JP4678236B2 - Optical property measuring device - Google Patents

Optical property measuring device Download PDF

Info

Publication number
JP4678236B2
JP4678236B2 JP2005144623A JP2005144623A JP4678236B2 JP 4678236 B2 JP4678236 B2 JP 4678236B2 JP 2005144623 A JP2005144623 A JP 2005144623A JP 2005144623 A JP2005144623 A JP 2005144623A JP 4678236 B2 JP4678236 B2 JP 4678236B2
Authority
JP
Japan
Prior art keywords
light
polarization
interference
optical
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005144623A
Other languages
Japanese (ja)
Other versions
JP2006322758A (en
Inventor
隆昭 平田
稔 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2005144623A priority Critical patent/JP4678236B2/en
Publication of JP2006322758A publication Critical patent/JP2006322758A/en
Application granted granted Critical
Publication of JP4678236B2 publication Critical patent/JP4678236B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Description

本発明は、被測定対象の光学特性、特に被測定対象の伝達関数行列(例えば、ジョーンズ行列)を求める光学特性測定装置に関するものであり、詳しくは、簡単な干渉光学系であっても、1回の波長掃引で光学特性を測定することができる光学特性測定装置に関するものである。   The present invention relates to an optical characteristic measuring apparatus for obtaining optical characteristics of an object to be measured, in particular, a transfer function matrix (for example, Jones matrix) of the object to be measured. The present invention relates to an optical characteristic measuring apparatus capable of measuring optical characteristics by one wavelength sweep.

光学特性測定装置とは、被測定対象(例えば、光学素子、光学装置、これら光学素子や光学装置の試験装置・測定装置等)の光学特性(例えば、挿入損失、反射率、透過率、偏光依存性、波長分散、偏波モード分散等)を求めるものであり、具体的には被測定対象の伝達関数行列(例えば、ジョーンズ行列)を測定によって求め、この伝達関数から被測定対象の光学特性を一括して、または必要な光学特性のみを求めるものである。   An optical characteristic measuring device is an optical characteristic (for example, insertion loss, reflectance, transmittance, polarization dependence) of an object to be measured (for example, an optical element, an optical apparatus, a test apparatus / measuring apparatus for the optical element or the optical apparatus). , Chromatic dispersion, polarization mode dispersion, etc.), specifically, the transfer function matrix (for example, Jones matrix) of the object to be measured is obtained by measurement, and the optical characteristics of the object to be measured are determined from this transfer function. Only the necessary optical properties are obtained in a lump.

伝達関数行列を測定によって求めるには、被測定対象に周波数fsの信号光を入射し、被測定対象から出力される信号光(透過光や反射光)を参照光(周波数fr)と合波して干渉させる。そして、干渉信号を受光部で受光して干渉信号の振幅と位相を測定する(いわゆるヘテロダイン検出)(例えば、特許文献1〜特許文献3参照)。   In order to obtain the transfer function matrix by measurement, the signal light having the frequency fs is incident on the measurement target, and the signal light (transmitted light or reflected light) output from the measurement target is combined with the reference light (frequency fr). Cause interference. Then, the interference signal is received by the light receiving unit, and the amplitude and phase of the interference signal are measured (so-called heterodyne detection) (see, for example, Patent Documents 1 to 3).

また信号光は、一般的に、偏光面が直交する2種類の直線偏光の光、例えば、s偏光とp偏光を被測定対象に入射する。また、所定の測定波長範囲において伝達関数を求めるため、光源を波長掃引する。   The signal light generally enters two types of linearly polarized light whose polarization planes are orthogonal, for example, s-polarized light and p-polarized light, into the object to be measured. Further, in order to obtain a transfer function in a predetermined measurement wavelength range, the wavelength of the light source is swept.

測定方法には、s偏光で波長掃引した後にp偏光で再度波長掃引して測定する場合と、s偏光とp偏光を同時に被測定対象に入射し、1回の波長掃引で測定する場合がある。1回の波長掃引で測定する場合は、測定時間が短縮できると共に、1回目と2回目の波長掃引における再現性(例えば、波長再現性)から生じる誤差もなく、精度よく測定できる。   As a measuring method, there are a case where the wavelength is swept with s-polarized light and then swept again with p-polarized light, and a case where s-polarized light and p-polarized light are simultaneously incident on the measurement object and measured with one wavelength sweep. . When the measurement is performed by one wavelength sweep, the measurement time can be shortened and the measurement can be performed accurately without an error caused by reproducibility (for example, wavelength reproducibility) in the first and second wavelength sweeps.

ただし、s偏光とp偏光を被測定対象に同時に入射するので、s偏光と参照光との干渉信号と、p偏光と参照光との干渉信号とを分離する必要がある。分離には、s偏光の干渉信号とp偏光の干渉信号それぞれを異なる測定光路長差にすることで、時間領域で分離する方法や(例えば、特許文献2参照)、s偏光の干渉信号とp偏光の干渉信号それぞれを異なる周波数で強度変調し、強度変調する変調周波数の違いから分離する方法(例えば、特許文献3参照)がある。   However, since s-polarized light and p-polarized light are simultaneously incident on the measurement target, it is necessary to separate the interference signal between the s-polarized light and the reference light and the interference signal between the p-polarized light and the reference light. For the separation, a method of separating the s-polarized interference signal and the p-polarized interference signal in the time domain by setting different optical path length differences (for example, refer to Patent Document 2), s-polarized interference signal and p There is a method (for example, refer to Patent Document 3) in which each polarization interference signal is intensity-modulated at different frequencies and separated from the difference in modulation frequency for intensity modulation.

特開2002−243585号公報JP 2002-243585 A 米国特許第6376830号US Pat. No. 6,376,830 特開2004−20567号公報JP 2004-20567 A

しかしながら、s偏光に基づく干渉信号とp偏光に基づく干渉信号とを分離するため、干渉光学系が複雑になるという問題があった。   However, since the interference signal based on s-polarized light and the interference signal based on p-polarized light are separated, there is a problem that the interference optical system becomes complicated.

そこで本発明の目的は、簡単な干渉光学系であっても、1回の波長掃引で光学特性を測定することができる光学特性測定装置を実現することにある。   Accordingly, an object of the present invention is to realize an optical characteristic measuring apparatus capable of measuring optical characteristics by a single wavelength sweep even with a simple interference optical system.

請求項1記載の発明は、
被測定対象の光学特性を測定する光学特性測定装置において、
波長掃引されるレーザ光の偏光状態を周期的に、第1の偏光とこの第1の偏光に直交する第2の偏光とに変換する偏波モード変換器と、
この偏波モード変換器からの光を2分岐して異なる光路で合波して干渉光を出力し、一方の光路に前記被測定対象が設置される干渉光学系と、
この干渉光学系からの干渉光を第3の偏光とこの第3の偏光に対して偏光状態が直交する第4の偏光とに分岐する干渉光分岐部と、
この干渉光分岐部で分岐された第3、第4の偏光それぞれを、前記偏波モード変換器の周期に基づいてサンプリングするサンプリング部と
を設け
偏波モード変換器は、偏光状態を変換する周期が、干渉信号の周波数よりもはやいことたことを特徴とするものである。
The invention described in claim 1
In an optical property measuring device that measures the optical properties of a measurement object,
A polarization mode converter that periodically converts the polarization state of the wavelength-swept laser light into a first polarization and a second polarization orthogonal to the first polarization;
An interference optical system in which light from this polarization mode converter is branched into two and multiplexed in different optical paths to output interference light, and the object to be measured is installed in one optical path;
An interference light branching unit that branches the interference light from the interference optical system into a third polarization and a fourth polarization whose polarization state is orthogonal to the third polarization;
A sampling unit that samples each of the third and fourth polarized light beams branched by the interference light branching unit based on a period of the polarization mode converter ;
The polarization mode converter is characterized in that the period for converting the polarization state is no longer than the frequency of the interference signal .

請求項2記載の発明は、請求項1記載の発明において、
偏波モード変換器は、レーザ光の偏光状態をs偏光とp偏光とに、周期的に変換することを特徴とするものである。
請求項記載の発明は、請求項1記載の発明において、
サンプリング部は、
前記干渉光分岐部で分岐された第3の偏光を受光する第1の受光部と、
前記干渉光分岐部で分岐された第4の偏光を受光する第2の受光部と、
前記第1の受光部からの出力をサンプリングする第1、第2のサンプリングホールド回路と、
前記第2の受光部からの出力をサンプリングする第3、第4のサンプリングホールド回路と
を有することを特徴とするものである。
請求項記載の発明は、請求項記載の発明において、
前記第1〜第4のサンプリングホールド回路の後段に、ロウパスフィルタまたはバンドパスフィルタを設けたことを特徴とするものである。
請求項記載の発明は、請求項1記載の発明において、
干渉光分岐部は、偏光ビームスプリッタであることを特徴とするものである。
請求項記載の発明は、請求項記載の発明において、
干渉光学系は、分岐された他方の光路の光の偏光面を、偏光ビームスプリッタの光学軸に対して、45°傾けて入射することを特徴とするものである。
請求項記載の発明は、請求項1記載の発明において、
干渉光学系は、空間光型の干渉であることを特徴とするものである。
The invention according to claim 2 is the invention according to claim 1,
The polarization mode converter is characterized by periodically converting the polarization state of laser light into s-polarized light and p-polarized light.
The invention according to claim 3 is the invention according to claim 1,
The sampling part
A first light receiving unit that receives the third polarized light branched by the interference light branching unit;
A second light receiving portion for receiving the fourth polarized light branched by the interference light branching portion;
First and second sampling and holding circuits for sampling the output from the first light receiving unit;
And a third sampling and holding circuit for sampling the output from the second light receiving section.
The invention according to claim 4 is the invention according to claim 3 ,
A low-pass filter or a band-pass filter is provided after the first to fourth sampling and holding circuits.
The invention according to claim 5 is the invention according to claim 1,
The interference light branching unit is a polarization beam splitter.
The invention according to claim 6 is the invention according to claim 5 ,
The interference optical system is characterized in that the polarization plane of the light of the other branched optical path is incident at an angle of 45 ° with respect to the optical axis of the polarization beam splitter.
The invention according to claim 7 is the invention according to claim 1,
The interference optical system is a spatial light type interference system .

本発明によれば、以下のような効果がある。
請求項1〜によれば、偏波モード変換器が、波長掃引されるレーザ光を、所定の周期で直交する二つの偏光状態の光に交互に変換して出力する。そして、被測定対象を通った一方の光と通らない他方の光とを合波した干渉光を、干渉光分岐部が、直交する偏光状態の光に分岐し、この分岐した光それぞれをサンプリング部が所定の周期でサンプリングする。これにより、被測定対象に入射する第1の偏光に関する干渉信号と、被測定対象に入射する第2の偏光に関する干渉信号とが分離される。従って、被測定対象に入射する光の偏光状態ごとに光路を変えたり、変調周波数を変えたりする必要がなく、簡単な干渉光学系であっても、1回の波長掃引で光学特性を測定することができる。
The present invention has the following effects.
According to the first to seventh aspects, the polarization mode converter alternately converts the wavelength-swept laser light into light having two polarization states orthogonal to each other at a predetermined cycle and outputs the light. Then, the interference light branching unit splits the interference light obtained by combining one light passing through the object to be measured and the other light not passing through into the light in an orthogonal polarization state, and each of the branched light is sampled. Sample at a predetermined period. Thereby, the interference signal related to the first polarization incident on the measurement target and the interference signal related to the second polarization incident on the measurement target are separated. Therefore, there is no need to change the optical path or the modulation frequency for each polarization state of the light incident on the measurement target, and even with a simple interference optical system, the optical characteristics are measured with a single wavelength sweep. be able to.

請求項によれば、ローパスフィルタまたはバンドパスフィルタが、サンプリングによる高周波ノイズを除去するので、精度よく光学特性を求めることができる。
According to the fourth aspect , since the low-pass filter or the band-pass filter removes high-frequency noise due to sampling, the optical characteristics can be obtained with high accuracy.

以下図面を用いて本発明の実施の形態を説明する。
図1は、本発明の一実施例を示した構成図である。図1において、波長可変光源1は、所定の波長掃引速度で波長掃引しながら連続してレーザ光を出力する。偏波モード変換器2は、波長可変光源1からの出力光の偏光状態をs偏光(第1の偏光)とp偏光(第2の偏光)とに周期的に変換させる。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a block diagram showing an embodiment of the present invention. In FIG. 1, a wavelength tunable light source 1 continuously outputs laser light while performing wavelength sweeping at a predetermined wavelength sweeping speed. The polarization mode converter 2 periodically converts the polarization state of the output light from the wavelength tunable light source 1 into s-polarized light (first polarized light) and p-polarized light (second polarized light).

分岐部3は、例えば、無偏光ビームスプリッタ、ハーフミラー、光カプラ等であり、偏波モード変換器2からの光を2分岐する。なお、分岐部3が分岐した一方の光を信号光とし、他方の光を参照光とする。   The branching unit 3 is, for example, a non-polarizing beam splitter, a half mirror, an optical coupler, etc., and branches the light from the polarization mode converter 2 into two. One light branched by the branching unit 3 is used as signal light, and the other light is used as reference light.

合波部4は、例えば、無偏光ビームスプリッタ、ハーフミラー、光カプラ等であり、分岐部3が分岐した信号光と参照光とを合波する。光路OP1は、分岐部3で分岐された信号光が合波部4に伝送される経路である。光路OP2は、分岐部3で分岐された参照光が合波部4に伝送される経路である。なお、光路OP1と光路OP2とは、光路長が異なる。例えば、(光路OP1(信号光側)の光路長)<(光路OP2(参照光側)の光路長)である。   The multiplexing unit 4 is, for example, a non-polarizing beam splitter, a half mirror, an optical coupler, and the like, and multiplexes the signal light branched by the branching unit 3 and the reference light. The optical path OP <b> 1 is a path through which the signal light branched by the branching unit 3 is transmitted to the multiplexing unit 4. The optical path OP <b> 2 is a path through which the reference light branched by the branching unit 3 is transmitted to the multiplexing unit 4. The optical path OP1 and the optical path OP2 have different optical path lengths. For example, (optical path length of optical path OP1 (signal light side)) <(optical path length of optical path OP2 (reference light side)).

被測定対象5は、光路OP1に設置され、分岐部3からの信号光が入射される。従って、光路OP1の光路長は、被測定対象5の光路を含んだものとなる。また、被測定対象5に入射したs偏光、p偏光それぞれの光の偏光状態は、被測定対象5の光学特性によって変化して出射する。   The object to be measured 5 is installed in the optical path OP1, and the signal light from the branching unit 3 enters. Accordingly, the optical path length of the optical path OP1 includes the optical path of the measurement target 5. Further, the polarization state of each of the s-polarized light and p-polarized light incident on the measurement target 5 changes depending on the optical characteristics of the measurement target 5 and is emitted.

つまり、入射s偏光に対する出射s偏光と出射p偏光が存在し、入射p偏光に対する出射s偏光と出射p偏光が存在する。なお、入射s偏光とは、被測定対象5に入射するs偏光のことであり、出射s偏光とは、被測定対象5から出射するs偏光のことである。入射p偏光、出射p偏光も同様に、被測定対象5に入射、出射するp偏光のことである。   That is, there are outgoing s-polarized light and outgoing p-polarized light for incident s-polarized light, and outgoing s-polarized light and outgoing p-polarized light for incident p-polarized light. The incident s-polarized light is s-polarized light incident on the measurement target 5, and the outgoing s-polarized light is s-polarized light emitted from the measurement target 5. Similarly, incident p-polarized light and outgoing p-polarized light are p-polarized light that enters and exits the measurement target 5.

従って、被測定対象5の入出力特性の伝達関数行列を2行2列のジョーンズ行列で示すと下記の式(1)で表される。   Accordingly, when the transfer function matrix of the input / output characteristics of the measurement target 5 is represented by a Jones matrix of 2 rows and 2 columns, it is represented by the following equation (1).

Figure 0004678236
Figure 0004678236

ここで、T11は、入射s偏光に対する出射s偏光の関係を表し、T21は、入射s偏光に対する出射p偏光の関係を表し、T12は、入射p偏光に対する出射s偏光の関係を表し、T22は、入射p偏光に対する出射p偏光の関係を表す。つまり、Txyのうち、xは出射側の偏光状態(x=1がs偏光、x=2がp偏光)を表し、yは入射側の偏光状態(y=1がs偏光、y=2がp偏光)を表している。 Here, T 11 represents the relationship of the outgoing s-polarized light to the incident s-polarized light, T 21 represents the relationship of the outgoing p-polarized light to the incident s-polarized light, and T 12 represents the relationship of the outgoing s-polarized light to the incident p-polarized light. , T 22 represents the relationship of the outgoing p-polarized light to the incident p-polarized light. That is, in Txy , x represents the polarization state on the exit side (x = 1 is s-polarized light, x = 2 is p-polarized light), y is the polarization state on the incident side (y = 1 is s-polarized light, y = 2) Represents p-polarized light).

従って、被測定対象5の出射光は、入射する信号光がs偏光であればT11とT21が合わさった光となり、入射する信号光がp偏光であればT12とT22が合わさった光となる。 Therefore, the outgoing light of the object 5 to be measured is T 11 and T 21 combined when the incident signal light is s-polarized light, and T 12 and T 22 are combined when the incident signal light is p-polarized light. It becomes light.

なお、分岐部3、合波部4、被測定対象5、光路OP1,OP2で、マッハツェンダ型の干渉光学系100を形成している。   Note that the Mach-Zehnder type interference optical system 100 is formed by the branching unit 3, the multiplexing unit 4, the measurement target 5, and the optical paths OP1 and OP2.

偏光ビームスプリッタ6は、干渉光分岐部であり、干渉光学系100で合波された干渉光をs偏光(第3の偏光)とp偏光(第4の偏光)に分岐する。第1の受光部7は、分岐されたs偏光を受光する。第2の受光部8は、分岐されたp偏光を受光する。   The polarization beam splitter 6 is an interference light branching unit, and branches the interference light combined by the interference optical system 100 into s-polarized light (third polarized light) and p-polarized light (fourth polarized light). The first light receiving unit 7 receives the branched s-polarized light. The second light receiving unit 8 receives the branched p-polarized light.

なお、光路OP2は、偏光ビームスプリッタ6の光学軸に対して参照光の偏光面が45°傾いて入射するように配置される。例えば、光路OP2上に偏光面回転手段、例えば、λ/2波長板(図示せず)を設け、波長板の光学軸を参照光の偏光面に対して22.5[°]傾けて設置する。   The optical path OP2 is arranged so that the polarization plane of the reference light is inclined by 45 ° with respect to the optical axis of the polarization beam splitter 6. For example, a polarization plane rotating means, for example, a λ / 2 wavelength plate (not shown) is provided on the optical path OP2, and the optical axis of the wavelength plate is installed at an angle of 22.5 [°] with respect to the polarization plane of the reference light. .

第1のサンプリングホールド(以下、S/Hと略す)回路9、第2のS/H回路10は、受光部7からの出力信号が入力される。第3のS/H回路11、第4のS/H回路12は、受光部8からの出力信号が入力される。なお、受光部7、8、S/H回路9〜12で、サンプリング部を形成し、偏光ビームスプリッタ6で分岐されたs偏光、p偏光それぞれを、偏波モード変換器2の周期に基づいてサンプリングする。   The first sampling hold (hereinafter abbreviated as S / H) circuit 9 and the second S / H circuit 10 receive an output signal from the light receiving unit 7. The third S / H circuit 11 and the fourth S / H circuit 12 receive an output signal from the light receiving unit 8. The light receiving units 7 and 8 and the S / H circuits 9 to 12 form a sampling unit, and each of the s-polarized light and the p-polarized light branched by the polarization beam splitter 6 is based on the period of the polarization mode converter 2. Sampling.

このような装置の動作を説明する。
一例として、波長可変光源1の波長掃引速度を10[nm/s]、被測定対象5を通る信号光の光路OP1と参照光の光路OP2との光路長差を10[m]、偏波モード変換器2の変換周期を20[MHz]として説明する。従って、受光部7、8で測定される干渉光(ビート信号)の周波数は、40[kHz]程度になる。
The operation of such an apparatus will be described.
As an example, the wavelength sweep speed of the tunable light source 1 is 10 [nm / s], the optical path length difference between the optical path OP1 of the signal light passing through the measurement target 5 and the optical path OP2 of the reference light is 10 [m], and the polarization mode The conversion cycle of the converter 2 will be described as 20 [MHz]. Therefore, the frequency of the interference light (beat signal) measured by the light receiving units 7 and 8 is about 40 [kHz].

波長可変光源1からのレーザ光が、偏波モード変換器2に入射する。そして、偏波モード変換器2が、レーザ光の偏光状態を周期的(20[MHz])に変換し、直交する二つの直線偏光状態(s偏光とp偏光)の光を周期的に出力する。ここで、図2は、偏波モード変換器2の出力光を示した図である。図2において、横軸は時間軸であり、縦軸は光パワーである。また、図2中(a)は、偏波モード変換器2のs偏光の出力であり、(b)は、p偏光の出力である。図2に示すように、20[MHz]周期(0.05[μs]間隔)で、s偏光とp偏光が交互に出力される。   Laser light from the wavelength tunable light source 1 enters the polarization mode converter 2. Then, the polarization mode converter 2 periodically converts the polarization state of the laser light (20 [MHz]) and periodically outputs light in two orthogonal linear polarization states (s-polarized light and p-polarized light). . Here, FIG. 2 is a diagram illustrating the output light of the polarization mode converter 2. In FIG. 2, the horizontal axis is the time axis, and the vertical axis is the optical power. Further, (a) in FIG. 2 is an output of s-polarized light from the polarization mode converter 2, and (b) is an output of p-polarized light. As shown in FIG. 2, s-polarized light and p-polarized light are alternately output in a cycle of 20 [MHz] (interval of 0.05 [μs]).

そして、分岐部3が、偏波モード変換器2からの出力光を信号光と参照光とに2分岐し、信号光を光路OP1上の被測定対象5に出力し、参照光を光路OP2に出力する。そして、被測定対象5からの信号光と、他方の光路OP2を通った参照光とが合波部5で合波され干渉する。さらに、偏光ビームスプリッタ6によって、合波後の干渉光が、s偏光とp偏光に分岐される。なお、参照光は、偏光ビームスプリッタ6の光学軸に対して偏光面が45[°]傾いて入射するので、参照光も受光部7、8に入射する。   Then, the branching unit 3 splits the output light from the polarization mode converter 2 into signal light and reference light, outputs the signal light to the measurement target 5 on the optical path OP1, and sends the reference light to the optical path OP2. Output. Then, the signal light from the measurement target 5 and the reference light that has passed through the other optical path OP2 are combined and interfered by the combining unit 5. Further, the combined interference light is split into s-polarized light and p-polarized light by the polarization beam splitter 6. Note that the reference light is incident on the optical axis of the polarization beam splitter 6 with the polarization plane inclined by 45 [°], so that the reference light also enters the light receiving units 7 and 8.

そして、受光部7が、分岐されたs偏光を受光し、受光部8が、分岐されたp偏光を受光する。すなわち、受光部7では、T11またはT12の作用を受けた信号光と参照光との干渉光が入力される。受光部8では、T21またはT22の作用を受けた信号光と参照光との干渉光が入力される。 The light receiving unit 7 receives the branched s-polarized light, and the light receiving unit 8 receives the branched p-polarized light. That is, the light receiving unit 7 receives the interference light between the signal light subjected to the action of T 11 or T 12 and the reference light. In the light receiving unit 8, interference light between the signal light and the reference light subjected to the action of T 21 or T 22 is input.

さらに、受光部7が、干渉光の光パワーに応じた出力信号をS/H回路9、10に出力する。同様に、受光部8が、干渉光の光パワーに応じた出力信号をS/H回路11、12に出力する。   Further, the light receiving unit 7 outputs an output signal corresponding to the optical power of the interference light to the S / H circuits 9 and 10. Similarly, the light receiving unit 8 outputs an output signal corresponding to the optical power of the interference light to the S / H circuits 11 and 12.

そして、S/H回路9〜12が、入射s偏光、入射p偏光を分離し、後段の図示しない演算部でジョーンズ行列を求める。   Then, the S / H circuits 9 to 12 separate the incident s-polarized light and the incident p-polarized light, and obtain a Jones matrix by a calculation unit (not shown) in the subsequent stage.

次に、S/H回路9〜12の動作を詳細に説明する。
S/H回路9、11が同期して受光部7、8の出力信号をサンプリング(標本化)し、S/H回路10、12が同期してサンプリングし、ホールドを行なう。ここで、図3は、受光部7、S/H回路9、10の動作を示した図であり、横軸は時間軸である。また、図3中(a)は、受光部7への入射光であり、縦軸は、光パワーである。(b)は、S/H回路9のサンプリングのタイミングであり、(c)は、S/H回路10のサンプリングのタイミングである。
Next, the operation of the S / H circuits 9 to 12 will be described in detail.
The S / H circuits 9 and 11 synchronously sample (sample) the output signals of the light receiving units 7 and 8, and the S / H circuits 10 and 12 synchronously sample and hold. Here, FIG. 3 is a diagram showing operations of the light receiving unit 7 and the S / H circuits 9 and 10, and the horizontal axis is a time axis. Further, (a) in FIG. 3 is the incident light to the light receiving unit 7, and the vertical axis is the optical power. (B) is the sampling timing of the S / H circuit 9, and (c) is the sampling timing of the S / H circuit 10.

図3に示すように、受光部7が、0.05[μs]ごとに、入射s偏光に対する出射s偏光の干渉光、入射p偏光に対する出射s偏光の干渉光を受光し、干渉光の光パワーに応じた干渉信号を出力する。   As shown in FIG. 3, the light receiving unit 7 receives the outgoing s-polarized interference light with respect to the incident s-polarized light and the outgoing s-polarized interference light with respect to the incident p-polarized light every 0.05 [μs]. Outputs interference signals according to power.

そして、S/H回路9、10のそれぞれには、偏波モード変換器2の変換周期(20[MHz])の半分の周期(10[MHz])となった入射s偏光に対する干渉信号と、入射p偏光に対する干渉信号とが入力される。   Each of the S / H circuits 9 and 10 includes an interference signal for incident s-polarized light having a period (10 [MHz]) that is half the conversion period (20 [MHz]) of the polarization mode converter 2; An interference signal for incident p-polarized light is input.

同様に受光部8も、0.05[μs]ごとに、入射s偏光に対する出射p偏光の干渉光、入射p偏光に対する出射p偏光の干渉光を受光し、干渉光の光パワーに応じた干渉信号を、S/H回路11、12に出力する。   Similarly, the light receiving unit 8 also receives the outgoing p-polarized interference light with respect to the incident s-polarized light and the outgoing p-polarized interference light with respect to the incident p-polarized light every 0.05 [μs], and interferes according to the optical power of the interference light. The signal is output to the S / H circuits 11 and 12.

さらに、S/H回路9〜12のそれぞれが、10[MHz]周期(つまり、0.1[μs]間隔)でサンプリングする。そして、S/H回路9、11とS/H回路10、12とは、0.05[μs]間隔で交互にサンプリングする。すなわち、図3に示すように、S/H回路9、11が、t0、t2、t4、t6、t8、t10…でサンプリングし、S/H回路10、12が、t1、t3、t5、t7、t9、t11…でサンプリングする。なお、時刻t0〜t11それぞれの時間間隔は、0.05[μs]である。   Further, each of the S / H circuits 9 to 12 samples at a period of 10 [MHz] (that is, at intervals of 0.1 [μs]). The S / H circuits 9 and 11 and the S / H circuits 10 and 12 sample alternately at intervals of 0.05 [μs]. That is, as shown in FIG. 3, the S / H circuits 9 and 11 sample at t0, t2, t4, t6, t8, t10..., And the S / H circuits 10 and 12 perform t1, t3, t5, t7. , T9, t11... The time interval between times t0 and t11 is 0.05 [μs].

これにより、S/H回路9のサンプリング後のデータは、入射s偏光に対する出射s偏光の干渉信号、すなわち、ジョーンズ行列中のT11の影響をうけた信号のみが抽出される。 As a result, only the interference signal of the outgoing s-polarized light with respect to the incident s-polarized light, that is, the signal affected by T 11 in the Jones matrix is extracted from the sampled data of the S / H circuit 9.

同様に、S/H回路10〜12それぞれのサンプリング後のデータは、入射p偏光に対する出射s偏光の干渉信号(T12)、入射s偏光に対する出射p偏光の干渉信号(T21)、入射p偏光に対する出射p偏光の干渉信号(T22)が抽出される。 Similarly, the sampled data of each of the S / H circuits 10 to 12 includes an output s-polarized interference signal (T 12 ) for incident p-polarized light, an output p-polarized interference signal (T 21 ) for incident s-polarized light, and an incident p An interference signal (T 22 ) of the outgoing p-polarized light with respect to the polarized light is extracted.

そして、上述したように、各S/H回路9〜12の後段の図示しない演算手段が、S/H回路9〜12からの干渉信号の振幅と位相から、ジョーンズ行列の各要素を求め、このジョーンズ行列から被測定対象5の光学特性を求める。   Then, as described above, the calculation means (not shown) subsequent to each S / H circuit 9-12 obtains each element of the Jones matrix from the amplitude and phase of the interference signal from the S / H circuits 9-12. The optical characteristic of the measurement object 5 is obtained from the Jones matrix.

このように、偏波モード変換器2が、直交する二つの直線偏光状態(s偏光、p偏光)の光を所定の周期で出力する。そして、参照光と被測定対象からの信号光とを合波した干渉光を、偏光ビームスプリッタ6が、s偏光、p偏光に分岐し、受光部7、8がそれぞれを受光する。さらに、S/Hホールド回路9〜12が所定の周期(偏波モード変換器2の変換速度の1/2)で干渉信号をサンプリングする。これにより、入射s偏光に関する干渉信号と、入射p偏光に対する干渉信号とが分離される。従って、入射s偏光、入射p偏光によって光路を変えたり、強度変調する変調周波数を変えたりする必要がなく、簡単な干渉光学系100であっても、1回の波長掃引で光学特性を測定することができる。   In this way, the polarization mode converter 2 outputs light in two orthogonal linearly polarized states (s-polarized light and p-polarized light) at a predetermined cycle. The polarization beam splitter 6 splits the interference light obtained by combining the reference light and the signal light from the measurement target into s-polarized light and p-polarized light, and the light receiving units 7 and 8 receive the light. Further, the S / H hold circuits 9 to 12 sample the interference signal at a predetermined cycle (1/2 of the conversion speed of the polarization mode converter 2). This separates the interference signal for incident s-polarized light from the interference signal for incident p-polarized light. Therefore, it is not necessary to change the optical path by incident s-polarized light or incident p-polarized light, or to change the modulation frequency for intensity modulation, and even with a simple interference optical system 100, optical characteristics are measured with a single wavelength sweep. be able to.

なお、本発明はこれに限定されるものではなく、以下に示すようなものでもよい。
偏波モード変換器2が、波長掃引されるレーザ光の偏光状態を周期的に、直線偏光であるs偏光(第1の偏光)、p偏光(第2の偏光)とに変換する構成を示したが、直線偏光で変換しなくてもよく、第1の偏光と第2の偏光の偏光状態が直交していればよい。
The present invention is not limited to this, and may be as shown below.
1 shows a configuration in which the polarization mode converter 2 periodically converts the polarization state of laser light that is wavelength-swept into s-polarized light (first polarized light) and p-polarized light (second polarized light) that are linearly polarized light. However, it is not necessary to convert with linearly polarized light, and it is sufficient that the polarization states of the first polarized light and the second polarized light are orthogonal.

干渉光分岐部に偏光ビームスプリッタ6を用いて、干渉光学系100からの干渉光を直線偏光であるs偏光(第3の偏光)、p偏光(第4の偏光)とに分岐する構成を示したが、直線偏光で分岐しなくてもよく、第3の偏光と第4の偏光の偏光状態が直行していればよい。そして、第1の偏光と第3の偏光の偏光状態が同じでなくともよい   A configuration is shown in which a polarization beam splitter 6 is used for the interference light branching unit, and the interference light from the interference optical system 100 is branched into s-polarized light (third polarized light) and p-polarized light (fourth polarized light) that are linearly polarized light. However, it does not have to be branched by linearly polarized light, and it is sufficient that the polarization states of the third polarized light and the fourth polarized light are orthogonal. The polarization state of the first polarization and the third polarization may not be the same.

また、S/H回路9〜12の後段、すなわち、S/H回路9〜12と図示しない演算手段の間に、ローパスフィルタまたはバンドパスフィルタを設け、10[MHz]のサンプリングによる高周波ノイズを除去してもよい。具体的には、ローパスフィルタで10[MHz]未満の信号を通過させるとよい。または、バンドパスフィルタを用いて、40[kHz]近傍のみの信号を通過させるとよい。これにより、精度よく光学特性を求めることができる。   In addition, a low-pass filter or a band-pass filter is provided after the S / H circuits 9 to 12, that is, between the S / H circuits 9 to 12 and arithmetic means (not shown) to remove high-frequency noise due to sampling of 10 [MHz]. May be. Specifically, it is preferable to pass a signal of less than 10 [MHz] with a low-pass filter. Alternatively, a signal only in the vicinity of 40 [kHz] may be passed using a bandpass filter. Thereby, an optical characteristic can be calculated | required accurately.

また、光路OP1と光路OP2との光路長差が異なる構成を示したが、光路OP1と光路OP2の光路長差は同じでもよい。この場合、ローパスフィルタ、バンドパスフィルタのそれぞれは、直流成分近傍の信号を通過させるとよい。   Further, although the optical path length difference between the optical path OP1 and the optical path OP2 is different, the optical path length difference between the optical path OP1 and the optical path OP2 may be the same. In this case, each of the low-pass filter and the band-pass filter may pass a signal near the DC component.

また、偏波モード変換器2が変換する周期とS/H回路9〜12のサンプリングのタイミングとの同期を、図示しない同期回路で図ってもよい。   Further, the synchronization between the period of conversion by the polarization mode converter 2 and the sampling timing of the S / H circuits 9 to 12 may be synchronized with a synchronization circuit (not shown).

また、偏波モード変換器2が、20[MHz]周期で偏光状態を変換する構成を示したが、変換速度は、干渉信号(ビート信号)の周波数よりも高ければよい。すなわち、干渉信号の周波数は、波長可変光源1の波長掃引速度、光路OP1,OP2の光路長差で決まる。従って、偏波モード変換器2の変換速度は、波長掃引速度、光路長差を考慮し、干渉信号の周波数よりもはやくすればよい。もちろん、波長掃引速度、光路長差も、10[nm/s]、10[m]以外の値でもよい。   Moreover, although the polarization mode converter 2 showed the structure which converts a polarization state with a 20 [MHz] period, the conversion speed should just be higher than the frequency of an interference signal (beat signal). That is, the frequency of the interference signal is determined by the wavelength sweep speed of the wavelength tunable light source 1 and the optical path length difference between the optical paths OP1 and OP2. Therefore, the conversion speed of the polarization mode converter 2 may be made lower than the frequency of the interference signal in consideration of the wavelength sweep speed and the optical path length difference. Of course, the wavelength sweep speed and the optical path length difference may be values other than 10 [nm / s] and 10 [m].

また、干渉光学系100は、空間光型の干渉計にしてもよい。具体的には、偏波モード変換器2から空間光を平行光に変換し、分岐部3で分岐し、信号光を被測定対象5に入射する。また、参照光を鏡などで折り返して所定の光路長差をえるとよい。そして、偏光ビームスプリッタ6と受光部7、8の間に集光手段を設け、受光部7、8に集光させるとよい。このように、空間光型の干渉計にすることにより、光学系が小型化でき、振動にも強くなる。   The interference optical system 100 may be a spatial light type interferometer. Specifically, the spatial light is converted from the polarization mode converter 2 into parallel light, branched by the branching unit 3, and the signal light is incident on the measurement target 5. Further, the reference light may be folded back with a mirror or the like to obtain a predetermined optical path length difference. A condensing unit is preferably provided between the polarizing beam splitter 6 and the light receiving units 7 and 8 so that the light receiving units 7 and 8 collect the light. Thus, by using a spatial light type interferometer, the optical system can be miniaturized and is resistant to vibration.

さらに、干渉光学系100は、マッハ・ツェンダー型の干渉計を用いる構成を示したが、どのような2光束干渉計を用いてもよい。   Further, although the interference optical system 100 is configured to use a Mach-Zehnder interferometer, any two-beam interferometer may be used.

本発明の一実施例を示した構成図である。It is the block diagram which showed one Example of this invention. 偏波モード変換器2の動作を説明した図である。FIG. 6 is a diagram for explaining the operation of the polarization mode converter 2. 受光部7、S/H回路9、10の動作を説明した図である。FIG. 6 is a diagram for explaining operations of a light receiving unit 7 and S / H circuits 9 and 10.

符号の説明Explanation of symbols

1 光源
2 偏波モード変換器
5 被測定対象
6 偏光ビームスプリッタ
7、8 受光部
9〜12 S/H回路
100 干渉光学系
DESCRIPTION OF SYMBOLS 1 Light source 2 Polarization mode converter 5 Object to be measured 6 Polarization beam splitter 7, 8 Light-receiving part 9-12 S / H circuit 100 Interference optical system

Claims (7)

被測定対象の光学特性を測定する光学特性測定装置において、
波長掃引されるレーザ光の偏光状態を周期的に、第1の偏光とこの第1の偏光に直交する第2の偏光とに変換する偏波モード変換器と、
この偏波モード変換器からの光を2分岐して異なる光路で合波して干渉光を出力し、一方の光路に前記被測定対象が設置される干渉光学系と、
この干渉光学系からの干渉光を第3の偏光とこの第3の偏光に対して偏光状態が直交する第4の偏光とに分岐する干渉光分岐部と、
この干渉光分岐部で分岐された第3、第4の偏光それぞれを、前記偏波モード変換器の周期に基づいてサンプリングするサンプリング部と
を設け
偏波モード変換器は、偏光状態を変換する周期が、干渉信号の周波数よりもはやいことを特徴とする光学特性測定装置。
In an optical property measuring device that measures the optical properties of a measurement object,
A polarization mode converter that periodically converts the polarization state of the wavelength-swept laser light into a first polarization and a second polarization orthogonal to the first polarization;
An interference optical system in which light from this polarization mode converter is branched into two and multiplexed in different optical paths to output interference light, and the object to be measured is installed in one optical path;
An interference light branching unit that branches the interference light from the interference optical system into a third polarization and a fourth polarization whose polarization state is orthogonal to the third polarization;
A sampling unit that samples each of the third and fourth polarized light beams branched by the interference light branching unit based on a period of the polarization mode converter ;
The polarization mode converter has an optical property measuring apparatus characterized in that the period for converting the polarization state is no longer than the frequency of the interference signal .
偏波モード変換器は、レーザ光の偏光状態をs偏光とp偏光とに、周期的に変換することを特徴とする請求項1記載の光学特性測定装置。   2. The optical property measuring apparatus according to claim 1, wherein the polarization mode converter periodically converts the polarization state of the laser light into s-polarized light and p-polarized light. サンプリング部は、The sampling part
前記干渉光分岐部で分岐された第3の偏光を受光する第1の受光部と、A first light receiving unit that receives the third polarized light branched by the interference light branching unit;
前記干渉光分岐部で分岐された第4の偏光を受光する第2の受光部と、A second light receiving portion for receiving the fourth polarized light branched by the interference light branching portion;
前記第1の受光部からの出力をサンプリングする第1、第2のサンプリングホールド回路と、First and second sampling and holding circuits for sampling the output from the first light receiving unit;
前記第2の受光部からの出力をサンプリングする第3、第4のサンプリングホールド回路とThird and fourth sampling and holding circuits for sampling the output from the second light receiving unit;
を有することを特徴とする請求項1記載の光学特性測定装置。The optical characteristic measuring apparatus according to claim 1, wherein:
前記第1〜第4のサンプリングホールド回路の後段に、ロウパスフィルタまたはバンドパスフィルタを設けたことを特徴とする請求項3記載の光学特性測定装置。4. The optical characteristic measuring apparatus according to claim 3, wherein a low-pass filter or a band-pass filter is provided after the first to fourth sampling and holding circuits. 干渉光分岐部は、偏光ビームスプリッタであることを特徴とする請求項1記載の光学特性測定装置。The optical characteristic measuring apparatus according to claim 1, wherein the interference light branching unit is a polarization beam splitter. 干渉光学系は、分岐された他方の光路の光の偏光面を、偏光ビームスプリッタの光学軸に対して、45°傾けて入射することを特徴とする請求項5記載の光学特性測定装置。6. The optical characteristic measuring apparatus according to claim 5, wherein the interference optical system is incident with the polarization plane of the light of the other branched optical path inclined by 45 degrees with respect to the optical axis of the polarization beam splitter. 干渉光学系は、空間光型の干渉系であることを特徴とする請求項1記載の光学特性測定装置。2. The optical characteristic measuring apparatus according to claim 1, wherein the interference optical system is a spatial light type interference system.
JP2005144623A 2005-05-17 2005-05-17 Optical property measuring device Expired - Fee Related JP4678236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005144623A JP4678236B2 (en) 2005-05-17 2005-05-17 Optical property measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005144623A JP4678236B2 (en) 2005-05-17 2005-05-17 Optical property measuring device

Publications (2)

Publication Number Publication Date
JP2006322758A JP2006322758A (en) 2006-11-30
JP4678236B2 true JP4678236B2 (en) 2011-04-27

Family

ID=37542558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005144623A Expired - Fee Related JP4678236B2 (en) 2005-05-17 2005-05-17 Optical property measuring device

Country Status (1)

Country Link
JP (1) JP4678236B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4725778B2 (en) * 2005-05-31 2011-07-13 横河電機株式会社 Optical property measuring device
KR20090018028A (en) * 2006-04-04 2009-02-19 파나소닉 주식회사 Receiver apparatus for use in optical space transmission system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329651A (en) * 1999-05-19 2000-11-30 Advantest Corp Apparatus for measuring polarization mode dispersion
JP2003270096A (en) * 2002-03-15 2003-09-25 Agilent Technol Inc Measurement of optical characteristics of device under test
JP2004347318A (en) * 2003-04-24 2004-12-09 Advantest Corp Instrument and method for measuring optical characteristic, program, and recording medium recorded with program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329651A (en) * 1999-05-19 2000-11-30 Advantest Corp Apparatus for measuring polarization mode dispersion
JP2003270096A (en) * 2002-03-15 2003-09-25 Agilent Technol Inc Measurement of optical characteristics of device under test
JP2004347318A (en) * 2003-04-24 2004-12-09 Advantest Corp Instrument and method for measuring optical characteristic, program, and recording medium recorded with program

Also Published As

Publication number Publication date
JP2006322758A (en) 2006-11-30

Similar Documents

Publication Publication Date Title
JP6698164B2 (en) Optical frequency domain reflection method and system based on frequency synthesis
US10895477B2 (en) Sine-cosine optical frequency encoder devices based on optical polarization properties
US7110119B2 (en) Determining an optical property by using superimposed delayed signals
US8854629B2 (en) Optical coherence tomography system and method
US5619326A (en) Method of sample valuation based on the measurement of photothermal displacement
JP3631025B2 (en) Chromatic dispersion measurement apparatus and polarization dispersion measurement apparatus
CN108873007B (en) Frequency modulation continuous wave laser ranging device for inhibiting vibration effect
JPWO2003005002A1 (en) Propagation measurement device and propagation measurement method
WO2009017291A1 (en) Scanning micrometer using heterodyne interferometer
US7609386B2 (en) Optical characteristic measuring apparatus
US20090009772A1 (en) Optical measuring apparatus and optical measuring method
US20140347670A1 (en) Optical interferometer and vibrometer comprising such an optical interferometer
US9188478B2 (en) Multi-channel laser interferometric method and apparatus for detection of ultrasonic motion from a surface
JP4678236B2 (en) Optical property measuring device
US7253906B2 (en) Polarization state frequency multiplexing
JP2003121302A (en) Instrument and method for measuring polarization mode dispersion and recording medium
KR101448831B1 (en) Distance measuring apparatus using phase-locked synthetic wavelength interferometer based on femtosecond laser
US7518729B2 (en) Interferometric measuring device
JP4725778B2 (en) Optical property measuring device
JP4678587B2 (en) Optical property measuring device
JP2006308531A (en) Wavelength dispersion measuring method and device
JP2003270127A (en) Instrument for measuring light amplitude phase time response
JPH09133585A (en) Optical pulse train measuring method
US20220411257A1 (en) Multisensor mems and/or nems measurement system
JP4766885B2 (en) Wavelength fluctuation measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees