JP4672177B2 - Submerged arc welding method for duplex stainless steel - Google Patents
Submerged arc welding method for duplex stainless steel Download PDFInfo
- Publication number
- JP4672177B2 JP4672177B2 JP2001144210A JP2001144210A JP4672177B2 JP 4672177 B2 JP4672177 B2 JP 4672177B2 JP 2001144210 A JP2001144210 A JP 2001144210A JP 2001144210 A JP2001144210 A JP 2001144210A JP 4672177 B2 JP4672177 B2 JP 4672177B2
- Authority
- JP
- Japan
- Prior art keywords
- weld metal
- flux
- welding
- stainless steel
- slag
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000003466 welding Methods 0.000 title claims description 56
- 229910001039 duplex stainless steel Inorganic materials 0.000 title claims description 16
- 238000000034 method Methods 0.000 title claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 63
- 239000002184 metal Substances 0.000 claims description 63
- 230000004907 flux Effects 0.000 claims description 52
- 239000002893 slag Substances 0.000 claims description 33
- 229910052759 nickel Inorganic materials 0.000 claims description 13
- 229910052804 chromium Inorganic materials 0.000 claims description 11
- 229910004261 CaF 2 Inorganic materials 0.000 claims description 10
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 9
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 9
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 8
- 238000002844 melting Methods 0.000 claims description 7
- 230000008018 melting Effects 0.000 claims description 7
- 229910001220 stainless steel Inorganic materials 0.000 claims description 7
- 239000010935 stainless steel Substances 0.000 claims description 6
- 229910052785 arsenic Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 230000001105 regulatory effect Effects 0.000 claims description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 34
- 230000007797 corrosion Effects 0.000 description 22
- 238000005260 corrosion Methods 0.000 description 22
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 18
- 239000011324 bead Substances 0.000 description 16
- 239000000463 material Substances 0.000 description 14
- 229910045601 alloy Inorganic materials 0.000 description 11
- 239000000956 alloy Substances 0.000 description 11
- 239000000203 mixture Substances 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 239000000395 magnesium oxide Substances 0.000 description 9
- 239000000292 calcium oxide Substances 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 6
- 238000003475 lamination Methods 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 230000007547 defect Effects 0.000 description 5
- 239000013535 sea water Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000002195 synergetic effect Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- -1 chlorine ions Chemical class 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 239000010456 wollastonite Substances 0.000 description 2
- 229910052882 wollastonite Inorganic materials 0.000 description 2
- 229910052845 zircon Inorganic materials 0.000 description 2
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 2
- 229910017082 Fe-Si Inorganic materials 0.000 description 1
- 229910017133 Fe—Si Inorganic materials 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 239000006004 Quartz sand Substances 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Images
Landscapes
- Arc Welding In General (AREA)
- Nonmetallic Welding Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、二相ステンレス鋼のサブマージアーク溶接に関し、詳しくは、SUS329J3L鋼等の二相ステンレス鋼をサブマージアーク溶接する際に、強度、靱性および耐孔食性などの優れた溶接金属特性が経済的に得られる二相ステンレス鋼の溶接方法に関するものである、さらに詳しくは、溶接金属の強度、じん性および耐孔食性が優れ、かつ優れた溶接作業性を有するサブマージアーク溶接方法に係わるものである。
【0002】
【従来の技術】
近年、海水による熱交換をはじめとする海水利用技術が進み、耐海水鋼の材料として二相ステンレス鋼の開発がなされ、海水などの塩素イオンを含む環境下や各種化学プラント機器、石油・天然ガスの採掘用油井管、ケミカルタンカーの材料として使用されるようになった。二相ステンレス鋼はオーステナイト相とフェライト相がほぼ1:1の割合で形成されているステンレス鋼で、オーステナイト系ステンレス鋼の優れた機械的性質とフェライト系ステンレス鋼が有する耐応力腐食割れ性を兼ね備え、単相組織のステンレス鋼に比べ強度が高く優れた耐孔食性を持っていることを特長とする鋼板である。
【0003】
二相ステンレス鋼板の開発と平行して溶接材料の開発もなされてきた。二相ステンレス鋼溶接金属部は熱処理を施さず溶接のままで使用されることが多く、母材と同等の性能が得られるように溶接材料は母材成分よりCr,Ni等の含有率が高く設計されている。サブマージアーク溶接材料の研究開発も進められているが、二相ステンレス鋼用溶接ワイヤは多量の合金成分を含有するため加工性が非常に悪く開発が遅れ生産コストも高いという問題点がある。また、二相ステンレス鋼は多量のNを含有しており、溶接においてNが原因とされるスラグ焼き付きによりスラグ剥離性が劣化するという問題点もあった。
【0004】
二相ステンレス鋼用溶接材料として、特願昭58−25190公報、特願昭61−111370公報、特願平07−60523公報などに比較的低入熱で施工するTIG溶接等用溶接材料が開示されているが、これらは大入熱で施工するサブマージアーク溶接とは異なる技術でサブマージアーク溶接方法には適用出来ない。また、特願昭59−131840公報にサブマージアーク溶接材料が開示されているが、この技術は溶接金属の酸素量を低減する成分系の溶接フラックスを使用し、これにほとんどの合金成分を含有する溶接ワイヤとを組み合わせ溶接金属の靭性を改善するものである。したがって前述の如く、ワイヤの加工性が非常に悪いため生産コストが高く、またNに起因するスラグ焼き付きに付いては何ら言及されておらず、スラグ剥離性が不十分で溶接作業性にも問題点もあった。
【0005】
一方、加工性が良好な合金成分の少ないワイヤを用い、フラックスから合金成分を添加して目標の溶接金属を得る溶接方法は、母材の希釈が大きいことや、溶接条件によりフラックス消費量が異なるため合金成分の歩留まりが不安定であり、さらに、積層溶接で添加合金成分が増加するなどの問題があるため開発されていない。このようなことから加工性が良好なワイヤと合金成分を添加したフラックスにより経済的で作業能率が良く、安定した溶接部が得られる二相ステンレス鋼用サブマージアーク溶接材料の開発が望まれている。
【0006】
【発明が解決しようとする課題】
本発明の目的は、良好な加工性を有し経済性に優れた溶接ワイヤと、合金成分を添加したフラックスとを組み合わせ、溶接欠陥の発生がなく母材と同等の性能を有する溶接金属部が容易に得られる経済的な溶接施工を可能としたSUS329J3Lステンレス鋼用のサブマージアーク溶接方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するため、SUS329J3L相当のステンレス鋼をサブマージアーク溶接する際に用いられるワイヤとフラックスを多種試作し、さの際に得られる溶接金属特性およい作業性を鋭意検討した。
【0008】
その結果、ワイヤの成分組成を、SUS329J3L相当の、質量%で、Mn:1〜2%、Cr:21〜24%、Ni:4.5〜6.5%、 Mo:2.5〜3.5%、N:0.1〜0.2%とすることにより、溶接金属の加工性の劣化を少なくできる。またそのワイヤと組み合わせて用いるフラックスの成分組成を、スラグ生成成分として、CaF2 、CaOまたはMgOの1種または2種、Al2 O3 、SiO2 、ZrO2 を含有し、金属成分として、Cr、Ni、AlおよびSiのうちの1種または2種を含有し、Cr/Niを限定することにより、サブマージアーク溶接時の溶接金属中の積層高さ方向でのCr、Niの増加を抑制でき、良好な性能の溶接金属が得られるるという知見を得た。また、さらに上記成分組成に、PbOを添加するとともに、TiO2 を規制することでスラグ焼き付きを防止し溶接欠陥がない良好な溶接金属が得られることを見いだした。
【0009】
つまり、本発明の要旨とするところは、以下の通りである。
質量%で、Mn:1〜2%、Cr:21〜24%、Ni:4.5〜6.5%、Mo:2.5〜3.5%、N:0.1〜0.2%を鉄中に含有する溶接ワイヤと、質量%で、スラグ生成成分として、CaF2 :10〜25%、Al2 O3 :8〜25%、ZrO2 :0.5〜16%、CaOおよびMgOの1種または2種の合計量:15〜45%、SiO2 :8〜25%、PbO:0.02〜0.3%を含有するとともに、TiO2 を0.2%以下に規制し、金属成分として、金属単体に換算した質量%で、Cr:3.5〜7.0%、Ni:6.0〜9.0%、AlおよびSiの1種または2種の合計:0.7〜2.7%を含有し、かつ0.6≦Cr/Ni≦0.8を満足する焼成型フラックスとを用いて二相ステンレス鋼をサブマージアーク溶接を行うことを特徴とする二相ステンレス鋼のサブマージアーク溶接方法。
【0010】
【発明の実施の形態】
本発明者等は、前述のSUS329J3L成分ワイヤと組み合わせるフラックスについて、フラックスの組成、脱酸剤,合金剤の種類と添加率と溶接金属のフェライト量および溶接金属性能との関係を詳細に調査検討した。その結果、フラックス組成をCaF2 −CaO(またはMgO)−Al2 O3 −SiO2 −ZrO2 とし、金属単体に換算したCrを3.5〜7.0%、Niを6.0〜9.0%の範囲でCr/Niを0.6〜0.8に制限すること、さらにAlまたはSiを0.7〜2.7%添加することの相乗効果により溶接金属の合金成分を安定させ、積層溶接においても合金成分の増加を抑制することが可能となった。また積層溶接において溶接金属のフェライト量を30〜50%に調整することが可能となり、溶接部が母材と同等の性能を得ることができるという知見と、TiO2 を0.2%以下に制御し、PbOを添加することの相乗効果によりスラグ焼き付を防止し、良好な溶接作業性が得られるという知見も得た。
【0011】
すなわち、図1および図2は上記フェライト量の調整の検討結果を示すグラフである。図1はCr/Ni値が0.4〜1.0の範囲(0.2刻み)でのAl+Si量と、5層目の溶接金属のフェライト量との関係を示すグラフであるが、Cr/Ni値がほぼ0.6〜0.8の範囲で、Al+Si量が0.7〜2.7%であればフェライト量が適正範囲の30〜50%になることがわかる。また、図2はCr/Niを0.7一定にしたときAl+Siを種々変えて各層の溶接金属のフェライト量を示したものである。Al+Siがほぼ0.7〜2.7%であればフェライト量が各層とも適正範囲の30〜50%に入ることがわかる。
【0012】
本発明は上記の知見によってなされたものでありそれぞれの制限理由について述べる。
本発明溶接方法においてワイヤは、加工性が劣化しない範囲で二相ステンレス鋼として必要な合金成分を含有させる。すなわち、質量%でMn:1〜2%、Cr:21〜24%、Ni:4.5〜6.5%、Mo:2.5〜3.5%、N:0.1〜0.2%を鉄中に含有させた。
【0013】
フラックス成分の限定理由について述べる。
CaF2 は、スラグの溶融点を低下させ溶け込みを浅くしスラグの剥離性を良好にするとともにビード形状、外観を良好にする。また、スラグの塩基度を上げ、溶接金属中の酸素量を低減し靭性を改善するために不可欠な成分である。10%未満ではその効果が不十分で、25%を越えるとスラグの流動性が過大となりビード形状、外観が劣化する。したがってCaF2 を10〜25%の範囲とする。
【0014】
Al2 O3 は融点が高く、スラグの流動性を調整し、ビード形状を整えるのに有効である。この効果は特に多層盛溶接で重要であり、ビード同士のなじみが良好となり、スラグ巻き込み、アンダーカット等の欠陥の発生を防止する。8%未満では効果が少なく、25%を越えるとスラグ巻き込みが生じやすくなる。したがってAl2 O3 を8〜25%の範囲とする。
【0015】
ZrO2 はスラグの粘性を調整し、ビード外観を改善するのに有効であり、また、スラグを脆くし剥離性を改善するために有効である。0.5%未満では効果が不十分であり、16%を越えると粘性が大きくなりスラグ巻き込みを発生し、ビード形状が劣化する。したがってZrO2 を0.5〜16%の範囲とする。
【0016】
CaOおよびMgOは耐火性の大きい成分であり、融点の低いCaF2 を含有するフラックスの溶融特性を調整し、ビード形状を整えるのに有効である。15%未満ではその効果が不十分で、45%を越えるとフラックスが溶け難くビード表面が平滑さを失い、またアンダーカット等の溶接欠陥が発生する。したがってCaOまたはMgOの1種または2種の合計量を15〜45%の範囲とする。
【0017】
SiO2 はスラグの粘性を調整し、ビード外観を改善するのに有効であるが、8%未満では効果が少なく、25%を越えると粘性が大きくなりスラグ巻き込みが発生する。したがってSiO2 を8〜25%の範囲とする。
【0018】
PbOはスラグの焼き付けを防止し、スラグを脆くして剥離性を改善するために有効である。0.02%未満では効果が不十分であり、0.3%を超えるとビード形状が劣化する。したがってPbOを0.02〜0.3%の範囲とする。
【0019】
TiO2 はスラグの焼き付きを助長しスラグ剥離性を非常に劣化させるが0.2%以下にすることでスラグ焼き付きは防止できる。したがってTiO2 を0.2%以下に制限する。
【0020】
CrおよびNiは溶接金属組成を二相組織とし二相鋼溶接金属として基本的な性能を確保するためフラックスに添加して溶接ワイヤからの分と合わせて溶接金属成分になるようにする。フラックス中のCrが3.5%未満では溶接金属のCrが不足し、強度の劣化やフェライト量不足により溶接金属の耐孔食性および靭性が劣化する。一方7%を超えると溶接金属のCrが増加し積層溶接においてフェライト量が増加し溶接金属の靭性が劣化する。したがって、フラックス中のCrを3.5〜7.0%の範囲とする。
【0021】
また、フラックス中のNiが6.0%未満であると溶接金属のNiが不足し基本的な耐食性が劣化し、一方9.0%を超えると溶接金属のNiが増加し積層溶接においてフェライトが不足し靭性が劣化する。したがって、フラックス中のNiを6.0〜9.0%の範囲とする。
【0022】
また、CrおよびNiの適正添加率内におけるCr/Niは溶接金属のフェライト量のバランスをとるために重要であり、Cr/Niが0.6未満ではフェライト量が減少し溶接金属の耐孔食性および靭性が劣化する。一方Cr/Niが0.8を超えると逆にフェライト量が増加し溶接金属の靭性が劣化する。したがってCr/Niを0.6〜0.8に制限する。
【0023】
AlおよびSiの1種または2種を本組成フラックスに添加することも本発明の重要な要件であり、本発明のCrおよびNiの添加率とCr/Ni比との相乗効果により溶接金属を二相組織とし基本的な性能を確保するため添加する。AlおよびSiの合計が0.7%未満ではフェライト量の不足により溶接金属の耐孔食性および靭性が劣化し、2.7%を超えると積層によりフェライト量が増加して溶接金属の靭性が劣化する。したがってAlおよびSiの1種または2種の合計を0.7〜2.7%の範囲とする。
【0024】
原料は、単成分のものだけでなく上記成分を含有する化合物、鉱石あるいは溶融型フラックス等で添加することができる。たとえばCaF2 として蛍石、溶融型フラックス等、CaOとして石灰石、珪灰石、溶融型フラックス等、MgOとしてマグネシアクリンカー、溶融型フラックス等、Al2 O3 として溶融型フラックス等、SiO2 として珪砂、珪灰石、珪酸ソーダ等、ZrO2 としてジルコンサンド、酸化ジルコン等、Alとして金属Al、Fe−Al等、SiとしてFe―Si等を原料に使用できる。また前記必須成分のほかに、粘結材等の鉱石や成分を調整するための金属粉等を配合することができる。
【0025】
二相ステンレス鋼溶接部の性能を非破壊で確認する方法としてフェライト量の管理は重要である。フェライトスコープ等の機器による溶接金属のフェライト量測定値と溶接金属性能を調査した結果、フェライト量が30%未満では耐孔食性が劣化し、50%を超えると靭性と耐孔食性が劣化する。従って機器測定による溶接金属のフェライト量を30〜50%に管理することが必要である。
【0026】
【実施例】
以下に本発明溶接方法の効果を実施例により説明する。
実験に供したワイヤの組成を表1に示す。ワイヤは溶解、鍛造、圧延および線引きにより3.2mm径にした。
【0027】
【表1】
【0028】
実験に供したボンドフラックスは通常のフラックスの原料として用いられる鉱石粉、複合化合物等を混合、撹拌後、水ガラスを用いて造粒し、400℃で約2時間焼成して作成した。フラックスの組成を表2、表3に示すが、F1〜F7は本発明例として用いたフラックス、F8〜F22は比較例として用いたものである。
【0029】
【表2】
【0030】
【表3】
【0031】
表1のワイヤと表2、表3のフラックスとを組み合わせ、表4に示す鋼板を用い表5に示す溶接条件で、図3に示す開先形状および積層要領により約1mの溶接長でサブマージアーク溶接を実施した。表6および表7にワイヤとフラックスとの組み合わせおよびその試験結果を示す。
【0032】
【表4】
【0033】
【表5】
【0034】
【表6】
【0035】
【表7】
【0036】
溶接作業性試験については各パスの溶接後に判定を行った。溶接終了後、X線透過試験(JIS Z3106)、引張試験(JIS Z3121、1号試験片)、衝撃試験(JIS Z3128、4号試験片)、孔食試験(JIS G0578)を行い溶接金属性能を調査した。衝撃試験は試験温度が0℃で行い、孔食試験は50℃×24hrで行った。溶接金属のフェライト量は断面マクロ組織試験片を作成しフェライトスコープによりマクロ試験片の板厚中央部および最終パスを測定した。
【0037】
本発明例のNo.1〜No.11は優れた溶接作業性、溶接金属が得られたが、No.12はフラックス中のTiO2 が過多でスラグ剥離性が悪く、Crが過多のため溶接金属のフェライト量が過多となり靭性と耐孔食性が劣化した。
【0038】
No.13はフラックス中のCaF2 が過多のため溶接続行が不可能であった。
No.14はフラックス中のCaOとMgOの和が過多のためアンダーカットが発生した。
【0039】
No.15はフラックス中のAlおよびSiの和が不足していたため、溶接金属のフェライト量が不足し耐孔食性が劣化し、強度も劣化した。
No.16はフラックス中のAl2 O3 が過多のため溶接続行が不可能であった。
【0040】
No.17はフラックス中のAlおよびSiの和が過多のため溶接金属のフェライト量が過多となり靭性と耐孔食性が劣化した。
No.18はフラックス中のCrが不足し、Cr/Niの比が満足しないため、溶接金属のフェライト量が不足し耐孔食性と強度が劣化した。また、PbO不足のためスラグ剥離性も化した。
【0041】
No.19はフラックス中のCaOとMgOとの和が不足していたため、溶接続行が不可能であった。
No.20はフラックス中のNiが不足のため、溶接金属のフェライト量が過多となり靭性と耐孔食性が劣化し、PbO過多のためビード形状が凸となり劣化した。
【0042】
No.21はフラックス中のSiO2 が過多でスラグ巻き込みが発生しX線性能が劣化し溶接金属の強度が劣化した。
No.22はフラックス中のSiO2 が不足のためビード外観が劣化した。
No.23はフラックス中のCaF2 が不足のため、ビード外観が劣化し、溶接金属の靭性も劣化した。
【0043】
No.24はフラックス中のAl2 O3 が不足しビードのなじみが悪くアンダーカットも発生し、Niが過多のため溶接金属のフェライト量が不足し耐孔食性と靭性が劣化した。
No.25はフラックス中のZrO2 が不足のため、スラグが固く剥離性が劣化した。
【0044】
No.26はフラックス中のZrO2 が過多のため、ビードが凸形状となり、スラグ巻き込みによりX線性能と溶接金属の強度が劣化した。
No.27はフラックス中のTiO2 が過多でスラグ剥離性が悪く、Crが過多のため溶接金属のフェライト量が過多となり靭性と耐孔食性が劣化した。
【0045】
No.28はフラックス中のAlまたはSiの和が不足していたため、溶接金属のフェライト量が不足し耐孔食性と強度も劣化した。
No.29はフラックス中のNiが不足のため、溶接金属のフェライト量が過多となり靭性と耐孔食性が劣化し、PbOが過多のため凸形状ビードとなり劣化した。
【0046】
【発明の効果】
以上述べたごとく、本発明は二相ステンレス鋼のサブマージアーク溶接において強度、靭性等の機械的性質が優れ、良好な耐孔食性を有する溶接金属が得られるとともに、スラグ焼き付きや溶接欠陥がない優れた溶接作業性を有する溶接方法である。SUS329J3L鋼のサブマージアーク溶接を本発明方法で行えば、信頼性のある溶接継手部が経済的に得られ、溶接効率も大幅に向上できるものである。
【図面の簡単な説明】
【図1】積層溶接における5層目の溶接金属のフェライト量とフラックス中のAl+Si量の和およびCr/Niとの関係を示したグラフ
【図2】積層溶接における各溶接金属のフェライト量とフラックス中のAl+Si量の和との関係を示したグラフ
【図3】実施例において用いた開先形状および積層要領を示す図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to submerged arc welding of duplex stainless steel, and more particularly, when welded to duplex stainless steel such as SUS329J3L steel, excellent weld metal properties such as strength, toughness and pitting corrosion resistance are economical. More particularly, it relates to a submerged arc welding method having excellent weld workability and excellent weld metal strength, toughness and pitting corrosion resistance. .
[0002]
[Prior art]
In recent years, seawater utilization technology such as heat exchange using seawater has progressed, and duplex stainless steel has been developed as a material for seawater-resistant steel. In environments containing chlorine ions such as seawater, various chemical plant equipment, oil and natural gas It has come to be used as a material for oil well pipes and chemical tankers for mining. Duplex stainless steel is a stainless steel in which the austenite and ferrite phases are formed in a ratio of approximately 1: 1, and combines the excellent mechanical properties of austenitic stainless steel with the stress corrosion cracking resistance of ferritic stainless steel. It is a steel sheet characterized by high pitting corrosion resistance and high strength compared to stainless steel having a single phase structure.
[0003]
In parallel with the development of duplex stainless steel sheets, welding materials have also been developed. Duplex stainless steel weld metal parts are often used as they are without heat treatment, so that the weld material has a higher content of Cr, Ni, etc. than the base material components so that the same performance as the base material can be obtained. Designed. Research and development of submerged arc welding materials is also underway, but the welding wire for duplex stainless steel contains a large amount of alloy components, so that there is a problem that workability is very poor and development is delayed and production cost is high. In addition, duplex stainless steel contains a large amount of N, and there has been a problem that slag removability deteriorates due to slag seizure caused by N in welding.
[0004]
As welding materials for duplex stainless steel, Japanese Patent Application Nos. 58-25190, 61-111370, 07-60523, etc. disclose welding materials for TIG welding and the like that are applied with relatively low heat input. However, these techniques cannot be applied to the submerged arc welding method by a technique different from that of the submerged arc welding performed with large heat input. Japanese Patent Application No. 59-131840 discloses a submerged arc welding material, but this technique uses a welding flux of a component system that reduces the oxygen content of the weld metal, and contains most alloy components. It combines with a welding wire to improve the toughness of the weld metal. Therefore, as described above, the processability of the wire is very poor, so the production cost is high, and there is no mention of slag seizure caused by N, and the slag peelability is insufficient and there is a problem in welding workability. There was also a point.
[0005]
On the other hand, the welding method to obtain the target weld metal by adding the alloy component from the flux using the wire with less alloy component with good workability, the flux consumption varies depending on the large dilution of the base material and the welding conditions Therefore, it has not been developed because the yield of the alloy component is unstable, and further, there are problems such as an increase in the additive alloy component in the lamination welding. Therefore, it is desired to develop a submerged arc welding material for duplex stainless steel that is economical and has a good work efficiency and a stable weld by using a wire with good workability and a flux added with alloy components. .
[0006]
[Problems to be solved by the invention]
An object of the present invention is to combine a welding wire having good workability and excellent economic efficiency with a flux added with an alloy component, so that a weld metal part having the same performance as a base material without generation of welding defects is obtained. It is an object of the present invention to provide a submerged arc welding method for SUS329J3L stainless steel that enables easy and economical welding.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the inventors have made various prototypes of wires and fluxes used for submerged arc welding of stainless steel equivalent to SUS329J3L, and the workability of the weld metal obtained at that time has good workability. We studied diligently.
[0008]
As a result, the component composition of the wire was equivalent to SUS329J3L in mass%, Mn: 1-2%, Cr: 21-24%, Ni: 4.5-6.5%, Mo: 2.5-3. By setting the content to 5% and N: 0.1 to 0.2%, it is possible to reduce the deterioration of workability of the weld metal. The composition of the flux used in combination with the wire contains one or two of CaF 2 , CaO or MgO, Al 2 O 3 , SiO 2 , ZrO 2 as the slag generation component, and Cr as the metal component. By containing one or two of Ni, Al, and Si, and limiting Cr / Ni, increase in Cr and Ni in the stacking height direction in the weld metal during submerged arc welding can be suppressed. It was found that a weld metal with good performance can be obtained. Furthermore, it was found that by adding PbO to the above component composition and regulating TiO 2 , slag seizure can be prevented and a good weld metal free from welding defects can be obtained.
[0009]
That is, the gist of the present invention is as follows.
In mass%, Mn: 1-2%, Cr: 21-24%, Ni: 4.5-6.5%, Mo: 2.5-3.5%, N: 0.1-0.2% As a slag generating component in mass%, CaF 2 : 10 to 25%, Al 2 O 3 : 8 to 25%, ZrO 2 : 0.5 to 16%, CaO and MgO The total amount of one or two of: 15 to 45%, SiO 2 : 8 to 25%, PbO: 0.02 to 0.3%, TiO 2 is regulated to 0.2% or less, As a metal component, in mass% converted to a single metal, Cr: 3.5 to 7.0%, Ni: 6.0 to 9.0%, total of one or two of Al and Si: 0.7 Submerged arc melting of duplex stainless steel using a calcined flux containing ˜2.7% and satisfying 0.6 ≦ Cr / Ni ≦ 0.8 Submerged arc welding method of the two-phase stainless steel and performing.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The inventors of the present invention investigated in detail the relationship between the flux composition, the types of deoxidizers and alloying agents, the addition rate, the ferrite content of the weld metal, and the weld metal performance of the flux combined with the aforementioned SUS329J3L component wire. . As a result, the flux composition was CaF 2 —CaO (or MgO) —Al 2 O 3 —SiO 2 —ZrO 2 , Cr converted to a metal simple substance was 3.5 to 7.0%, and Ni was 6.0 to 9 The alloy composition of the weld metal is stabilized by the synergistic effect of limiting Cr / Ni to 0.6 to 0.8 within a range of 0.0% and adding Al or Si to 0.7 to 2.7%. In addition, it is possible to suppress an increase in alloy components even in the lamination welding. In addition, it is possible to adjust the ferrite content of the weld metal to 30 to 50% in the lamination welding, and the knowledge that the welded portion can obtain the same performance as the base material, and TiO 2 is controlled to 0.2% or less. In addition, it was found that slag seizure was prevented by the synergistic effect of adding PbO, and good welding workability was obtained.
[0011]
That is, FIG. 1 and FIG. 2 are graphs showing the results of studying the adjustment of the ferrite amount. FIG. 1 is a graph showing the relationship between the amount of Al + Si and the amount of ferrite of the fifth layer weld metal when the Cr / Ni value is in the range of 0.4 to 1.0 (in steps of 0.2). It can be seen that when the Ni value is in the range of approximately 0.6 to 0.8 and the Al + Si amount is 0.7 to 2.7%, the ferrite amount is 30 to 50% of the appropriate range. FIG. 2 shows the ferrite content of the weld metal in each layer with various changes in Al + Si when Cr / Ni is kept constant at 0.7. It can be seen that when Al + Si is approximately 0.7 to 2.7%, the ferrite content falls within an appropriate range of 30 to 50% for each layer.
[0012]
The present invention has been made based on the above findings, and the reason for each limitation will be described.
In the welding method of the present invention, the wire contains alloy components necessary for duplex stainless steel within a range in which workability does not deteriorate. That is, in mass%, Mn: 1-2%, Cr: 21-24%, Ni: 4.5-6.5%, Mo: 2.5-3.5%, N: 0.1-0.2 % Was contained in iron.
[0013]
The reason for limiting the flux component will be described.
CaF 2 lowers the melting point of the slag, shallows the penetration, improves the slag releasability, and improves the bead shape and appearance. Moreover, it is an indispensable component for raising the basicity of slag, reducing the amount of oxygen in the weld metal, and improving toughness. If it is less than 10%, the effect is insufficient, and if it exceeds 25%, the fluidity of the slag becomes excessive and the bead shape and appearance deteriorate. Thus the CaF 2 in the range of 10% to 25%.
[0014]
Al 2 O 3 has a high melting point and is effective in adjusting the fluidity of the slag and adjusting the bead shape. This effect is particularly important in multi-layer welding, and the familiarity between beads becomes good, and the occurrence of defects such as slag entrainment and undercutting is prevented. If it is less than 8%, the effect is small, and if it exceeds 25%, slag entrainment tends to occur. Thus the Al 2 O 3 in the range 8 to 25%.
[0015]
ZrO 2 is effective for adjusting the viscosity of the slag and improving the bead appearance, and is effective for making the slag brittle and improving the peelability. If it is less than 0.5%, the effect is insufficient, and if it exceeds 16%, the viscosity increases and slag entrainment occurs, and the bead shape deteriorates. Therefore, ZrO 2 is set in the range of 0.5 to 16%.
[0016]
CaO and MgO are components having high fire resistance, and are effective in adjusting the melting characteristics of the flux containing CaF 2 having a low melting point and adjusting the bead shape. If it is less than 15%, the effect is insufficient, and if it exceeds 45%, the flux is difficult to dissolve, the bead surface loses smoothness, and welding defects such as undercuts occur. Therefore, the total amount of one or two of CaO or MgO is set to a range of 15 to 45%.
[0017]
SiO 2 is effective in adjusting the viscosity of the slag and improving the appearance of the bead. However, if it is less than 8%, the effect is small, and if it exceeds 25%, the viscosity increases and slag entrainment occurs. Thus the SiO 2 in the range 8 to 25%.
[0018]
PbO is effective in preventing seizure of the slag, making the slag brittle and improving the peelability. If it is less than 0.02%, the effect is insufficient, and if it exceeds 0.3%, the bead shape deteriorates. Therefore, PbO is set to a range of 0.02 to 0.3%.
[0019]
TiO 2 promotes slag seizure and greatly deteriorates slag peelability, but slag seizure can be prevented by setting it to 0.2% or less. Therefore, TiO 2 is limited to 0.2% or less.
[0020]
Cr and Ni have a two-phase structure in the weld metal composition, and are added to the flux in order to ensure basic performance as a two-phase steel weld metal so as to become a weld metal component together with the amount from the welding wire. If Cr in the flux is less than 3.5%, Cr of the weld metal is insufficient, and the pitting corrosion resistance and toughness of the weld metal are deteriorated due to the deterioration of strength and the amount of ferrite. On the other hand, if it exceeds 7%, Cr of the weld metal increases, the amount of ferrite increases in the lamination welding, and the toughness of the weld metal deteriorates. Therefore, the Cr in the flux is in the range of 3.5 to 7.0%.
[0021]
Further, if the Ni in the flux is less than 6.0%, the Ni in the weld metal is insufficient and the basic corrosion resistance deteriorates. On the other hand, if it exceeds 9.0%, the Ni in the weld metal increases and ferrite is formed in the lamination welding. Insufficient toughness deteriorates. Therefore, the Ni in the flux is in the range of 6.0 to 9.0%.
[0022]
In addition, Cr / Ni within an appropriate addition ratio of Cr and Ni is important for balancing the ferrite content of the weld metal. When Cr / Ni is less than 0.6, the ferrite content decreases and the pitting corrosion resistance of the weld metal. And toughness deteriorates. On the other hand, if Cr / Ni exceeds 0.8, the amount of ferrite increases and the toughness of the weld metal deteriorates. Therefore, Cr / Ni is limited to 0.6 to 0.8.
[0023]
The addition of one or two of Al and Si to the present composition flux is also an important requirement of the present invention, and the weld metal is added by the synergistic effect of the Cr and Ni addition ratio and the Cr / Ni ratio of the present invention. It is added to secure the basic performance of the phase structure. If the total of Al and Si is less than 0.7%, the pitting corrosion resistance and toughness of the weld metal deteriorate due to insufficient ferrite content, and if it exceeds 2.7%, the ferrite content increases due to lamination and the toughness of weld metal deteriorates. To do. Therefore, the total of one or two of Al and Si is set in the range of 0.7 to 2.7%.
[0024]
The raw material can be added not only as a single component but also as a compound containing the above components, ore, or a molten flux. For example fluorite as CaF 2, the melt flux or the like, limestone as CaO, wollastonite, quartz sand melt flux or the like, magnesia clinker as MgO, the melt flux or the like, melt flux such as Al 2 O 3, as SiO 2, wollastonite The raw material may be stone, sodium silicate, ZrO 2 , zircon sand, zircon oxide, etc., Al as metal Al, Fe—Al, etc., Si as Fe—Si, etc. In addition to the essential components, ores such as binders and metal powders for adjusting the components can be blended.
[0025]
It is important to control the amount of ferrite as a non-destructive method for confirming the performance of duplex stainless steel welds. As a result of investigating the measured ferrite content of weld metal and the weld metal performance using a device such as a ferrite scope, pitting corrosion resistance deteriorates when the ferrite content is less than 30%, and toughness and pitting corrosion resistance deteriorate when it exceeds 50%. Therefore, it is necessary to manage the ferrite content of the weld metal by instrument measurement to 30 to 50%.
[0026]
【Example】
The effects of the welding method of the present invention will be described below by examples.
The composition of the wire subjected to the experiment is shown in Table 1. The wire was made to have a diameter of 3.2 mm by melting, forging, rolling and drawing.
[0027]
[Table 1]
[0028]
The bond flux used in the experiment was prepared by mixing or stirring the ore powder, composite compound, and the like used as raw materials for normal flux, granulating with water glass, and firing at 400 ° C. for about 2 hours. The compositions of the flux are shown in Tables 2 and 3, F1 to F7 are fluxes used as examples of the present invention, and F8 to F22 are used as comparative examples.
[0029]
[Table 2]
[0030]
[Table 3]
[0031]
A combination of the wires in Table 1 and the fluxes in Tables 2 and 3, and using the steel plate shown in Table 4 and the welding conditions shown in Table 5, the weld shape shown in FIG. Welding was performed. Tables 6 and 7 show the combinations of wires and fluxes and the test results.
[0032]
[Table 4]
[0033]
[Table 5]
[0034]
[Table 6]
[0035]
[Table 7]
[0036]
The welding workability test was determined after welding each pass. After welding, X-ray transmission test (JIS Z3106), tensile test (JIS Z3121, No.1 test piece), impact test (JIS Z3128, No.4 test piece), pitting corrosion test (JIS G0578) are performed to check the weld metal performance. investigated. The impact test was conducted at a test temperature of 0 ° C., and the pitting corrosion test was conducted at 50 ° C. × 24 hours. For the ferrite content of the weld metal, a cross-sectional macrostructure test piece was prepared, and the center part of the thickness of the macro test piece and the final pass were measured with a ferrite scope.
[0037]
No. of the example of the present invention. 1-No. No. 11 has excellent welding workability and weld metal. No. 12 had an excessive amount of TiO 2 in the flux and poor slag removability, and excessive Cr content caused an excessive amount of ferrite in the weld metal and deteriorated toughness and pitting corrosion resistance.
[0038]
No. No. 13 could not continue welding because of excessive CaF 2 in the flux.
No. No. 14 caused an undercut due to excessive sum of CaO and MgO in the flux.
[0039]
No. In No. 15, the sum of Al and Si in the flux was insufficient, so the ferrite content of the weld metal was insufficient, the pitting corrosion resistance was deteriorated, and the strength was also deteriorated.
No. No. 16 could not continue welding due to excessive Al 2 O 3 in the flux.
[0040]
No. In No. 17, since the sum of Al and Si in the flux was excessive, the ferrite content of the weld metal was excessive, and the toughness and pitting corrosion resistance deteriorated.
No. No. 18 had insufficient Cr in the flux, and the Cr / Ni ratio was not satisfactory, so the ferrite content of the weld metal was insufficient, and the pitting corrosion resistance and strength deteriorated. Moreover, slag peelability was also improved due to the lack of PbO.
[0041]
No. No. 19 was unable to continue welding because the sum of CaO and MgO in the flux was insufficient.
No. No. 20 had insufficient Ni in the flux, resulting in an excessive amount of ferrite in the weld metal and deteriorated toughness and pitting corrosion resistance, and due to excessive PbO, the bead shape became convex and deteriorated.
[0042]
No. In No. 21, the amount of SiO 2 in the flux was excessive, and slag entrainment occurred, the X-ray performance deteriorated, and the strength of the weld metal deteriorated.
No. No. 22 had a poor bead appearance due to insufficient SiO 2 in the flux.
No. No. 23 had insufficient CaF 2 in the flux, so that the bead appearance deteriorated and the toughness of the weld metal also deteriorated.
[0043]
No. In No. 24, Al 2 O 3 in the flux was insufficient, the bead fit was poor and undercutting occurred, and since Ni was excessive, the ferrite content of the weld metal was insufficient and the pitting corrosion resistance and toughness deteriorated.
No. No. 25 had insufficient ZrO 2 in the flux, so the slag was hard and the peelability deteriorated.
[0044]
No. No. 26 had an excessive amount of ZrO 2 in the flux, so that the bead became convex, and the X-ray performance and the strength of the weld metal deteriorated due to the slag entrainment.
No. No. 27 had excessive TiO 2 in the flux and poor slag removability, and excessive Cr content caused an excessive amount of ferrite in the weld metal and deteriorated toughness and pitting corrosion resistance.
[0045]
No. In No. 28, since the sum of Al or Si in the flux was insufficient, the ferrite content of the weld metal was insufficient, and the pitting corrosion resistance and strength were also deteriorated.
No. In 29, Ni in the flux was insufficient, so that the ferrite content of the weld metal was excessive and the toughness and pitting corrosion resistance were deteriorated, and PbO was excessive and deteriorated into a convex bead.
[0046]
【The invention's effect】
As described above, the present invention is excellent in mechanical properties such as strength and toughness in submerged arc welding of duplex stainless steel, and provides a weld metal having good pitting corrosion resistance, and is excellent in that there is no slag seizure or welding defects. It is a welding method having welding workability. If submerged arc welding of SUS329J3L steel is performed by the method of the present invention, a reliable weld joint can be obtained economically and welding efficiency can be greatly improved.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the amount of ferrite of the fifth layer weld metal in laminate welding and the sum of the amount of Al + Si in the flux and Cr / Ni. FIG. 2 shows the amount of ferrite and flux of each weld metal in laminate welding. A graph showing the relationship with the sum of the Al + Si amount in FIG.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001144210A JP4672177B2 (en) | 2001-05-15 | 2001-05-15 | Submerged arc welding method for duplex stainless steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001144210A JP4672177B2 (en) | 2001-05-15 | 2001-05-15 | Submerged arc welding method for duplex stainless steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002336991A JP2002336991A (en) | 2002-11-26 |
JP4672177B2 true JP4672177B2 (en) | 2011-04-20 |
Family
ID=18990195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001144210A Expired - Lifetime JP4672177B2 (en) | 2001-05-15 | 2001-05-15 | Submerged arc welding method for duplex stainless steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4672177B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102019518A (en) * | 2010-12-31 | 2011-04-20 | 上海狮百盛焊材科技有限公司 | Two phase stainless steel welding rod |
CN104690445A (en) * | 2015-02-12 | 2015-06-10 | 西安理工大学 | Metal flux-cored wire for 2505 duplex stainless steel, and preparation method of metal flux-cored wire |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101913012B (en) * | 2010-08-11 | 2012-08-29 | 南京宝色股份公司 | Two phase stainless steel submerged-arc welding SAW welding procedure |
CN102019517B (en) * | 2010-12-10 | 2012-11-21 | 哈尔滨威尔焊接有限责任公司 | Novel stainless steel submerged-arc welding wire for improving tensile strength after heat treatment |
CN102248316B (en) * | 2011-07-20 | 2013-04-17 | 鲁西工业装备有限公司 | Stainless steel welding process |
JP5874068B2 (en) * | 2012-01-27 | 2016-03-01 | 株式会社神戸製鋼所 | Flux for single-sided submerged arc welding |
CN106271223B (en) * | 2015-05-12 | 2019-01-22 | 海宁瑞奥金属科技有限公司 | Phase stainless steel use submerged arc welding material |
CN105252170A (en) * | 2015-09-22 | 2016-01-20 | 机械科学研究院哈尔滨焊接研究所 | Stainless steel submerged-arc welding strip with improved room temperature tensile strength |
JP6401145B2 (en) * | 2015-12-03 | 2018-10-03 | 日鐵住金溶接工業株式会社 | Submerged arc welding method for duplex stainless steel |
JP7092634B2 (en) * | 2017-12-27 | 2022-06-28 | 株式会社神戸製鋼所 | Bond flux for submerged arc welding of duplex stainless steel |
CN112355443A (en) * | 2020-10-14 | 2021-02-12 | 中国核工业第二二建设有限公司 | Nuclear power stainless steel back chipping-free submerged arc automatic welding process |
CN113319470A (en) * | 2021-06-21 | 2021-08-31 | 中国船舶重工集团公司第七二五研究所 | Bonding flux capable of transferring alloy elements and used for nickel-based welding wire and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS589795A (en) * | 1981-07-10 | 1983-01-20 | Nippon Steel Corp | Flux for submerged arc welding by belt-like electrode |
JPS5893593A (en) * | 1981-11-27 | 1983-06-03 | Sumitomo Metal Ind Ltd | Welding material for high chromium low nickel two phase stainless steel |
JPS59218295A (en) * | 1983-05-24 | 1984-12-08 | Sumitomo Metal Ind Ltd | Filler metal for welding two-phase stainless steel |
JPH02280995A (en) * | 1989-04-19 | 1990-11-16 | Kobe Steel Ltd | Bond flux for submerged arc welding |
-
2001
- 2001-05-15 JP JP2001144210A patent/JP4672177B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS589795A (en) * | 1981-07-10 | 1983-01-20 | Nippon Steel Corp | Flux for submerged arc welding by belt-like electrode |
JPS5893593A (en) * | 1981-11-27 | 1983-06-03 | Sumitomo Metal Ind Ltd | Welding material for high chromium low nickel two phase stainless steel |
JPS59218295A (en) * | 1983-05-24 | 1984-12-08 | Sumitomo Metal Ind Ltd | Filler metal for welding two-phase stainless steel |
JPH02280995A (en) * | 1989-04-19 | 1990-11-16 | Kobe Steel Ltd | Bond flux for submerged arc welding |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102019518A (en) * | 2010-12-31 | 2011-04-20 | 上海狮百盛焊材科技有限公司 | Two phase stainless steel welding rod |
CN102019518B (en) * | 2010-12-31 | 2012-12-19 | 上海狮百盛焊材科技有限公司 | Two phase stainless steel welding rod |
CN104690445A (en) * | 2015-02-12 | 2015-06-10 | 西安理工大学 | Metal flux-cored wire for 2505 duplex stainless steel, and preparation method of metal flux-cored wire |
Also Published As
Publication number | Publication date |
---|---|
JP2002336991A (en) | 2002-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4476018B2 (en) | Improved welding wire for 9Cr-1Mo steel | |
JP5138242B2 (en) | Flux-cored wire for duplex stainless steel welding | |
JP5792050B2 (en) | Submerged arc welding method for low temperature steel | |
CN108723636B (en) | Welding wire powder with low crack sensitivity, flux-cored wire, preparation and application | |
JP4672177B2 (en) | Submerged arc welding method for duplex stainless steel | |
JP5097499B2 (en) | Flux-cored wire for gas shielded arc welding for low alloy heat resistant steel | |
KR101918866B1 (en) | TANDEM SUBMERGED ARC WELDING METHOD FOR HIGH Cr CSEF STEEL | |
CN108480875B (en) | Welding wire powder, flux-cored wire, preparation and application | |
CN111590239B (en) | Martensite heat-resistant steel welding rod for ultra-supercritical thermal power generating unit and preparation method thereof | |
CN107949455B (en) | Welding wire for submerged arc welding | |
JP4427416B2 (en) | Large heat input submerged arc welding method with excellent weld metal toughness. | |
JP2007136547A (en) | Method for producing metallic flux cored wire with little slag and welded joint having high fatigue strength | |
JP2019111562A (en) | Coated arc welding rod | |
JPH11291086A (en) | Submerged arc welding method for high cr ferritic heat resistant steel | |
WO2013024698A1 (en) | Bonded flux and wire for submerged arc welding | |
JPH09277084A (en) | Submerged arc welding method for high-chromium ferritic heat resisting steel | |
JP6227513B2 (en) | Firing flux for submerged arc welding of high strength steel | |
JP3889903B2 (en) | High corrosion resistant austenitic stainless steel flux cored wire | |
JPH08252692A (en) | Coated electrode for highly corrosion resistant and high mo stainless steel | |
JP5955166B2 (en) | Ferritic stainless steel welding wire with excellent weldability, high heat resistance and high corrosion resistance | |
JP2010234429A (en) | Coated electrode for duplex stainless steel welding for pulverizing solidified crystalline particle | |
JP7423395B2 (en) | Manufacturing method of austenitic stainless steel welded joints | |
JP6401145B2 (en) | Submerged arc welding method for duplex stainless steel | |
JP2593614B2 (en) | Submerged arc welding method for high Cr ferritic heat resistant steel | |
JP2002283095A (en) | Steel wire for large heat input submerged arc welding and method of manufacturing submerged arc welded joint as well as submerged arc welded joint |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20050216 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050303 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080305 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101217 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110118 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110119 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4672177 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140128 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |