JP4701484B2 - Graphite powder suitable for negative electrode of secondary battery, its production method and use - Google Patents
Graphite powder suitable for negative electrode of secondary battery, its production method and use Download PDFInfo
- Publication number
- JP4701484B2 JP4701484B2 JP2000261046A JP2000261046A JP4701484B2 JP 4701484 B2 JP4701484 B2 JP 4701484B2 JP 2000261046 A JP2000261046 A JP 2000261046A JP 2000261046 A JP2000261046 A JP 2000261046A JP 4701484 B2 JP4701484 B2 JP 4701484B2
- Authority
- JP
- Japan
- Prior art keywords
- graphite powder
- heat treatment
- negative electrode
- graphite
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Carbon And Carbon Compounds (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、リチウムイオン二次電池の負極材料として最適な表面形態を有する黒鉛粉末とその製造方法に関する。本発明はまた、この黒鉛粉末を利用したリチウムイオン二次電池の負極およびこの負極を備えたリチウムイオン二次電池にも関する。本発明の黒鉛粉末を負極に使用すると、高率放電特性 (レート特性) に優れたリチウムイオン二次電池を作成することができる。
【0002】
【従来の技術】
小型二次電池として急速に普及しているリチウムイオン二次電池では、Liイオンを吸蔵できる炭素粉末を活物質とする負極が一般に使用されているが、この負極の多くは黒鉛粉末から製造される。結晶質の黒鉛粉末は、非晶質の炭素粉末に比べて、単位体積当たりの放電容量が高く、また充放電効率も優れているからである。
【0003】
この黒鉛粉末は、天然黒鉛を粉砕したものも使用可能であるが、品質の安定性の点で人造黒鉛、即ち、炭素質原料を熱処理して有機物を除去することにより炭化した後、得られた炭素材をさらに高温で熱処理して結晶化させることにより黒鉛化して得た黒鉛、の粉末の方が好ましい。
【0004】
リチウムイオン二次電池の負極材料として使用する黒鉛に対して考慮される特性として、放電容量および充放電効率 (充電容量に対する放電容量の比) に加えて、高率放電特性 (低電流密度での放電容量に対する高電流密度での放電容量の比) がある。高率放電特性は、特に急速充電する場合において重要である。
【0005】
人造黒鉛粉末の表面形態に関して、国際公開WO 98/29335 号には、黒鉛化熱処理により、六方晶層状結晶構造を持つ黒鉛結晶のc面層の末端同士が結合して形成された閉塞構造が粉末表面に形成されることが指摘されている。この表面形態を持つ従来の人造黒鉛では、隣接する閉塞構造間の隙間である間隙面が、充放電に関与するLiイオンの主な侵入・脱出サイトになる。
【0006】
【発明が解決しようとする課題】
上記国際公開では、Liイオンの主な侵入サイトである前記間隙面の単位長さ当たりの密度を増大させる (即ち、間隙面のピッチを低下させる) ことにより、放電容量の増大を図ることが提案されている。
【0007】
この黒鉛粉末の間隙面密度の増大は、次のいずれかの方法で達成することができる:
▲1▼黒鉛化熱処理前に高速粉砕または剪断粉砕を行って、粉末表面に原子レベルでの凹凸 (層欠陥) を導入してから黒鉛化熱処理を行う;または
▲2▼黒鉛化熱処理で得られた黒鉛粉末に、酸化熱処理等の表面を削ることができる熱処理を施して、粉末表面の閉塞構造を開放し、その後で再び不活性ガス中で熱処理して閉塞構造を再形成する。
【0008】
特に▲2▼の方法は間隙面密度が非常に大きな黒鉛粉末を得ることができる。このようにLiイオンの侵入サイトである間隙面の密度を増大させると、放電容量が黒鉛負極の理論容量である372 mAh/g にかなり近づいた黒鉛粉末が得られる。また、充放電高率も十分に高い。
【0009】
しかし、Liイオンの侵入サイトが間隙面に限定される限り、この侵入サイトをくぐり抜けたLiイオンはc面層の層間を通って黒鉛粉末の内部に拡散するので、Liイオンの拡散経路が長くなる。そのため、Liイオンの侵入・脱出に時間がかかることから、高率放電特性についての改善の余地があった。これは、電流密度が高くなるほど多量のLiイオンの侵入・脱出が必要になるが、拡散経路が長く、Liイオンの侵入・脱出に時間がかかると、高電流密度時に多量のLiイオンが侵入した場合に拡散が追いつかず、放電容量が低下するからである。
【0010】
本発明は、高率放電特性が改善され、放電容量や充放電効率にも優れた、リチウムイオン二次電池の負極材料に適した黒鉛粉末とその製造方法を提供することを主な課題とする。
【0011】
【課題を解決するための手段】
本発明者らは、黒鉛の閉塞構造の熱処理による影響を調査するため、国際公開WO 98/29335 号に記載された上記▲2▼の方法における不活性ガス中での熱処理条件を変化させて閉塞構造を再形成させ、得られた黒鉛粉末の表面形態を原子間力顕微鏡法を用いて調べた。その結果、この時の熱処理の昇温速度により、表面形態に違いが現れることを見出した。
【0012】
具体的には、昇温速度が5℃/秒未満となる熱処理を施した黒鉛粉末の表面は、c面層の末端どうしが結合して形成される閉塞構造が、c面層方向、即ち、c軸に垂直方向 (c⊥方向) に長く連続し、間隙面も同じ方向に連続する。従って、間隙面がほぼ一定間隔で現れる、縞状の閉塞構造になる。
【0013】
一方、昇温速度を大きくして急速熱処理 (ラピッドサーマルアニール) を施した黒鉛粉末の表面は、非平衡時の核発生を起点とした閉塞構造の部分的な凝集が支配的となる。そのため、粉末表面の閉塞構造がc⊥方向に連続せず、モザイク状(市松模様)の閉塞構造が形成されるようになる。さらに、一度形成されたモザイク状閉塞構造は、熱的に安定で不可逆性を有するため、降温過程でもその表面形態が保持される。
【0014】
この新規なモザイク状閉塞構造を有する黒鉛粉末は、高い放電容量と充放電効率を示す上、高率放電特性も優れている。これは、後で詳しく説明するように、モザイク状閉塞構造は、Liイオンの拡散経路が短かく、多量のLiイオンを短時間で容易に拡散・置換・放出することができるためであると考えられる。
【0015】
本発明により、黒鉛c面層の端部どうしが連結して閉じた閉塞領域が粉末表面に散在している表面形態を有し、個々の前記閉塞領域の黒鉛c軸に垂直方向の長さ (Lc⊥) が100 nm以下であることを特徴とする、黒鉛粉末が提供される。
【0016】
上記表面形態を有する本発明の黒鉛粉末は、下記工程を含むことを特徴とする方法により製造することができる:
(a) 炭素質材料を炭化して得た炭素材を熱処理して黒鉛化する工程、
(b) 炭化前、炭化と黒鉛化の間、および/または黒鉛化後に行う少なくとも1回の粉砕工程、
(c) 工程(a), (b)後に得られた黒鉛粉末を、その表面を削ることができる条件下で熱処理する工程、
(d) 工程(c) で得られた黒鉛粉末を、不活性ガス中にて昇温速度5℃/秒以上で昇温し、500 ℃以上の温度に保持して熱処理する工程。
【0017】
上記工程(c) の熱処理は、好ましくは酸化熱処理である。
本発明によれば、上記表面形態を有する黒鉛粉末を備えた、リチウムイオン二次電池用負極、およびこの負極を備えた、リチウムイオン二次電池もまた提供される。
【0018】
【発明の実施の形態】
まず、本発明の黒鉛粉末の表面形態について、図1〜3の模式図を参照して説明する。
【0019】
粉砕してから黒鉛化熱処理することにより得られた、従来の普通の黒鉛粉末は、図1(a) に断面図にて示すように、数層の閉塞構造が積層した多層閉塞構造を持ち、この多層閉塞構造が、図示しないが、c面層方向 (c軸と垂直方向、即ち、c⊥方向) に長く伸びた表面形態をとる。本発明の製造方法の工程(a), (b)の後に得られた黒鉛粉末の表面形態もこのようなものである。粉末表面のこのような閉塞構造は、実際に黒鉛粉末の断面SEMまたはTEM写真で確認することができる。
【0020】
上記の多層閉塞構造の場合、Liイオンの侵入サイトとなる間隙面は、例えば、5層に積層した多層閉塞構造の場合で、c面層10層に1個の割合となり、残り9層のc面層の末端は閉じているため、Liイオンが侵入できない。このようにLiイオンの侵入サイトが少ないため、放電容量が制限を受け、理論容量に近づけることができない。
【0021】
このような多層の積層閉塞構造を表面に持つ黒鉛粉末を、本発明の製造方法の工程(c) において酸化熱処理すると、表面が削られて平坦化する結果、図1(b) に示すように、閉塞構造が開放され、c面層の末端は他のc面層と結合せずに切れたままとなる。従って、全てのc面層末端が間隙面となって、Liイオンの侵入サイトとなる。この形態はLiイオンの侵入には有利であるが、化学的に不安定である上、電解液が内部に侵入し易いため、サイクル寿命が非常に短い負極にしかならず、実用性に乏しい。
【0022】
その後、工程(d) において、不活性ガス中で熱処理すると、不安定なc面層末端どうしが安定化のために結合し、閉塞構造が再形成される。黒鉛粉末の表面が削られて平坦になっているため、この時の結合では、閉塞構造が多層に積層しても、その積層数は小さくなる。例えば、図1(c) に示すように、2層が積層した閉塞構造を持つ表面形態とすることができる。但し、実際の閉塞構造はこのように一様でないのは当然である。
【0023】
しかし、この工程(d) の熱処理の昇温速度が5℃/秒より小さいと、実質的に平衡状態において末端の結合が起こるようになるため、図1(c) に示すように、同じc面層どうしの連結が1方向に長く伸びて続き、間隙面と閉塞構造が縞模様を形成する、いわば縞状の閉塞構造となる。即ち、図1(a) に示す閉塞構造に比べて、c面層の積層数は減っているが、閉塞構造がc⊥方向に連続する点では同じである。但し、積層数が減ると、間隙面の密度は大きくなり、放電容量が増大する。
【0024】
本発明では、工程(d) の熱処理を、昇温速度が5℃/秒以上の急速熱処理とする。それにより、c面層末端の格子振動が瞬間的に大きくなり、非平衡状態のままでc面層末端の結合が起こる。その結果、図2(a), (b)に示すように、結合手が左右に振り分けられ、c面層間で末端どうしが部分的に互い違いに連結する。つまり、黒鉛粉末表面でのc面層末端の閉塞構造が、c⊥方向に長く伸びて続かず、短く途切れる結果、モザイク状 (市松模様) の閉塞構造となる。
【0025】
この本発明の黒鉛粉末の表面に現れるモザイク状閉塞構造は、図2(a) に示すように、積層せずに単層の閉塞構造でもよく、あるいは図2(b) に示すように、2層以上に積層した閉塞構造でもよく、その両者の共存状態でもよい。閉塞構造の積層数は、一般に、工程(a), (b)後に得られた黒鉛粉末に比べると小さくなるが、特に制限はない。本発明の黒鉛粉末のモザイク状閉塞構造は、表面の微細な凹凸形態を再現できる原子間力顕微鏡法で黒鉛粉末を観察することにより見ることができる。
【0026】
黒鉛粉末表面の閉塞構造が、図1(a) または(c) に示すように縞状であると、閉塞構造により完全に閉塞されているc面層については、c⊥方向にどこまでいっても閉塞構造のままである。従って、c面層と垂直のc軸方向 (c‖方向) において、Liイオンの侵入サイトである間隙面は、数層ないし十数層おきの特定の隣接c面層の間にしか現れない。Liイオンは、c面層内 (c⊥方向) の移動は容易であり、これと垂直のc軸方向 (c‖方向) の移動は、c面層を通過しなければならないので、より困難である。従って、間隙面が間隔をあけて特定のc面層だけに現れると、Liイオンの拡散距離が長くなる上、拡散もより困難となる。
【0027】
これに対し、本発明のように、黒鉛粉末の表面閉塞構造が市松模様のモザイク状であると、例えば、図2(b) に示すように、閉塞構造が多層に積層していても、ほぼ全ての隣接c面層がc面層方向 (c⊥方向) のどこかの位置で間隙面となる部分 (本発明では間隙口という) を有している。全てのc面層層が間隙口を持ち、この間隙口からLiイオンがそのc面層内に侵入してc面層内をc⊥方向に容易に移動できるので、Liイオンの拡散がすばやく起こる。その結果、高率放電で多量のLiイオンが侵入しても、Liイオンが粉末内部まで容易に拡散することができ、高率放電特性が改善される。
【0028】
本発明の黒鉛粉末は、上述したモザイク状閉塞構造の表面形態を有する。このモザイク状閉塞構造の個々の閉塞部分を本発明では閉塞領域と称する。各閉塞領域は、いずれも黒鉛c面層の端部どうしが連結して閉じることにより形成されたものである。
【0029】
この個々の閉塞領域は、黒鉛c軸に垂直方向の長さ (Lc⊥) はバラツキがあるが、いずれも100 nm以下である。個々の閉塞領域のLc⊥値が100 nmを超えるモザイク状閉塞構造を持つ黒鉛粉末は、実質的に作製不可能であり、そのようなものを作製しようとすると、図1(c) に示すような、閉塞領域がc⊥方向に連続した (Lc=∞) 表面形態となってしまう。
【0030】
個々の閉塞領域のLc⊥の値が小さい方が、Liイオンの拡散距離が短くなり、高率放電特性が向上する。この値は好ましくは50 nm 以下であり、より好ましくは20 nm 以下、特に好ましくは10 nm 以下である。閉塞領域のLc⊥値の大きさは、工程(d) の熱処理時の昇温速度と保持温度に依存し、これらが高いほど小さくなる傾向がある。
【0031】
モザイク状閉塞構造の個々の閉塞領域のc軸方向の幅 (Lc‖) は特に制限されない。この幅は、前述した閉塞構造の積層数に依存し、一般に0.3354 nm から10 nm の範囲である。0.3354 nm は黒鉛の層間距離d002 の最低値であり、完全な黒鉛結晶で単層の閉塞領域のLc‖の理論値である。Lc‖が10 nm を超えるには、十数層以上に積層した閉塞構造とする必要があり、実質的に作製不可能である。好ましいLc‖の値は5nm以下である。
【0032】
本発明の黒鉛粉末の表面に現れるモザイク状閉塞構造の閉塞領域のc軸方向の幅 (Lc‖値) は、黒鉛粉末の表面付近の断面SEMまたはTEM写真から測定することができる。一方、この閉塞領域のc軸垂直方向の長さ (Lc⊥値) は、黒鉛粉末表面の原子間力顕微鏡写真およびTEM写真から測定することができる。
【0033】
次に本発明の黒鉛粉末の製造方法について説明する。
まず、工程(a) において、炭素質材料を熱処理して炭化 (有機物を分解) し、得られた炭素材をさらに高温で熱処理して黒鉛化する。
【0034】
原料の炭素質材料は特に制限されず、従来より黒鉛の製造に用いられてきたものと同様でよい。具体例としては、コールタールピッチまたは石油ピッチ、さらにはこれらの熱処理により生ずるメソフェーズ小球体と、この小球体のマトリックスであるバルクメソフェーズ、ならびに有機樹脂等の他の有機物等が挙げられる。特に好ましい炭素質原料はメソフェーズ小球体とバルクメソフェーズであり、中でもコスト面と量産性からバルクメソフェーズが好ましい。
【0035】
炭素質材料の炭化条件は、この材料が分解して原料に含まれていた炭素以外の元素がほぼ完全に除去されるように選択すればよい。炭素の酸化 (燃焼) を防止するため、炭化熱処理は不活性雰囲気または真空中で実施する。炭化の熱処理温度は、通常は 800〜1500℃の範囲内であり、特に1000℃前後が好ましい。炭化に要する熱処理時間は、原料の種類、熱処理、温度にもよるが温度が1000℃の場合で30分〜3時間程度である。
【0036】
次に、得られた炭素材を熱処理して黒鉛化する。黒鉛化には通常は2500℃以上の温度が必要である。黒鉛化温度を下げるため、適当な黒鉛化触媒 (例、硼素) を少量添加してもよく、その場合には黒鉛化触媒を炭化前に添加することもできる。黒鉛化触媒を添加した場合、黒鉛化温度を1500℃程度まで下げることができる。黒鉛化熱処理温度の上限は、現在の加熱技術では3200℃程度である。好ましい黒鉛化熱処理温度は、触媒を添加しない場合、2800〜3000℃である。
【0037】
この熱処理は黒鉛化 (結晶化) が完了するまで行う。この時間は触媒の有無や処理量によっても異なるが、一般には20分〜10時間である。熱処理雰囲気は非酸化性雰囲気 (例、不活性ガス雰囲気または真空) である。黒鉛化熱処理には、工業的にはアチソン炉 (周囲の充填炭素粉に通電し加熱) やLWG炉 (直接通電して加熱) が用いられる。このような工業用焼成炉は大気中で運転されるが、炉内は窒素および一酸化炭素からなる非酸化性雰囲気となる。
【0038】
工程(b) は、粉末とするための粉砕工程である。この粉砕は、炭化前の炭素質原料、炭化後の炭素材、黒鉛化後の黒鉛、のいずれの段階の材料に対して行ってもよいが、黒鉛化後は層状構造が発達し、粉砕しにくくなるので、黒鉛化前に粉砕しておくことが好ましい。また、これらの2段階以上で粉砕することもできる。ただし、次の工程(c) 以後には粉砕を行わない。
【0039】
粉砕は、例えば、ハンマーミル、ファインミル、アトリションミル、ボールミル、ディスクミルなどの慣用の粉砕機を用いて実施することができる。
粒径については、リチウムイオン二次電池の負極材料に用いる場合、平均粒径が大きすぎると充填密度が低下し、1μmより小さい粒径のものは初期充放電特性を劣化させることが知られているので、平均粒径が5〜50μmの範囲内で、かつ1μmより小さい微細な粒子が存在しないようにすることが好ましい。
【0040】
工程(a) と(b) は、従来の黒鉛粉末の製造方法と同じである。こうして得られた黒鉛粉末は、前述したように、黒鉛化前に粉砕しておけば、図1(a) に示すように、通常は多層の積層閉塞構造がc⊥方向に伸びた、縞状の閉塞構造を持つ表面形態を有する。従来は、工程(a) と(b) より得られる黒鉛粉末をそのままリチウムイオン二次電池の負極材料に使用していたが、本発明ではさらに工程(c) および(d) を受けさせる。
【0041】
工程(c) では、工程(a), (b)を経て得られた黒鉛粉末に対して、例えば、酸化熱処理を施し、黒鉛粉末のc面層の表面を削り取ることによって、黒鉛化熱処理で生成した閉塞構造をいったん開放し、他のc面層と結合していない状態にする。この表面の削り取りにより、粉末表面のc面層の端部が比較的平坦に揃う。
【0042】
酸化熱処理の条件は、酸化によって閉塞構造の開放が実質的に起これば特に制限されないが、熱処理温度は 600〜800 ℃程度とすることが好ましい。閉塞構造を持つ黒鉛粉末は耐酸化性が高いため、600 ℃より低いと酸化されにくく、800 ℃以上では酸化が急速に進み、黒鉛粉末全体の劣化が進む。酸化熱処理の時間は温度や処理量によって異なるが、一般には1〜10時間である。熱処理雰囲気は酸素含有雰囲気であり、純酸素雰囲気でも、酸素と不活性ガスとの混合ガス雰囲気 (例、大気) でもよい。
【0043】
この酸化熱処理により粉末表面が除去される結果、黒鉛粉末の重量は2〜5%程度減少する。また、粉末の粒径はわずかに小さくなる (例、1〜2μm程度) 。必要であれば、この粒径の減少を見込んで粉砕条件を設定する。
【0044】
なお、閉塞構造の開放は、酸化熱処理に限られるものではない。黒鉛粉末の表面構造を削り取ることにより閉塞構造を開放して平坦なc面層の積層構造を得ることができれば、他の方法を採用することもできる。他の方法としては、例えば、フッ化熱処理あるいは水素化熱処理などがある。この場合の熱処理条件は、表面の削り取りにより閉塞構造の開放が起こるように、実験により適宜設定すればよい。
【0045】
こうして表面を削り取った黒鉛粉末を、工程(d) において、不活性ガス雰囲気中で熱処理すると、開放されていたc面層の末端どうしが安定化のために結合するので、黒鉛粉末の表面に再び閉塞構造が形成される。
【0046】
本発明ではこの閉塞構造を再形成するときの熱処理条件が重要である。即ち、この熱処理は、昇温速度が5℃/秒以上の急速熱処理とし、保持温度を500 ℃以上の温度とする。既に説明したように、このような急速熱処理とすることで、c面層末端が非平衡状態で結合する結果、結合手が左右に振り分けられ、再形成される閉塞構造は、Lc⊥方向に連続せずに、市松模様のモザイク状となる。それにより、高率放電特性の改善が得られる。
【0047】
この急速熱処理により形成されるモザイク状閉塞構造は、昇温速度が大きいほど、閉塞構造の個々の閉塞領域のc軸⊥方向の長さ (Lc⊥) の値が小さくなり、高率放電特性の改善効果が大きくなり、有利である。その意味で、昇温速度は好ましくは10℃/秒以上、より好ましく25℃/秒以上、さらに好ましくは50℃/秒以上であり、100 ℃/秒以上という非常に高い昇温速度とすることできる。しかし、昇温速度が200 ℃を超えても、効果はそれほど改善されないので、200 ℃/秒以下とすることが好ましい。
【0048】
このように急速熱処理によって黒鉛粉末表面のモザイク状閉塞構造を形成するには、その前に酸化熱処理等により黒鉛粉末の表面を削って閉塞構造を開放しておく必要がある。予め閉塞構造の開放をしておかないと、急速熱処理しても、モザイク状閉塞構造を形成することはできない。
【0049】
熱処理の保持温度は、上記のモザイク状閉塞構造を形成するには、500 ℃以上の温度とする必要がある。保持温度がこれより低いと、c面層末端どうしの結合に必要な大きさの格子振動を与えることができず、閉塞構造が形成されにくくなる。昇温速度が同じ場合、この保持温度が高いほど、形成されるモザイク状閉塞構造の個々の閉塞領域のLc⊥の値が小さくなり、高率放電特性の改善効果が大きくなり有利である。その意味で、熱処理保持温度は好ましくは700 ℃以上、より好ましくは1000℃以上、さらに好ましくは1500℃以上であり、例えば2000〜3000℃またはそれ以上の高温とすることも可能である。
【0050】
なお、モザイク状閉塞構造の個々の閉塞領域のc軸方向の幅 (Lc‖) の値は、この熱処理条件 (昇温速度および保持温度) にはあまり影響されない。Lc‖の値は主に黒鉛化温度により支配される。
【0051】
工程(d) の熱処理は不活性ガス雰囲気中で行う。不活性ガス雰囲気は、例えばAr、He、Ne等の1種もしくは2種以上でよい。熱処理時間は、閉塞構造が形成されればよく、温度により異なるが、一般には1〜10時間である。例えば1000℃では約5時間が目安となる。
【0052】
工程(d) により得られた、モザイク状の閉塞構造からなる表面形態を有する本発明の黒鉛粉末は、リチウムイオン二次電池の負極材料として好適であり、放電容量と充放電効率に優れ、かつ高率放電特性が改善されたリチウムイオン二次電池の負極を作製することができる。
【0053】
リチウムイオン二次電池の負極は、従来と同様に製作することができる。一般に、黒鉛粉末は、適当な結着剤を用いて、電極基板となる集電体上に成型することにより電極にする。集電体としては、黒鉛粉末の担持性が良く、負極として使用した時に分解による溶出が起こらない任意の金属の箔 (例、電解銅箔、圧延銅箔などの銅箔) を使用することができる。
【0054】
成型は、従来より粉末状の活物質から電極を作製する際に利用されてきた適当な方法で実施することができ、黒鉛粉末の負極性能を十分に引き出し、粉末に対する賦型性が高く、化学的、電気化学的に安定であれば、何ら制限されない。例えば、黒鉛粉末にポリテトラフルオロエチレン、ポリフッ化ビニリデン等のフッ素樹脂粉末からなる結着剤とイソプロピルアルコール等の有機溶媒を加えて混練してペースト化し、このペーストを集電体上にスクリーン印刷する方法;黒鉛粉末にポリエチレン、ポリビニルアルコール等の樹脂粉末を添加して乾式混合し、この混合物を金型を用いてホットプレスして成型すると同時に集電体に熱圧着させる方法;さらには黒鉛粉末を上記のフッ素樹脂粉末あるいはカルボキシメチルセルロース等の水溶性粘結剤を結着剤として、N−メチルピロリドン、ジメチルホルムアミドあるいは水、アルコール等の溶媒を用いてスラリー化し、このスラリーを集電体に塗布し、乾燥する方法などが挙げられる。
【0055】
本発明の黒鉛粉末から作製した負極は、リチウムイオン二次電池に使用できる適当な正極活物質およびリチウム化合物を有機溶媒に溶解させた非水系電解液と組み合わせて、リチウムイオン二次電池を作製することができる。
【0056】
正極活物質としては、例えば、リチウム含有遷移金属酸化物 LiM1 1-xM2 xO2または LiM1 2y M2 y O4 (式中、Xは0≦X≦4、Yは0≦Y≦1の範囲の数値であり、M1、M2は遷移金属を表し、Co、Ni、Mn、Cr、Ti、V、Fe、Zn、Al、In、Snの少なくとも1種類からなる) 、遷移金属カルコゲン化物、バナジウム酸化物 (V2O5、V6O13 、V2O4、V3O8等) およびそのリチウム化合物、一般式 MxMo6S8-y ( 式中、Xは0≦X≦4、Yは0≦Y≦1の範囲の数値であり、Mは遷移金属をはじめとする金属を表す) で表されるシェブレル相化合物、さらには活性炭、活性炭素繊維等を用いることができる。
【0057】
非水系電解液に用いる有機溶媒は、特に制限されるものではないが、例えば、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、1,1 −及び1,2 −ジメトキシエタン、1,2 −ジエトキシエタン、γ−ブチロラクタム、テトラヒドロフラン、1,3 −ジオキソラン、4−メチル−1,3 −ジオキソラン、アニソール、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、クロロニトリル、プロピオニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N−メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン等の1種もしくは2種以上が例示できる。
【0058】
電解質のリチウム化合物としては、使用する有機溶媒に可溶性の有機または無機リチウム化合物を使用すればよい。適当なリチウム化合物の具体例としては、LiClO4、LiBF4 、LiPF6 、LiAsF6、LiB(C6H5) 、LiCl、LiBr、LiCF3SO3、LiCH3 SO3 等の1種または2種以上を挙げることができる。
【0059】
【実施例】
(実施例1)
石油ピッチから得たバルクメソフェーズピッチを粗粉砕し、アルゴン雰囲気下1000℃に1時間加熱することにより炭化して炭素材を得た。この炭素材を、約90体積%が粒度1〜80μmとなるようにアトリションミルで粉砕した。次いで、粉砕した炭素材をアルゴン雰囲気下3000℃の温度で30分間熱処理して黒鉛化を行い、さらに酸素雰囲気中700 ℃で3時間の酸化熱処理を行うことにより、黒鉛粉末表面に削り取った。その後、Ar雰囲気中で昇温速度100 ℃、保持温度2000℃、保持時間6時間の急速熱処理を実施することにより、本発明の黒鉛粉末を得た。
【0060】
この黒鉛粉末を5μm以上、45μm以下に篩い分けしてから、電極の作製に供した。この黒鉛粉末の平均粒径は12μmであった。
図3に、得られた黒鉛粉末の原子間力顕微鏡写真を示す。この写真から、黒鉛粉末の表面には、長さ0nm超〜20nmの周期的な閉塞領域がc軸垂直方向に数珠状に連なった、モザイク状の表面閉塞構造を持つことが認められる。即ち、このモザイク状閉塞構造のLc⊥は0nm超〜20nmである。
【0061】
図4には、黒鉛粉末をc軸方向に切った断面TEM写真を示す。この写真から、粉末表面に多層積層型の閉塞構造が形成されており、そのc軸方向のピッチ幅 (即ち、閉塞領域のc‖) は2〜10 nm であることがわかる。
【0062】
さらに、図5は黒鉛粉末の表面を真上から観察した構造を示す。本発明によれば、図5に示すように、aの部分が閉塞領域となり、bの部分が間隙口となった、閉塞領域がモザイク状に散在した閉塞構造が黒鉛表面に形成される。
【0063】
上で得たモザイク状閉塞構造を持つ本発明の黒鉛粉末を用いて、以下の方法で電極を作製した。
上述の黒鉛粉末90質量部とポリフッ化ビニリデン粉末10質量部とを、溶剤であるN−メチルピロリドン中で混合し、乾燥させペースト状にした。得られたペーストを集電体となる厚さ20μmの銅箔上にドクターブレードを用いて均一厚さに塗布した後、80℃で乾燥させた。ここから直径15.2 mm の円形 (面積1.8 cm2)に切り出した試験片を負極とした。
【0064】
この負極の高率放電特性を、対極、参照極に金属リチウムを用いた3極式定電流充放電試験で評価した。電解液はエチレンカーボネートとジメチルカーボネートの体積比1:3の混合溶液1mol/l の濃度でLiPF6 を溶解させたものを使用した。充放電電流は0.85、4.0 、8.0 、12、20 mA の5条件を用いた。電流密度に換算すると、それぞれ0.47、2.2 、4.4 、6.6 および11.1 mA/cm2 になる。なお、電極形成時のプレス圧は750 kgf/cm2 である。初回は0.85 mA の定電流定電圧で充電を終了した後、同じ電流で放電させ、2サイクル目では、上記5条件による電流密度を用いて充放電容量を測定し、初回に対する放電容量比を算出した。
【0065】
比較のために、バルクメソフェーズピッチを、炭化前に約90体積%が1〜80μmとなるようにアトリションミルで粉砕した後、Ar雰囲気下700 ℃に1時間加熱して炭化させ、次いでそのまま加熱温度を3000℃に上げて、Ar雰囲気下で実施例と同様に熱処理を行って黒鉛化して得た、従来の黒鉛粉末 (即ち、本発明の製造方法における工程(a) と(b) だけで得た黒鉛粉末) についても、同様に高率放電特性を調べた。
【0066】
本発明による黒鉛粉末と従来の黒鉛粉末の種々の電流密度での放電特性の試験結果を図6に示す。
図6からわかるように、本発明の黒鉛化後に酸化処理と急速アニール処理とを施した黒鉛粉末を活物質とする負極では、電流を20 mA と高くしても、0.85 mA の時の95%という高い放電容量を示し、高率放電特性に優れていた。また、20 mA での放電容量は313mAh/g、充放電効率 (充電電気量に対する放電電気量の百分率)は92%であり、いずれも十分に高かった。
【0067】
一方、図6に示すように、従来の黒鉛粉末を用いた負極では、電流が12 mA で放電容量の低下が認められ、20 mA では、0.85 mA の時の80%まで容量が低下した。この時の放電容量は272mAh/g、充放電効率は80%であった。
【0068】
本発明の黒鉛粉末が高率放電特性に優れているのは、急速熱処理によるモザイク状表面閉塞構造の形成により空隙が網目状に拡がり、Liイオンの侵入・拡散経路を容易に確保できる点にあると考えるのが妥当である。
【0069】
(実施例2)
酸化熱処理後のAr雰囲気中での熱処理の昇温速度と保持温度を表1に示すように変化させた以外は実施例1と同様にして黒鉛粉末を製造した。
【0070】
得られた黒鉛粉末の表面に形成されている閉塞領域のLc‖およびLc⊥の値と、これから作製した負極の高率放電特性 (2回目の充放電電流が20mA (=電流密度11.1 mA/cm2)の場合の放電容量の初回0.85 mA の場合の放電容量に対する比) を、いずれも実施例1と同様に求めた結果を表1に併記する。
【0071】
【表1】
表1に示すように、酸化熱処理後のAr雰囲気中での熱処理時の昇温速度3℃/秒の場合には、得られた黒鉛粉末の表面の閉塞構造がモザイク状にならず、閉塞領域がc⊥方向に連続して、閉塞領域のLc⊥値が∞である表面形態となる。
【0072】
これに対し、この熱処理の昇温速度が5℃/秒以上になると、モザイク状の閉塞構造が生成し、それに伴って高率放電特性の改善が得られた。表1から、熱処理時の昇温速度が速いほど、また保持温度が高いほど、生成したモザイク状閉塞構造の個々の閉塞領域のLc⊥値が小さくなる傾向があり、このLc⊥値が小さいほど高率放電特性が向上することがわかる。
【0073】
【発明の効果】
本発明により、高率放電特性に優れ、かつ放電容量と充放電効率も十分に高い、リチウムイオン二次電池の負極として最適の黒鉛粉末が提供される。それにより、リチウムイオン二次電池の高性能化を図ることができる。従って、本発明は特に高率充放電が求められる用途におけるリチウムイオン二次電池の普及に貢献する技術である。
【図面の簡単な説明】
【図1】従来の黒鉛粉末の表面閉塞構造と本発明の範囲外の条件での熱処理による閉塞構造の変化を示す模式的説明図である。
【図2】本発明の黒鉛粉末の製造過程における表面閉塞構造の形成の異なる態様を示す模式的説明図である。
【図3】本発明の黒鉛粉末の表面形態を示す原子間力顕微鏡写真である。
【図4】本発明の黒鉛粉末の表面付近の断面TEM写真である。
【図5】本発明の黒鉛粉末の表面を真上から観察した模式図であり、aは閉塞領域の部分、bは間隙口の部分を示す。
【図6】本発明の黒鉛粉末と従来の黒鉛粉末について、充放電電流密度に対する放電容量の変化を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a graphite powder having an optimum surface form as a negative electrode material for a lithium ion secondary battery and a method for producing the same. The present invention also relates to a negative electrode of a lithium ion secondary battery using the graphite powder and a lithium ion secondary battery including the negative electrode. When the graphite powder of the present invention is used for a negative electrode, a lithium ion secondary battery excellent in high rate discharge characteristics (rate characteristics) can be produced.
[0002]
[Prior art]
In lithium ion secondary batteries that are rapidly spreading as small-sized secondary batteries, negative electrodes using carbon powder that can absorb Li ions as an active material are generally used. Most of these negative electrodes are manufactured from graphite powder. . This is because crystalline graphite powder has a higher discharge capacity per unit volume and excellent charge / discharge efficiency than amorphous carbon powder.
[0003]
This graphite powder can be obtained by pulverizing natural graphite, but it was obtained after carbonization by removing organic substances by heat treating a carbonaceous raw material in terms of quality stability. A powder of graphite obtained by graphitizing a carbon material by heat treatment at a higher temperature for crystallization is preferred.
[0004]
In addition to discharge capacity and charge / discharge efficiency (ratio of discharge capacity to charge capacity), characteristics considered for graphite used as the negative electrode material for lithium ion secondary batteries include high rate discharge characteristics (at low current density). There is a ratio of discharge capacity at high current density to discharge capacity). The high rate discharge characteristic is important particularly in the case of rapid charging.
[0005]
Regarding the surface form of artificial graphite powder, International Publication No. WO 98/29335 describes a closed structure formed by bonding the ends of c-plane layers of graphite crystal having a hexagonal layered crystal structure by graphitization heat treatment. It is pointed out that it forms on the surface. In the conventional artificial graphite having this surface form, the gap surface, which is a gap between adjacent closed structures, becomes the main entry / exit site for Li ions involved in charge / discharge.
[0006]
[Problems to be solved by the invention]
In the above international publication, it is proposed to increase the discharge capacity by increasing the density per unit length of the gap surface, which is the main penetration site of Li ions (that is, decreasing the pitch of the gap surface). Has been.
[0007]
This increase in the interfacial density of the graphite powder can be achieved by any of the following methods:
(1) Perform high-speed grinding or shear grinding before graphitization heat treatment to introduce atomic level irregularities (layer defects) on the powder surface, and then perform graphitization heat treatment; or
(2) The graphite powder obtained by the graphitization heat treatment is subjected to a heat treatment that can cut the surface, such as an oxidation heat treatment, to release the blockage structure of the powder surface, and then heat-treated again in an inert gas to block the graphite powder. Reshape the structure.
[0008]
In particular, the method (2) can obtain a graphite powder having a very large gap surface density. In this way, when the density of the gap surface, which is the entry site of Li ions, is increased, a graphite powder whose discharge capacity is considerably close to 372 mAh / g, which is the theoretical capacity of the graphite negative electrode, can be obtained. Moreover, the charge / discharge rate is also sufficiently high.
[0009]
However, as long as the Li ion penetration site is limited to the gap surface, the Li ion that has passed through the penetration site diffuses into the graphite powder through the c-plane layer, so the Li ion diffusion path becomes longer. . Therefore, since it takes time to enter and escape Li ions, there is room for improvement in high rate discharge characteristics. As the current density increases, a large amount of Li ions must enter and escape. However, if the diffusion path is long and it takes time to enter and escape Li ions, a large amount of Li ions enter at high current densities. This is because the diffusion cannot catch up and the discharge capacity decreases.
[0010]
The main object of the present invention is to provide a graphite powder suitable for a negative electrode material of a lithium ion secondary battery with improved high rate discharge characteristics and excellent discharge capacity and charge / discharge efficiency, and a method for producing the same. .
[0011]
[Means for Solving the Problems]
In order to investigate the influence of the heat treatment on the closed structure of graphite, the present inventors changed the heat treatment conditions in the inert gas in the method (2) described in International Publication WO 98/29335 to close the structure. The structure was reformed and the surface morphology of the resulting graphite powder was examined using atomic force microscopy. As a result, it was found that the surface morphology varies depending on the heating rate of the heat treatment.
[0012]
Specifically, the surface of the graphite powder that has been heat-treated at a rate of temperature rise of less than 5 ° C./second has a clogging structure formed by bonding ends of the c-plane layer in the c-plane layer direction, that is, It continues long in the direction perpendicular to the c-axis (c⊥ direction), and the gap surface also continues in the same direction. Therefore, a striped block structure is formed in which gap surfaces appear at substantially constant intervals.
[0013]
On the other hand, the surface of graphite powder that has been subjected to rapid heat treatment (rapid thermal annealing) at a high temperature rise rate is dominated by partial aggregation of the closed structure starting from nucleation at non-equilibrium. Therefore, the closed structure on the powder surface is not continuous in the c⊥ direction, and a mosaic (checkered) closed structure is formed. Further, the once formed mosaic blockage structure is thermally stable and irreversible, so that its surface form is maintained even during the temperature lowering process.
[0014]
The graphite powder having this novel mosaic blockage structure exhibits high discharge capacity and charge / discharge efficiency, and also has high rate discharge characteristics. This is because, as will be described in detail later, the mosaic occlusion structure has a short Li ion diffusion path and can easily diffuse, replace, and release a large amount of Li ions in a short time. It is done.
[0015]
According to the present invention, a closed region in which the ends of the graphite c-plane layers are connected and closed is scattered on the powder surface, and the length of each of the closed regions in the direction perpendicular to the graphite c-axis ( A graphite powder is provided, wherein Lc L) is 100 nm or less.
[0016]
The graphite powder of the present invention having the above surface form can be produced by a method characterized by including the following steps:
(a) a step of heat treating a carbon material obtained by carbonizing the carbonaceous material to graphitize,
(b) at least one grinding step before carbonization, between carbonization and graphitization, and / or after graphitization,
(c) a step of heat-treating the graphite powder obtained after the steps (a) and (b) under conditions capable of shaving the surface;
(d) A step of heat-treating the graphite powder obtained in step (c) in an inert gas at a temperature rising rate of 5 ° C./second or more and maintaining the temperature at 500 ° C. or more.
[0017]
The heat treatment in step (c) is preferably an oxidation heat treatment.
According to the present invention, a negative electrode for a lithium ion secondary battery provided with the graphite powder having the above surface form, and a lithium ion secondary battery provided with the negative electrode are also provided.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
First, the surface form of the graphite powder of this invention is demonstrated with reference to the schematic diagram of FIGS.
[0019]
A conventional ordinary graphite powder obtained by pulverizing and heat-treating with graphitization has a multilayer closed structure in which several layers of closed structures are laminated, as shown in a cross-sectional view in FIG. Although not shown, this multi-layer closed structure takes a surface form extending long in the c-plane layer direction (a direction perpendicular to the c-axis, that is, the c⊥ direction). The surface morphology of the graphite powder obtained after steps (a) and (b) of the production method of the present invention is also such. Such a closed structure on the powder surface can actually be confirmed by a cross-sectional SEM or TEM photograph of the graphite powder.
[0020]
In the case of the multilayer closed structure described above, the gap surface serving as an intrusion site for Li ions is, for example, in the case of the multilayer closed structure laminated in five layers, one for every 10 c-plane layers, and the remaining nine c layers. Since the end of the face layer is closed, Li ions cannot enter. Thus, since there are few Li ion penetration sites, the discharge capacity is limited and cannot approach the theoretical capacity.
[0021]
When graphite powder having such a multilayer laminated closed structure on the surface is subjected to an oxidation heat treatment in step (c) of the production method of the present invention, the surface is scraped and flattened. As a result, as shown in FIG. The occlusion structure is opened, and the end of the c-plane layer remains cut without being bonded to the other c-plane layers. Therefore, all the c-plane layer ends become gap surfaces and become Li ion intrusion sites. Although this form is advantageous for the penetration of Li ions, it is chemically unstable and the electrolytic solution easily penetrates into the inside, so that it becomes a negative electrode with a very short cycle life and is not practical.
[0022]
Thereafter, in step (d), when heat treatment is performed in an inert gas, unstable c-plane layer ends are bonded together for stabilization, and a closed structure is re-formed. Since the surface of the graphite powder is flattened, the bonding at this time reduces the number of laminated layers even if the closed structure is laminated in multiple layers. For example, as shown in FIG. 1 (c), a surface form having a closed structure in which two layers are laminated can be used. However, the actual closing structure is naturally not uniform in this way.
[0023]
However, if the heating rate of the heat treatment in step (d) is less than 5 ° C./second, end bonding occurs substantially in an equilibrium state, and as shown in FIG. The connection between the face layers extends long in one direction, and the gap surface and the closing structure form a striped pattern, that is, a so-called striped closing structure. That is, the number of c-plane layers is reduced compared to the closed structure shown in FIG. 1 (a), but it is the same in that the closed structure continues in the c⊥ direction. However, when the number of stacked layers decreases, the density of the gap surface increases and the discharge capacity increases.
[0024]
In the present invention, the heat treatment in step (d) is rapid heat treatment with a temperature increase rate of 5 ° C./second or more. As a result, the lattice vibration at the end of the c-plane layer increases momentarily, and bonding at the end of the c-plane layer occurs in a non-equilibrium state. As a result, as shown in FIGS. 2 (a) and 2 (b), the joints are distributed to the left and right, and the ends are partially connected alternately between the c-plane layers. That is, the closed structure of the end of the c-plane layer on the surface of the graphite powder does not continue long in the c⊥ direction, but breaks short, resulting in a mosaic (checkered) closed structure.
[0025]
The mosaic blockage structure appearing on the surface of the graphite powder of the present invention may be a single layer blockage structure without stacking as shown in FIG. 2 (a), or as shown in FIG. It may be a closed structure in which more than one layer is laminated, or a coexistence state of both. In general, the number of layers of the closed structure is smaller than the graphite powder obtained after the steps (a) and (b), but there is no particular limitation. The mosaic closed structure of the graphite powder of the present invention can be seen by observing the graphite powder with an atomic force microscope that can reproduce the fine unevenness of the surface.
[0026]
When the clogging structure on the graphite powder surface is striped as shown in FIG. 1 (a) or (c), the c-plane layer completely clogged by the clogging structure can be reached in any direction in the c⊥ direction. It remains an occluded structure. Therefore, in the c-axis direction (c‖ direction) perpendicular to the c-plane layer, the gap surface, which is the entry site of Li ions, appears only between specific adjacent c-plane layers every several to a dozen layers. Li ions are easy to move in the c-plane layer (c⊥ direction), and the movement in the c-axis direction (c‖ direction) perpendicular to this is more difficult because it must pass through the c-plane layer. is there. Therefore, when the gap surface appears only in a specific c-plane layer with a gap, the diffusion distance of Li ions becomes longer and the diffusion becomes more difficult.
[0027]
On the other hand, when the surface blocking structure of the graphite powder is a checkered mosaic like the present invention, for example, as shown in FIG. All adjacent c-plane layers have a portion (referred to as a gap port in the present invention) that becomes a gap surface at some position in the c-plane layer direction (c⊥ direction). All c-plane layer layers have gap holes, and Li ions can enter the c-plane layer from these gap holes and easily move in the c-plane direction, so that Li ions diffuse quickly. . As a result, even if a large amount of Li ions enter during high rate discharge, Li ions can easily diffuse into the powder, and the high rate discharge characteristics are improved.
[0028]
The graphite powder of the present invention has the surface form of the above-mentioned mosaic closed structure. In the present invention, each block portion of the mosaic block structure is referred to as a block region. Each closed region is formed by connecting and closing the end portions of the graphite c-plane layer.
[0029]
These individual closed regions vary in length in the direction perpendicular to the graphite c-axis (Lc⊥), but all are 100 nm or less. Graphite powder with a mosaic blockage structure in which the Lc value of each blockage region exceeds 100 nm is virtually impossible to manufacture. When trying to manufacture such a powder, as shown in Fig. 1 (c) In addition, the closed region becomes a surface form continuous in the c⊥ direction (Lc = ∞).
[0030]
The smaller the value of Lc⊥ in each closed region, the shorter the Li ion diffusion distance and the higher rate discharge characteristics. This value is preferably 50 nm or less, more preferably 20 nm or less, and particularly preferably 10 nm or less. The magnitude of the Lc value in the closed region depends on the heating rate and the holding temperature during the heat treatment in step (d), and tends to be smaller as these are higher.
[0031]
The width (Lc‖) in the c-axis direction of the individual closed regions of the mosaic closed structure is not particularly limited. This width depends on the number of stacked layers of the above-mentioned closed structure and is generally in the range of 0.3354 nm to 10 nm. 0.3354 nm is the minimum value of the interlayer distance d002 of graphite, and is the theoretical value of Lc‖ in the closed region of a single layer of a complete graphite crystal. In order for Lc10 to exceed 10 nm, it is necessary to have a closed structure in which more than a dozen layers are laminated, and it is practically impossible to manufacture. A preferable value of Lc‖ is 5 nm or less.
[0032]
The width (Lc‖ value) in the c-axis direction of the closed region of the mosaic closed structure that appears on the surface of the graphite powder of the present invention can be measured from a cross-sectional SEM or TEM photograph near the surface of the graphite powder. On the other hand, the length (Lc 軸 value) in the c-axis perpendicular direction of the closed region can be measured from an atomic force microscope photograph and a TEM photograph of the graphite powder surface.
[0033]
Next, the manufacturing method of the graphite powder of this invention is demonstrated.
First, in the step (a), the carbonaceous material is heat treated to carbonize (decompose organic matter), and the obtained carbon material is further heat treated at high temperature to be graphitized.
[0034]
The carbonaceous material as a raw material is not particularly limited, and may be the same as that conventionally used for producing graphite. Specific examples include coal tar pitch or petroleum pitch, mesophase microspheres generated by heat treatment thereof, bulk mesophase which is a matrix of the microspheres, and other organic substances such as organic resins. Particularly preferred carbonaceous raw materials are mesophase spherules and bulk mesophase, and bulk mesophase is particularly preferred from the viewpoint of cost and mass productivity.
[0035]
Carbonization conditions for the carbonaceous material may be selected so that elements other than carbon contained in the raw material are almost completely removed by decomposition of the material. In order to prevent oxidation (combustion) of carbon, the carbonization heat treatment is performed in an inert atmosphere or vacuum. The heat treatment temperature for carbonization is usually in the range of 800 to 1500 ° C, and particularly preferably around 1000 ° C. The heat treatment time required for carbonization is about 30 minutes to 3 hours when the temperature is 1000 ° C., although it depends on the type of raw material, heat treatment, and temperature.
[0036]
Next, the obtained carbon material is heat-treated and graphitized. Graphitization usually requires a temperature of 2500 ° C or higher. In order to lower the graphitization temperature, a small amount of an appropriate graphitization catalyst (eg, boron) may be added. In that case, the graphitization catalyst may be added before carbonization. When a graphitization catalyst is added, the graphitization temperature can be lowered to about 1500 ° C. The upper limit of the graphitization heat treatment temperature is about 3200 ° C with the current heating technology. A preferable graphitization heat treatment temperature is 2800 to 3000 ° C. when no catalyst is added.
[0037]
This heat treatment is performed until the graphitization (crystallization) is completed. This time varies depending on the presence or absence of the catalyst and the amount of treatment, but is generally 20 minutes to 10 hours. The heat treatment atmosphere is a non-oxidizing atmosphere (eg, inert gas atmosphere or vacuum). For the graphitization heat treatment, industrially, an Atchison furnace (heating by energizing surrounding carbon powder) or an LWG furnace (direct heating by heating) is used. Such an industrial firing furnace is operated in the atmosphere, but the inside of the furnace is a non-oxidizing atmosphere composed of nitrogen and carbon monoxide.
[0038]
Step (b) is a pulverizing step for obtaining a powder. This pulverization may be performed on the carbonaceous raw material before carbonization, carbon material after carbonization, and graphite after graphitization, but after graphitization, the layered structure develops and pulverizes. Since it becomes difficult, it is preferable to grind before graphitization. Moreover, it can also grind | pulverize in these 2 steps or more. However, crushing is not performed after the next step (c).
[0039]
The pulverization can be performed using a conventional pulverizer such as a hammer mill, a fine mill, an attrition mill, a ball mill, or a disk mill.
Regarding the particle size, when used as a negative electrode material for a lithium ion secondary battery, it is known that if the average particle size is too large, the packing density decreases, and those having a particle size smaller than 1 μm deteriorate the initial charge / discharge characteristics. Therefore, it is preferable that fine particles having an average particle diameter in the range of 5 to 50 μm and smaller than 1 μm do not exist.
[0040]
Steps (a) and (b) are the same as the conventional method for producing graphite powder. If the graphite powder thus obtained is pulverized before graphitization, as described above, as shown in FIG. 1 (a), a multi-layer laminated closed structure usually extends in the c⊥ direction. It has a surface morphology with a closed structure. Conventionally, the graphite powder obtained from the steps (a) and (b) has been used as it is for the negative electrode material of a lithium ion secondary battery, but the present invention is further subjected to steps (c) and (d).
[0041]
In the step (c), the graphite powder obtained through the steps (a) and (b) is produced by a graphitization heat treatment by, for example, subjecting the graphite powder to a c-plane layer by subjecting it to an oxidation heat treatment. The occluded structure is once opened and is not connected to other c-plane layers. By scraping the surface, the ends of the c-plane layer on the powder surface are relatively flat.
[0042]
The conditions for the oxidation heat treatment are not particularly limited as long as the closure structure is substantially opened by oxidation, but the heat treatment temperature is preferably about 600 to 800 ° C. Since graphite powder with a closed structure has high oxidation resistance, it is difficult to oxidize at temperatures lower than 600 ° C., and oxidation proceeds rapidly at temperatures above 800 ° C., leading to deterioration of the entire graphite powder. The oxidation heat treatment time varies depending on the temperature and the amount of treatment, but is generally 1 to 10 hours. The heat treatment atmosphere is an oxygen-containing atmosphere, and may be a pure oxygen atmosphere or a mixed gas atmosphere of oxygen and an inert gas (eg, air).
[0043]
As a result of removing the powder surface by this oxidation heat treatment, the weight of the graphite powder is reduced by about 2 to 5%. Further, the particle size of the powder is slightly reduced (eg, about 1 to 2 μm). If necessary, the pulverization conditions are set in anticipation of this particle size reduction.
[0044]
The opening of the closing structure is not limited to the oxidation heat treatment. Other methods can also be employed as long as the clogging layer structure can be obtained by scraping off the surface structure of the graphite powder to open the blocking structure. Other methods include, for example, fluorination heat treatment or hydrogenation heat treatment. The heat treatment conditions in this case may be appropriately set by experiments so that the closing structure is opened by scraping the surface.
[0045]
When the graphite powder whose surface has been scraped is heat-treated in an inert gas atmosphere in step (d), the open ends of the c-plane layer are bonded together for stabilization. An occlusion structure is formed.
[0046]
In the present invention, the heat treatment conditions for re-forming this closed structure are important. That is, this heat treatment is a rapid heat treatment with a temperature rising rate of 5 ° C./second or more and a holding temperature of 500 ° C. or more. As already explained, as a result of such rapid thermal processing, the c-plane layer ends are bonded in a non-equilibrium state, and as a result, the bonds are distributed to the left and right, and the restructured closed structure continues in the Lc⊥ direction. Without a checkered mosaic. Thereby, the improvement of the high rate discharge characteristic is obtained.
[0047]
In the mosaic blockage structure formed by this rapid heat treatment, the higher the rate of temperature rise, the smaller the length (Lc⊥) in the c-axis ⊥ direction of each blockage region of the blockage structure. The improvement effect is large and advantageous. In that sense, the temperature rising rate is preferably 10 ° C./second or more, more preferably 25 ° C./second or more, more preferably 50 ° C./second or more, and a very high temperature rising rate of 100 ° C./second or more. it can. However, even if the rate of temperature rise exceeds 200 ° C., the effect is not improved so much.
[0048]
Thus, in order to form a mosaic blockage structure on the surface of graphite powder by rapid heat treatment, it is necessary to open the blockage structure by shaving the surface of the graphite powder by oxidation heat treatment or the like. If the closed structure is not opened in advance, a mosaic closed structure cannot be formed even by rapid heat treatment.
[0049]
The holding temperature of the heat treatment needs to be 500 ° C. or higher in order to form the above mosaic closed structure. If the holding temperature is lower than this, lattice vibrations of a size necessary for bonding between the c-plane layer ends cannot be applied, and it becomes difficult to form a closed structure. When the heating rate is the same, the higher the holding temperature, the smaller the value of Lc⊥ in the individual closed regions of the formed mosaic closed structure, which is advantageous because the effect of improving the high rate discharge characteristics is increased. In that sense, the heat treatment holding temperature is preferably 700 ° C. or higher, more preferably 1000 ° C. or higher, and further preferably 1500 ° C. or higher. For example, it can be a high temperature of 2000 to 3000 ° C. or higher.
[0050]
Note that the value of the width (Lc‖) in the c-axis direction of each closed region of the mosaic closed structure is not significantly affected by the heat treatment conditions (temperature increase rate and holding temperature). The value of Lc‖ is mainly governed by the graphitization temperature.
[0051]
The heat treatment in step (d) is performed in an inert gas atmosphere. The inert gas atmosphere may be one or more of Ar, He, Ne, and the like, for example. The heat treatment time only needs to form a closed structure and varies depending on the temperature, but is generally 1 to 10 hours. For example, at 1000 ° C., about 5 hours is a guide.
[0052]
The graphite powder of the present invention having a surface form consisting of a mosaic blockage structure obtained by the step (d) is suitable as a negative electrode material for a lithium ion secondary battery, has excellent discharge capacity and charge / discharge efficiency, and A negative electrode of a lithium ion secondary battery with improved high rate discharge characteristics can be produced.
[0053]
The negative electrode of the lithium ion secondary battery can be manufactured in the same manner as before. In general, graphite powder is formed into an electrode by molding on a current collector as an electrode substrate using an appropriate binder. As the current collector, it is possible to use any metal foil (eg, copper foil such as electrolytic copper foil, rolled copper foil) that has good supportability of graphite powder and does not dissolve when decomposed when used as a negative electrode. it can.
[0054]
Molding can be carried out by an appropriate method that has been used in the past to produce electrodes from powdered active materials, and it fully draws out the negative electrode performance of graphite powder. As long as it is stable and electrochemically stable, there is no limitation. For example, a binder made of a fluororesin powder such as polytetrafluoroethylene or polyvinylidene fluoride and an organic solvent such as isopropyl alcohol are added to graphite powder and kneaded to form a paste, and this paste is screen printed on a current collector. Method: A method of adding resin powders such as polyethylene and polyvinyl alcohol to graphite powder and dry-mixing, and hot-pressing the mixture using a mold, and simultaneously thermocompression bonding to the current collector; Using the above-mentioned fluororesin powder or water-soluble binder such as carboxymethylcellulose as a binder, slurry is formed using a solvent such as N-methylpyrrolidone, dimethylformamide, water or alcohol, and this slurry is applied to a current collector. And a method of drying.
[0055]
The negative electrode produced from the graphite powder of the present invention is combined with a suitable positive electrode active material that can be used in a lithium ion secondary battery and a non-aqueous electrolyte solution in which a lithium compound is dissolved in an organic solvent to produce a lithium ion secondary battery. be able to.
[0056]
Examples of positive electrode active materials include lithium-containing transition metal oxides LiM1 1-xM2 xO2Or LiM1 2yM2 yOFour (In the formula, X is a numerical value in the range of 0 ≦ X ≦ 4, Y is in a range of 0 ≦ Y ≦ 1, M1, M2Represents a transition metal, consisting of at least one of Co, Ni, Mn, Cr, Ti, V, Fe, Zn, Al, In, Sn), transition metal chalcogenides, vanadium oxide (V2OFive, V6O13, V2OFour, VThreeO8And its lithium compounds, general formula MxMo6S8-y(Wherein X is a numerical value in the range of 0 ≦ X ≦ 4, Y is a range of 0 ≦ Y ≦ 1, and M represents a metal including a transition metal) Activated carbon fiber or the like can be used.
[0057]
The organic solvent used for the non-aqueous electrolyte is not particularly limited, and examples thereof include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, 1,1- and 1,2-dimethoxyethane, and 1,2-diethyl. Ethoxyethane, γ-butyrolactam, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, anisole, diethyl ether, sulfolane, methylsulfolane, acetonitrile, chloronitrile, propionitrile, trimethyl borate, silicic acid Examples thereof include one or more of tetramethyl, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethyl orthoformate, nitrobenzene and the like.
[0058]
As the electrolyte lithium compound, an organic or inorganic lithium compound soluble in the organic solvent to be used may be used. Specific examples of suitable lithium compounds include LiClOFour, LiBFFour, LiPF6, LiAsF6, LiB (C6HFive), LiCl, LiBr, LiCFThreeSOThree, LiCHThreeSOThree1 type, or 2 or more types can be mentioned.
[0059]
【Example】
(Example 1)
Bulk mesophase pitch obtained from petroleum pitch was coarsely pulverized and carbonized by heating to 1000 ° C. for 1 hour under an argon atmosphere to obtain a carbon material. The carbon material was pulverized by an attrition mill so that about 90% by volume had a particle size of 1 to 80 μm. Next, the pulverized carbon material was heat treated at 3000 ° C. for 30 minutes in an argon atmosphere for graphitization, and further subjected to oxidation heat treatment at 700 ° C. for 3 hours in an oxygen atmosphere to scrape the graphite powder surface. Thereafter, rapid heat treatment was performed in an Ar atmosphere at a rate of temperature rise of 100 ° C., a holding temperature of 2000 ° C., and a holding time of 6 hours to obtain the graphite powder of the present invention.
[0060]
The graphite powder was sieved to 5 μm or more and 45 μm or less, and then used for production of an electrode. The average particle size of the graphite powder was 12 μm.
FIG. 3 shows an atomic force micrograph of the obtained graphite powder. From this photograph, it is recognized that the surface of the graphite powder has a mosaic surface blocking structure in which periodic blocking regions having a length of more than 0 nm to 20 nm are arranged in a bead shape in the c-axis vertical direction. That is, Lc⊥ of this mosaic-like occlusion structure is more than 0 nm to 20 nm.
[0061]
FIG. 4 shows a cross-sectional TEM photograph of graphite powder cut in the c-axis direction. From this photograph, it can be seen that a multilayer laminated block structure is formed on the powder surface, and the pitch width in the c-axis direction (that is, c‖ of the block region) is 2 to 10 nm.
[0062]
Furthermore, FIG. 5 shows the structure of the surface of the graphite powder observed from directly above. According to the present invention, as shown in FIG. 5, a closed structure is formed on the graphite surface in which a portion a is a closed region and a portion b is a gap opening, and the closed regions are scattered in a mosaic pattern.
[0063]
Using the graphite powder of the present invention having the mosaic blockage structure obtained above, an electrode was produced by the following method.
90 parts by mass of the above-mentioned graphite powder and 10 parts by mass of polyvinylidene fluoride powder were mixed in N-methylpyrrolidone as a solvent and dried to obtain a paste. The obtained paste was applied to a uniform thickness on a 20 μm thick copper foil serving as a current collector using a doctor blade, and then dried at 80 ° C. From here, a circle with a diameter of 15.2 mm (area 1.8 cm)2) Was used as a negative electrode.
[0064]
The high rate discharge characteristics of the negative electrode were evaluated by a three-pole constant current charge / discharge test using metallic lithium as a counter electrode and a reference electrode. The electrolyte is LiPF at a concentration of 1 mol / l of a mixed solution of ethylene carbonate and dimethyl carbonate in a volume ratio of 1: 3.6What was dissolved was used. Five conditions of 0.85, 4.0, 8.0, 12, and 20 mA were used for the charge / discharge current. Converted to current density, 0.47, 2.2, 4.4, 6.6 and 11.1 mA / cm, respectively2become. The press pressure during electrode formation is 750 kgf / cm.2It is. After the first charge is completed at a constant current of 0.85 mA, the same current is discharged. In the second cycle, the charge / discharge capacity is measured using the current density according to the above five conditions, and the discharge capacity ratio relative to the first is calculated. did.
[0065]
For comparison, the bulk mesophase pitch was pulverized by an attrition mill so that about 90% by volume becomes 1 to 80 μm before carbonization, then heated to 700 ° C. in an Ar atmosphere for 1 hour to be carbonized, and then heated as it is. The temperature was raised to 3000 ° C., and heat treatment was performed in the same manner as in the examples in an Ar atmosphere to obtain graphitized conventional graphite powder (that is, only the steps (a) and (b) in the production method of the present invention). The high rate discharge characteristics were similarly examined for the obtained graphite powder.
[0066]
FIG. 6 shows the test results of the discharge characteristics of the graphite powder according to the present invention and the conventional graphite powder at various current densities.
As can be seen from FIG. 6, in the negative electrode using graphite powder subjected to oxidation treatment and rapid annealing treatment after graphitization according to the present invention as an active material, 95% at 0.85 mA even when the current is increased to 20 mA. The discharge capacity was high, and the high rate discharge characteristics were excellent. The discharge capacity at 20 mA was 313 mAh / g, and the charge / discharge efficiency (percentage of discharge electricity with respect to charge electricity) was 92%, both of which were sufficiently high.
[0067]
On the other hand, as shown in FIG. 6, in the negative electrode using the conventional graphite powder, a decrease in discharge capacity was observed at a current of 12 mA, and at 20 mA, the capacity decreased to 80% at 0.85 mA. The discharge capacity at this time was 272 mAh / g, and the charge / discharge efficiency was 80%.
[0068]
The reason why the graphite powder of the present invention is excellent in the high rate discharge characteristic is that the voids are expanded in a mesh shape due to the formation of the mosaic surface blocking structure by rapid heat treatment, and the Li ion penetration / diffusion path can be easily secured. It is reasonable to think.
[0069]
(Example 2)
A graphite powder was produced in the same manner as in Example 1 except that the heating rate and holding temperature of the heat treatment in the Ar atmosphere after the oxidation heat treatment were changed as shown in Table 1.
[0070]
The value of Lc‖ and Lc⊥ in the closed region formed on the surface of the obtained graphite powder and the high rate discharge characteristics of the negative electrode produced from this (the second charge / discharge current is 20 mA (= current density 11.1 mA / cm2Table 1 also shows the results obtained in the same manner as in Example 1 for the ratio of the discharge capacity in the case of) to the discharge capacity in the case of the initial 0.85 mA.
[0071]
[Table 1]
As shown in Table 1, when the heating rate during heat treatment in the Ar atmosphere after the oxidation heat treatment is 3 ° C./second, the obstructed structure of the surface of the obtained graphite powder is not mosaic, Are continuously in the c⊥ direction, resulting in a surface form in which the Lc⊥ value of the closed region is ∞.
[0072]
On the other hand, when the heating rate of the heat treatment was 5 ° C./second or more, a mosaic-like closed structure was formed, and accordingly, high-rate discharge characteristics were improved. From Table 1, the higher the heating rate during heat treatment and the higher the holding temperature, the smaller the Lc⊥ value of the individual occluded regions of the generated mosaic blockage structure tends to be smaller. It can be seen that the high rate discharge characteristics are improved.
[0073]
【The invention's effect】
The present invention provides a graphite powder that is excellent as a high-rate discharge characteristic and that has a sufficiently high discharge capacity and charge / discharge efficiency and that is optimal as a negative electrode for a lithium ion secondary battery. Thereby, high performance of the lithium ion secondary battery can be achieved. Therefore, the present invention is a technique that contributes to the popularization of lithium ion secondary batteries in applications that require high rate charge / discharge.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing a change in the closed structure of a surface of a conventional graphite powder and heat treatment under conditions outside the scope of the present invention.
FIG. 2 is a schematic explanatory view showing different aspects of the formation of a surface blocking structure in the production process of the graphite powder of the present invention.
FIG. 3 is an atomic force micrograph showing the surface morphology of the graphite powder of the present invention.
FIG. 4 is a cross-sectional TEM photograph near the surface of the graphite powder of the present invention.
FIGS. 5A and 5B are schematic views of the surface of the graphite powder of the present invention observed from directly above, in which a represents a closed region portion and b represents a gap opening portion.
FIG. 6 is a graph showing changes in discharge capacity with respect to charge / discharge current density for the graphite powder of the present invention and the conventional graphite powder.
Claims (5)
(a) 炭素質材料を炭化して得た炭素材を熱処理して黒鉛化する工程、(b) 炭化前、炭化と黒鉛化の間、および/または黒鉛化後に行う少なくとも1回の粉砕工程、(c) 工程(a), (b)後に得られた黒鉛粉末を、その表面を削ることができる条件下で熱処理する工程、(d) 工程(c) で得られた黒鉛粉末を、不活性ガス中にて昇温速度5℃/秒以上で昇温し、500 ℃以上の温度に保持して熱処理する工程。The method for producing graphite powder for a lithium ion secondary battery negative electrode material according to claim 1, comprising the following steps.
(a) a step of heat-treating a carbon material obtained by carbonizing a carbonaceous material to graphitize, (b) at least one grinding step performed before carbonization, between carbonization and graphitization, and / or after graphitization, (c) a step of heat-treating the graphite powder obtained after steps (a) and (b) under conditions that allow the surface to be shaved, and (d) an inert treatment of the graphite powder obtained in step (c). A process of heating in a gas at a heating rate of 5 ° C./second or more and maintaining a temperature of 500 ° C. or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000261046A JP4701484B2 (en) | 2000-08-30 | 2000-08-30 | Graphite powder suitable for negative electrode of secondary battery, its production method and use |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000261046A JP4701484B2 (en) | 2000-08-30 | 2000-08-30 | Graphite powder suitable for negative electrode of secondary battery, its production method and use |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002075362A JP2002075362A (en) | 2002-03-15 |
JP4701484B2 true JP4701484B2 (en) | 2011-06-15 |
Family
ID=18748962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000261046A Expired - Fee Related JP4701484B2 (en) | 2000-08-30 | 2000-08-30 | Graphite powder suitable for negative electrode of secondary battery, its production method and use |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4701484B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100477970B1 (en) | 2002-12-26 | 2005-03-23 | 삼성에스디아이 주식회사 | Negative active material for lithium secondary battery and method of preparing same |
JP2007076929A (en) * | 2005-09-12 | 2007-03-29 | Jfe Chemical Corp | Manufacturing method for graphitized powder of mesocarbon microspheres |
KR101429975B1 (en) | 2007-12-21 | 2014-08-18 | 재단법인 포항산업과학연구원 | Method for heat treatment of activated carbons for electrodes |
WO2013058348A1 (en) * | 2011-10-21 | 2013-04-25 | 昭和電工株式会社 | Method for producing electrode material for lithium ion batteries |
JP5401631B2 (en) * | 2011-10-21 | 2014-01-29 | 昭和電工株式会社 | Method for producing electrode material for lithium ion battery |
JP6500892B2 (en) * | 2014-03-26 | 2019-04-17 | 日本電気株式会社 | Negative electrode carbon material, method of manufacturing negative electrode carbon material, negative electrode for lithium secondary battery, and lithium secondary battery |
KR102519441B1 (en) | 2017-12-22 | 2023-04-07 | 삼성에스디아이 주식회사 | Composite negative electrode active material for lithium secondary battery, an anode comprising the same, and the lithium secondary battery comprising the anode |
CN114784231A (en) * | 2022-05-07 | 2022-07-22 | 万向一二三股份公司 | Preparation method of graphite cathode of lithium battery |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10125322A (en) * | 1996-10-22 | 1998-05-15 | Sumitomo Metal Ind Ltd | Graphite suited for negative electrode material of lithium secondary battery |
WO1998029335A1 (en) * | 1996-12-25 | 1998-07-09 | Sumitomo Metal Industries, Ltd. | Graphite powder suitable for negative electrode material of lithium ion secondary cell |
JPH10218615A (en) * | 1997-02-06 | 1998-08-18 | Sumitomo Metal Ind Ltd | Cathode material for lithium secondary battery |
JPH10226506A (en) * | 1997-02-13 | 1998-08-25 | Sumitomo Metal Ind Ltd | Graphite powder suitable for negative-electrode material of lithium secondary battery |
JPH11307095A (en) * | 1998-04-21 | 1999-11-05 | Sumitomo Metal Ind Ltd | Graphite powder suitable for negative electrode material of lithium ion secondary battery |
JP2000164219A (en) * | 1998-11-25 | 2000-06-16 | Samsung Sdi Co Ltd | Negative electrode active material for lithium secondary battery and its manufacture |
-
2000
- 2000-08-30 JP JP2000261046A patent/JP4701484B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10125322A (en) * | 1996-10-22 | 1998-05-15 | Sumitomo Metal Ind Ltd | Graphite suited for negative electrode material of lithium secondary battery |
WO1998029335A1 (en) * | 1996-12-25 | 1998-07-09 | Sumitomo Metal Industries, Ltd. | Graphite powder suitable for negative electrode material of lithium ion secondary cell |
JPH10218615A (en) * | 1997-02-06 | 1998-08-18 | Sumitomo Metal Ind Ltd | Cathode material for lithium secondary battery |
JPH10226506A (en) * | 1997-02-13 | 1998-08-25 | Sumitomo Metal Ind Ltd | Graphite powder suitable for negative-electrode material of lithium secondary battery |
JPH11307095A (en) * | 1998-04-21 | 1999-11-05 | Sumitomo Metal Ind Ltd | Graphite powder suitable for negative electrode material of lithium ion secondary battery |
JP2000164219A (en) * | 1998-11-25 | 2000-06-16 | Samsung Sdi Co Ltd | Negative electrode active material for lithium secondary battery and its manufacture |
Also Published As
Publication number | Publication date |
---|---|
JP2002075362A (en) | 2002-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW503214B (en) | Graphite powders suited for negative electrode material of lithium ion secondary battery | |
KR100508839B1 (en) | Graphite powder suitable as a cathode material for lithium ion secondary batteries | |
EP1906472B1 (en) | Non-aqueous secondary battery-use graphite composite particle, cathode active substance material containing it, cathode and non-aqueous secondary battery | |
JP4281099B2 (en) | Metal-carbon composite particles | |
JP5407196B2 (en) | Non-aqueous secondary battery composite graphite particles, negative electrode material containing the same, negative electrode and non-aqueous secondary battery | |
JP4040606B2 (en) | Negative electrode material for lithium ion secondary battery and production method thereof, and negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
EP3355388B1 (en) | Anode active material for lithium secondary battery and method for producing same | |
JP5064728B2 (en) | Graphite composite particles for non-aqueous secondary battery, negative electrode active material containing the same, negative electrode and non-aqueous secondary battery | |
JPH09147860A (en) | Negative electrode material for lithium ion secondary battery | |
JPH10326611A (en) | Carbon material for negative electrode of lithium secondary battery | |
JP2001023638A (en) | Manufacture of graphite powder for lithium ion secondary battery negative electrode | |
JPH0831422A (en) | Carbon material for negative electrode of lithium secondary battery and manufacture thereof | |
JP2022548276A (en) | Negative electrode active material, method for producing negative electrode active material, negative electrode including the same, and lithium secondary battery | |
JP4701484B2 (en) | Graphite powder suitable for negative electrode of secondary battery, its production method and use | |
JP4547504B2 (en) | Graphite material suitable for negative electrode of lithium ion secondary battery and method for producing the same | |
JP2013229343A (en) | Composite graphite particle for nonaqueous secondary battery, negative electrode material containing the same, negative electrode and nonaqueous secondary battery | |
KR101568022B1 (en) | Method of preparing artificial graphite negative electrode material for rechargeable lithium battery and artificial graphite negative electrode material for rechargeable lithium battery prepared from the same | |
JPH11191408A (en) | Negative active material for lithium ion secondary battery, and negative electrode plate and lithium ion secondary battery using the same | |
JP3978802B2 (en) | Graphite powder suitable for negative electrode material of lithium secondary battery | |
JPH09320590A (en) | Lithium ton secondary battery negative electrode material and its manufacture | |
JP3978800B2 (en) | Lithium secondary battery negative electrode material | |
JP2013179101A (en) | Composite graphite particle for nonaqueous secondary battery, negative electrode material containing the same, negative electrode and nonaqueous secondary battery | |
KR20190076780A (en) | Negative electrode active material for rechargeable lithium battery, method of preparing of the same and rechargeable lithium battery including the same | |
JP2006164570A (en) | Method of manufacturing graphite material for lithium secondary battery anode, and lithium secondary battery | |
JP2001106518A (en) | Graphite powder including boron, its producing method and usage thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070329 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100308 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100330 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100528 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100531 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110208 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110221 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |