polyvinylpyrrolidone is used as the hydrophilic polymer, the hydrophilic polymer concentrated on the film surface forms a film, and this film is destroyed by bending or the like, and at the same time, the porous body. Can also cause defects in the film.

以上のことを考慮すると、多孔質膜中に占める親水性ポリマーの割合は、5質量%以下であることが好ましく、3質量%以下であることがより好ましい。   Considering the above, the ratio of the hydrophilic polymer in the porous membrane is preferably 5% by mass or less, and more preferably 3% by mass or less.

一方、親水化処理なしで水系の液体の濾過を行うためには、多孔質膜中に占める親水性ポリマーの割合は、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましい。   On the other hand, in order to perform filtration of an aqueous liquid without hydrophilization treatment, the ratio of the hydrophilic polymer in the porous membrane is preferably 0.1% by mass or more, and 0.5% by mass or more. More preferably.

多孔質膜中に占める親水性ポリマーの割合は、赤外分光光度計を用い、吸光度スペクトルより疎水性ポリマーの吸収強度と、親水性ポリマーの吸収強度との比を求めることにより測定することができる。
なお、多孔質膜が例えば組紐のような支持体と複合化されているような場合は、以下の1〜3のような手順にて多孔質膜のみを抽出し、多孔質膜中に占める親水性ポリマーの割合を求めればよい。ここでは、疎水性ポリマーがポリフッ化ビニリデン、親水性ポリマーがポリビニルピロリドンの場合を例としている。
1.多孔質膜を溶剤(N,N−ジメチルアセトアミド)に溶解したのち、得られた溶液をガラス板上で蒸発乾固させ、厚さおよそ20μm程度のフィルムを作製する。
2.赤外分光光度計を用い、得られたフィルムの吸光度スペクトルを測定する。
3.吸光度スペクトルからポリビニルピロリドンのカルボニル基伸縮振動(1700cm−1)による吸収強度と、ポリフッ化ビニリデンのC−F伸縮振動(1400cm−1)による吸収強度とを求め、両者の比からポリビニルピロリドンの割合を求める。
The ratio of the hydrophilic polymer in the porous membrane can be measured by obtaining the ratio of the absorption strength of the hydrophobic polymer and the absorption strength of the hydrophilic polymer from the absorbance spectrum using an infrared spectrophotometer. .
When the porous membrane is complexed with a support such as a braid, for example, only the porous membrane is extracted by the following procedures 1 to 3, and the hydrophilic membrane occupies the porous membrane. What is necessary is just to obtain | require the ratio of a property polymer. Here, the case where the hydrophobic polymer is polyvinylidene fluoride and the hydrophilic polymer is polyvinylpyrrolidone is taken as an example.
1. After the porous membrane is dissolved in a solvent (N, N-dimethylacetamide), the resulting solution is evaporated to dryness on a glass plate to produce a film having a thickness of about 20 μm.
2. The absorbance spectrum of the obtained film is measured using an infrared spectrophotometer.
3. The absorption intensity due to the carbonyl group stretching vibration of polyvinylpyrrolidone from the absorbance spectrum (1700 cm -1), obtains an absorption intensity by C-F stretching vibration of polyvinylidene fluoride (1400 cm -1), the ratio of polyvinylpyrrolidone from both the ratio of Ask.

以下、実施例を基に本発明を更に詳しく説明する。
ポリフッ化ビニリデンA(アトフィナジャパン製、商品名カイナー301F)、ポリフッ化ビニリデンB(アトフィナジャパン製、商品名カイナー9000LD)、ポリビニルピロリドン(ISP社製、商品名K−90)、N,N−ジメチルアセトアミドをそれぞれ、表1に示す質量比となるように製膜原液(1)及び製膜原液(2)を調整した。
Hereinafter, the present invention will be described in more detail based on examples.
Polyvinylidene fluoride A (manufactured by Atofina Japan, trade name Kyner 301F), polyvinylidene fluoride B (manufactured by Atofina Japan, trade name Kyner 9000LD), polyvinylpyrrolidone (manufactured by ISP, trade name K-90), N, N- The film-forming stock solution (1) and the film-forming stock solution (2) were adjusted so that dimethylacetamide had a mass ratio shown in Table 1, respectively.

外径3.3mm、内径2.4mmの、図1に示す構造の二重環状ノズルを30℃に保温し、導糸部1からポリエステル製マルチフィラメント単織組紐(マルチフィラメント;トータルデシテックス830/96フィラメント、16打ち)を導入し、製膜原液(2)を第一の吐出口2から吐出して組紐のフィラメント間に製膜原液(2)を含浸させ、さらに製膜原液(1)をノズルの鞘部にある第二の吐出口3から吐出することによって、組紐上に製膜原液(1)を塗布した後、80℃に保温した、N,N−ジメチルアセトアミド5質量部及び水95質量部からなる凝固浴中に導き、外表面近傍に緻密層を一層有し、内部に向かって孔径が増大する傾斜構造の多孔質層が組紐にコーティングされた複合多孔質中空糸膜を得た。   A double annular nozzle having an outer diameter of 3.3 mm and an inner diameter of 2.4 mm and having a structure shown in FIG. 1 is kept at 30 ° C., and the polyester multifilament single woven braid (multifilament; total decitex 830/96) The filament forming solution (2) is introduced from the first discharge port 2 to impregnate the film forming solution (2) between the braided filaments, and the film forming solution (1) is further injected into the nozzle. 5 parts by mass of N, N-dimethylacetamide and 95 parts by mass of water kept at 80 ° C. after applying the film-forming stock solution (1) on the braid by discharging from the second outlet 3 in the sheath part of A composite porous hollow fiber membrane having a dense layer in the vicinity of the outer surface and coated with a braided layer having an inclined structure in which the pore diameter increases toward the inside was obtained.

Figure 0004803697
Figure 0004803697

得られた複合多孔質中空糸膜を、工程(C)、工程(A)、工程(B)の順に処理を行った。各工程の条件は、表2〜4に示した。
得られた複合多孔質中空糸膜の乾燥前の水フラックスを測定した結果、130m/(m・hr・MPa)であった。
The obtained composite porous hollow fiber membrane was processed in the order of step (C), step (A), and step (B). Conditions for each step are shown in Tables 2 to 4.
As a result of measuring the water flux before drying of the obtained composite porous hollow fiber membrane, it was 130 m 3 / (m 2 · hr · MPa).

Figure 0004803697
Figure 0004803697
Figure 0004803697
Figure 0004803697
Figure 0004803697
Figure 0004803697

実施例1と同様の条件で乾湿式紡糸法にて紡出、凝固させて複合多孔質中空糸膜を作成した後、工程(C)、工程(A)、工程(B)の順に処理を行った。各工程の条件は、表2〜4に示した。
得られた複合多孔質中空糸膜の乾燥前の水フラックスを測定した結果、126m/(m・hr・MPa)であった。
A composite porous hollow fiber membrane is produced by spinning and solidifying by the dry and wet spinning method under the same conditions as in Example 1, and then processing is performed in the order of step (C), step (A), and step (B). It was. Conditions for each step are shown in Tables 2 to 4.
As a result of measuring the water flux before drying of the obtained composite porous hollow fiber membrane, it was 126 m 3 / (m 2 · hr · MPa).

実施例1と同様の条件で乾湿式紡糸法にて紡出、凝固させて複合多孔質中空糸膜を作成した後、工程(C)、工程(A)、工程(B)の順に処理を行った。各工程の条件は、表2〜4に示した。
得られた複合多孔質中空糸膜の乾燥前の水フラックスを測定した結果、72m/(m・hr・MPa)であった。
A composite porous hollow fiber membrane is produced by spinning and solidifying by the dry and wet spinning method under the same conditions as in Example 1, and then processing is performed in the order of step (C), step (A), and step (B). It was. Conditions for each step are shown in Tables 2 to 4.
It was 72 m < 3 > / (m < 2 > hr * MPa) as a result of measuring the water flux before drying of the obtained composite porous hollow fiber membrane.

実施例1と同様の条件で乾湿式紡糸法にて紡出、凝固させて複合多孔質中空糸膜を作成した後、工程(C)、工程(A)、工程(B)の順に処理を行った。各工程の条件は、表2〜4に示した。得られた複合多孔質中空糸膜の乾燥前の水フラックスを測定した結果、96m/(m・hr・MPa)であった。 A composite porous hollow fiber membrane is produced by spinning and solidifying by the dry and wet spinning method under the same conditions as in Example 1, and then processing is performed in the order of step (C), step (A), and step (B). It was. Conditions for each step are shown in Tables 2 to 4. As a result of measuring the water flux before drying of the obtained composite porous hollow fiber membrane, it was 96 m 3 / (m 2 · hr · MPa).

実施例1と同様の条件で乾湿式紡糸法にて紡出、凝固させて複合多孔質中空糸膜を作成した後、工程(C)、工程(A)、工程(B)の順に処理を行った。各工程の条件は、表2〜4に示した。
得られた複合多孔質中空糸膜の乾燥前の水フラックスを測定した結果、118m/(m・hr・MPa)であった。
A composite porous hollow fiber membrane is produced by spinning and solidifying by the dry and wet spinning method under the same conditions as in Example 1, and then processing is performed in the order of step (C), step (A), and step (B). It was. Conditions for each step are shown in Tables 2 to 4.
It was 118 m < 3 > / (m < 2 > * hr * MPa) as a result of measuring the water flux before drying of the obtained composite porous hollow fiber membrane.

実施例1と同様の条件で乾湿式紡糸法にて紡出、凝固させて複合多孔質中空糸膜を作成した後、工程(C)、工程(A)、工程(B)の順に処理を行った。各工程の条件は、表2〜4に示した。
得られた複合多孔質中空糸膜の乾燥前の水フラックスを測定した結果、116m/(m・hr・MPa)であった。
A composite porous hollow fiber membrane is produced by spinning and solidifying by the dry and wet spinning method under the same conditions as in Example 1, and then processing is performed in the order of step (C), step (A), and step (B). It was. Conditions for each step are shown in Tables 2 to 4.
As a result of measuring the water flux before drying of the obtained composite porous hollow fiber membrane, it was 116 m 3 / (m 2 · hr · MPa).

実施例1と同様の条件で乾湿式紡糸法にて紡出、凝固させて複合多孔質中空糸膜を作成した後、工程(C)、工程(A)、工程(B)の順に処理を行った。各工程の条件は、表2〜4に示した。
得られた複合多孔質中空糸膜の乾燥前の水フラックスを測定した結果、134m/(m・hr・MPa)であった。
A composite porous hollow fiber membrane is produced by spinning and solidifying by the dry and wet spinning method under the same conditions as in Example 1, and then processing is performed in the order of step (C), step (A), and step (B). It was. Conditions for each step are shown in Tables 2 to 4.
As a result of measuring the water flux before drying of the obtained composite porous hollow fiber membrane, it was 134 m 3 / (m 2 · hr · MPa).

実施例1と同様の条件で乾湿式紡糸法にて紡出、凝固させて複合多孔質中空糸膜を作成した後、工程(C)、工程(A)、工程(B)の順に処理を行った。各工程の条件は、表2〜4に示した。
得られた複合多孔質中空糸膜の乾燥前の水フラックスを測定した結果、76m/(m・hr・MPa)であった。
A composite porous hollow fiber membrane is produced by spinning and solidifying by the dry and wet spinning method under the same conditions as in Example 1, and then processing is performed in the order of step (C), step (A), and step (B). It was. Conditions for each step are shown in Tables 2 to 4.
It was 76 m < 3 > / (m < 2 > hr * MPa) as a result of measuring the water flux before drying of the obtained composite porous hollow fiber membrane.

実施例1と同様の条件で乾湿式紡糸法にて紡出、凝固させて複合多孔質中空糸膜を作成した後、工程(A)、工程(B)の順に処理を行った。各工程の条件は、表2、3に示した。
得られた複合多孔質中空糸膜の乾燥前の水フラックスを測定した結果、94m/(m・hr・MPa)であった。
A composite porous hollow fiber membrane was prepared by spinning and solidifying by a dry and wet spinning method under the same conditions as in Example 1, and then processed in the order of step (A) and step (B). The conditions for each step are shown in Tables 2 and 3.
As a result of measuring the water flux before drying of the obtained composite porous hollow fiber membrane, it was 94 m 3 / (m 2 · hr · MPa).

実施例1と同様にして、製膜原液(1)及び製膜原液(2)を調整した。
実施例1と同様にして、第一の多孔質層を形成させた後、二重環状ノズルを30℃に保温し、導糸部1から第一の多孔質層を形成させた組紐を導入し、第一吐出口2から内部凝固液としてグリセリン(和光純薬工業製 一級)を吐出させ、製膜原液(1)を前記ノズルの鞘部にある第二吐出口3から吐出することによって、第一の多孔質層の上に製膜原液(1)を塗布した後、80℃に保温した、N,N−ジメチルアセトアミド5質量%及び水95質量%からなる凝固浴中に導き、第一の多孔質層の上に第二の多孔質層を有する、すなわち緻密層を二層有する複合多孔質中空糸膜を得た。
なお、第二の多孔質層の形成に用いたノズルは、外径3.7mm、内径2.9mmである以外は第一の多孔質層の形成に用いたものと相似構造のものを用いた。
この複合多孔質中空糸膜を、工程(C)、工程(A)1回目、工程(B)1回目、工程(D)1回目、工程(A)2回目、工程(B)2回目、工程(D)2回目の順に処理を行った。各工程の条件は、表2〜5に示した。
得られた多孔質中空糸膜の乾燥前の水フラックスを測定した結果、102m/(m・hr・MPa)であった。
In the same manner as in Example 1, a film-forming stock solution (1) and a film-forming stock solution (2) were prepared.
In the same manner as in Example 1, after forming the first porous layer, the double annular nozzle was kept at 30 ° C., and the braid formed with the first porous layer was introduced from the yarn introduction portion 1. The glycerin (first grade manufactured by Wako Pure Chemical Industries, Ltd.) is discharged from the first discharge port 2 as the internal coagulating liquid, and the film-forming stock solution (1) is discharged from the second discharge port 3 in the sheath of the nozzle. After applying the film-forming solution (1) on one porous layer, it was introduced into a coagulation bath kept at 80 ° C. and comprising 5% by mass of N, N-dimethylacetamide and 95% by mass of water. A composite porous hollow fiber membrane having a second porous layer on the porous layer, that is, having two dense layers, was obtained.
The nozzle used for forming the second porous layer had a structure similar to that used for forming the first porous layer except that the outer diameter was 3.7 mm and the inner diameter was 2.9 mm. .
This composite porous hollow fiber membrane is made into a process (C), a process (A) 1st time, a process (B) 1st time, a process (D) 1st time, a process (A) 2nd time, a process (B) 2nd time, a process (D) Processing was performed in the second order. The conditions for each step are shown in Tables 2-5.
As a result of measuring the water flux before drying of the obtained porous hollow fiber membrane, it was 102 m 3 / (m 2 · hr · MPa).

Figure 0004803697
Figure 0004803697

実施例10と同様の条件で乾湿式紡糸法にて紡出、凝固させて、緻密層を二層有する複合多孔質中空糸膜を作成した後、工程(C)、工程(A)、工程(B)、工程(D)の順に処理を行った。各工程の条件は、表2〜5に示した。
得られた多孔質中空糸膜の乾燥前の水フラックスを測定した結果、17m/(m・hr・MPa)であった。
The composite porous hollow fiber membrane having two dense layers was prepared by spin-drying and solidification by the dry and wet spinning method under the same conditions as in Example 10, and then the step (C), step (A), step ( The treatment was performed in the order of B) and step (D). The conditions for each step are shown in Tables 2-5.
As a result of measuring the water flux before drying of the obtained porous hollow fiber membrane, it was 17 m 3 / (m 2 · hr · MPa).

工程(A)1回目及び2回目の時間を0.75分間としたこと、工程(D)1回目及び2回目について、時間をそれぞれ1.4分間、10.5分間、温度を80〜90℃としたこと以外は実施例10と同様にして複合多孔質中空糸膜を作成した。
この後、この複合多孔質中空糸膜を85℃で5.25分間乾燥させた。
乾燥後の複合多孔質中空糸膜の水フラックスを測定した結果、127m/(m・hr・MPa)であり、組紐を除いた多孔質膜中に占めるポリビニルピロリドンは1.7質量%であり、複合多孔質中空糸膜の含水率は0.3質量%であった。また、膜外表面に破壊された部位は存在しなかった。
Step (A) First time and second time were set to 0.75 minutes, Step (D) First time and second time were 1.4 minutes and 10.5 minutes, respectively, and the temperature was 80 to 90 ° C. A composite porous hollow fiber membrane was prepared in the same manner as in Example 10 except that.
Thereafter, the composite porous hollow fiber membrane was dried at 85 ° C. for 5.25 minutes.
As a result of measuring the water flux of the composite porous hollow fiber membrane after drying, it was 127 m 3 / (m 2 · hr · MPa), and the polyvinyl pyrrolidone occupying in the porous membrane excluding the braid was 1.7% by mass. Yes, the water content of the composite porous hollow fiber membrane was 0.3% by mass. Moreover, the site | part destroyed on the outer membrane surface did not exist.

乾燥時間を4.5分間とした以外は実施例12と同様にして複合多孔質中空糸膜を作成した。
乾燥後の複合多孔質中空糸膜の水フラックスを測定した結果、132m/(m・hr・MPa)であり、組紐を除いた多孔質膜中に占めるポリビニルピロリドンは1.7質量%であり、複合多孔質中空糸膜の含水率は17.5質量%であった。また、膜外表面に破壊された部位は存在しなかった。
A composite porous hollow fiber membrane was prepared in the same manner as in Example 12 except that the drying time was 4.5 minutes.
As a result of measuring the water flux of the composite porous hollow fiber membrane after drying, it was 132 m 3 / (m 2 · hr · MPa), and polyvinyl pyrrolidone in the porous membrane excluding the braid was 1.7% by mass. In addition, the water content of the composite porous hollow fiber membrane was 17.5% by mass. Moreover, the site | part destroyed on the outer membrane surface did not exist.

工程(D)2回目の時間を6分間とした以外は実施例12と同様にして複合多孔質中空糸膜を作成した。
乾燥後の複合多孔質中空糸膜の水フラックスを測定した結果、127m/(m・hr・MPa)であり、組紐を除いた多孔質膜中に占めるポリビニルピロリドンは2.6質量%であり、複合多孔質中空糸膜の含水率は0.2質量%であった。また、膜外表面に破壊された部位は存在しなかった。
Step (D) A composite porous hollow fiber membrane was prepared in the same manner as in Example 12 except that the second time was 6 minutes.
As a result of measuring the water flux of the composite porous hollow fiber membrane after drying, it was 127 m 3 / (m 2 · hr · MPa), and polyvinyl pyrrolidone in the porous membrane excluding the braid was 2.6% by mass. Yes, the water content of the composite porous hollow fiber membrane was 0.2% by mass. Moreover, the site | part destroyed on the outer membrane surface did not exist.

乾燥温度を100℃とした以外は実施例13と同様にして複合多孔質中空糸膜を作成した。
乾燥後の複合多孔質中空糸膜の水フラックスを測定した結果、112m/(m・hr・MPa)であり、組紐を除いた多孔質膜中に占めるポリビニルピロリドンは1.0質量%であり、複合多孔質中空糸膜の含水率は0.9質量%であった。また、膜外表面に破壊された部位は存在しなかった。
A composite porous hollow fiber membrane was prepared in the same manner as in Example 13 except that the drying temperature was 100 ° C.
As a result of measuring the water flux of the composite porous hollow fiber membrane after drying, it was 112 m 3 / (m 2 · hr · MPa), and polyvinyl pyrrolidone in the porous membrane excluding the braid was 1.0% by mass. In addition, the water content of the composite porous hollow fiber membrane was 0.9% by mass. Moreover, the site | part destroyed on the outer membrane surface did not exist.

<比較例1>
実施例1と同様の条件で乾湿式紡糸法にて紡出、凝固させて、緻密層を一層有する複合多孔質中空糸膜を作成した後、100℃の水に7分間浸漬させた。
得られた複合多孔質中空糸膜の乾燥前の水フラックスを測定した結果、22m/(m・hr・MPa)であった。
<Comparative Example 1>
A composite porous hollow fiber membrane having a dense layer was produced by spinning and solidifying by a dry and wet spinning method under the same conditions as in Example 1, and then immersed in water at 100 ° C. for 7 minutes.
As a result of measuring the water flux before drying of the obtained composite porous hollow fiber membrane, it was 22 m 3 / (m 2 · hr · MPa).

<比較例2>
実施例1と同様の条件で乾湿式紡糸法にて紡出、凝固させて、緻密層を一層有する複合多孔質中空糸膜を作成した。
得られた複合多孔質中空糸膜の乾燥前の水フラックスを測定した結果、10m/(m・hr・MPa)であった。
<Comparative example 2>
A composite porous hollow fiber membrane having a dense layer was prepared by spinning and solidifying by a dry and wet spinning method under the same conditions as in Example 1.
As a result of measuring the water flux before drying of the obtained composite porous hollow fiber membrane, it was 10 m 3 / (m 2 · hr · MPa).

<比較例3>
実施例1と同様の条件で乾湿式紡糸法にて紡出、凝固させて多孔質中空糸膜を作成した後、80℃、有効塩素濃度1000mg/Lの次亜塩素酸塩水溶液を50L入れた槽の中を、多孔質中空糸膜が4m/minの速度で通過するようにして連続的に洗浄を行い、2時間後に槽中の有効塩素濃度を測定したところ、5ppm以下に低下していた。
<Comparative Example 3>
A porous hollow fiber membrane was prepared by dry and wet spinning under the same conditions as in Example 1 and solidified to prepare a porous hollow fiber membrane, and then 50 L of a hypochlorite aqueous solution having an effective chlorine concentration of 1000 mg / L was added. Washing was continuously performed so that the porous hollow fiber membrane passed through the tank at a speed of 4 m / min, and the effective chlorine concentration in the tank was measured after 2 hours. .

<比較例4>
実施例10と同様の条件で乾湿式紡糸法にて紡出、凝固させて、緻密層を二層有する複合多孔質中空糸膜を作成した後、100℃の水に1分間浸漬させる工程を2回行い、さらに100℃の水に8分間浸漬させる工程を行った。
得られた多孔質中空糸膜の乾燥前の水フラックスを測定した結果、2m/(m・hr・MPa)であった。
<Comparative example 4>
A process of spinning and solidifying by a dry-wet spinning method under the same conditions as in Example 10 to create a composite porous hollow fiber membrane having two dense layers, followed by immersion in water at 100 ° C. for 1 minute 2 And a step of immersing in 100 ° C. water for 8 minutes was performed.
It was 2m < 3 > / (m < 2 > * hr * MPa) as a result of measuring the water flux before drying of the obtained porous hollow fiber membrane.

以上の実施例及び比較例から、本発明の多孔質膜の製造方法は、短時間で効率的に親水性ポリマーを除去することが可能な、優れた製造方法であることがわかる。   From the above Examples and Comparative Examples, it can be seen that the method for producing a porous membrane of the present invention is an excellent production method capable of efficiently removing a hydrophilic polymer in a short time.

本発明の複合多孔質膜の製造に使用する環状ノズルの一例を示す断面図である。It is sectional drawing which shows an example of the cyclic | annular nozzle used for manufacture of the composite porous membrane of this invention.

符号の説明Explanation of symbols

1 導糸部
2 第一の吐出口
3 第二の吐出口
1 yarn introduction portion 2 first discharge port 3 second discharge port

Claims (17)

疎水性ポリマーと親水性ポリマーとからなる多孔質膜に、酸化剤溶液を接触させて酸化剤を保持させる工程(A)と、気相中で加熱し親水性ポリマーを分解する工程(B)とを含む多孔質膜の製造方法。
A step (A) in which an oxidant solution is brought into contact with a porous film composed of a hydrophobic polymer and a hydrophilic polymer to hold the oxidant, and a step (B) in which the hydrophilic polymer is decomposed by heating in a gas phase. The manufacturing method of the porous membrane containing this.
前記工程(A)の前に、多孔質膜を洗浄液で洗浄する工程(C)を有する請求項1に記載の多孔質膜の製造方法。   The manufacturing method of the porous membrane of Claim 1 which has the process (C) which wash | cleans a porous membrane with a washing | cleaning liquid before the said process (A). 前記工程(B)の後に、多孔質膜を洗浄液で洗浄する工程(D)を有する請求項1又は2に記載の多孔質膜の製造方法。   The manufacturing method of the porous film of Claim 1 or 2 which has the process (D) which wash | cleans a porous film with a washing | cleaning liquid after the said process (B). 前記工程(D)を経た後の多孔質膜中に占める前記親水性ポリマーの割合が5質量%以下である請求項3に記載の多孔質膜の製造方法。   The method for producing a porous membrane according to claim 3, wherein a ratio of the hydrophilic polymer in the porous membrane after the step (D) is 5% by mass or less. 前記工程(C)及び/又は前記工程(D)における洗浄液が、水又は前記疎水性ポリマーの溶媒と水との混合物である請求項2〜4のいずれか一項に記載の多孔質膜の製造方法。 The cleaning liquid in the step (C) and / or the step (D) is the production of a porous membrane according to any one of claims 2-4 which is a mixture of solvent and water in the water or the hydrophobic polymer Method. 前記工程(A)において、多孔質膜と前記酸化剤溶液との接触時間を2分以下とする請求項1〜5のいずれか一項に記載の多孔質膜の製造方法。
In the said process (A), the manufacturing time of the porous membrane as described in any one of Claims 1-5 which makes the contact time of a porous membrane and the said oxidizing agent solution 2 minutes or less.
前記工程(B)において、多孔質膜の加熱時間を5分以下とする請求項1〜6のいずれか一項に記載の多孔質膜の製造方法。   In the said process (B), the manufacturing time of the porous membrane as described in any one of Claims 1-6 which makes heating time of a porous membrane 5 minutes or less. 前記工程(C)及び/又は前記工程(D)において、前記洗浄液による多孔質膜の洗浄時間を10分以下とする請求項2〜7のいずれか一項に記載の多孔質膜の製造方法。   In the said process (C) and / or the said process (D), the washing | cleaning time of the porous film by the said washing | cleaning liquid is 10 minutes or less, The manufacturing method of the porous film as described in any one of Claims 2-7. 前記工程(A)、前記工程(B)の順に、両工程を複数回繰り返して行う請求項1〜8のいずれか一項に記載の多孔質膜の製造方法。 The method for producing a porous membrane according to any one of claims 1 to 8, wherein both steps are repeated a plurality of times in the order of the step (A) and the step (B). 前記酸化剤溶液が次亜塩素酸塩水溶液である請求項1〜9のいずれか一項に記載の多孔質膜の製造方法。 The method for producing a porous membrane according to any one of claims 1 to 9, wherein the oxidant solution is a hypochlorite aqueous solution. 前記次亜塩素酸塩水溶液の有効塩素濃度が2000mg/L以上である請求項10に記載の多孔質膜の製造方法。   The method for producing a porous membrane according to claim 10, wherein the effective chlorine concentration of the hypochlorite aqueous solution is 2000 mg / L or more. 前記次亜塩素酸塩水溶液の温度が50℃以下である請求項10又は11に記載の多孔質膜の製造方法。   The method for producing a porous membrane according to claim 10 or 11, wherein the temperature of the aqueous hypochlorite solution is 50 ° C or lower. 前記工程(B)の気相中の雰囲気が、大気圧状態で、温度が50℃以上である請求項1〜12のいずれか一項に記載の多孔質膜の製造方法。   The method for producing a porous film according to any one of claims 1 to 12, wherein the atmosphere in the gas phase in the step (B) is in an atmospheric pressure state and the temperature is 50 ° C or higher. 前記工程(B)の気相中の相対湿度が80%以上である請求項13に記載の多孔質膜の製造方法。   The method for producing a porous film according to claim 13, wherein the relative humidity in the gas phase in the step (B) is 80% or more. 前記疎水性ポリマーが、フッ素系樹脂である請求項1〜14のいずれか一項に記載の多孔質膜の製造方法。   The method for producing a porous membrane according to any one of claims 1 to 14, wherein the hydrophobic polymer is a fluororesin. 前記疎水性ポリマーが、ポリフッ化ビニリデンである請求項15に記載の多孔質膜の製造方法。   The method for producing a porous membrane according to claim 15, wherein the hydrophobic polymer is polyvinylidene fluoride. 前記親水性ポリマーが、ポリビニルピロリドンである請求項1〜16いずれか一項に記載の多孔質膜の製造方法。   The method for producing a porous membrane according to any one of claims 1 to 16, wherein the hydrophilic polymer is polyvinylpyrrolidone.
JP2003293471A 2002-08-15 2003-08-14 Method for producing porous membrane Expired - Fee Related JP4803697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003293471A JP4803697B2 (en) 2002-08-15 2003-08-14 Method for producing porous membrane

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2002237030 2002-08-15
JP2002237030 2002-08-15
JP2003194891 2003-07-10
JP2003194891 2003-07-10
JP2003293471A JP4803697B2 (en) 2002-08-15 2003-08-14 Method for producing porous membrane

Publications (2)

Publication Number Publication Date
JP2005042074A JP2005042074A (en) 2005-02-17
JP4803697B2 true JP4803697B2 (en) 2011-10-26

Family

ID=34279450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003293471A Expired - Fee Related JP4803697B2 (en) 2002-08-15 2003-08-14 Method for producing porous membrane

Country Status (1)

Country Link
JP (1) JP4803697B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101492744B1 (en) 2010-07-07 2015-02-11 미쯔비시 레이온 가부시끼가이샤 Drying device and drying method for hollow fiber membranes
KR101525714B1 (en) 2010-10-29 2015-06-03 미쯔비시 레이온 가부시끼가이샤 Washing apparatus, and process for producing porous membrane
CN103459004B (en) 2011-02-07 2015-05-06 三菱丽阳株式会社 Washing device for porous hollow fiber membranes, and porous hollow fiber membrane production method
CN103688147B (en) * 2011-07-19 2016-08-17 三菱丽阳株式会社 The flaw detection apparatus of Porous hollow-fibre membrane and defect detecting method, Porous hollow-fibre membrane and manufacture method thereof
US9539547B2 (en) 2011-08-03 2017-01-10 Mitsubishi Rayon Co., Ltd. Porous film manufacturing method and apparatus
CN104271651B (en) 2012-03-12 2017-03-08 三菱丽阳株式会社 The manufacture method of multiple aperture plasma membrane and the drying device of multiple aperture plasma membrane
KR102626465B1 (en) * 2015-09-17 2024-01-17 바스프 에스이 Method for preparing membranes using lactamide based solvents

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8901090A (en) * 1989-04-28 1990-11-16 X Flow Bv METHOD FOR MANUFACTURING A MICROPOROUS MEMBRANE AND SUCH MEMBRANE

Also Published As

Publication number Publication date
JP2005042074A (en) 2005-02-17

Similar Documents

Publication Publication Date Title
JP4951332B2 (en) Method for producing hollow fiber membrane
KR101492744B1 (en) Drying device and drying method for hollow fiber membranes
JP5633576B2 (en) Method for producing porous hollow fiber membrane
JP5585727B2 (en) Porous membrane manufacturing method and porous membrane drying apparatus
JP2012525966A (en) Fluorine-based hollow fiber membrane and method for producing the same
JPWO2012108429A1 (en) Cleaning device for porous hollow fiber membrane and method for producing porous hollow fiber membrane
JP2005220202A (en) Method for producing porous membrane and the resultant porous membrane
Li et al. Engineering design of outer‐selective tribore hollow fiber membranes for forward osmosis and oil‐water separation
JP4803697B2 (en) Method for producing porous membrane
KR20120059755A (en) Method for manufacturing a hollow fiber membrane for water treatment using cellulose resin
JP5138572B2 (en) Hollow fiber membrane manufacturing method and hollow fiber membrane drying apparatus
KR20130040620A (en) Preparation method of hollow fiber membrane with high mechanical properties made of hydrophilic modified polyvinylidenefluoride for water treatment
JP2008178869A (en) Fiber-reinforced type hollow fiber membrane
JPWO2013125681A1 (en) Hollow fiber type semipermeable membrane, manufacturing method and module thereof, and water treatment method
JP2004033854A (en) Method for manufacturing porous film
JP5473215B2 (en) Method for producing porous membrane for water treatment
WO2011010690A1 (en) Process for producing porous film
JP3169404B2 (en) Method for producing semipermeable membrane with high water permeability
JP6863333B2 (en) Manufacturing method of water treatment membrane element
KR101308996B1 (en) The Preparation method of hollow fiber membrane with high permeation using hydrophilic polyvinylidenefluoride composites for water treatment
KR100977397B1 (en) Porous and symmetric hollow fiber membranes supported by a reinforce element and manufacturing method thereof
JP6149577B2 (en) Method for producing hollow fiber membrane
JP6436185B2 (en) Method for producing hollow fiber membrane
CN113634140A (en) Internal support polyvinylidene fluoride hollow dry film and preparation method thereof
JP4502324B2 (en) Method for producing porous membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110805

R151 Written notification of patent or utility model registration

Ref document number: 4803697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees