JP4654803B2 - Radar device for vehicle periphery monitoring - Google Patents

Radar device for vehicle periphery monitoring Download PDF

Info

Publication number
JP4654803B2
JP4654803B2 JP2005199321A JP2005199321A JP4654803B2 JP 4654803 B2 JP4654803 B2 JP 4654803B2 JP 2005199321 A JP2005199321 A JP 2005199321A JP 2005199321 A JP2005199321 A JP 2005199321A JP 4654803 B2 JP4654803 B2 JP 4654803B2
Authority
JP
Japan
Prior art keywords
detection
vehicle
transmission frequency
traveling
detection area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005199321A
Other languages
Japanese (ja)
Other versions
JP2007017294A (en
Inventor
孝彦 沖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005199321A priority Critical patent/JP4654803B2/en
Publication of JP2007017294A publication Critical patent/JP2007017294A/en
Application granted granted Critical
Publication of JP4654803B2 publication Critical patent/JP4654803B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Traffic Control Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

本発明は、車両周辺監視用に適したレーダ装置に関する。 The present invention relates to radar equipment suitable for cars both peripheral monitoring.

現在、ITS(Intelligent Transport System)の一環としてレーダ装置を用いた車両用障害物検知システムやACC(Adaptive Cruise Control)などの開発が進んでいる。
これらのシステムは自動車専用道路での使用を前提としているが、今後、市街地走行への適用が見込まれている。
市街地には交差点やT字路など多様な走路環境が存在し、それらに対応するためには、車両前方のみでなく、車両側方など複数方向の物標検知が必要となってくる。そのためレーダ装置としてその指向性を適宜変化させ得ることが求められる。
Currently, development of an obstacle detection system for vehicles using a radar device, ACC (Adaptive Cruise Control), and the like is in progress as part of ITS (Intelligent Transport System).
These systems are premised on use on automobile roads, but are expected to be applied to urban driving in the future.
There are various running road environments such as intersections and T-shaped roads in urban areas, and in order to deal with these, it is necessary to detect targets in a plurality of directions such as not only in front of the vehicle but also on the side of the vehicle. Therefore, it is required that the directivity of the radar apparatus can be changed as appropriate.

複数方向を同時に検知するレーダ装置としては、検知方向毎に検知距離の異なるアンテナを個別に設ける方法が特開2001−116830号公報に提案されている。
しかしながら、上記技術のレーダ装置では複数のアンテナを個別に設置しなければならないためレーダ装置が大型になってしまうことや、検知エリアが固定的に設定されるため、状況に応じて必要とされる検知エリアが異なる市街地走行には有効ではないという問題がある。
この対策として、上記公報では1個のアンテナを共用して機械的に回転させてもよいとの記載もあるが、機械的動作のため耐久性や信頼性が低下し、メンテナンス性が悪くなる。
特開2001−116830号公報
Japanese Laid-Open Patent Publication No. 2001-116830 proposes a method of individually providing antennas having different detection distances for each detection direction as a radar apparatus that detects a plurality of directions simultaneously.
However, in the radar apparatus of the above technology, since a plurality of antennas must be individually installed, the radar apparatus becomes large and the detection area is fixedly set. There is a problem that it is not effective for traveling in urban areas with different detection areas.
As a countermeasure against this, there is a description in the above-mentioned publication that one antenna may be shared and mechanically rotated, but because of the mechanical operation, durability and reliability are lowered, and maintainability is deteriorated.
JP 2001-116830 A

上記のほか、アレイアンテナと移相器を組み合わせてアンテナ自体を動かすことなく指向性の極めて高いビームを任意の方向に走査するフェイズドアレイアンテナを使用する方法もあるが、高利得化するためにはアンテナアレイ数を多くする必要があり、それに併せて一つ一つのアンテナにつける移相器の数を増やすことになる。また、細やかで広い変化幅の位相制御が必要となることから、コスト増になるという問題がある。
さらに、アンテナアレイ数を増やすとアンテナが大型化し、給電回路が複雑になるという問題もある。
In addition to the above, there is also a method using a phased array antenna that scans a beam with extremely high directivity in an arbitrary direction without moving the antenna itself by combining an array antenna and a phase shifter. It is necessary to increase the number of antenna arrays, and accordingly, the number of phase shifters attached to each antenna is increased. In addition, there is a problem in that the cost increases because phase control with a fine and wide change width is required.
Further, when the number of antenna arrays is increased, there is a problem that the size of the antenna increases and the power feeding circuit becomes complicated.

したがって本発明は、上記従来の問題点にかんがみ、大型化を招くことなく簡単な構成で指向性を変化可能とした車両周辺監視用レーダ装置を提供することを目的とする。 Accordingly, the present invention is the view of the conventional problems, and an object thereof is to provide a vehicle periphery monitoring radar equipment which enables changing the directivity in no simple structure increasing the size.

そのため本発明は、車両に適用され、送信信号を送出し物標からの反射を受信して、受信信号と送信信号に基づいて物標までの距離を計測する車両周辺監視用レーダ装置において、複数のアンテナ素子を前記車両の側面に並べてアレイアンテナ部を構成し、隣り合うアンテナ素子間で各アンテナ素子から送信信号の電力分配点までの経路長に送信周波数の1波長以上の固定経路差を設け、送信周波数を制御する送信周波数制御手段と、前記アンテナ素子と電力分配点を結ぶ経路に設けられたスイッチ回路と、該スイッチ回路を制御するスイッチ制御手段と、を備えて、送信周波数を変化させることにより検知方向を変化可能であり、且つ、前記スイッチ回路で送信信号の通過を許可、遮断することにより励振されるアンテナ素子数を増減させて検知幅を変化可能とし、さらに、前記車両の走行環境情報及び走行速度を収集する走行情報収集手段と、前記車両の走行速度が所定値以上かどうかを判定する走行速度判定手段と、この走行速度判定手段において前記走行速度が前記所定値未満であると判定されたとき、前記走行環境情報に基づいて車両の側面方向から他の車両が進入してくる可能性のある状況かどうかを判定する側面方向車両進入判断手段と、前記走行速度判定手段において前記走行速度が前記所定値以上であると判定された場合又は前記側面方向車両進入手段において前記状況ではないと判定された場合に、検知方向を車両進行方向、検知幅を小とした検知エリアと、検知方向を車両側方、検知幅を大とした検知エリアの組み合わせを選択する第一選択手段と、前記側面方向車両進入手段において前記状況であると判定された場合に、検知方向を車両側方、検知幅を小とした検知エリアと、検知方向を車両進行方向、検知幅を大とした検知エリアの組み合わせを選択する第二選択手段と、前記第一選択手段又は前記第二選択手段において前記組み合わせの選択が行われたとき、その選択された組み合わせを構成する検知エリアが交互に変化するように前記送信周波数制御手段及び前記スイッチ制御手段を制御する検知エリア制御手段と、を備えた。 Therefore, the present invention is applied to a vehicle, and in a vehicle periphery monitoring radar device that transmits a transmission signal, receives a reflection from a target, and measures a distance to the target based on the reception signal and the transmission signal . alongside the antenna element on a side surface of the vehicle constitutes the array antenna unit, set a path fixed path difference of more than one wavelength of the transmission frequency to the length up to the power distribution point between adjacent antenna elements transmitted signals from the antenna elements , and includes a transmission frequency control means for controlling a transmission frequency, a switch circuit provided in a path connecting said antenna elements and the power distribution point, and switch control means for controlling the switch circuit, and changes the transmission frequency and it can vary the sensing direction by, and the allowed through the transmission signal in the switch circuit, to increase or decrease the number of antenna elements is excited by blocking The detection width can be changed, travel information collection means for collecting travel environment information and travel speed of the vehicle, travel speed determination means for determining whether the travel speed of the vehicle is a predetermined value or more, and the travel speed When the determination means determines that the traveling speed is less than the predetermined value, the side surface determines whether or not there is a possibility that another vehicle may enter from the side surface direction of the vehicle based on the traveling environment information. When the direction vehicle entry determination means and the travel speed determination means determine that the travel speed is greater than or equal to the predetermined value, or when the side direction vehicle entry means determines that the situation is not the situation, the detection direction is determined. A first selection means for selecting a combination of a detection area with a small vehicle detection direction and a detection area with a small detection width; and a detection area with a large detection width; A combination of a detection area with the detection direction set to the side of the vehicle and a detection width set to small, and a detection area with the detection direction set to the vehicle traveling direction and a detection width set to large when the direction vehicle entry means determines that the situation is present And when the combination is selected by the first selection unit or the second selection unit, the transmission is performed so that the detection areas constituting the selected combination are alternately changed. And a detection area control means for controlling the frequency control means and the switch control means.

本発明によれば、アンテナ素子間に経路長の相違によって位相差を生じ、この位相差によって検知方位が決まり、その位相差は送信信号の周波数によって変化するので、送信周波数制御手段により当該周波数を変化させることにより、車両から見た検知方向を任意に変化させることができる。簡単な回路構成と制御によるだけであるから、装置の大型化を伴わず、低コストで実現できる。   According to the present invention, a phase difference is caused by the difference in path length between the antenna elements, the detection direction is determined by this phase difference, and the phase difference changes depending on the frequency of the transmission signal. By changing it, the detection direction seen from the vehicle can be changed arbitrarily. Since it is only by a simple circuit configuration and control, it can be realized at low cost without increasing the size of the apparatus.

以下、本発明の実施の形態について説明する。
図1は、車載用に多く利用されている電磁波を用いたパルス方式のレーダ装置に本発明を適用した実施の形態の構成を示すブロック図である。
レーダ装置1は、複数のアンテナ素子からなる電磁波放射部18とスイッチ回路17を備えるアレイアンテナ部2と、電圧制御の発振器11、カプラ12、スイッチ部13、サーキュレータ14、ミキサ回路15、電力増幅器16からなる高周波(RF)回路部3と、送信パルス制御部21、距離計測部22、送信周波数制御部23、アレイ数制御部24、物標認識ロジック部25、検知エリア設定部26からなる信号処理部4とから構成されている。
Embodiments of the present invention will be described below.
FIG. 1 is a block diagram showing a configuration of an embodiment in which the present invention is applied to a pulse-type radar apparatus using an electromagnetic wave that is widely used for in-vehicle use.
The radar apparatus 1 includes an array antenna unit 2 including an electromagnetic wave radiation unit 18 composed of a plurality of antenna elements and a switch circuit 17, a voltage-controlled oscillator 11, a coupler 12, a switch unit 13, a circulator 14, a mixer circuit 15, and a power amplifier 16. Signal processing comprising a radio frequency (RF) circuit unit 3, a transmission pulse control unit 21, a distance measurement unit 22, a transmission frequency control unit 23, an array number control unit 24, a target recognition logic unit 25, and a detection area setting unit 26. Part 4.

アレイアンテナ部2は、前方空間に高周波回路部3のサーキュレータ14から伝送されたパルス状の送信信号を放射し、物標からの反射信号を受信してこれを受信信号としてサーキュレータ14へ出力する。
また、信号処理部4のアレイ数制御部24から出力された制御信号でスイッチ回路17を開閉して励振すべきアレイ数を増減させる。
The array antenna unit 2 radiates a pulse-shaped transmission signal transmitted from the circulator 14 of the high-frequency circuit unit 3 to the front space, receives a reflection signal from the target, and outputs this as a reception signal to the circulator 14.
Further, the switch circuit 17 is opened and closed by the control signal output from the array number control unit 24 of the signal processing unit 4 to increase or decrease the number of arrays to be excited.

高周波回路部3では、発振器11が信号処理部4の送信周波数制御部23からの制御信号に基づいた周波数で発振し、カプラ12が発振器11の発振出力を所定の電力比で2分岐してサーキュレータ14とミキサ回路15へ電力分配する。
スイッチ部13がカプラ12とサーキュレータ14の間に設けられて、信号処理部4の送信パルス制御部21からの送信タイミング信号に同期して、発振出力をパルス状に区切り、送信信号とする。発振信号の周波数が送信信号の周波数、すなわち送信周波数となる。
In the high frequency circuit unit 3, the oscillator 11 oscillates at a frequency based on the control signal from the transmission frequency control unit 23 of the signal processing unit 4, and the coupler 12 divides the oscillation output of the oscillator 11 into two parts at a predetermined power ratio and circulators 14 and the mixer circuit 15.
A switch unit 13 is provided between the coupler 12 and the circulator 14, and in synchronization with the transmission timing signal from the transmission pulse control unit 21 of the signal processing unit 4, the oscillation output is divided into pulses and used as a transmission signal. The frequency of the oscillation signal becomes the frequency of the transmission signal, that is, the transmission frequency.

サーキュレータ14は、順方向のアレイアンテナ部2へ送信信号を出力する。サーキュレータ14はまた、アレイアンテナ部2からの受信信号を順方向のミキサ回路15に伝送する。
ミキサ回路15は、受信信号と発振出力をミキシングして受信IF(中間周波)信号に周波数変換する。
受信IF信号は電力増幅器16で電力増幅されて、信号処理部4の距離計測部22に出力される。
The circulator 14 outputs a transmission signal to the array antenna unit 2 in the forward direction. The circulator 14 also transmits a reception signal from the array antenna unit 2 to the forward mixer circuit 15.
The mixer circuit 15 mixes the reception signal and the oscillation output and converts the frequency into a reception IF (intermediate frequency) signal.
The received IF signal is amplified by the power amplifier 16 and output to the distance measuring unit 22 of the signal processing unit 4.

信号処理部4では、距離計測部22において受信IF信号内の受信信号(反射信号)を検波し、送信から受信までの時間差を計測して物標までの距離を算出する。
検知エリア設定部26は、車両情報、例えばナビゲーションシステムの情報や車載カメラで得られる前方映像などの自車の走行環境情報に基づいて、必要な検知エリアを選択し、対応する検知方向と検知幅を設定する。
送信周波数制御部23は、検知エリア設定部26で設定された検知方向に対応する送信周波数を決定して、当該送信周波数(発振周波数)を指示する制御信号を高周波回路部3の発振器11へ出力する。
In the signal processing unit 4, the distance measurement unit 22 detects the reception signal (reflection signal) in the reception IF signal, measures the time difference from transmission to reception, and calculates the distance to the target.
The detection area setting unit 26 selects a necessary detection area based on vehicle information, for example, navigation system information or traveling environment information of the vehicle such as a front image obtained by an in-vehicle camera, and a corresponding detection direction and detection width. Set.
The transmission frequency control unit 23 determines a transmission frequency corresponding to the detection direction set by the detection area setting unit 26 and outputs a control signal indicating the transmission frequency (oscillation frequency) to the oscillator 11 of the high frequency circuit unit 3. To do.

アレイ数制御部24は、検知エリア設定部26で設定された検知幅に対応するアンテナ素子のアレイ数を決定して、アレイアンテナ部2のスイッチ回路17のオン・オフを制御する。
検知方向に対応する送信周波数および検知幅に対応するアレイ数については後に説明する。
物標認識ロジック部25は、距離計測部22から出力された距離情報と検知エリア設定部26から出力された検知エリア情報に基づいて物標を認識し、物標情報を車両側CPUへ出力する。
The array number control unit 24 determines the number of antenna element arrays corresponding to the detection width set by the detection area setting unit 26 and controls on / off of the switch circuit 17 of the array antenna unit 2.
The transmission frequency corresponding to the detection direction and the number of arrays corresponding to the detection width will be described later.
The target recognition logic unit 25 recognizes the target based on the distance information output from the distance measurement unit 22 and the detection area information output from the detection area setting unit 26, and outputs the target information to the vehicle side CPU. .

つぎに、レーダ装置1において実行される距離計測の基本動作を説明する。
図2に、パルス方式による距離計測動作のタイムチャートを示す。
(a)は信号処理部4の送信パルス制御部21から出力される送信タイミング信号を示す。
(b)は高周波回路部3の発振器11の発振出力をスイッチ部13が(a)の送信タイミング信号に基づいてオン・オフして区切り、パルス状に成形した送信信号を示す。
(c)はアレイアンテナ部2から放射された(b)の送信信号が物標で反射し、再びアレイアンテナ部2にエコーとして捉えられた受信信号を示す。
(d)は発振器11の発振出力と(c)の受信信号をミキサ回路15でミキシングして得られる受信IF信号を示す。
Next, a basic operation of distance measurement executed in the radar apparatus 1 will be described.
FIG. 2 shows a time chart of the distance measurement operation by the pulse method.
(A) shows the transmission timing signal output from the transmission pulse control unit 21 of the signal processing unit 4.
(B) shows a transmission signal formed into a pulse shape by switching the oscillation output of the oscillator 11 of the high-frequency circuit unit 3 on and off based on the transmission timing signal of (a).
(C) shows the received signal in which the transmission signal of (b) radiated from the array antenna unit 2 is reflected by the target and captured again as an echo by the array antenna unit 2.
(D) shows a reception IF signal obtained by mixing the oscillation output of the oscillator 11 and the reception signal of (c) by the mixer circuit 15.

物標までの距離の計測は、(b)の送信信号を発射してから(d)の受信IF信号を得るまでの遅延時間Δtを測定することで行う。
すなわち、電磁波の伝播速度C=3×108m/秒であるから、送信信号を発射してから反射して帰ってくるまでの往復所要時間Δtの間に電磁波はC×Δtだけ進んだことになる。
物標までの距離Dは片道であるから、以下の式(1)より算出できる。
D=C×Δt/2 ・・・(1)
なお、送信信号の送出時刻は送信パルス制御部21から距離計測部22に入力される送信タイミング信号から求められる。
The distance to the target is measured by measuring a delay time Δt from when the transmission signal (b) is emitted until the reception IF signal (d) is obtained.
That is, since the propagation speed of the electromagnetic wave C = 3 × 10 8 m / second, the electromagnetic wave has advanced by C × Δt during the required round-trip time Δt from when the transmission signal is emitted until it is reflected and returned. .
Since the distance D to the target is one way, it can be calculated from the following equation (1).
D = C × Δt / 2 (1)
The transmission time of the transmission signal is obtained from the transmission timing signal input from the transmission pulse control unit 21 to the distance measurement unit 22.

つぎに、検知方向に対応する送信周波数および検知幅に対応するアレイ数について説明する。
まずアレイアンテナ部2において、その電磁波放射部18は、図3に示すように、アンテナ素子18a〜18hを等間隔に1次元配列した8素子構成となっている。図4は正面から見たイメージ図である。
図3に示すように、アンテナ素子18aと18b間、アンテナ素子18cと18d間、アンテナ素子18eと18f間、およびアンテナ素子18gと18h間が、それぞれ経路長がdである第1固定経路31a〜31dで結合されている。
また、アンテナ素子18bと18d間、およびアンテナ素子18fと18h間がそれぞれ経路長が2dの第2固定経路32a、32bで結合されている。
さらに、アンテナ素子18dと18h間が経路長4dの第3固定経路33で結合され、アンテナ素子18hにサーキュレータ14からの送信信号の給電線が接続されている。
これにより、アンテナ素子18a〜18hの固定経路長は電力分配点Pからそれぞれ4d+2d+d=7d、4d+2d=6d、4d+d=5d、4d、2d+d=3d、2d、d、0となり、隣り合う下側と上側のアンテナ素子の間に長さdの固定経路差ができる。
Next, the transmission frequency corresponding to the detection direction and the number of arrays corresponding to the detection width will be described.
First, in the array antenna unit 2, the electromagnetic wave radiation unit 18 has an eight-element configuration in which antenna elements 18a to 18h are arranged one-dimensionally at equal intervals, as shown in FIG. FIG. 4 is an image view seen from the front.
As shown in FIG. 3, the first fixed paths 31a to 31a having path lengths d between the antenna elements 18a and 18b, between the antenna elements 18c and 18d, between the antenna elements 18e and 18f, and between the antenna elements 18g and 18h, respectively. It is connected at 31d.
Further, the antenna elements 18b and 18d and the antenna elements 18f and 18h are coupled by second fixed paths 32a and 32b having a path length of 2d, respectively.
Further, the antenna elements 18d and 18h are coupled by a third fixed path 33 having a path length of 4d, and a feed line for a transmission signal from the circulator 14 is connected to the antenna element 18h.
As a result, the fixed path lengths of the antenna elements 18a to 18h are 4d + 2d + d = 7d, 4d + 2d = 6d, 4d + d = 5d, 4d, 2d + d = 3d, 2d, d, 0 from the power distribution point P, respectively. There is a fixed path difference of length d between the antenna elements.

固定経路を流れる進行波は進むにつれて位相が遅れていくので、固定経路長dで生じる位相ずれをΔθとすると、図3中、下側より上側のアンテナ素子の位相がΔθだけ遅くなる。
この位相差は送信周波数によって変化する。
一例として、送信周波数帯域の中心周波数を26GHzとした場合、波長λ=C/f=3×108/26×109=11.54mmとなり、アンテナ素子間隔を中心周波数の波長λの1/2の5.7mm、固定経路差dを中心周波数の波長λの2倍以上の26mm程度とする。
この場合、送信周波数を24GHzにすると、固定経路差d=26mmによって生じる隣接の2つのアンテナ素子間の位相差は計算上811°となるが、360°周期で同じ位相となるので実際に観測される位相差は91°となる。
同様に送信周波数を23GHzとした場合には位相差は29°、送信周波数を29GHzとした場合には位相差は154°となる。
Since the phase of the traveling wave flowing through the fixed path is delayed as it travels, assuming that the phase shift caused by the fixed path length d is Δθ, the phase of the antenna element above the lower side in FIG. 3 is delayed by Δθ.
This phase difference varies depending on the transmission frequency.
As an example, when the center frequency of the transmission frequency band and 26 GHz, the wavelength λ = C / f = 3 × 10 8/26 × 10 9 = 11.54mm , and the wavelength of the center frequency of the antenna element spacing lambda 1/2 The fixed path difference d is about 26 mm, which is at least twice the wavelength λ of the center frequency.
In this case, when the transmission frequency is set to 24 GHz, the phase difference between the two adjacent antenna elements caused by the fixed path difference d = 26 mm is 811 ° in the calculation. The phase difference is 91 °.
Similarly, when the transmission frequency is 23 GHz, the phase difference is 29 °, and when the transmission frequency is 29 GHz, the phase difference is 154 °.

アンテナ素子間隔をa、送信周波数をf、固定経路差をdとした場合、検知方位θtは以下の式(2)を用いて算出できる。
a×cos(π/4−θt)×f/C=2π×d×f/C−2nπ・・・(2)
但し、Cは光速(3×108m/秒)で、nは右辺が負とならない最大の整数である。
式(2)の右辺が、実際に観測される2つの隣り合ったアンテナ素子間の位相差Δθに相当する。
When the antenna element interval is a, the transmission frequency is f, and the fixed path difference is d, the detection direction θt can be calculated using the following equation (2).
a × cos (π / 4−θt) × f / C = 2π × d × f / C−2nπ (2)
However, C is the speed of light (3 × 10 8 m / sec), and n is the maximum integer whose right side is not negative.
The right side of Equation (2) corresponds to the phase difference Δθ between two adjacent antenna elements that are actually observed.

したがって、送信周波数を23GHz(位相差Δθ=29°)とした場合、検知方位θtは10°、送信周波数を24GHz(位相差Δθ=91°)とした場合、検知方位θtは30°、送信周波数を29GHz(位相差Δθ=154°)とした場合、検知方位θtは52°となる。
このように送信周波数fに応じて検知方位θtを変化させることができ、さらに今回26mmとした固定経路差dを調整することにより、検知方位θtの変化幅も変えることができる。
以上により、隣り合う2つのアンテナ素子間に送信信号の1波長以上の固定経路差を設け、送信周波数を変化させることで検知方位θt、すなわち車両から見た検知方向を任意の方向に制御できる。
Therefore, when the transmission frequency is 23 GHz (phase difference Δθ = 29 °), the detection direction θt is 10 °, and when the transmission frequency is 24 GHz (phase difference Δθ = 91 °), the detection direction θt is 30 ° and the transmission frequency. Is 29 GHz (phase difference Δθ = 154 °), the detection direction θt is 52 °.
In this way, the detection direction θt can be changed according to the transmission frequency f, and the change width of the detection direction θt can also be changed by adjusting the fixed path difference d, which is 26 mm this time.
As described above, the detection direction θt, that is, the detection direction viewed from the vehicle can be controlled to an arbitrary direction by providing a fixed path difference of one wavelength or more of the transmission signal between two adjacent antenna elements and changing the transmission frequency.

つぎに、アレイアンテナ部2において、スイッチ回路17は、第3固定経路33に設けられたスイッチ17aと、第2固定経路32bに設けられたスイッチ17bとからなっており、これらのオン、オフにより電磁波放射部18の励振されるアンテナ素子数を変化させることができる。
図3において、スイッチ17a、17b双方をオン(通過状態)にした場合、高周波回路部3のサーキュレータ14から伝送された送信信号は各経路を通り、すべてのアンテナ素子18a〜18hが励振される。
スイッチ17aをオフ(遮断状態)にすると、送信信号はアンテナ素子18a〜18dには伝送されず、アンテナ素子18e〜18hのみが励振される。
さらにスイッチ17bもオフにすると、アンテナ素子18e〜18fにも送信信号が伝送されなくなり、アンテナ素子18g、18hのみが励振されることになる。
Next, in the array antenna unit 2, the switch circuit 17 includes a switch 17a provided in the third fixed path 33 and a switch 17b provided in the second fixed path 32b. The number of antenna elements excited by the electromagnetic wave radiation unit 18 can be changed.
In FIG. 3, when both the switches 17a and 17b are turned on (passed state), the transmission signal transmitted from the circulator 14 of the high-frequency circuit unit 3 passes through each path, and all the antenna elements 18a to 18h are excited.
When the switch 17a is turned off (blocked state), the transmission signal is not transmitted to the antenna elements 18a to 18d, and only the antenna elements 18e to 18h are excited.
Further, when the switch 17b is also turned off, no transmission signal is transmitted to the antenna elements 18e to 18f, and only the antenna elements 18g and 18h are excited.

アンテナの実効面積をAe、波長をλとすると、アンテナの利得Gは以下の式(3)で表され、アンテナ開口面の断面の長さをLeとすると、検知幅θは経験的に以下の式(4)で表される。
G=4π×Ae/λ2 (3)
θ=0.886×λ/Le (4)
使用するアンテナ素子数を少なくすることで、アンテナの実効面積Aeとアンテナ断面の長さLeを小さくでき、アンテナの利得Gが減少し、検知幅θが大きくなる。
以上により、アレイアンテナの固定経路にスイッチ17a、17bを設け、励振されるアンテナ素子数を増減させることで検知幅θを任意の角度範囲に制御できる。
したがって、送信周波数およびアレイ数(アンテナ素子数)を制御することにより、検知方向とその検知幅、すなわち指向性を変化可能となっている。
When the effective area of the antenna is Ae and the wavelength is λ, the gain G of the antenna is expressed by the following formula (3). When the length of the cross section of the antenna opening surface is Le, the detection width θ is empirically It is represented by Formula (4).
G = 4π × Ae / λ 2 (3)
θ = 0.886 × λ / Le (4)
By reducing the number of antenna elements to be used, the effective area Ae of the antenna and the length Le of the antenna cross section can be reduced, the antenna gain G is reduced, and the detection width θ is increased.
As described above, the switches 17a and 17b are provided on the fixed path of the array antenna, and the detection width θ can be controlled to an arbitrary angle range by increasing or decreasing the number of excited antenna elements.
Therefore, by controlling the transmission frequency and the number of arrays (the number of antenna elements), the detection direction and the detection width, that is, the directivity can be changed.

つぎに、送信周波数とアレイ数の組み合わせによって変化するビーム形状の例を示す。
図5は、送信周波数23GHz、アレイ数8としたときの第1検知ビーム41、送信周波数26GHz、アレイ数4としたときの第2検知ビーム42、および送信周波数29GHz、アレイ数2としたときの第3検知ビーム43を示す。
第1検知ビーム41は検知幅は狭いが感度が高い。一方、第3検知ビーム43は感度は低いが検知幅は広い。
Next, an example of the beam shape that changes depending on the combination of the transmission frequency and the number of arrays is shown.
FIG. 5 shows a first detection beam 41 when the transmission frequency is 23 GHz and the number of arrays is 8, a second detection beam when the transmission frequency is 26 GHz and the number of arrays is 4, and a transmission frequency of 29 GHz and the number of arrays is 2. A third detection beam 43 is shown.
The first detection beam 41 has a narrow detection width but high sensitivity. On the other hand, the third detection beam 43 has a low sensitivity but a wide detection width.

図6は、送信周波数23GHz、アレイ数2としたときの第1検知ビーム41A、送信周波数26GHz、アレイ数4としたときの第2検知ビーム42A、送信周波数29GHz、アレイ数8としたときの第3検知ビーム43Aのビーム形状を示す。
第1検知ビーム41Aは感度は低いが検知幅は広い。一方、第3検知ビーム43は検知幅は狭いが感度が高い。
FIG. 6 shows the first detection beam 41A when the transmission frequency is 23 GHz, the number of arrays is 2, the second detection beam 42A when the transmission frequency is 26 GHz, the number of arrays is 4, the transmission frequency is 29 GHz, and the number of arrays is 8. 3 shows the beam shape of the detection beam 43A.
The first detection beam 41A has a low sensitivity but a wide detection width. On the other hand, the third detection beam 43 has a narrow detection width but high sensitivity.

信号処理部4の検知エリア設定部26は、自車の車両情報に基づいて必要な検知エリアを検知方向および検知幅として設定する。
図7は、検知エリア設定動作のフローチャートである。
ステップ101において、自車の走行環境情報と速度などの走行情報を収集し、ステップ102で、自車の走行速度が所定値(例えば30km/h)以上かどうかを判定する。
走行速度が所定値以上のときは、ステップ104に進み、所定値未満であればステップ103に進む。
ステップ103では、走行環境情報から交差点やT字路のような側面方向から車両が進行してくる可能性のある状況かどうかを判定する。側面方向から車両が進行してくる可能性がない場合はステップ104に進み、可能性がある場合はステップ105に進む。
The detection area setting unit 26 of the signal processing unit 4 sets a necessary detection area as a detection direction and a detection width based on the vehicle information of the own vehicle.
FIG. 7 is a flowchart of the detection area setting operation.
In step 101, traveling environment information and traveling information such as the speed of the own vehicle are collected.
When the traveling speed is equal to or higher than the predetermined value, the process proceeds to step 104, and when it is lower than the predetermined value, the process proceeds to step 103.
In step 103, it is determined from the traveling environment information whether or not the vehicle is likely to travel from the side direction such as an intersection or a T-junction. If there is no possibility that the vehicle will travel from the side direction, the process proceeds to step 104, and if there is a possibility, the process proceeds to step 105.

ステップ104では、検知方向を車両進行方向、検知幅を小とした検知エリア(車両進行方向に高感度の侠角ビームに対応)と、検知方向を車両側方、検知幅を大とした検知エリア(車両側方に低感度の広角ビームに対応)の組み合わせを選択する。
例えば、自車両の側面にアレイアンテナ部2を装着して直線道路を走行する場合、図8に示すように、アレイアンテナ部2として横方向(車両進行方向)に感度の良い検知幅の狭い第3検知ビーム43Aを設定すれば、検知角度が狭くても長い検知距離が必要な車両前方を走行する他車両M1の検出に有効となる。
また、アレイアンテナ部2として前方向(車両側方)に検知幅の広い第3検知ビーム41Aを設定すれば、検知距離が短くても広い検知角度を必要とする隣接車線の並走車両の検出に有効である。
このあと、ステップ106に進む。
In step 104, a detection area in which the detection direction is the vehicle traveling direction and the detection width is small (corresponding to a highly sensitive depression beam in the vehicle traveling direction), and a detection area in which the detection direction is the side of the vehicle and the detection width is large. Select a combination (corresponding to a low-sensitivity wide-angle beam on the side of the vehicle).
For example, when traveling on a straight road with the array antenna unit 2 attached to the side surface of the host vehicle, as shown in FIG. 8, the array antenna unit 2 has a narrow detection width with high sensitivity in the lateral direction (vehicle traveling direction). If the 3 detection beam 43A is set, it is effective for detecting the other vehicle M1 traveling in front of the vehicle that requires a long detection distance even if the detection angle is narrow.
If the third detection beam 41A having a wide detection width is set in the forward direction (vehicle side) as the array antenna unit 2, detection of a parallel running vehicle in an adjacent lane that requires a wide detection angle even if the detection distance is short. It is effective for.
Thereafter, the process proceeds to step 106.

ステップ105では、検知方向を車両側方、検知幅を小とした検知エリア(車両側方に高感度の侠角ビームに対応)と、検知方向を車両進行方向、検知幅を大とした検知エリア(車両進行方向に低感度の広角ビームに対応)の組み合わせを選択する。
例えば、自車両Vの側面にアレイアンテナ部2を装着して交差点付近を走行する場合、図9に示すように、アレイアンテナ部2として前方向(車両側方)に感度の良い検知幅の狭い第1検知ビーム41を設定すれば、検知角度が狭くても長い検知距離が好ましい、信号のない交差点で横方向から進入してくる他車両M2の検出に有効である。
また、アレイアンテナ部2として方向に検知幅の広い第3検知ビーム43を設定すれば、検知距離が短くても広い検知角度を必要とする右折車など対向車線から進入してくる車両の検出に有効である。
このあと、ステップ106に進む。
In step 105, a detection area where the detection direction is the side of the vehicle and the detection width is small (corresponding to a highly sensitive depression beam on the side of the vehicle), and a detection area where the detection direction is the vehicle traveling direction and the detection width is large. Select a combination (corresponding to a low-angle wide-angle beam in the vehicle traveling direction).
For example, when the array antenna unit 2 is mounted on the side surface of the host vehicle V and the vehicle travels near an intersection, as shown in FIG. 9, the array antenna unit 2 has a narrow detection width that is sensitive in the forward direction (vehicle side). If the first detection beam 41 is set, a long detection distance is preferable even if the detection angle is narrow, which is effective for detecting the other vehicle M2 entering from the lateral direction at an intersection where there is no signal.
If the third detection beam 43 having a wide detection width is set as the array antenna unit 2 in the lateral direction, detection of a vehicle entering from an oncoming lane such as a right turn vehicle that requires a wide detection angle even if the detection distance is short. It is effective for.
Thereafter, the process proceeds to step 106.

そして、ステップ106において、ステップ104または105で選択した検知エリアの検知方向と検知幅の情報をそれぞれ送信周波数制御部23とアレイ数制御部24へ出力する。これにより、送信周波数とアレイ数の組み合わせが決定され、例えば直線道路で側面方向から車両が進行してくる可能性がない場合は第1検知ビーム41Aと第3検知ビーム43Aを所定時間間隔で交互に送出しながら距離計測が行われることになる。
本実施の形態において、送信周波数制御部23と発振器11が発明における送信周波数制御手段を構成し、アレイ数制御部がスイッチ制御手段を構成している。
In step 106, the detection direction and detection width information of the detection area selected in step 104 or 105 is output to the transmission frequency control unit 23 and the array number control unit 24, respectively. Thereby, the combination of the transmission frequency and the number of arrays is determined. For example, when there is no possibility that the vehicle travels from the side direction on a straight road, the first detection beam 41A and the third detection beam 43A are alternately arranged at predetermined time intervals. The distance measurement is performed while sending the data.
In the present embodiment, the transmission frequency control unit 23 and the oscillator 11 constitute transmission frequency control means in the invention, and the array number control part constitutes switch control means.

実施の形態は以上のように構成され、アレイアンテナ部2において複数のアンテナ素子18a〜18hを並べ、隣り合うアンテナ素子間で各アンテナ素子から送信信号の電力分配点Pまでの経路長に送信周波数の1波長以上の固定経路差を設けるとともに、送信周波数を制御する送信周波数制御部23が発振器11を制御して送信周波数を変化させるものとした。経路長の相違によってアンテナ素子間に位相差を生じ、検知方位が定まるが、送信周波数を変化させることにより位相差が変化するので、送信周波数を変化させることにより、車両から見た検知方向を任意に変化させることができる。
したがって、簡単な回路構成と制御によるだけで必要な指向性を得ることができ、装置の大型化を伴わず、低コストで実現できる。
The embodiment is configured as described above. A plurality of antenna elements 18a to 18h are arranged in the array antenna unit 2, and the transmission frequency is set to the path length from each antenna element to the power distribution point P of the transmission signal between adjacent antenna elements. And a transmission frequency control unit 23 that controls the transmission frequency controls the oscillator 11 to change the transmission frequency. The difference in path length causes a phase difference between the antenna elements, and the detection direction is determined, but the phase difference changes when the transmission frequency is changed. Can be changed.
Therefore, necessary directivity can be obtained only by a simple circuit configuration and control, and it can be realized at low cost without increasing the size of the apparatus.

また、アンテナ素子と電力分配点を結ぶ経路にスイッチ回路17を設け、アレイ数制御部24の制御により送信信号の通過を許可、遮断することにより、励振されるアンテナ素子数を増減させ、これによりアンテナの実効面積を変化させて利得と検知幅を変化させるものとした。
したがって、検知幅もアンテナ素子数の増減制御により任意の角度範囲とすることができる。
In addition, the switch circuit 17 is provided in the path connecting the antenna element and the power distribution point, and the number of antenna elements to be excited is increased or decreased by permitting or blocking the transmission signal through the control of the array number control unit 24. The gain and detection width are changed by changing the effective area of the antenna.
Accordingly, the detection width can be set to an arbitrary angle range by increasing / decreasing the number of antenna elements.

さらに、検知エリア設定部26が車両の走行環境に応じて検知エリアを設定し、これに基づいて送信周波数制御部23が送信周波数を変化させ、またアレイ数制御部24が励振されるアンテナ素子数を増減させるので、運転者が送信周波数やアンテナ素子数の切換えを操作することなく走行環境に応じたシームレスな走査ができる。   Further, the detection area setting unit 26 sets the detection area according to the traveling environment of the vehicle, the transmission frequency control unit 23 changes the transmission frequency based on this, and the number of antenna elements that the array number control unit 24 is excited. Therefore, the driver can seamlessly scan according to the driving environment without operating the switching of the transmission frequency and the number of antenna elements.

また、検知エリアとしては、アレイアンテナ部2を車両の側面に設置した場合において、直線道路を走行中の場合に、車両の前方に検知幅が狭く高感度の検知エリアを選択し、交差点近傍の場合、車両の側方に検知幅が狭く高感度の検知エリアを選択することにより、走行環境に適した指向性が迅速に得られる。
また、より具体的には、例えば車両の前方に検知幅が狭く高感度の検知エリアに対しては車両側方に低感度で広角の検知エリアのように、検知方向と検知幅の異なる組み合わせを複数設定しておき、車両の走行環境に応じて選択するようにしているので、指向性設定の処理が速い。しかも、選択した組み合わせの中で各検知エリアに対応するビームを所定の時間間隔で切り替えて交互に送出するので、1台の装置で検知方向と検知幅の異なる複数の検知エリアを連続的に走査することができる。
As the detection area, when the array antenna unit 2 is installed on the side of the vehicle and the vehicle is traveling on a straight road, a high-sensitivity detection area with a narrow detection width is selected in front of the vehicle. In this case, directivity suitable for the driving environment can be quickly obtained by selecting a detection area with a narrow detection width and high sensitivity on the side of the vehicle.
More specifically, for example, for a detection area with a narrow detection width in the front of the vehicle and a high sensitivity, a combination of a detection direction and a detection width different from each other, such as a detection area with a low sensitivity and a wide angle on the side of the vehicle. Since a plurality of settings are made and the selection is made according to the traveling environment of the vehicle, the directivity setting process is fast. In addition, the beams corresponding to each detection area in the selected combination are switched at predetermined time intervals and alternately transmitted, so that a single device continuously scans a plurality of detection areas having different detection directions and detection widths. can do.

以上、パルス方式の電磁波レーダを例として実施の形態を説明したが、レーダ方式としては周波数変調(FM)もしくは振幅変調(AM)された連続波を送信し、ドプラ効果による受信信号の周波数変位や位相変位により反射物標までの距離を算出するCW方式も利用することができる。
また、媒体としても電磁波に限らず赤外線などを含む光や、超音波を用いることもできる。例えば超音波では送信周波数を可変できる超音波発振器と、圧電素子などをアレイ化した送受波器を用いればよい。
The embodiment has been described above by taking the pulse-type electromagnetic wave radar as an example. However, as the radar system, a frequency-modulated (FM) or amplitude-modulated (AM) continuous wave is transmitted, and the frequency displacement of the received signal caused by the Doppler effect A CW method that calculates the distance to the reflective target by phase displacement can also be used.
Further, the medium is not limited to electromagnetic waves, and light including infrared rays or ultrasonic waves can also be used. For example, for an ultrasonic wave, an ultrasonic oscillator that can change the transmission frequency and a transducer in which piezoelectric elements are arrayed may be used.

なお、実施の形態ではアンテナ素子を1次元配列として、1平面内での指向特性を変化可能としたが、アンテナ素子を2次元配列とすればアンテナの指向性を上下、左右に可変できるようになる。   In the embodiment, the antenna elements are arranged in a one-dimensional array, and the directivity characteristics in one plane can be changed. However, if the antenna elements are arranged in a two-dimensional arrangement, the antenna directivity can be varied vertically and horizontally. Become.

本発明の実施の形態の構成を示すブロック図である。It is a block diagram which shows the structure of embodiment of this invention. パルス方式の距離計測動作のタイムチャートである。It is a time chart of the pulse-type distance measurement operation. アレイアンテナ部の構成図である。It is a block diagram of an array antenna part. アレイアンテナ部を正面から見たイメージ図である。It is the image figure which looked at the array antenna part from the front. 送信周波数とアレイ数の組み合わせによるビーム形状例を示す図である。It is a figure which shows the example of a beam shape by the combination of a transmission frequency and the number of arrays. 他のビーム形状例を示す図である。It is a figure which shows the other beam shape example. 検知エリア設定動作のフローチャートである。It is a flowchart of a detection area setting operation. 直線道路を走行している状況でのビームの選択例を示す図である。It is a figure which shows the example of selection of the beam in the condition which is drive | working the straight road. 交差点に差し掛かる状況でのビームの選択例を示す図である。It is a figure which shows the example of selection of the beam in the condition which approaches an intersection.

符号の説明Explanation of symbols

1 レーダ装置
2 アレイアンテナ部
3 高周波回路部
4 信号処理部
11 発振器
12 カプラ
13 スイッチ部
14 サーキュレータ
15 ミキサ回路
16 電力増幅器
17 スイッチ回路
17a、17b スイッチ
18 電磁波放射部
18a〜18h アンテナ素子
21 送信パルス制御部
22 距離計測部
23 送信周波数制御部
24 アレイ数制御部
25 物標認識ロジック部
26 検知エリア設定部
31a〜31d 第1固定経路
32a、32b 第2固定経路
33 第3固定経路
41、41A 第1検知ビーム
42、42B 第2検知ビーム
43、43A 第3検知ビーム
V 自車両
M1、M2 他車両
DESCRIPTION OF SYMBOLS 1 Radar apparatus 2 Array antenna part 3 High frequency circuit part 4 Signal processing part 11 Oscillator 12 Coupler 13 Switch part 14 Circulator 15 Mixer circuit 16 Power amplifier 17 Switch circuit 17a, 17b Switch 18 Electromagnetic wave radiation part 18a-18h Antenna element 21 Transmission pulse control Unit 22 distance measurement unit 23 transmission frequency control unit 24 array number control unit 25 target recognition logic unit 26 detection area setting unit 31a to 31d first fixed route 32a, 32b second fixed route 33 third fixed route 41, 41A first Detection beam 42, 42B Second detection beam 43, 43A Third detection beam V Own vehicle M1, M2 Other vehicle

Claims (1)

車両に適用され、送信信号を送出し物標からの反射を受信して、受信信号と送信信号に基づいて物標までの距離を計測する車両周辺監視用レーダ装置において、
複数のアンテナ素子を前記車両の側面に並べてアレイアンテナ部を構成し、隣り合うアンテナ素子間で各アンテナ素子から送信信号の電力分配点までの経路長に送信周波数の1波長以上の固定経路差を設け、
送信周波数を制御する送信周波数制御手段と、前記アンテナ素子と電力分配点を結ぶ経路に設けられたスイッチ回路と、該スイッチ回路を制御するスイッチ制御手段と、を備えて、
送信周波数を変化させることにより検知方向を変化可能であり、且つ、前記スイッチ回路で送信信号の通過を許可、遮断することにより励振されるアンテナ素子数を増減させて検知幅を変化可能とし、
さらに、
前記車両の走行環境情報及び走行速度を収集する走行情報収集手段と、
前記車両の走行速度が所定値以上かどうかを判定する走行速度判定手段と、
この走行速度判定手段において前記走行速度が前記所定値未満であると判定されたとき、前記走行環境情報に基づいて車両の側面方向から他の車両が進入してくる可能性のある状況かどうかを判定する側面方向車両進入判断手段と、
前記走行速度判定手段において前記走行速度が前記所定値以上であると判定された場合又は前記側面方向車両進入手段において前記状況ではないと判定された場合に、検知方向を車両進行方向、検知幅を小とした検知エリアと、検知方向を車両側方、検知幅を大とした検知エリアの組み合わせを選択する第一選択手段と、
前記側面方向車両進入手段において前記状況であると判定された場合に、検知方向を車両側方、検知幅を小とした検知エリアと、検知方向を車両進行方向、検知幅を大とした検知エリアの組み合わせを選択する第二選択手段と、
前記第一選択手段又は前記第二選択手段において前記組み合わせの選択が行われたとき、その選択された組み合わせを構成する検知エリアが交互に変化するように前記送信周波数制御手段及び前記スイッチ制御手段を制御する検知エリア制御手段と、を備えたことを特徴とする車両周辺監視用レーダ装置。
In a vehicle periphery monitoring radar device that is applied to a vehicle, sends a transmission signal, receives a reflection from the target, and measures a distance to the target based on the reception signal and the transmission signal.
A plurality of antenna elements are arranged on the side surface of the vehicle to form an array antenna unit, and a fixed path difference of one or more wavelengths of the transmission frequency is set as a path length from each antenna element to the power distribution point of the transmission signal between adjacent antenna elements. Provided,
A transmission frequency control means for controlling the transmission frequency, a switch circuit provided in a path connecting the antenna element and a power distribution point, and a switch control means for controlling the switch circuit ,
The detection direction can be changed by changing the transmission frequency , and the detection width can be changed by increasing or decreasing the number of antenna elements excited by allowing or blocking the transmission signal through the switch circuit,
further,
Traveling information collection means for collecting traveling environment information and traveling speed of the vehicle;
Traveling speed determination means for determining whether the traveling speed of the vehicle is equal to or greater than a predetermined value;
When the traveling speed determining means determines that the traveling speed is less than the predetermined value, whether or not there is a possibility that another vehicle may enter from the side surface direction of the vehicle based on the traveling environment information. Side direction vehicle approach determination means for determining;
When the travel speed determining means determines that the travel speed is greater than or equal to the predetermined value or when the side direction vehicle entry means determines that the situation is not the situation, the detection direction is the vehicle traveling direction and the detection width is A first selection means for selecting a combination of a detection area with a small detection area and a detection area with a detection direction set to a side of the vehicle and a large detection width;
When the side direction vehicle entry means determines that the situation is present, a detection area with a detection direction as a vehicle side, a detection width as a small detection area, a detection direction as a vehicle traveling direction, and a detection area as a detection width as large A second selection means for selecting a combination of
When the combination is selected by the first selection unit or the second selection unit, the transmission frequency control unit and the switch control unit are arranged so that detection areas constituting the selected combination are alternately changed. vehicle periphery monitoring radar equipment, characterized in that it comprises a detection area control means controlling to, the.
JP2005199321A 2005-07-07 2005-07-07 Radar device for vehicle periphery monitoring Expired - Fee Related JP4654803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005199321A JP4654803B2 (en) 2005-07-07 2005-07-07 Radar device for vehicle periphery monitoring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005199321A JP4654803B2 (en) 2005-07-07 2005-07-07 Radar device for vehicle periphery monitoring

Publications (2)

Publication Number Publication Date
JP2007017294A JP2007017294A (en) 2007-01-25
JP4654803B2 true JP4654803B2 (en) 2011-03-23

Family

ID=37754583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005199321A Expired - Fee Related JP4654803B2 (en) 2005-07-07 2005-07-07 Radar device for vehicle periphery monitoring

Country Status (1)

Country Link
JP (1) JP4654803B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7864103B2 (en) * 2007-04-27 2011-01-04 Accipiter Radar Technologies, Inc. Device and method for 3D height-finding avian radar
JP2010197097A (en) * 2009-02-23 2010-09-09 Fuji Heavy Ind Ltd Vehicular radar device
JP5512987B2 (en) * 2009-02-27 2014-06-04 富士重工業株式会社 Radar equipment for vehicles
JP5512991B2 (en) * 2009-03-25 2014-06-04 富士重工業株式会社 Radar equipment for vehicles
KR100963233B1 (en) * 2009-11-13 2010-06-10 엘아이지넥스원 주식회사 Beam steering system of phased array antenna using frequency
JP5737396B2 (en) * 2011-06-09 2015-06-17 トヨタ自動車株式会社 Other vehicle detection device and other vehicle detection method
JP5833584B2 (en) * 2013-01-07 2015-12-16 日本電信電話株式会社 Wireless communication system
JP2015121959A (en) * 2013-12-24 2015-07-02 三菱電機株式会社 Obstacle detection device
JP5962706B2 (en) 2014-06-04 2016-08-03 トヨタ自動車株式会社 Driving assistance device
DE102015006138A1 (en) * 2015-05-12 2016-11-17 Elektrobit Automotive Gmbh Driver assistance system and method for avoiding collisions
FR3039328B1 (en) * 2015-07-22 2017-08-25 Thales Sa RADIOELECTRIC RADIOELECTRIC WAVE TRANSMIT-RECEIVE DEVICE AND ASSOCIATED RADIO ALTIMETRY SYSTEM
KR101915804B1 (en) * 2016-11-24 2019-01-07 주식회사 에스원 Method and apparatus for automatically setting detection range of radar
CN108120964B (en) * 2017-11-22 2021-12-07 西南电子技术研究所(中国电子科技集团公司第十研究所) Method for dynamically testing time delay data of secondary radar local machine to improve ranging precision
CN112789517A (en) * 2018-10-05 2021-05-11 京瓷株式会社 Electronic device, control method for electronic device, and control program for electronic device
KR102002387B1 (en) * 2019-03-26 2019-07-23 (주)토페스 Multi-Lane vehicle speed detection apparatus and method Using the same
DE102020119934A1 (en) * 2020-07-29 2022-02-03 Valeo Schalter Und Sensoren Gmbh Method for operating a radar system, radar system and vehicle with at least one radar system
CN115051538B (en) * 2022-05-13 2024-04-26 中国电子科技集团公司第二十九研究所 Distributed high-power solid-state emission system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221811U (en) * 1988-07-13 1990-02-14
JPH0458179A (en) * 1990-06-26 1992-02-25 Mazda Motor Corp Obstacle detecting device
JPH05152825A (en) * 1991-11-26 1993-06-18 Japan Radio Co Ltd Frequency scanning array antenna
JP2001211022A (en) * 2000-01-25 2001-08-03 Nippon Telegr & Teleph Corp <Ntt> Array antenna and method of scanning its frequencies
JP2003248055A (en) * 2001-12-18 2003-09-05 Hitachi Ltd Monopulse radar system
JP2004226158A (en) * 2003-01-21 2004-08-12 Fujitsu Ten Ltd Fm-cw radar device
JP2005009913A (en) * 2003-06-17 2005-01-13 Alpine Electronics Inc Radar control device
JP2005082124A (en) * 2003-09-11 2005-03-31 Toyota Motor Corp Start control device of collision damage reducing device and sensor to be used for the same device
JP2005318430A (en) * 2004-04-30 2005-11-10 Seiko Precision Inc Phased array antenna system and beam controlling method for phased array antenna
JP2006163828A (en) * 2004-12-07 2006-06-22 Nissan Motor Co Ltd Alarm device for vehicle, and method of alarming ambient condition of vehicle

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221811U (en) * 1988-07-13 1990-02-14
JPH0458179A (en) * 1990-06-26 1992-02-25 Mazda Motor Corp Obstacle detecting device
JPH05152825A (en) * 1991-11-26 1993-06-18 Japan Radio Co Ltd Frequency scanning array antenna
JP2001211022A (en) * 2000-01-25 2001-08-03 Nippon Telegr & Teleph Corp <Ntt> Array antenna and method of scanning its frequencies
JP2003248055A (en) * 2001-12-18 2003-09-05 Hitachi Ltd Monopulse radar system
JP2004226158A (en) * 2003-01-21 2004-08-12 Fujitsu Ten Ltd Fm-cw radar device
JP2005009913A (en) * 2003-06-17 2005-01-13 Alpine Electronics Inc Radar control device
JP2005082124A (en) * 2003-09-11 2005-03-31 Toyota Motor Corp Start control device of collision damage reducing device and sensor to be used for the same device
JP2005318430A (en) * 2004-04-30 2005-11-10 Seiko Precision Inc Phased array antenna system and beam controlling method for phased array antenna
JP2006163828A (en) * 2004-12-07 2006-06-22 Nissan Motor Co Ltd Alarm device for vehicle, and method of alarming ambient condition of vehicle

Also Published As

Publication number Publication date
JP2007017294A (en) 2007-01-25

Similar Documents

Publication Publication Date Title
JP4654803B2 (en) Radar device for vehicle periphery monitoring
EP0906581B1 (en) Vehicle radar system
JP5042558B2 (en) Radar equipment
EP2495582B1 (en) Radar apparatus
JP2006201013A (en) On-vehicle radar
US7924215B2 (en) Radar apparatus and mobile object
US20070085728A1 (en) Automotive radar device
EP1548458A2 (en) Vehicle-mounted radar
WO2011092813A1 (en) Obstacle detection device
JP3577239B2 (en) Radar equipment
CN104345311A (en) Radar for vehicle and method of operating the same
KR20140014099A (en) Radar sensor for motor vehicles
JP5175348B2 (en) Monostatic multi-beam radar sensor for vehicles
JP2009041981A (en) Object detection system and vehicle equipped with object detection system
US20140354450A1 (en) Warning device
JP3942722B2 (en) In-vehicle radar system
CN112789518A (en) Electronic device, control method for electronic device, and control program for electronic device
US6040795A (en) Vehicle-mounted radar apparatus
JP5167866B2 (en) Vehicle speed control device
CN113678017A (en) Electronic device, control method for electronic device, and control program for electronic device
JPH08334557A (en) Radar apparatus carried on vehicle
CN112888961A (en) Electronic device, control method for electronic device, and control program for electronic device
US11709261B2 (en) Radar device for vehicle, controlling method of radar device and radar system for vehicle
JP2021181997A (en) Rader system
JPH08327731A (en) Method for detecting azimuth by radar, azimuth detecting radar equipment and collision avoidance device for automobile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080527

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees