JP4665830B2 - Exhaust gas purification system for internal combustion engine - Google Patents

Exhaust gas purification system for internal combustion engine Download PDF

Info

Publication number
JP4665830B2
JP4665830B2 JP2006143948A JP2006143948A JP4665830B2 JP 4665830 B2 JP4665830 B2 JP 4665830B2 JP 2006143948 A JP2006143948 A JP 2006143948A JP 2006143948 A JP2006143948 A JP 2006143948A JP 4665830 B2 JP4665830 B2 JP 4665830B2
Authority
JP
Japan
Prior art keywords
reducing agent
amount
catalyst
exhaust
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006143948A
Other languages
Japanese (ja)
Other versions
JP2007315234A (en
Inventor
佳久 塚本
伸基 大橋
孝充 浅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006143948A priority Critical patent/JP4665830B2/en
Publication of JP2007315234A publication Critical patent/JP2007315234A/en
Application granted granted Critical
Publication of JP4665830B2 publication Critical patent/JP4665830B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関の排気通路に設けられ且つ触媒を含んで構成される排気浄化装置と、該排気浄化装置よりも上流側の排気通路に設けられ且つ酸化機能を有する前段触媒と、を備える内燃機関の排気浄化システムに関する。   The present invention includes an exhaust purification device that is provided in an exhaust passage of an internal combustion engine and includes a catalyst, and a pre-stage catalyst that is provided in an exhaust passage upstream of the exhaust purification device and has an oxidation function. The present invention relates to an exhaust gas purification system for an internal combustion engine.

内燃機関の排気システムにおいては、内燃機関の排気通路に設けられ且つ触媒を含んで構成される排気浄化装置と、該排気浄化装置よりも上流側の排気通路に設けられ且つ酸化機能を有する前段触媒と、を備えたものが知られている。このような構成においては、排気浄化装置の性能を回復すべく前段触媒よりも上流側の排気中に還元剤を供給することで該排気浄化装置に還元剤を供給する場合がある。   In an exhaust system of an internal combustion engine, an exhaust purification device provided in an exhaust passage of the internal combustion engine and including a catalyst, and a pre-stage catalyst provided in an exhaust passage upstream of the exhaust purification device and having an oxidation function The thing equipped with these is known. In such a configuration, there is a case where the reducing agent is supplied to the exhaust gas purification device by supplying the reducing agent into the exhaust gas upstream of the upstream catalyst in order to recover the performance of the exhaust gas purification device.

この場合、排気中に供給された還元剤が排気浄化装置に到達する前に前段触媒において酸化されることになる。   In this case, the reducing agent supplied into the exhaust is oxidized in the pre-stage catalyst before reaching the exhaust purification device.

また、特許文献1には、内燃機関の排気通路に設けられた触媒の上流側の排気温度と該触媒の下流側の排気温度との差に基づいて、排気中のHCが触媒において酸化することで発生した発熱量を推定し、この推定された発熱量が判定値よりも小さいときに触媒が劣化状態にあると判定する技術が開示されている。
特開2003−106140号公報
Further, Patent Document 1 discloses that HC in the exhaust is oxidized in the catalyst based on the difference between the exhaust temperature upstream of the catalyst provided in the exhaust passage of the internal combustion engine and the exhaust temperature downstream of the catalyst. A technique is disclosed in which the amount of generated heat is estimated and the catalyst is determined to be in a deteriorated state when the estimated amount of generated heat is smaller than a determination value.
JP 2003-106140 A

本発明は、内燃機関の排気通路に設けられ且つ触媒を含んで構成される排気浄化装置と、該排気浄化装置よりも上流側の排気通路に設けられ且つ酸化機能を有する前段触媒と、を備えた内燃機関の排気浄化システムにおいて、排気浄化装置の性能を回復すべく該排気浄化装置に還元剤を供給するときに、該排気浄化装置に実際に供給される還元剤の量をより好適に制御することが可能な技術を提供することを目的とする。   The present invention includes an exhaust purification device that is provided in an exhaust passage of an internal combustion engine and includes a catalyst, and a pre-stage catalyst that is provided in an exhaust passage upstream of the exhaust purification device and has an oxidation function. In the exhaust gas purification system for an internal combustion engine, when the reducing agent is supplied to the exhaust gas purification device in order to restore the performance of the exhaust gas purification device, the amount of the reducing agent actually supplied to the exhaust gas purification device is more preferably controlled. It aims at providing the technology which can be done.

本発明は、還元剤供給の実行時に、前段触媒において酸化された還元剤の量である還元剤酸化量を算出すると共に、該還元剤酸化量と還元剤供給量との差に基づいて、排気浄化装置に到達している還元剤の量である還元剤到達量を算出する。そして、還元剤到達量が目標供給量となるように還元剤の供給方法および/または還元剤の供給量を制御する。   The present invention calculates a reducing agent oxidation amount, which is the amount of reducing agent oxidized in the preceding catalyst at the time of execution of reducing agent supply, and based on the difference between the reducing agent oxidation amount and the reducing agent supply amount, A reducing agent reaching amount, which is an amount of the reducing agent reaching the purification device, is calculated. Then, the reducing agent supply method and / or the reducing agent supply amount are controlled so that the reducing agent reaching amount becomes the target supply amount.

より詳しくは、本発明に係る内燃機関の排気浄化システムによれば、
内燃機関の排気通路に設けられ且つ触媒を含んで構成される排気浄化装置と、
該排気浄化装置よりも上流側の排気通路に設けられ且つ酸化機能を有する前段触媒と、
該前段触媒に流入する排気の温度である流入排気温度を検出する流入排気温度検出手段と、
該前段触媒の温度を検出する前段触媒温度検出手段と、
前記排気浄化装置の性能を回復させるときに前記前段触媒よりも上流側の排気中に還元剤を供給することで該還元剤を前記排気浄化装置に供給する還元剤供給手段と、
該還元剤供給手段による還元剤の供給が実行されたときに前記流入排気温度と前記前段触媒の温度との差に基づいて前記前段触媒で酸化された還元剤の量である還元剤酸化量を算出する還元剤酸化量算出手段と、
還元剤供給手段によって排気中に供給された還元剤の供給量と前記還元剤酸化量算出手
段によって算出される還元剤酸化量との差に基づいて前記排気浄化装置に到達している還元剤の量である還元剤到達量を算出する還元剤到達量算出手段と、を備え、
前記還元剤供給手段による還元剤の供給の実行時に、前記還元到達量算出手段によって算出される還元剤到達量が目標供給量となるように前記還元剤供給手段を制御することを特徴とする。
More specifically, according to the exhaust gas purification system for an internal combustion engine according to the present invention,
An exhaust purification device that is provided in an exhaust passage of an internal combustion engine and includes a catalyst;
A pre-stage catalyst provided in the exhaust passage upstream of the exhaust purification device and having an oxidation function;
Inflow exhaust gas temperature detection means for detecting an inflow exhaust gas temperature that is the temperature of the exhaust gas flowing into the front catalyst,
A pre-catalyst temperature detecting means for detecting the temperature of the pre-catalyst;
Reducing agent supply means for supplying the reducing agent to the exhaust purification device by supplying the reducing agent into the exhaust upstream of the preceding catalyst when recovering the performance of the exhaust purification device;
When the reducing agent is supplied by the reducing agent supply means, a reducing agent oxidation amount, which is the amount of reducing agent oxidized by the preceding catalyst based on the difference between the inflow exhaust gas temperature and the temperature of the preceding catalyst. A reducing agent oxidation amount calculating means for calculating;
Based on the difference between the supply amount of the reducing agent supplied into the exhaust gas by the reducing agent supply means and the reducing agent oxidation amount calculated by the reducing agent oxidation amount calculation means, the amount of the reducing agent that has reached the exhaust purification device A reducing agent reaching amount calculating means for calculating a reducing agent reaching amount that is an amount,
The reducing agent supply unit is controlled so that the reducing agent arrival amount calculated by the reduction arrival amount calculation unit becomes a target supply amount when the reducing agent supply unit executes the reducing agent supply.

前段触媒において還元剤が酸化されると酸化熱によって該前段触媒の温度が上昇する。そのため、流入排気温度と前段触媒の温度との差から該前段触媒での還元剤酸化量を算出することが出来る。   When the reducing agent is oxidized in the pre-stage catalyst, the temperature of the pre-stage catalyst rises due to the heat of oxidation. Therefore, the reducing agent oxidation amount at the upstream catalyst can be calculated from the difference between the inflow exhaust gas temperature and the temperature of the upstream catalyst.

また、還元剤供給手段によって供給される還元剤供給量と前段触媒での還元剤酸化量との差から、排気浄化装置に到達する還元剤到達量、即ち、排気浄化触媒に実際に供給される還元剤の供給量を算出することが出来る。   Further, from the difference between the reducing agent supply amount supplied by the reducing agent supply means and the reducing agent oxidation amount at the pre-stage catalyst, the reducing agent arrival amount reaching the exhaust purification device, that is, actually supplied to the exhaust purification catalyst. The supply amount of the reducing agent can be calculated.

そして、本発明によれば、還元剤到達量が目標供給量となるように還元剤供給手段が制御される。これにより、排気浄化装置に実際に供給される還元剤の供給量をより高精度で目標供給量に制御することが出来る。   And according to this invention, a reducing agent supply means is controlled so that the reducing agent arrival amount becomes the target supply amount. Thereby, the supply amount of the reducing agent actually supplied to the exhaust gas purification device can be controlled to the target supply amount with higher accuracy.

尚、本発明においては、還元剤供給手段からの還元剤供給量を制御することで、排気浄化装置に到達する還元剤到達量を制御してもよい。また、還元剤供給手段による還元剤の供給方法を制御することで、排気浄化装置に到達する還元剤到達量を制御してもよい。   In the present invention, the amount of reducing agent that reaches the exhaust emission control device may be controlled by controlling the amount of reducing agent supplied from the reducing agent supply means. Further, the amount of reducing agent that reaches the exhaust gas purification device may be controlled by controlling the method of supplying the reducing agent by the reducing agent supply means.

排気浄化装置の性能を回復させるべく該排気浄化装置に還元剤を供給する場合、排気浄化装置に実際に供給される還元剤の供給量が比較的少ないときは該還元剤の供給量の増加に伴ってその回復率が上昇する。   When supplying a reducing agent to the exhaust purification device in order to restore the performance of the exhaust purification device, if the supply amount of the reducing agent actually supplied to the exhaust purification device is relatively small, the supply amount of the reducing agent is increased. Along with this, the recovery rate increases.

しかしながら、該還元剤の供給量がある程度の量以上となると排気浄化装置の性能の回復率が上限値に達し、それ以上の量の還元剤が供給されても回復率が上昇しない状態となる。   However, when the supply amount of the reducing agent exceeds a certain level, the recovery rate of the performance of the exhaust gas purification device reaches the upper limit value, and even when an additional amount of reducing agent is supplied, the recovery rate does not increase.

そこで、本発明においては、目標供給量を、排気浄化装置の性能の回復率が上限値近傍となる還元剤量の下限値近傍の値としてもよい。   Therefore, in the present invention, the target supply amount may be a value in the vicinity of the lower limit value of the reducing agent amount at which the recovery rate of the performance of the exhaust purification device is in the vicinity of the upper limit value.

これにより、排気浄化装置の性能を可及的に回復させることが出来ると共に、還元剤供給手段からの還元剤の供給量を抑制することが出来る。   As a result, the performance of the exhaust emission control device can be restored as much as possible, and the amount of reducing agent supplied from the reducing agent supply means can be suppressed.

本発明によれば、内燃機関の排気通路に設けられ且つ触媒を含んで構成される排気浄化装置と、該排気浄化装置よりも上流側の排気通路に設けられ且つ酸化機能を有する前段触媒と、を備えた内燃機関の排気浄化システムにおいて、排気浄化装置の性能を回復すべく該排気浄化装置に還元剤を供給するときに、該排気浄化装置に実際に供給される還元剤の量をより好適に制御することが出来る。   According to the present invention, an exhaust purification device that is provided in an exhaust passage of an internal combustion engine and includes a catalyst, a pre-stage catalyst that is provided in an exhaust passage upstream of the exhaust purification device and has an oxidation function, In the exhaust gas purification system for an internal combustion engine having the above, when the reducing agent is supplied to the exhaust gas purification device so as to restore the performance of the exhaust gas purification device, the amount of the reducing agent actually supplied to the exhaust gas purification device is more suitable Can be controlled.

以下、本発明に係る内燃機関の排気浄化システムの具体的な実施形態について図面に基づいて説明する。   Hereinafter, specific embodiments of an exhaust gas purification system for an internal combustion engine according to the present invention will be described with reference to the drawings.

<内燃機関の吸排気系の概略構成>
ここでは、本発明を車両駆動用のディーゼルエンジンに適用した場合を例に挙げて説明する。図1は、本実施例に係る内燃機関の吸排気系の概略構成を示す図である。
<Schematic configuration of intake and exhaust system of internal combustion engine>
Here, a case where the present invention is applied to a diesel engine for driving a vehicle will be described as an example. FIG. 1 is a diagram showing a schematic configuration of an intake / exhaust system of an internal combustion engine according to the present embodiment.

内燃機関1は車両駆動用のディーゼルエンジンである。この内燃機関1には、吸気通路3および排気通路2が接続されている。排気通路2には、酸化触媒4および吸蔵還元型NOx触媒5(以下、単にNOx触媒5と称する)が設けられている。   The internal combustion engine 1 is a diesel engine for driving a vehicle. An intake passage 3 and an exhaust passage 2 are connected to the internal combustion engine 1. The exhaust passage 2 is provided with an oxidation catalyst 4 and an NOx storage reduction catalyst 5 (hereinafter simply referred to as NOx catalyst 5).

NOx触媒5は、周囲雰囲気が酸化雰囲気のときに排気中のNOxを吸蔵し周囲雰囲気が還元雰囲気のときに吸蔵していたNOxを還元する触媒である。該NOx触媒5は排気通路2における酸化触媒4より下流側に設けられている。尚、本実施例においては、酸化触媒4が本発明に係る前段触媒に相当し、NOx触媒が本発明に係る排気浄化装置に相当する。前段触媒は酸化機能を有する触媒であればよく、例えば、酸化触媒4をNOx触媒とし、NOx触媒5をNOx触媒を担持したパティキュレートフィルタとしてもよい。   The NOx catalyst 5 is a catalyst that stores NOx in the exhaust when the ambient atmosphere is an oxidizing atmosphere and reduces the NOx that is stored when the ambient atmosphere is a reducing atmosphere. The NOx catalyst 5 is provided downstream of the oxidation catalyst 4 in the exhaust passage 2. In this embodiment, the oxidation catalyst 4 corresponds to the pre-stage catalyst according to the present invention, and the NOx catalyst corresponds to the exhaust purification device according to the present invention. The pre-stage catalyst may be a catalyst having an oxidation function. For example, the oxidation catalyst 4 may be a NOx catalyst, and the NOx catalyst 5 may be a particulate filter carrying a NOx catalyst.

酸化触媒4より上流側の排気通路2には排気中に還元剤として燃料を添加する燃料添加弁6が設けられている。   A fuel addition valve 6 is provided in the exhaust passage 2 upstream of the oxidation catalyst 4 to add fuel as a reducing agent into the exhaust.

さらに、排気通路2における酸化触媒4より上流側および酸化触媒4とNOx触媒5との間には排気の温度を検出する第一温度センサ8および第二温度センサ9がそれぞれ設けられている。   Further, a first temperature sensor 8 and a second temperature sensor 9 for detecting the temperature of the exhaust gas are provided upstream of the oxidation catalyst 4 in the exhaust passage 2 and between the oxidation catalyst 4 and the NOx catalyst 5, respectively.

以上述べたように構成された内燃機関1には、この内燃機関1を制御するための電子制御ユニット(ECU)10が併設されている。ECU10には第一温度センサ8および第二温度センサ9が電気的に接続されている。そして、これらの出力信号がECU10に入力される。ECU10は、第二温度センサ9の出力値に基づいて酸化触媒4の温度を推定する。   The internal combustion engine 1 configured as described above is provided with an electronic control unit (ECU) 10 for controlling the internal combustion engine 1. A first temperature sensor 8 and a second temperature sensor 9 are electrically connected to the ECU 10. These output signals are input to the ECU 10. The ECU 10 estimates the temperature of the oxidation catalyst 4 based on the output value of the second temperature sensor 9.

また、ECU10には燃料添加弁6が電気的に接続されている。ECU10によってこれが制御される。   Further, the fuel addition valve 6 is electrically connected to the ECU 10. This is controlled by the ECU 10.

<NOx還元制御>
本実施例では、NOx触媒5に吸蔵されたNOxを還元させて該NOx触媒5のNOx吸蔵能力を回復させるべくNOx還元制御が行われる。本実施例に係るNOx還元制御は、NOx触媒5の温度が活性温度であるときに燃料添加弁6から間欠的に燃料を添加することで実行される。燃料添加弁6から燃料が添加されることで該燃料が酸化触媒4を介してNOx触媒5に供給される。これにより、NOx触媒5の周囲雰囲気の空燃比が低下し該周囲雰囲気が還元雰囲気となるためNOx触媒5に吸蔵されたNOxが還元される。また、燃料添加弁6からの燃料添加を間欠的に行うことで、酸化触媒4やNOx触媒5の過度な昇温を抑制することが出来る。
<NOx reduction control>
In this embodiment, NOx reduction control is performed to reduce the NOx stored in the NOx catalyst 5 and restore the NOx storage capability of the NOx catalyst 5. The NOx reduction control according to this embodiment is executed by intermittently adding fuel from the fuel addition valve 6 when the temperature of the NOx catalyst 5 is the activation temperature. By adding fuel from the fuel addition valve 6, the fuel is supplied to the NOx catalyst 5 via the oxidation catalyst 4. As a result, the air-fuel ratio of the ambient atmosphere of the NOx catalyst 5 decreases and the ambient atmosphere becomes a reducing atmosphere, so that NOx stored in the NOx catalyst 5 is reduced. Further, by intermittently adding fuel from the fuel addition valve 6, it is possible to suppress an excessive increase in temperature of the oxidation catalyst 4 or the NOx catalyst 5.

また、上記のように、燃料添加弁6から添加された燃料はNOx触媒5に到達する前に酸化触媒4に供給される。そのため、燃料添加弁6から添加された燃料のうち少なくとも一部は酸化触媒4において酸化される。従って、NOx触媒5に実際に供給される燃料の量である到達燃料量は燃料添加弁6から添加された燃料添加量よりも少なくなる。そこで、本実施例では、到達燃料量が目標供給量となるように燃料添加弁6からの燃料添加量を制御する。   Further, as described above, the fuel added from the fuel addition valve 6 is supplied to the oxidation catalyst 4 before reaching the NOx catalyst 5. Therefore, at least a part of the fuel added from the fuel addition valve 6 is oxidized in the oxidation catalyst 4. Therefore, the amount of fuel reached, which is the amount of fuel actually supplied to the NOx catalyst 5, becomes smaller than the amount of fuel added from the fuel addition valve 6. Therefore, in this embodiment, the amount of fuel added from the fuel addition valve 6 is controlled so that the amount of fuel reached becomes the target supply amount.

ここで、NOx還元制御の実行時における、NOx触媒5に実際に供給される燃料の供給量とNOx還元率との関係について図2に基づいて説明する。尚、ここで、NOx還元率とは、NOx触媒5に吸蔵されたNOxの量に対する還元されるNOxの量の割合を示す値である。図2において、縦軸はNOx還元率を表しており、NOx触媒5に実際に供給される燃料の量を表している。   Here, the relationship between the amount of fuel actually supplied to the NOx catalyst 5 and the NOx reduction rate when the NOx reduction control is executed will be described with reference to FIG. Here, the NOx reduction rate is a value indicating the ratio of the amount of NOx to be reduced to the amount of NOx stored in the NOx catalyst 5. In FIG. 2, the vertical axis represents the NOx reduction rate, and represents the amount of fuel actually supplied to the NOx catalyst 5.

NOx還元制御の実行時において、NOx触媒5に実際に供給される燃料が比較的少ないときは該燃料の量の増加に伴ってNOx還元率が上昇する。しかしながら、図2に示すように、NOx触媒5に実際に供給される燃料がある程度の量以上となるとNOx還元率が上限値に達し、それ以上の量の燃料が供給されてもNOx還元率が上昇しない状態となる。   When the NOx reduction control is executed and the amount of fuel actually supplied to the NOx catalyst 5 is relatively small, the NOx reduction rate increases as the amount of fuel increases. However, as shown in FIG. 2, when the amount of fuel actually supplied to the NOx catalyst 5 exceeds a certain amount, the NOx reduction rate reaches the upper limit value, and even if more fuel is supplied, the NOx reduction rate is increased. It will not rise.

そこで、本実施例に係るNOx還元制御においては、到達燃料量の目標値である目標供給量を、NOx還元率が上限値近傍となる燃料量の下限値近傍の範囲(図2にAで示す範囲)内の値に設定する。   Therefore, in the NOx reduction control according to this embodiment, the target supply amount, which is the target value of the reached fuel amount, is set in a range near the lower limit value of the fuel amount where the NOx reduction rate is in the vicinity of the upper limit value (indicated by A in FIG. 2). Set to a value within the range.

<NOx還元制御のルーチン>
以下、本実施例に係るNOx還元制御のルーチンについて図3に示すフローチャートに基づいて説明する。本ルーチンは、ECU10に予め記憶されており、所定の間隔で繰り返されるルーチンである。
<NOx reduction control routine>
Hereinafter, the routine for NOx reduction control according to the present embodiment will be described based on the flowchart shown in FIG. This routine is stored in advance in the ECU 10 and is repeated at a predetermined interval.

本ルーチンでは、ECU10は、先ずS101において、NOx還元制御の実行条件が成立したか否かを判別する。ここで、NOx還元制御の実行条件としては、NOx触媒5におけるNOx吸蔵量の推定値がNOx還元制御実行の閾値以上となり且つ酸化触媒4およびNOx触媒5の温度が活性温度にある場合を例示することが出来る。このS101において、肯定判定された場合、ECU10はS102に進み、否定判定された場合、本ルーチンの実行を一旦終了する。   In this routine, the ECU 10 first determines in S101 whether or not an execution condition for NOx reduction control is satisfied. Here, the execution condition of the NOx reduction control is exemplified when the estimated value of the NOx occlusion amount in the NOx catalyst 5 is equal to or higher than the threshold value for executing the NOx reduction control and the temperatures of the oxidation catalyst 4 and the NOx catalyst 5 are at the activation temperature. I can do it. If an affirmative determination is made in S101, the ECU 10 proceeds to S102, and if a negative determination is made, the execution of this routine is once terminated.

S102において、ECU10は、吸入空気量および内燃機関1での燃料噴射量、第一温度センサ8によって検出される流入排気温度等に基づいて、燃料添加弁6による燃料添加を実行するときの基準燃料添加量Qfbaseを算出する。この基準燃料添加量Qfbaseは、燃料添加弁6や酸化触媒4が初期状態であるときは、NOx触媒5への到達燃料量Qfnが目標供給量Qfntとなると予測される燃料添加量である。   In S <b> 102, the ECU 10 performs reference fuel when fuel addition by the fuel addition valve 6 is performed based on the intake air amount, the fuel injection amount in the internal combustion engine 1, the inflow exhaust gas temperature detected by the first temperature sensor 8, and the like. The addition amount Qfbase is calculated. This reference fuel addition amount Qfbase is a fuel addition amount that is predicted to reach the target supply amount Qfnt when the fuel addition valve 6 and the oxidation catalyst 4 are in the initial state.

次に、ECU10は、S103に進み、燃料添加量Qfiを基準燃料添加量Qfbaseとして燃料添加弁6による燃料添加を実行する。   Next, the ECU 10 proceeds to S103 and executes fuel addition by the fuel addition valve 6 with the fuel addition amount Qfi as the reference fuel addition amount Qfbase.

しかしながら、燃料添加量Qfiを基準燃料添加量Qfbaseとして燃料添加を実行しても、燃料添加弁6や酸化触媒4の製造誤差や劣化等に起因してNOx触媒5への到達燃料量Qfnが目標供給量Qfntよりも多くなったり少なくなったりする虞がある。そこで、本ルーチンにおいては以下の方法で燃料添加量Qfiを補正する。   However, even if the fuel addition is executed with the fuel addition amount Qfi as the reference fuel addition amount Qfbase, the target fuel amount Qfn reaching the NOx catalyst 5 due to manufacturing errors or deterioration of the fuel addition valve 6 or the oxidation catalyst 4 is the target. There is a possibility that it may be larger or smaller than the supply amount Qfnt. Therefore, in this routine, the fuel addition amount Qfi is corrected by the following method.

ECU10は、S103の次にS104に進む。S104において、ECU10は、第二温度センサ9の検出値から推定される酸化触媒4の温度から流入排気温度を減算することで温度差ΔTgcを算出する。   The ECU 10 proceeds to S104 after S103. In S104, the ECU 10 calculates the temperature difference ΔTgc by subtracting the inflow exhaust gas temperature from the temperature of the oxidation catalyst 4 estimated from the detection value of the second temperature sensor 9.

ここで、内燃機関1の運転状態が定常状態であれば流入排気温度はほぼ一定であるが、燃料添加弁6による燃料添加は間欠的に行われるため酸化触媒4の温度は変動する。つまり、燃料添加弁6から添加された燃料が酸化触媒4に到達したときは該酸化触媒4の温度は上昇し、該燃料が酸化触媒4に到達していないときは該酸化触媒4の温度は下降する。そこで、S104において、ECU10は、燃料添加弁6による間欠的な燃料添加が実行されている間、温度差ΔTgcの履歴を記憶する。   Here, if the operating state of the internal combustion engine 1 is in a steady state, the inflow exhaust gas temperature is substantially constant, but since the fuel addition by the fuel addition valve 6 is performed intermittently, the temperature of the oxidation catalyst 4 varies. That is, when the fuel added from the fuel addition valve 6 reaches the oxidation catalyst 4, the temperature of the oxidation catalyst 4 rises, and when the fuel does not reach the oxidation catalyst 4, the temperature of the oxidation catalyst 4 is Descend. Therefore, in S104, the ECU 10 stores the history of the temperature difference ΔTgc while intermittent fuel addition by the fuel addition valve 6 is being executed.

次に、ECU10は、S105に進み、記憶された温度差ΔTgcの履歴に基づいて、酸化触媒4において酸化された燃料の量である酸化燃料量Qfoを算出する。ここでは、
温度差ΔTgcが大きいほど酸化燃料量Qfoが多いと判断出来る。
Next, the ECU 10 proceeds to S105, and calculates an oxidized fuel amount Qfo, which is the amount of fuel oxidized in the oxidation catalyst 4, based on the stored history of the temperature difference ΔTgc. here,
It can be determined that the greater the temperature difference ΔTgc, the greater the amount of oxidized fuel Qfo.

次に、ECU10は、S106に進み、基準燃料添加量Qfbaseから酸化燃料量Qfoを減算することでNOx触媒5への到達燃料量Qfnを算出する。   Next, the ECU 10 proceeds to S106, and calculates the fuel amount Qfn that reaches the NOx catalyst 5 by subtracting the oxidized fuel amount Qfo from the reference fuel addition amount Qfbase.

次に、ECU10は、S107に進み、S105において算出された到達燃料量Qfnが目標供給量Qfntより小さいか否かを判別する。S107において、肯定判定された場合、ECU10はS108に進み、否定判定された場合、ECU10はS109に進む。   Next, the ECU 10 proceeds to S107, and determines whether or not the reached fuel amount Qfn calculated in S105 is smaller than the target supply amount Qfnt. If an affirmative determination is made in S107, the ECU 10 proceeds to S108, and if a negative determination is made, the ECU 10 proceeds to S109.

S108において、ECU10は、到達燃料量Qfnが目標供給量Qfntとなるよう燃料添加弁6からの燃料添加量Qfiを増量補正する。その後、ECU10は本ルーチンの実行を一旦終了する。   In S108, the ECU 10 increases and corrects the fuel addition amount Qfi from the fuel addition valve 6 so that the reached fuel amount Qfn becomes the target supply amount Qfnt. Thereafter, the ECU 10 once terminates execution of this routine.

一方、S109において、ECU10は、S105において算出された到達燃料量Qfnが目標供給量Qfntより大きいか否かを判別する。S109において、肯定判定された場合、ECU10はS110に進む。一方、S109において、否定判定された場合、ECU10は本ルーチンの実行を一旦終了する。この場合、燃料添加弁6からの燃料添加量Qfiは基準燃料添加量Qfbaseに維持される。   On the other hand, in S109, the ECU 10 determines whether or not the reached fuel amount Qfn calculated in S105 is larger than the target supply amount Qfnt. If an affirmative determination is made in S109, the ECU 10 proceeds to S110. On the other hand, if a negative determination is made in S109, the ECU 10 once ends the execution of this routine. In this case, the fuel addition amount Qfi from the fuel addition valve 6 is maintained at the reference fuel addition amount Qfbase.

S110において、ECU10は、到達燃料量Qfnが目標供給量Qfntとなるよう燃料添加弁6からの燃料添加量Qfiを減量補正する。その後、ECU10は本ルーチンの実行を一旦終了する。   In S110, the ECU 10 corrects the fuel addition amount Qfi from the fuel addition valve 6 so as to decrease so that the reached fuel amount Qfn becomes the target supply amount Qfnt. Thereafter, the ECU 10 once terminates execution of this routine.

以上説明したルーチンによれば、燃料添加弁6からの燃料添加が実行されることでNOx触媒5に実際に供給される到達燃料量Qfnが算出される。そして、この到達燃料量Qfnが目標供給量Qfntとなるよう燃料添加弁6からの燃料添加量Qfiが制御される。   According to the routine described above, the fuel amount Qfn that is actually supplied to the NOx catalyst 5 is calculated by performing fuel addition from the fuel addition valve 6. Then, the fuel addition amount Qfi from the fuel addition valve 6 is controlled so that the reached fuel amount Qfn becomes the target supply amount Qfnt.

従って、NOx還元制御の実行時において、NOx触媒5に実際に供給される燃料の供給量(到達燃料量Qfn)をより高精度で目標供給量Qfntに制御することが出来る。その結果、NOx触媒5に吸蔵されたNOxを可及的に還元することが出来ると共に、NOx還元制御の実行時における燃料添加弁6からの燃料添加量を抑制することが出来る。   Therefore, when the NOx reduction control is executed, the amount of fuel actually supplied to the NOx catalyst 5 (reached fuel amount Qfn) can be controlled to the target supply amount Qfnt with higher accuracy. As a result, the NOx stored in the NOx catalyst 5 can be reduced as much as possible, and the amount of fuel added from the fuel addition valve 6 when the NOx reduction control is executed can be suppressed.

尚、上記ルーチンにおいては、燃料添加弁6からの燃料添加量Qfiを制御することで到達燃料量Qfnを目標供給量Qfntに制御する。本実施例においては、これに代えて、燃料添加弁6による燃料添加方法を制御することによって到達燃料量Qfnを目標供給量Qfntに制御してもよい。   In the above routine, the reached fuel amount Qfn is controlled to the target supply amount Qfnt by controlling the fuel addition amount Qfi from the fuel addition valve 6. In this embodiment, instead of this, the reached fuel amount Qfn may be controlled to the target supply amount Qfnt by controlling the fuel addition method by the fuel addition valve 6.

例えば、燃料添加弁6から間欠的に燃料を添加する際の燃料添加のインターバルを長くすることで到達燃料量Qfnを増加させることが出来、該燃料添加のインターバルを短くすることで到達燃料量Qfnを減量させることが出来る。また、燃料添加弁6から間欠的に燃料を添加する際の一回の燃料添加当たりの燃料添加量を増加させることで到達燃料量Qfnを増加させることが出来、該一回の燃料添加当たりの燃料添加量を減少させることで到達燃料量Qfnを減少させることが出来る。   For example, the reached fuel amount Qfn can be increased by lengthening the fuel addition interval when fuel is intermittently added from the fuel addition valve 6, and the reached fuel amount Qfn can be increased by shortening the fuel addition interval. Can be reduced. Further, the amount of fuel reached Qfn can be increased by increasing the amount of fuel added per fuel addition at the time of intermittently adding fuel from the fuel addition valve 6, and the amount per fuel addition can be increased. By reducing the fuel addition amount, the reached fuel amount Qfn can be reduced.

また、本実施例に係るNOx還元制御おいては、燃料添加弁6による燃料添加に代えて、内燃機関1において排気行程時に副燃料噴射を実行することで排気中に燃料を供給し、該燃料をNOx触媒5に供給してもよい。   In addition, in the NOx reduction control according to the present embodiment, instead of fuel addition by the fuel addition valve 6, fuel is supplied into the exhaust gas by executing sub fuel injection in the internal combustion engine 1 during the exhaust stroke, and the fuel May be supplied to the NOx catalyst 5.

本実施例においては、NOx還元制御の実行時に本発明を適用した場合を例に挙げて説明したが、NOx触媒5に吸蔵されたSOxを還元する、所謂SOx被毒回復制御の実行時に本発明を適用してもよい。この場合、SOx被毒回復制御の実行時において、NOx触媒5に実際に供給される燃料の量をより好適な量に制御することが出来る。   In the present embodiment, the case where the present invention is applied at the time of executing the NOx reduction control has been described as an example. However, the present invention is performed at the time of performing the so-called SOx poisoning recovery control that reduces the SOx stored in the NOx catalyst 5. May be applied. In this case, when the SOx poisoning recovery control is executed, the amount of fuel actually supplied to the NOx catalyst 5 can be controlled to a more suitable amount.

また、NOx触媒5に代えて、NOx触媒を担持したパティキュレートフィルタを設けた場合においては、該パティキュレートフィルタに捕集された粒子状物質を除去するフィルタ再生制御に本発明を適用してもよい。この場合、フィルタ再生制御の実行時において、パティキュレートフィルタに実際に供給される燃料の量をより好適な量に制御するが出来る。   Further, when a particulate filter carrying a NOx catalyst is provided in place of the NOx catalyst 5, the present invention can be applied to filter regeneration control for removing particulate matter collected on the particulate filter. Good. In this case, when the filter regeneration control is executed, the amount of fuel actually supplied to the particulate filter can be controlled to a more suitable amount.

実施例に係る内燃機関の吸排気系の概略構成を示す図。The figure which shows schematic structure of the intake / exhaust system of the internal combustion engine which concerns on an Example. NOx触媒に実際に供給される燃料の供給量とNOx還元率との関係を示す図。The figure which shows the relationship between the supply amount of the fuel actually supplied to a NOx catalyst, and a NOx reduction rate. 実施例に係るNOx還元制御のルーチンを示すフローチャート。The flowchart which shows the routine of NOx reduction control which concerns on an Example.

符号の説明Explanation of symbols

1・・・内燃機関
2・・・排気通路
3・・・吸気通路
4・・・酸化触媒
5・・・吸蔵還元型NOx触媒
6・・・燃料添加弁
8・・・第一温度センサ
9・・・第二温度センサ
10・・ECU
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 2 ... Exhaust passage 3 ... Intake passage 4 ... Oxidation catalyst 5 ... NOx storage reduction catalyst 6 ... Fuel addition valve 8 ... First temperature sensor 9・ ・ Second temperature sensor 10 ・ ・ ECU

Claims (2)

内燃機関の排気通路に設けられ且つ触媒を含んで構成される排気浄化装置と、
該排気浄化装置よりも上流側の排気通路に設けられ且つ酸化機能を有する前段触媒と、
該前段触媒に流入する排気の温度である流入排気温度を検出する流入排気温度検出手段と、
該前段触媒の温度を検出する前段触媒温度検出手段と、
前記排気浄化装置の性能を回復させるときに前記前段触媒よりも上流側の排気中に還元剤を供給することで該還元剤を前記排気浄化装置に供給する還元剤供給手段と、
該還元剤供給手段による還元剤の供給が実行されたときに前記流入排気温度と前記前段触媒の温度との差に基づいて前記前段触媒で酸化された還元剤の量である還元剤酸化量を算出する還元剤酸化量算出手段と、
還元剤供給手段によって排気中に供給された還元剤の供給量と前記還元剤酸化量算出手段によって算出される還元剤酸化量との差に基づいて前記排気浄化装置に到達している還元剤の量である還元剤到達量を算出する還元剤到達量算出手段と、を備え、
前記還元剤供給手段による還元剤の供給の実行時に、前記還元到達量算出手段によって算出される還元剤到達量が目標供給量となるように前記還元剤供給手段を制御することを特徴とする内燃機関の排気浄化システム。
An exhaust purification device that is provided in an exhaust passage of an internal combustion engine and includes a catalyst;
A pre-stage catalyst provided in the exhaust passage upstream of the exhaust purification device and having an oxidation function;
Inflow exhaust gas temperature detection means for detecting an inflow exhaust gas temperature that is the temperature of the exhaust gas flowing into the front catalyst,
A pre-catalyst temperature detecting means for detecting the temperature of the pre-catalyst;
Reducing agent supply means for supplying the reducing agent to the exhaust purification device by supplying the reducing agent into the exhaust upstream of the upstream catalyst when recovering the performance of the exhaust purification device;
When the reducing agent is supplied by the reducing agent supply means, the reducing agent oxidation amount, which is the amount of reducing agent oxidized by the preceding catalyst, based on the difference between the inflow exhaust gas temperature and the temperature of the preceding catalyst. A reducing agent oxidation amount calculating means for calculating;
Based on the difference between the supply amount of the reducing agent supplied into the exhaust gas by the reducing agent supply means and the reducing agent oxidation amount calculated by the reducing agent oxidation amount calculation means, the amount of the reducing agent that has reached the exhaust purification device A reducing agent reaching amount calculating means for calculating a reducing agent reaching amount that is an amount,
An internal combustion engine characterized by controlling the reducing agent supply means so that the reducing agent arrival amount calculated by the reduction arrival amount calculating means becomes a target supply amount when the reducing agent supply means executes the reducing agent supply. Engine exhaust purification system.
前記目標供給量が、前記排気浄化装置の性能の回復率が上限値近傍となる還元剤量の下限値近傍の値であることを特徴とする請求項1記載の内燃機関の排気浄化システム。   2. The exhaust gas purification system for an internal combustion engine according to claim 1, wherein the target supply amount is a value in the vicinity of a lower limit value of a reducing agent amount at which a performance recovery rate of the exhaust gas purification apparatus is in the vicinity of an upper limit value.
JP2006143948A 2006-05-24 2006-05-24 Exhaust gas purification system for internal combustion engine Expired - Fee Related JP4665830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006143948A JP4665830B2 (en) 2006-05-24 2006-05-24 Exhaust gas purification system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006143948A JP4665830B2 (en) 2006-05-24 2006-05-24 Exhaust gas purification system for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007315234A JP2007315234A (en) 2007-12-06
JP4665830B2 true JP4665830B2 (en) 2011-04-06

Family

ID=38849332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006143948A Expired - Fee Related JP4665830B2 (en) 2006-05-24 2006-05-24 Exhaust gas purification system for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4665830B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4759496B2 (en) * 2006-11-24 2011-08-31 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201888A (en) * 2002-01-09 2003-07-18 Toyota Motor Corp Method and device for reducing exhaust emission purifying catalyst of internal combustion engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3509482B2 (en) * 1997-07-31 2004-03-22 日産自動車株式会社 Exhaust gas purification device for internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201888A (en) * 2002-01-09 2003-07-18 Toyota Motor Corp Method and device for reducing exhaust emission purifying catalyst of internal combustion engine

Also Published As

Publication number Publication date
JP2007315234A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
JP4706659B2 (en) Method for estimating N2O generation amount in ammonia oxidation catalyst and exhaust gas purification system for internal combustion engine
JP4665924B2 (en) Exhaust gas purification system for internal combustion engine
JP2007170218A (en) Exhaust emission control device of internal combustion engine
JP4816606B2 (en) Exhaust gas purification system for internal combustion engine
JP2007162603A (en) Exhaust emission control system of internal combustion engine
JP4428361B2 (en) Exhaust gas purification system for internal combustion engine
JP2008095603A (en) Exhaust emission control device for internal combustion engine
JP4453685B2 (en) Exhaust gas purification system for internal combustion engine
JP4811333B2 (en) Exhaust gas purification system for internal combustion engine
JP4259361B2 (en) Exhaust gas purification device for internal combustion engine
JP2006348905A (en) Exhaust emission control system for internal combustion engine
JP4665830B2 (en) Exhaust gas purification system for internal combustion engine
JP4775201B2 (en) Exhaust gas purification system for internal combustion engine
JP2007162468A (en) Deterioration determination method and deterioration determination system for storage reduction type nox catalyst
JP4396760B2 (en) Exhaust gas purification device for internal combustion engine
JP4645586B2 (en) Exhaust gas purification system for internal combustion engine
JP4155182B2 (en) Exhaust gas purification device for internal combustion engine
JP2005291039A (en) Exhaust purification system of internal combustion engine
JP4650245B2 (en) Exhaust gas purification system for internal combustion engine
JP5093134B2 (en) Exhaust gas purification device for internal combustion engine
JP4453664B2 (en) Exhaust gas purification system for internal combustion engine
JP4682923B2 (en) Exhaust gas purification system for internal combustion engine
JP2009019520A (en) Exhaust emission control device of internal combustion engine
JP2012233463A (en) Device for detecting defect in exhaust purificastion system
JP2007002774A (en) Exhaust emission control system for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4665830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees