JP4634082B2 - Polyester composition, production method thereof and fiber - Google Patents

Polyester composition, production method thereof and fiber Download PDF

Info

Publication number
JP4634082B2
JP4634082B2 JP2004202727A JP2004202727A JP4634082B2 JP 4634082 B2 JP4634082 B2 JP 4634082B2 JP 2004202727 A JP2004202727 A JP 2004202727A JP 2004202727 A JP2004202727 A JP 2004202727A JP 4634082 B2 JP4634082 B2 JP 4634082B2
Authority
JP
Japan
Prior art keywords
polyester
polyester composition
mass
color adjusting
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004202727A
Other languages
Japanese (ja)
Other versions
JP2006022241A (en
Inventor
亮二 塚本
透 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2004202727A priority Critical patent/JP4634082B2/en
Publication of JP2006022241A publication Critical patent/JP2006022241A/en
Application granted granted Critical
Publication of JP4634082B2 publication Critical patent/JP4634082B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Artificial Filaments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明はポリエステル組成物、その製造方法および繊維に関する。さらに詳しくは、真比重5.0以上の金属元素、特にアンチモン、ゲルマニウムの含有量が極めて少なく、色相に優れ、繊維製造時の成形性に優れているという性能を有し、鮮明性、染色時に深色染色性が発現されるポリエステル組成物その製造方法および繊維に関する。   The present invention relates to a polyester composition, a method for producing the same, and a fiber. More specifically, the content of metal elements having a true specific gravity of 5.0 or more, particularly antimony and germanium, is extremely small, has excellent properties of hue, and excellent moldability during fiber production. The present invention relates to a polyester composition exhibiting deep color dyeability, its production method and fiber.

ポリエステル、特にポリエチレンテレフタレート、ポリエチレンナフタレート、ポリトリメチレンテレフタレート及びポリテトラメチレンテレフタレートは、その機械的、物理的、化学的性能が優れているため、繊維、フィルム、その他の成形物に広く利用されている。特にポリエチレンテレフタレートはその特性、価格の面から非常に幅広い用途で利用されている。しかしながらポリエステルは衣料用繊維としては染色性が良好とは言えず、色の深みに劣るものであった。   Polyesters, especially polyethylene terephthalate, polyethylene naphthalate, polytrimethylene terephthalate and polytetramethylene terephthalate are widely used in fibers, films and other molded products because of their excellent mechanical, physical and chemical performance. Yes. In particular, polyethylene terephthalate is used in a very wide range of applications because of its characteristics and price. However, polyester cannot be said to have good dyeability as a fiber for clothing, and is inferior in color depth.

従来、このような欠点を補うため、ポリエステル中に微粒子を含有させたり、重合反応中に該ポリエステルに不溶な粒子種を析出させて、得られたポリエステル組成物を製糸化した後にアルカリ減量等の方法で、繊維表面に凹凸を形成させ、深色化されたポリエステル繊維を得る方法が知られている。(例えば特許文献1、特許文献2参照)   Conventionally, in order to make up for such drawbacks, fine particles are contained in the polyester, or particle types insoluble in the polyester are precipitated during the polymerization reaction, and then the resulting polyester composition is knitted to produce an alkali weight loss, etc. As a method, a method is known in which unevenness is formed on the fiber surface to obtain a deep-colored polyester fiber. (For example, see Patent Document 1 and Patent Document 2)

このような深色染色用ポリエステル組成物を得るために通常用いられるポリエチレンテレフタレートは、通常例えばテレフタル酸とエチレングリコールとを直接エステル化反応させるか、テレフタル酸ジメチルのようなテレフタル酸の低級アルキルエステルとエチレングリコールとをエステル交換反応させるか、又はテレフタル酸とエチレンオキサイドとを反応さて、テレフタル酸のエチレングリコールエステル及び/又はその低重合体を生成させる。次いでこの反応生成物を重縮合触媒の存在下で減圧加熱して所定の重合度になるまで重縮合反応させることによって製造されている。   Polyethylene terephthalate, which is usually used to obtain such a deep color dyeing polyester composition, is usually obtained by directly esterifying terephthalic acid and ethylene glycol, or a lower alkyl ester of terephthalic acid such as dimethyl terephthalate. Ethylene glycol is transesterified or terephthalic acid and ethylene oxide are reacted to produce an ethylene glycol ester of terephthalic acid and / or a low polymer thereof. Next, the reaction product is produced by heating under reduced pressure in the presence of a polycondensation catalyst to carry out a polycondensation reaction until a predetermined polymerization degree is reached.

これらのポリエステルにおいては、重縮合反応段階で使用する触媒の種類によって、反応速度および得られるポリエステルの品質が大きく左右されることはよく知られている。この点について従来から検討の結果、ポリエチレンテレフタレートの重縮合触媒としては、優れた重縮合触媒性能を有し、かつ色相の良好なポリエステルが得られるなどの理由からアンチモン化合物が最も広く使用されている。   In these polyesters, it is well known that the reaction rate and the quality of the resulting polyester greatly depend on the type of catalyst used in the polycondensation reaction stage. As a result of conventional studies on this point, as a polycondensation catalyst for polyethylene terephthalate, an antimony compound is most widely used because it has excellent polycondensation catalyst performance and a polyester having a good hue. .

しかしながら、アンチモン化合物を重縮合触媒として使用したポリエステルを例えば長時間にわたって連続的に溶融紡糸し繊維化しようとした場合、口金孔周辺に異物(以下、単に口金異物と称することがある。)が付着堆積し、溶融ポリマー流れの曲がり現象(ベンディング)が発生することがある。するとこれが原因となって紡糸、延伸工程において毛羽及び/又は断糸などを発生するという成形性の問題がある。   However, when a polyester using an antimony compound as a polycondensation catalyst is continuously melt-spun for a long time to obtain a fiber, foreign matter (hereinafter sometimes referred to simply as a base foreign matter) adheres to the periphery of the base hole. Accumulation and bending of the molten polymer flow (bending) may occur. As a result, there is a problem of formability that fluff and / or yarn breakage occurs in the spinning and drawing processes.

またペットボトル用などのポリエステル触媒としては、一般的にゲルマニウム化合物が使用されているが、ゲルマニウムは稀少金属であり、高価な為、得られる製品の価格が高くなってしまうことが問題となっている。   In addition, germanium compounds are generally used as polyester catalysts for PET bottles, but germanium is a rare metal and is expensive, so the price of the resulting product becomes high. Yes.

該アンチモン化合物やゲルマニウム化合物以外の重縮合触媒として、チタンテトラブトキシドのようなチタン化合物を用いることも提案されている。このようなチタン化合物を使用した場合、上記のような口金異物の堆積に起因する成形性の問題は解決できる。しかし、得られたポリエステル自身が黄色く着色されており、また溶融熱安定性も不良であるという新たな問題が発生する。この着色問題を解決するために、コバルト化合物をポリエステルに添加して黄味を抑えることが一般的に行われている。確かにコバルト化合物を添加することによってポリエステルの色相(b値)は改善することができるが、コバルト化合物を添加することによってポリエステルの溶融熱安定性がさらに低下し、ポリマーの分解も起こりやすくなるという問題がある。   It has also been proposed to use a titanium compound such as titanium tetrabutoxide as a polycondensation catalyst other than the antimony compound and germanium compound. When such a titanium compound is used, the above-described problem of formability due to the accumulation of foreign matter in the die can be solved. However, there is a new problem that the obtained polyester itself is colored yellow and that the heat stability of the melt is poor. In order to solve this coloring problem, it is a common practice to suppress yellowishness by adding a cobalt compound to polyester. Certainly, the hue (b value) of the polyester can be improved by adding a cobalt compound. However, the addition of a cobalt compound further lowers the thermal stability of the polyester and facilitates polymer degradation. There's a problem.

また、他のチタン化合物として、水酸化チタン、またはα−チタン酸をポリエステル製造用触媒として使用することが開示されている(それぞれ例えば特許文献3、特許文献4参照。)。しかしながら、前者の方法では水酸化チタンの粉末化が容易でなく、一方後者の方法ではα−チタン酸が変質し易いため、その保存、取扱いが容易でない。したがっていずれも工業的に採用するには適当ではなく、さらに、良好な色相(b値)のポリマーを得ることも困難である。   Further, it is disclosed that titanium hydroxide or α-titanic acid is used as a catalyst for polyester production as another titanium compound (see, for example, Patent Document 3 and Patent Document 4). However, in the former method, powdering of titanium hydroxide is not easy, whereas in the latter method, α-titanic acid is likely to be altered, so that storage and handling are not easy. Accordingly, none of them are suitable for industrial use, and it is also difficult to obtain a polymer having a good hue (b value).

このような問題を解決する為に、チタン化合物と特定のリン化合物とを反応させて得られた生成物を(例えば特許文献5、特許文献6参照。)、またチタン化合物と特定のリン化合物の未反応混合物あるいは反応生成物を(例えば特許文献7参照。)、それぞれポリエステル製造用触媒として使用することが開示されている。確かにこの方法によればポリエステルの溶融熱安定性は向上し、得られるポリマーの色相も大きく改善されるが、これらの方法ではポリエステル製造時の重合反応速度が遅い為、ポリエステルの生産性がやや劣ってしまう問題を有している。   In order to solve such a problem, a product obtained by reacting a titanium compound with a specific phosphorus compound (see, for example, Patent Document 5 and Patent Document 6), or a titanium compound and a specific phosphorus compound are used. It is disclosed that an unreacted mixture or a reaction product (see, for example, Patent Document 7) is used as a catalyst for polyester production. Certainly, this method improves the melt heat stability of the polyester and greatly improves the hue of the resulting polymer. However, in these methods, the polymerization reaction rate during the production of the polyester is slow, so that the productivity of the polyester is slightly higher. Has the problem of being inferior.

ポリエステルの成形の安定性を向上させるには、前記のように触媒としてアンチモンを使用しないことが有効な手段であるが、アンチモンを使用しない方法では、糸のカラー(色相)が低下してしまうため、従来は使用に供することができなかった。したがって触媒としてアンチモンを使用せず、かつ色相に優れたポリエステルが求められていた。   In order to improve the molding stability of polyester, it is effective means not to use antimony as a catalyst as described above. However, in the method not using antimony, the color (hue) of the thread is lowered. In the past, it could not be used. Therefore, there has been a demand for a polyester that does not use antimony as a catalyst and has an excellent hue.

一方ポリエステルの色相を改善する試みとしては染料を混練したポリエステルが開示されているが(例えば特許文献8〜10参照。)、色相改善のレベルとしてはまだ十分なものではなかった。
特公昭62−28229号公報 特開昭57−139118号公報 特公昭48−2229号公報 特公昭47−26597号公報 国際公開第01/00706号パンフレット 国際公開第03/008479号パンフレット 国際公開第03/027166号パンフレット 特開平3−231918号公報 特開平11−158257号公報 特開平11−158361号公報
On the other hand, a polyester kneaded with a dye has been disclosed as an attempt to improve the hue of the polyester (see, for example, Patent Documents 8 to 10), but the level of hue improvement has not been sufficient.
Japanese Examined Patent Publication No. 62-28229 JP-A-57-139118 Japanese Patent Publication No. 48-2229 Japanese Patent Publication No. 47-26597 International Publication No. 01/00706 Pamphlet International Publication No. 03/008479 Pamphlet International Publication No. 03/027166 Pamphlet JP-A-3-231918 Japanese Patent Laid-Open No. 11-158257 Japanese Patent Laid-Open No. 11-158361

本発明の目的は色相に優れ、長時間連続的に紡糸しても、口金への付着物の発生量が非常に少なく、優れた成形性を有するポリエステル組成物を提供することにある。また別の目的は鮮明な外観を有し、染色性の改善された繊維を得ることができるポリエステル組成物を提供することである。   An object of the present invention is to provide a polyester composition that has excellent hue and generates a very small amount of deposits on the die even when spinning continuously for a long time, and has excellent moldability. Another object is to provide a polyester composition having a clear appearance and capable of obtaining fibers with improved dyeability.

本発明者らは上記従来技術に鑑み鋭意検討を重ねた結果、本発明を完成するに至った。   As a result of intensive studies in view of the above prior art, the present inventors have completed the present invention.

すなわち本発明は、真比重5.0以上の金属元素の含有量が0〜10質量ppm以下である芳香族ポリエステルを主たる構成成分とし、該芳香族ポリエステルは下記一般式(I)で表わされる化合物と下記一般式(II)で表わされる芳香族多価カルボン酸若しくは無水物とを反応させた生成物であるチタン化合物を含有するものであり、ポリエステル組成物の全質量を基準として整色剤を0.1〜10質量ppm含有し、かつ該整色剤は、青色系整色用色素及び紫色系整色用色素を90:10〜40:60の質量比で含むものであり、窒素雰囲気下中、昇温速度10℃/分の条件で熱天秤にて測定したときの質量減少開始温度が250℃以上である整色用色素から選ばれるものであって、
更に平均粒径が0.01〜0.5μmの範囲であってかつ粒径が0.5μmを超える粒子の頻度分率が20質量%以下である不活性粒子を0.1〜5質量%含有し、当該不活性粒子が炭酸カルシウム、第三リン酸カルシウム、珪酸カルシウム、酸化ケイ素、酸化アルミニウム、シリコーンパウダー、カオリナイト、硫酸バリウム及び酸化チタンよりなる群から選ばれる少なくとも1つに該当するポリエステル組成物であって、該整色剤の濃度20mg/Lのクロロホルム溶液について光路長1cmにおいて波長380〜780nm領域の可視光吸収スペクトルを測定したとき、最大吸収波長が540〜600nmの範囲にあり、且つ該最大吸収波長における吸光度に対する下記各波長での吸光度の割合が下記数式(1)〜(4)のすべてを満たすポリエステル組成物、及びこれを溶融成形して得られる繊維であり、これによって上記の課題が解決できる。

Figure 0004634082
[上記式中、R、R、R及びRはそれぞれ互いに独立に、アルキル基又はフェニル基を示し、mは1〜4の整数を示し、かつmが2、3又は4の場合、2個、3個又は4個のR及びRは、互いに異なっていてもよい。前記アルキル基は1〜10個の炭素原子を含むものであることが好ましい。]
Figure 0004634082
[上記式中、qは2〜4の整数を表わす。] That is, the present invention mainly comprises an aromatic polyester having a content of a metal element having a true specific gravity of 5.0 or more and 0 to 10 mass ppm or less, and the aromatic polyester is a compound represented by the following general formula (I): And a titanium compound which is a product obtained by reacting an aromatic polyvalent carboxylic acid or an anhydride represented by the following general formula (II) with a color adjusting agent based on the total mass of the polyester composition. 0.1 to 10 ppm by mass, and the color adjusting agent contains a blue color adjusting dye and a purple color adjusting dye in a mass ratio of 90:10 to 40:60, under a nitrogen atmosphere. Medium, selected from color-modifying dyes having a mass decrease starting temperature of 250 ° C. or higher when measured with a thermobalance at a heating rate of 10 ° C./min,
Further, 0.1 to 5% by mass of inert particles having an average particle size in the range of 0.01 to 0.5 μm and a frequency fraction of particles having a particle size exceeding 0.5 μm is 20% by mass or less. And the inert particle is a polyester composition corresponding to at least one selected from the group consisting of calcium carbonate, tricalcium phosphate, calcium silicate, silicon oxide, aluminum oxide, silicone powder, kaolinite, barium sulfate and titanium oxide. When the visible light absorption spectrum in the wavelength range of 380 to 780 nm was measured for a chloroform solution having a concentration of 20 mg / L in the color adjusting agent at an optical path length of 1 cm, the maximum absorption wavelength was in the range of 540 to 600 nm, and the maximum The ratio of the absorbance at each wavelength below to the absorbance at the absorption wavelength satisfies all of the following formulas (1) to (4). The polyester composition and the fiber obtained by melt-molding the polyester composition, thereby solving the above-mentioned problems.
Figure 0004634082
[In the above formula, R 1 , R 2 , R 3 and R 4 each independently represent an alkyl group or a phenyl group, m represents an integer of 1 to 4, and m is 2, 3 or 4] Two, three or four R 2 and R 3 may be different from each other. The alkyl group preferably contains 1 to 10 carbon atoms. ]
Figure 0004634082
[In the above formula, q represents an integer of 2 to 4. ]

Figure 0004634082
[上記数式中、A400、A500、A600及びA700はそれぞれ400nm、500nm、600nm及び700nmでの可視光吸収スペクトルにおける吸光度を、Amaxは最大吸収波長での可視光吸収スペクトルにおける吸光度を表す。]
Figure 0004634082
[In the above formula, A 400 , A 500 , A 600 and A 700 represent the absorbance in the visible light absorption spectrum at 400 nm, 500 nm, 600 nm and 700 nm, respectively, and A max represents the absorbance in the visible light absorption spectrum at the maximum absorption wavelength. To express. ]

本発明によればポリエステルの優れた特性を保持しながら、SbやGe触媒を使用しないポリエステルの欠点であった色相の悪化を解消することができる。また、口金への付着物の発生量が非常に少なく、優れた成形性を有するポリエステルを提供することが出来、その結果、色相に優れ、深みのある染色性を有するポリエステル繊維を提供することができる。   According to the present invention, it is possible to eliminate the deterioration of hue, which is a drawback of polyesters that do not use Sb or Ge catalyst, while maintaining the excellent properties of polyesters. Further, it is possible to provide a polyester having excellent moldability with a very small amount of deposits on the die, and as a result, to provide a polyester fiber having excellent hue and deep dyeability. it can.

以下本発明を詳しく説明する。   The present invention will be described in detail below.

本発明における芳香族ポリエステルとは、テレフタル酸若しくはナフタレンジカルボン酸、又はこれらのエステル形成性誘導体に代表される芳香族ジカルボン酸成分と、グリコール成分を重縮合反応せしめて得られるポリエステルのことである。この芳香族ポリエステルは、共重合ポリエステルであってもよく、共重合成分として、芳香族ジカルボン酸成分とグリコール成分以外の成分、例えば脂肪族ジカルボン酸成分、芳香族ジヒドロキシ化合物、オキシカルボン酸成分が共重合されていても良い。   The aromatic polyester in the present invention is a polyester obtained by a polycondensation reaction of an aromatic dicarboxylic acid component typified by terephthalic acid or naphthalenedicarboxylic acid or an ester-forming derivative thereof with a glycol component. This aromatic polyester may be a copolymer polyester, and as a copolymer component, a component other than an aromatic dicarboxylic acid component and a glycol component, for example, an aliphatic dicarboxylic acid component, an aromatic dihydroxy compound, and an oxycarboxylic acid component are co-polymerized. It may be polymerized.

該芳香族ポリエステルとしては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリトリメチレンテレフタレート、ポリトリメチレンナフタレート、ポリテトラメチレンテレフタレート、ポリテトラメチレンナフタレートよりなる群から少なくとも1種選ばれるポリエステルであることが好ましく、これらの中でも特にポリエチレンテレフタレートを主たる構成成分とするポリエステルであることが好ましい。なお「主たる構成成分」とはポリエステルの全繰り返し単位の80モル%以上が芳香族ポリエステルであることを示す。   The aromatic polyester is preferably a polyester selected from the group consisting of polyethylene terephthalate, polyethylene naphthalate, polytrimethylene terephthalate, polytrimethylene naphthalate, polytetramethylene terephthalate, and polytetramethylene naphthalate. Of these, polyesters having polyethylene terephthalate as the main constituent are particularly preferred. The “main constituent component” indicates that 80 mol% or more of all repeating units of the polyester is an aromatic polyester.

本発明における真比重5.0以上の金属元素とは通常芳香族ポリエステル中に含有される触媒や金属系の整色剤、艶消剤等に含有されている金属化合物に由来するものである。具体的には、アンチモン、ゲルマニウム、マンガン、コバルト、セリウム、錫、亜鉛、鉛又はカドミウム等が該当する。これらに対し、チタン、アルミニウム、カルシウム、マグネシウム、ナトリウム又はカリウム等はここでいう真比重5.0以上の金属には該当しない。   The metal element having a true specific gravity of 5.0 or more in the present invention is derived from a metal compound usually contained in a catalyst, a metal color adjuster, a matting agent, etc. contained in an aromatic polyester. Specifically, antimony, germanium, manganese, cobalt, cerium, tin, zinc, lead, cadmium, and the like are applicable. On the other hand, titanium, aluminum, calcium, magnesium, sodium, potassium, and the like do not correspond to a metal having a true specific gravity of 5.0 or more.

本発明のポリエステル組成物は真比重5.0以上の金属元素の含有量が0〜10質量ppm以下である必要がある。含有される金属の種類によってその特徴、特性は変わるが、例えばアンチモン金属含有量が10質量ppmより多い場合、溶融紡糸時やフィルムの製膜時に異物となって口金やダイ周辺に付着し、長期間の連続成形性に悪影響を与える。ゲルマニウム金属の場合は、それ自体が高価な為、含有量が多くなると得られるポリエステル組成物の価格が上昇してしまい好ましくない。また、鉛、カドミウムなどの金属場合は金属元素そのものに毒性がある為、ポリエステル中に多量に含有していることは好ましくない。該真比重5.0以上の金属元素の含有量は0〜7質量ppm以下であることが好ましく、0〜5質量ppm以下であることが更に好ましい。   In the polyester composition of the present invention, the content of a metal element having a true specific gravity of 5.0 or more needs to be 0 to 10 mass ppm or less. The characteristics and properties vary depending on the type of metal contained. For example, when the content of antimony metal is more than 10 ppm by mass, it becomes a foreign substance during melt spinning or film formation and adheres to the periphery of the die or die. This will adversely affect the continuous formability of the period. In the case of germanium metal, since it is expensive per se, an increase in the content increases the price of the resulting polyester composition, which is not preferable. In addition, in the case of metals such as lead and cadmium, since the metal element itself is toxic, it is not preferable to contain a large amount in the polyester. The content of the metal element having a true specific gravity of 5.0 or more is preferably 0 to 7 mass ppm or less, and more preferably 0 to 5 mass ppm or less.

本発明のポリエステル組成物はその全質量を基準として整色剤を0.1〜10質量ppm含有する必要がある。なおその整色剤とは、有機の多芳香族環系染料又は顔料を表す。具体的には後述のように青色系整色用色素、紫色系整色用色素、赤色系整色用色素、橙色系整色用色素等が挙げられる。これらは単一種で用いても複数種を併用して用いても良い。後述のような可視光吸収スペクトルに関する要件を満たしやすい点において、複数種を併用することが好ましい。さらにその整色剤は、濃度20mg/Lのクロロホルム溶液について光路長1cmにおいて波長380〜780nm領域の可視光吸収スペクトルを測定したとき、最大吸収波長が540〜600nmの範囲にあり、且つ該最大吸収波長における吸光度に対する下記各波長での吸光度の割合が下記数式(1)〜(4)のすべてを満たす必要がある。   The polyester composition of the present invention needs to contain 0.1 to 10 mass ppm of the color adjusting agent based on the total mass. The color adjusting agent represents an organic polyaromatic ring dye or pigment. Specific examples thereof include a blue color adjusting dye, a purple color adjusting dye, a red color adjusting dye, and an orange color adjusting dye as described later. These may be used alone or in combination of two or more. It is preferable to use a plurality of types in combination in terms of easily satisfying the requirements regarding the visible light absorption spectrum as described later. Further, when the visible light absorption spectrum in the wavelength range of 380 to 780 nm was measured for a chloroform solution having a concentration of 20 mg / L at a light path length of 1 cm, the color adjusting agent had a maximum absorption wavelength in the range of 540 to 600 nm and the maximum absorption. The ratio of the absorbance at each wavelength below to the absorbance at the wavelength needs to satisfy all of the following formulas (1) to (4).

Figure 0004634082
[上記数式中、A400、A500、A600及びA700はそれぞれ400nm、500nm、600nm及び700nmでの可視光吸収スペクトルにおける吸光度を、Amaxは最大吸収波長での可視光吸収スペクトルにおける吸光度を表す。]
ここで可視光吸収スペクトルとは、通常分光光度計によって測定されるスペクトルであるが、本発明のポリエステル組成物に含有される整色剤溶液の可視光吸収スペクトルの最大吸収波長が540nm未満の場合は得られるポリエステル組成物の赤味が強くなり、また600nmを超える場合は得られるポリエステル組成物の青味が強くなる為好ましくない。最大吸収波長の範囲は545〜595nmの範囲が好ましく、550〜590nmの範囲が更に好ましい。
Figure 0004634082
[In the above formula, A 400 , A 500 , A 600 and A 700 represent the absorbance in the visible light absorption spectrum at 400 nm, 500 nm, 600 nm and 700 nm, respectively, and A max represents the absorbance in the visible light absorption spectrum at the maximum absorption wavelength. To express. ]
Here, the visible light absorption spectrum is a spectrum usually measured by a spectrophotometer, but when the maximum absorption wavelength of the visible light absorption spectrum of the color matching agent solution contained in the polyester composition of the present invention is less than 540 nm. Is not preferable because the reddishness of the obtained polyester composition becomes strong, and when it exceeds 600 nm, the blueness of the obtained polyester composition becomes strong. The range of the maximum absorption wavelength is preferably 545 to 595 nm, and more preferably 550 to 590 nm.

また本発明のポリエステル組成物に含有される整色剤の濃度20mg/Lのクロロホルム溶液について光路長1cmにおいて可視光吸収スペクトルを測定したとき、最大吸収波長での吸光度に対する上記に示す各波長での吸光度の割合が上記数式(1)〜(4)のいずれか一つでも外れる場合、得られるポリエステル組成物の着色が大きくなり好ましくない。上記式(1)〜(4)はそれぞれ下記数式(5)〜(8)のいずれか1つ以上の範囲にあることが好ましく、更に下記数式(5)〜(8)すべてを満たしていることが好ましい。   Further, when a visible light absorption spectrum was measured at an optical path length of 1 cm for a chloroform solution having a concentration of 20 mg / L of the color adjusting agent contained in the polyester composition of the present invention, the absorbance at each wavelength shown above with respect to the absorbance at the maximum absorption wavelength. When the absorbance ratio is out of any one of the above formulas (1) to (4), the resulting polyester composition is unfavorably colored. It is preferable that said formula (1)-(4) exists in the range of any one or more of following numerical formula (5)-(8), respectively, and also satisfy | fills all following numerical formula (5)-(8). Is preferred.

Figure 0004634082
[上記数式中、A400、A500、A600及びA700はそれぞれ400nm、500nm、600nm及び700nmでの可視光吸収スペクトルにおける吸光度を、Amaxは最大吸収波長での可視光吸収スペクトルにおける吸光度を表す。]
Figure 0004634082
[In the above formula, A 400 , A 500 , A 600 and A 700 represent the absorbance in the visible light absorption spectrum at 400 nm, 500 nm, 600 nm and 700 nm, respectively, and A max represents the absorbance in the visible light absorption spectrum at the maximum absorption wavelength. To express. ]

更に本発明のポリエステル組成物に含有される上述の整色剤の含有量が、0.1質量ppm未満の場合、ポリエステル組成物の黄色味が強くなる。一方、10質量ppmを超える場合、明度が弱くなり見た目に黒味が強くなる為好ましくない。該整色剤の含有量は0.3質量ppm〜9質量ppmの範囲が好ましく、0.5〜8質量ppmの範囲にあることが更に好ましい。   Furthermore, when content of the above-mentioned color adjusting agent contained in the polyester composition of this invention is less than 0.1 mass ppm, the yellowishness of a polyester composition will become strong. On the other hand, if it exceeds 10 ppm by mass, the brightness becomes weak and the blackness becomes strong visually, which is not preferable. The content of the color adjusting agent is preferably in the range of 0.3 mass ppm to 9 mass ppm, and more preferably in the range of 0.5 to 8 mass ppm.

本発明に使用する整色剤は、窒素雰囲気下中、昇温速度10℃/分の条件で熱天秤にて測定したときの質量減少開始温度が250℃以上である整色用色素から選ばれることが好ましい。ここで、熱天秤で測定したときの質量減少開始温度とは、JIS K−7120に記載の質量減少開始温度(T)のことであり、整色剤が有している耐熱性の指標となる。該質量減少開始温度が250℃未満である場合、整色剤の耐熱性が不十分であることから最終的に得られるポリエステル組成物の着色の原因となり好ましくない。該質量減少開始温度は300℃以上であることが更に好ましい。また芳香族ポリエステルが溶融状態にある温度下で分解しないことが更に好ましい。 The color adjusting agent used in the present invention is selected from color adjusting dyes having a mass decrease starting temperature of 250 ° C. or higher when measured with a thermobalance in a nitrogen atmosphere at a temperature rising rate of 10 ° C./min. It is preferable. Here, the mass decrease start temperature when measured with a thermobalance is the mass decrease start temperature (T 1 ) described in JIS K-7120, and is a heat resistance index possessed by the color adjuster. Become. When the mass decrease starting temperature is less than 250 ° C., the heat resistance of the color adjusting agent is insufficient, which is not preferable because it causes coloring of the finally obtained polyester composition. The mass decrease starting temperature is more preferably 300 ° C. or higher. It is further preferable that the aromatic polyester does not decompose at a temperature at which it is in a molten state.

本発明のポリエステル組成物は、平均粒径が0.01〜0.5μmの範囲であって、かつ粒径が0.5μmを超える粒子の頻度分率が20質量%以下である不活性粒子をポリエステル組成物の全質量を基準として0.1〜5質量%含有している必要がある。   The polyester composition of the present invention comprises inert particles having an average particle size in the range of 0.01 to 0.5 μm and a frequency fraction of particles having a particle size exceeding 0.5 μm of 20% by mass or less. It is necessary to contain 0.1-5 mass% on the basis of the total mass of the polyester composition.

不活性粒子としては、炭酸カルシウム、リン酸カルシウム、珪酸カルシウム、酸化ケイ素、酸化アルミニウム、シリコーンパウダー、カオリナイト、硫酸バリウム、酸化チタン等が上げられ、これらよりなる群から少なくとも1つに該当することが好ましい。また不活性粒子は単一種であっても、複数種を併用してもよい。更にこれらの中でも特に炭酸カルシウム、リン酸カルシウム、シリカゾルが好ましく使用される。また、リン酸カルシウムとしては活性水素原子を有さない第三リン酸カルシウムが特に好ましく使用される。   Examples of the inert particles include calcium carbonate, calcium phosphate, calcium silicate, silicon oxide, aluminum oxide, silicone powder, kaolinite, barium sulfate, titanium oxide, and the like, and preferably corresponds to at least one from the group consisting of these. . Further, the inert particles may be a single type or a combination of multiple types. Of these, calcium carbonate, calcium phosphate, and silica sol are particularly preferably used. As calcium phosphate, tricalcium phosphate having no active hydrogen atom is particularly preferably used.

本発明における不活性粒子は平均粒径が0.01〜0.5μmの範囲である必要がある。平均粒径が0.5μmを超えるとゾル又は芳香族ポリエステル反応原液中等の製造工程中で沈降しやすく、安定に供給・分散することができない。一方、平均粒径が0.01μm未満では粒子の比表面積が大きすぎ、芳香族ポリエステル反応中に容易に凝集粒子を形成し、製糸時の断糸が増大するため、好ましくない。該不活性粒子の平均粒径は0.02〜0.4μmの範囲が好ましく、0.03〜0.3μmの範囲が更に好ましい。   The inert particles in the present invention need to have an average particle size in the range of 0.01 to 0.5 μm. If the average particle size exceeds 0.5 μm, it tends to settle during the production process such as in the sol or aromatic polyester reaction stock solution and cannot be stably supplied and dispersed. On the other hand, an average particle size of less than 0.01 μm is not preferable because the specific surface area of the particles is too large, and aggregated particles are easily formed during the aromatic polyester reaction, and the yarn breakage during yarn production increases. The average particle diameter of the inert particles is preferably in the range of 0.02 to 0.4 μm, and more preferably in the range of 0.03 to 0.3 μm.

本発明における不活性粒子においては、粒径が0.5μmを超える粒子の頻度分率が20質量%以下である必要がある。粒径が0.5μmを超える粒子の頻度分率が20質量%を超えると、得られたポリエステル組成物を製糸化後、アルカリ減量しても繊維表面に形成される微細孔が大きくなり、染色時の深色効果が得られないので好ましくない。該不活性粒子中の粒径が0.5μmを超える粒子の頻度分率は15質量%以下の範囲が好ましく10質量%以下の範囲が更に好ましい。   In the inert particles in the present invention, the frequency fraction of particles having a particle size exceeding 0.5 μm needs to be 20% by mass or less. When the frequency fraction of particles having a particle size exceeding 0.5 μm exceeds 20% by mass, fine pores formed on the fiber surface become large even after alkali reduction after the obtained polyester composition is made into yarn, and dyeing is performed. Since the deep color effect at the time cannot be obtained, it is not preferable. The frequency fraction of particles having a particle size exceeding 0.5 μm in the inert particles is preferably in the range of 15% by mass or less, and more preferably in the range of 10% by mass or less.

本発明における不活性粒子含有量は0.1〜5質量%の範囲にある必要がある。該含有量が0.1質量%未満の場合、最終的に得られる繊維の深色染色性が不十分となり、また、5質量%を超える場合は得られるポリエステル繊維の強度や耐熱性、耐光性が低下する為好ましくない。該粒子含有量は0.15〜3質量%の範囲が好ましく、0.2〜1.0質量%の範囲が更に好ましい。   Inert particle content in this invention needs to exist in the range of 0.1-5 mass%. When the content is less than 0.1% by mass, the deep color dyeability of the finally obtained fiber becomes insufficient, and when it exceeds 5% by mass, the strength, heat resistance, and light resistance of the obtained polyester fiber are insufficient. Is unfavorable because of lowering. The particle content is preferably in the range of 0.15 to 3% by mass, more preferably in the range of 0.2 to 1.0% by mass.

本発明のポリエステル組成物の固有粘度(溶媒:オルトクロロフェノール、測定温度:35℃)は特に制限は無いが、通常、繊維やフィルム、ボトル等の樹脂成形品において通常使用することが出来る範囲であることが好ましく、具体的には0.40〜1.00の範囲にあることが好ましい。また、該ポリエステル組成物は固相重合によって固有粘度を高めることも好ましく実施される。   The intrinsic viscosity (solvent: orthochlorophenol, measurement temperature: 35 ° C.) of the polyester composition of the present invention is not particularly limited, but is usually within a range that can be normally used in resin molded products such as fibers, films, and bottles. It is preferable that there exists, and it is preferable that it exists in the range of 0.40-1.00 specifically. In addition, it is also preferable to increase the intrinsic viscosity of the polyester composition by solid phase polymerization.

本発明のポリエステル組成物の色相は特に厳密な制限はないが、本発明に使用されるべき整色剤が添加されていないと、得られるポリエステルの色相が黄色味を帯びた色相となり好ましくない。該ポリエステル組成物の色相は、140℃、2時間熱処理により結晶化を進めた後のL表色系におけるカラーa値が−9〜0、カラーb値が−2〜10の範囲にあることが好ましい。該カラー値は含有される整色剤の量によって変化してくるが、カラーa値が−9より小さい場合、ポリエステル組成物は緑色味が強くなり、0より大きい場合は赤味が強くなり好ましくない。またカラーb値が−2より小さい場合、ポリエステル組成物は青味が強くなり、10より大きい場合は黄色味が強くなるため好ましくない。 The hue of the polyester composition of the present invention is not particularly limited. However, if the color adjusting agent to be used in the present invention is not added, the hue of the resulting polyester becomes a yellowish hue, which is not preferable. The hue of the polyester composition is such that the color a * value is −9 to 0 and the color b * value is −2 to 2 in the L * a * b * color system after crystallizing by heat treatment at 140 ° C. for 2 hours. A range of 10 is preferable. The color value varies depending on the amount of the color adjusting agent contained. When the color a * value is less than −9, the polyester composition has a strong green color, and when the color value is greater than 0, the red color becomes strong. It is not preferable. Further, when the color b * value is less than −2, the polyester composition has a strong bluish color.

また本発明におけるポリエステル組成物は、必要に応じて少量の添加剤、例えば酸化防止剤、固相重合促進剤、蛍光増白剤、帯電防止剤、抗菌剤、紫外線吸収剤、光安定剤、熱安定剤、遮光剤又は艶消剤等を含んでいてもよい。   Further, the polyester composition in the present invention contains a small amount of additives as necessary, for example, an antioxidant, a solid phase polymerization accelerator, a fluorescent whitening agent, an antistatic agent, an antibacterial agent, an ultraviolet absorber, a light stabilizer, a heat stabilizer. A stabilizer, a light-shielding agent, a matting agent, or the like may be included.

本発明における芳香族ポリエステルの製造方法は、通常知られているポリエステルの製造方法が用いられる。すなわち、まずテレフタル酸の如きジカルボン酸成分とエチレングリコールの如きグリコール成分とを直接エステル化反応させる、又はテレフタル酸ジメチル(以下DMTと称することがある。)の如きジカルボン酸成分の低級アルキルエステルとエチレングリコールの如きグリコール成分とをエステル交換反応させ、ジカルボン酸のグリコールエステル及び/又はその低重合体を製造する。次いでこの反応生成物を重縮合触媒の存在下で減圧加熱して所定の重合度になるまで重縮合反応させることによって目的とする芳香族ポリエステルが製造される。芳香族ポリエステル以外の他のポリエステルを含む場合についても、芳香族ポリエステルと共重合する、若しくは芳香族ポリエステル以外の他のポリエステルについて通常知られている製造方法を用い、重縮合後芳香族ポリエステルとブレンドする等の手法を採用することができる。   As a method for producing an aromatic polyester in the present invention, a conventionally known polyester production method is used. That is, first, a dicarboxylic acid component such as terephthalic acid is directly esterified with a glycol component such as ethylene glycol, or a lower alkyl ester of a dicarboxylic acid component such as dimethyl terephthalate (hereinafter sometimes referred to as DMT) and ethylene. A glycol component such as glycol is transesterified to produce a glycol ester of dicarboxylic acid and / or a low polymer thereof. Then, the reaction product is heated under reduced pressure in the presence of a polycondensation catalyst and subjected to a polycondensation reaction until a predetermined degree of polymerization is obtained, thereby producing the desired aromatic polyester. Also in the case of containing other polyesters other than aromatic polyester, blend with aromatic polyester after polycondensation using copolymerization with aromatic polyester or using a production method generally known for other polyesters other than aromatic polyester It is possible to adopt a technique such as.

更に詳説すると、芳香族ポリエステルを製造する際において用いる重縮合触媒は、チタン化合物及び/又はアルミニウム化合物であることが好ましい。ここで、チタン化合物としては特に限定されず、ポリエステルの重縮合触媒として一般的なチタン化合物、例えば、酢酸チタンやテトラ−n−ブトキシチタンなどが挙げられる。チタン化合物としてより好ましいのは、下記一般式(I)で表わされるチタン化合物、一般式(I)で表わされるチタン化合物と下記一般式(II)で表わされる芳香族多価カルボン酸若しくはその無水物とを反応させた生成物、又は下記一般式(III)で表されるチタン化合物を用いることである。   More specifically, the polycondensation catalyst used when producing the aromatic polyester is preferably a titanium compound and / or an aluminum compound. Here, it does not specifically limit as a titanium compound, A titanium compound common as a polycondensation catalyst of polyester, for example, titanium acetate, tetra-n-butoxy titanium, etc. are mentioned. More preferable as the titanium compound is a titanium compound represented by the following general formula (I), a titanium compound represented by the general formula (I) and an aromatic polyvalent carboxylic acid represented by the following general formula (II) or an anhydride thereof. Or a titanium compound represented by the following general formula (III).

Figure 0004634082
[上記式中、R、R、R及びRはそれぞれ同一若しくは異なって、炭素数1〜10のアルキル基又はフェニル基を示し、mは1〜4の整数を示し、かつmが2、3又は4の場合、2個、3個又は4個のR及びRは、それぞれ同一であっても異なっていてもどちらでもよい。]
Figure 0004634082
[Wherein R 1 , R 2 , R 3 and R 4 are the same or different and each represents an alkyl group having 1 to 10 carbon atoms or a phenyl group, m represents an integer of 1 to 4, and m represents In the case of 2, 3 or 4, 2, 3 or 4 R 2 and R 3 may be the same or different from each other. ]

Figure 0004634082
[上記式中、qは2〜4の整数を表わす。]
Figure 0004634082
[In the above formula, q represents an integer of 2 to 4. ]

Figure 0004634082
[上記式中、Xは炭素数1〜20のアルキル基、アルコキシ基、または炭素数6〜20のアリール基、アリールオキシ基である。]
Figure 0004634082
[In the above formula, X represents an alkyl group having 1 to 20 carbon atoms, an alkoxy group, or an aryl group or aryloxy group having 6 to 20 carbon atoms. ]

一方、アルミニウム化合物としても特に限定はないが、触媒活性の点で有機アルミニウム化合物であることが好ましく、中でもアルミニウムアセチルアセトネートなどが安定で取扱いが容易な点において優れているので好ましい。また、これらチタン化合物とアルミニウム化合物はそれぞれの化合物を単独で用いても、両化合物を併用して用いても、又はそれぞれの化合物を2種類以上を併用しても良いが、チタン化合物を単独で用いるのが特に好ましい。なかでも最も好ましいのが上記一般式(I)で表わされる化合物、又は一般式(I)で表わされる化合物と上記一般式(II)で表わされる芳香族多価カルボン酸若しくはその無水物とを反応させた生成物を単独で用いることである。   On the other hand, the aluminum compound is not particularly limited, but is preferably an organoaluminum compound from the viewpoint of catalytic activity. Among them, aluminum acetylacetonate is preferable because it is stable and easy to handle. In addition, these titanium compounds and aluminum compounds may be used alone or in combination of both compounds, or two or more of each compound may be used in combination. It is particularly preferable to use it. Of these, the compound represented by the above general formula (I) or the compound represented by the general formula (I) is preferably reacted with the aromatic polycarboxylic acid represented by the above general formula (II) or its anhydride. The product obtained is used alone.

一般式(I)で表わされるチタン化合物の中でテトラアルコキサイドチタンおよび/またはテトラフェノキサイドチタンとしては、R〜Rがアルキル基および/またはフェニル基であれば特に限定されないが、テトライソプロポキシチタン、テトラ−n−プロポキシチタン、テトラ−n−ブトキシチタン、テトラエトキシチタン又はテトラフェノキシチタンなどが好ましく用いられる。また、かかるチタン化合物と反応させる一般式(II)で表される芳香族多価カルボン酸またはその無水物としては、フタル酸、トリメリット酸、ヘミメリット酸若しくはピロメリット酸又はこれらの酸の無水物が好ましく用いられる。上記チタン化合物と芳香族多価カルボン酸又はその無水物とを反応させる場合には、溶媒に芳香族多価カルボン酸又はその無水物の全部又は一部を溶解し、これにチタン化合物を滴下し、0〜200℃の温度で30分以上反応させれば良い。また必要に応じてチタン化合物滴下後、残りの芳香族多価カルボン酸又はその無水物を加えればよい。 Among the titanium compounds represented by the general formula (I), tetraalkoxide titanium and / or tetraphenoxide titanium are not particularly limited as long as R 1 to R 4 are an alkyl group and / or a phenyl group. Isopropoxy titanium, tetra-n-propoxy titanium, tetra-n-butoxy titanium, tetraethoxy titanium, tetraphenoxy titanium and the like are preferably used. In addition, the aromatic polyvalent carboxylic acid represented by the general formula (II) to be reacted with the titanium compound or an anhydride thereof includes phthalic acid, trimellitic acid, hemimellitic acid, pyromellitic acid, or anhydrous anhydrides of these acids. The product is preferably used. When the titanium compound and the aromatic polyvalent carboxylic acid or anhydride thereof are reacted, all or part of the aromatic polyvalent carboxylic acid or anhydride thereof is dissolved in a solvent, and the titanium compound is dropped into this. What is necessary is just to make it react for 30 minutes or more at the temperature of 0-200 degreeC. Moreover, what is necessary is just to add the remaining aromatic polyhydric carboxylic acid or its anhydride after dripping a titanium compound as needed.

本発明のポリエステル組成物は上述した通り、チタン化合物及び/又はアルミニウム化合物を重縮合触媒として用いられていることが好ましいが、更に耐熱性や色相を改善すべく、リン化合物を安定剤として併用することが好ましい。該リン化合物としては特に制限はないが、好ましくはリン酸、亜リン酸、ホスホン酸若しくはホスフィン酸又はこれらのアルキル、アリールエステル、ホスホノアセテート系化合物が特に好ましい。該リン化合物のポリエステル組成物中への添加方法は、エステル交換反応又はエステル化反応が実質的に終了した後であればいつでもよいが、通常はエステル化反応、若しくはエステル交換反応が終了した後すぐに添加し、その後重縮合反応せしめることが好ましい。   As described above, the polyester composition of the present invention preferably uses a titanium compound and / or an aluminum compound as a polycondensation catalyst, but further uses a phosphorus compound as a stabilizer in order to further improve heat resistance and hue. It is preferable. Although there is no restriction | limiting in particular as this phosphorus compound, Preferably phosphoric acid, phosphorous acid, phosphonic acid, or phosphinic acid or these alkyl, aryl ester, and a phosphono acetate type compound are especially preferable. The phosphorus compound may be added to the polyester composition at any time after the ester exchange reaction or the esterification reaction is substantially completed, but usually immediately after the esterification reaction or the ester exchange reaction is completed. The polycondensation reaction is preferably carried out thereafter.

さらに本発明のポリエステル組成物の製造方法は上述した芳香族ポリエステル製造工程の任意の段階で整色剤を添加することによって製造されることが好ましい。なかでも整色剤が芳香族ポリエステル製造工程における重縮合反応工程が終了するまでの任意の段階で添加されることが更に好ましい。特にエステル化反応もしくはエステル交換反応が終了した後に整色剤を添加することが最も好ましい。   Furthermore, it is preferable that the manufacturing method of the polyester composition of this invention is manufactured by adding a color adjusting agent in the arbitrary steps of the aromatic polyester manufacturing process mentioned above. Especially, it is still more preferable that a color adjusting agent is added in the arbitrary steps until the polycondensation reaction process in an aromatic polyester manufacturing process is complete | finished. In particular, it is most preferable to add the color adjusting agent after completion of the esterification reaction or transesterification reaction.

本発明のポリエステル組成物の製造方法においては、整色剤として青色系整色用色素と紫色系整色用色素を質量比90:10〜40:60の範囲で併用すること、又は青色系整色用色素と赤色系又は橙色系整色用色素を質量比98:2〜80:20の範囲で併用することが好ましい。ここで青色系整色用色素とは、一般に市販されている整色用色素の中で「Blue」と表記されているものであって、具体的には溶液中の可視光吸収スペクトルにおける最大吸収波長が580〜620nm程度にあるものを示す。同様に紫色系整色用色素とは市販されている整色用色素の中で「Violet」と表記されているものであって、具体的には溶液中の可視光吸収スペクトルにおける最大吸収波長が560〜580nm程度にあるものを示す。赤色系整色用色素とは市販されている整色用色素の中で「Red」と表記されているものであって、具体的には溶液中の可視光吸収スペクトルにおける最大吸収波長が480〜520nm程度にあるものである。橙色系系整色用色素とは市販されている整色用色素の中で「Orange」と表記されているものである。   In the method for producing a polyester composition of the present invention, a blue color adjusting dye and a purple color adjusting dye are used in combination in a mass ratio of 90:10 to 40:60, or a blue color adjusting agent. It is preferable to use the color dye and the red or orange color adjusting dye in a mass ratio of 98: 2 to 80:20. Here, the blue color-modifying dye is generally indicated as “Blue” among commercially available color-adjusting dyes, and specifically, the maximum absorption in the visible light absorption spectrum in the solution. The wavelength is about 580 to 620 nm. Similarly, the purple color-modifying dye is the one described as “Violet” among commercially available color-adjusting dyes, and specifically has a maximum absorption wavelength in a visible light absorption spectrum in a solution. The thing in about 560-580 nm is shown. The red color-modifying dyes are those listed as “Red” among commercially available color-adjusting dyes. Specifically, the maximum absorption wavelength in the visible light absorption spectrum in the solution is 480 to 480. It is about 520 nm. The orange-based color-adjusting colorant is the one described as “Orange” among commercially available color-adjusting colorants.

これらの整色用色素としては油溶染料が特に好ましく、具体的な例としては、青色系整色用色素には、C.I.Solvent Blue 11、C.I.Solvent Blue 25、C.I.Solvent Blue 35、C.I.Solvent Blue 36、C.I.Solvent Blue 45 (Telasol Blue RLS)、C.I.Solvent Blue 55、C.I.Solvent Blue 63、C.I.Solvent Blue 78、C.I.Solvent Blue 83、C.I.Solvent Blue 87、C.I.Solvent Blue 94等が挙げられる。紫色系整色用色素には、C.I.Solvent Violet 8、C.I.Solvent Violet 13、C.I.Solvent Violet 14、C.I.Solvent Violet 21、C.I.Solvent Violet 27、C.I.Solvent Violet 28、C.I.Solvent Violet 36等が挙げられる。赤色系整色用色素には、C.I.Solvent Red 24、C.I.Solvent Red 25、C.I.Solvent Red 27、C.I.Solvent Red 30、C.I.Solvent Red 49、C.I.Solvent Red 52、C.I.Solvent Red 100、C.I.Solvent Red 109、C.I.Solvent Red 111、C.I.Solvent Red 121、C.I.Solvent Red 135、C.I.Solvent Red 168、C.I.Solvent Red 179等が例示される。橙色系整色用色素には、C.I.Solvent Orange 60等が挙げられる。   As these color adjusting pigments, oil-soluble dyes are particularly preferable. Specific examples of blue color adjusting pigments include C.I. I. Solvent Blue 11, C.I. I. Solvent Blue 25, C.I. I. Solvent Blue 35, C.I. I. Solvent Blue 36, C.I. I. Solvent Blue 45 (Telasol Blue RLS), C.I. I. Solvent Blue 55, C.I. I. Solvent Blue 63, C.I. I. Solvent Blue 78, C.I. I. Solvent Blue 83, C.I. I. Solvent Blue 87, C.I. I. Solvent Blue 94 and the like. Examples of purple color adjusting pigments include C.I. I. Solvent Violet 8, C.I. I. Solvent Violet 13, C.I. I. Solvent Violet 14, C.I. I. Solvent Violet 21, C.I. I. Solvent Violet 27, C.I. I. Solvent Violet 28, C.I. I. Solvent Violet 36 etc. are mentioned. Examples of red color adjusting pigments include C.I. I. Solvent Red 24, C.I. I. Solvent Red 25, C.I. I. Solvent Red 27, C.I. I. Solvent Red 30, C.I. I. Solvent Red 49, C.I. I. Solvent Red 52, C.I. I. Solvent Red 100, C.I. I. Solvent Red 109, C.I. I. Solvent Red 111, C.I. I. Solvent Red 121, C.I. I. Solvent Red 135, C.I. I. Solvent Red 168, C.I. I. Solvent Red 179 etc. are illustrated. Examples of the orange color adjusting dye include C.I. I. Solvent Orange 60 etc. are mentioned.

ここで青色系整色用色素と紫色系整色用色素を併用する場合、質量比90:10より青色系整色用色素の質量比が大きい場合は、得られるポリエステル組成物のカラーa値が小さくなって緑色を呈し、40:60より青色整色用色素の質量比が小さい場合は、カラーa値が大きくなって赤色を呈してくる為好ましくない。同様に青色系整色用色素と赤色系又は橙色系整色用色素を併用する場合、質量比98:2より青色系整色用色素の質量比が大きい場合は、得られるポリエステル組成物のカラーa値が小さくなって緑色を呈し、80:20より青色整色用色素の質量比が小さい場合は、カラーa値が大きくなって赤色を呈してくる為好ましくない。該整色用色素は、青色系整色用色素と紫色系整色用色素を質量比80:20〜50:50の範囲で併用すること、あるいは青色系整色用色素と赤色系または橙色系整色用色素を質量比95:5〜90:10の範囲で併用することが更に好ましい。 Here, when the blue color adjusting dye and the purple color adjusting dye are used in combination, when the mass ratio of the blue color adjusting dye is larger than the mass ratio 90:10, the color a * value of the obtained polyester composition Is small and exhibits a green color, and when the mass ratio of the blue color adjusting pigment is smaller than 40:60, the color a * value increases and a red color is exhibited, which is not preferable. Similarly, in the case where a blue color adjusting dye and a red or orange color adjusting dye are used in combination, when the mass ratio of the blue color adjusting dye is larger than 98: 2, the color of the resulting polyester composition If the a * value is small and green, and the mass ratio of the blue color-changing dye is smaller than 80:20, the color a * value becomes large and red is not preferable. The color adjusting dye is a combination of a blue color adjusting dye and a purple color adjusting dye in a mass ratio of 80:20 to 50:50, or a blue color adjusting dye and a red or orange color. It is more preferable to use the color adjusting dye in a mass ratio of 95: 5 to 90:10.

さらに本発明のポリエステル繊維を製造する時の製造方法としては特に限定はなく、従来公知の溶融紡糸方法が用いられる。例えば乾燥したポリエステル組成物を270℃〜300℃の範囲で溶融紡糸して製造することが好ましく、溶融紡糸の引き取り速度は400〜5000m/分で紡糸することが好ましい。紡糸速度がこの範囲にあると、得られる繊維の強度も十分なものであると共に、安定して巻き取りを行うこともできる。また紡糸時に使用する口金の形状についても特に制限は無く、円形、異形、中実、中空などのいずれも採用することが出来る。また延伸は未延伸ポリエステル繊維を一旦巻き取ってから行う、あるいは巻き取ることなく連続的に行うことによって、延伸糸を得ることができる。更に本発明のポリエステル繊維は風合や染色性を高める為に、アルカリ減量処理も好ましく実施されるが、特に得られたポリエステル繊維を用いて織編物の状態にした後にアルカリ減量処理を施すことにより、本発明の課題である染色性を改善することが可能となる。   Further, the production method for producing the polyester fiber of the present invention is not particularly limited, and a conventionally known melt spinning method is used. For example, it is preferable to produce the dried polyester composition by melt spinning at a temperature in the range of 270 ° C. to 300 ° C., and the spinning speed of the melt spinning is preferably 400 to 5000 m / min. When the spinning speed is in this range, the strength of the obtained fiber is sufficient, and the winding can be stably performed. Further, the shape of the die used at the time of spinning is not particularly limited, and any of circular, irregular, solid and hollow can be adopted. Further, the drawn yarn can be obtained by drawing the undrawn polyester fiber once or by continuously drawing it without winding. Furthermore, the polyester fiber of the present invention is preferably subjected to an alkali weight reduction treatment in order to improve the texture and dyeability. In particular, the polyester fiber is made into a woven or knitted fabric using the obtained polyester fiber and then subjected to the alkali weight loss treatment. It becomes possible to improve the dyeability which is the subject of the present invention.

本発明をさらに下記実施例により具体的に説明するが、本発明の範囲はこれら実施例により限定されるものではない。尚、固有粘度、色相、チタン含有量及び紡糸口金に発生する付着物の層等については、下記記載の方法により測定した。   The present invention will be further described in the following examples, but the scope of the present invention is not limited by these examples. The intrinsic viscosity, hue, titanium content, and the layer of deposits generated on the spinneret were measured by the methods described below.

(ア)固有粘度:
ポリエステル組成物チップを100℃、60分間でオルトクロロフェノールに溶解した希薄溶液を、35℃でウベローデ粘度計を用いて測定した値から求めた。
(A) Intrinsic viscosity:
A dilute solution obtained by dissolving a polyester composition chip in orthochlorophenol at 100 ° C. for 60 minutes was determined from a value measured at 35 ° C. using an Ubbelohde viscometer.

(イ)ジエチレングリコール含有量:
ヒドラジンヒドラート(抱水ヒドラジン)を用いてポリエステル組成物チップを分解し、この分解生成物中のジエチレングリコールの含有量をガスクロマトグラフィ−(ヒューレットパッカード社製(HP6850型))を用いて測定した。
(A) Diethylene glycol content:
The polyester composition chip was decomposed using hydrazine hydrate (hydrated hydrazine), and the content of diethylene glycol in the decomposed product was measured using gas chromatography (manufactured by Hewlett-Packard (HP 6850 type)).

(ウ)色相(L値、a値、b値):
・チップ:
ポリエステル組成物チップを285℃、真空下で10分間溶融し、これをアルミニウム板上で厚さ3.0±1.0mmのプレートに成形後ただちに氷水中で急冷し、該プレートを140℃、1時間乾燥結晶化処理を行った。その後、色差計調整用の白色標準プレート上に置き、プレート表面のハンターL及びbを、ミノルタ株式会社製ハンター型色差計(CR−200型)を用いて測定した。Lは明度を示し、その数値が大きいほど明度が高いことを示し、bはその値が大きいほど黄着色の度合いが大きいことを示す。また他の詳細な操作はJIS Z−8729に準じて行った。
・繊維:
繊維を常法により筒編とした後、編地を4枚重ね合わせ、ミノルタ株式会社製ハンター型色差計(CR−200型)を用いて測定した。
(C) Hue (L * value, a * value, b * value):
・ Chip:
The polyester composition chip was melted at 285 ° C. under vacuum for 10 minutes, formed into a plate having a thickness of 3.0 ± 1.0 mm on an aluminum plate, and immediately cooled in ice water. A time dry crystallization treatment was performed. Then, it placed on the white standard plate for color difference adjustment, and measured Hunter L * and b * of the plate surface using Minolta Co., Ltd. Hunter type color difference meter (CR-200 type). L * indicates lightness, and the larger the value, the higher the lightness, and b * the greater the value, the greater the degree of yellowing. Other detailed operations were performed according to JIS Z-8729.
·fiber:
After making the fiber into a tubular knitting by a conventional method, four knitted fabrics were overlapped and measured using a Hunter type color difference meter (CR-200 type) manufactured by Minolta Co., Ltd.

(エ)真比重5.0以上の金属成分定性分析:
ポリエステル組成物サンプルを硫酸アンモニウム、硫酸、硝酸、過塩素酸とともに混合して約300℃で9時間湿式分解後、蒸留水で希釈し、理学電機工業株式会社製ICP発光分析装置(JY170 ULTRACE)を用いて定性分析し、真比重5.0以上の金属元素の有無を確認した。1質量ppm以上の存在が確認された金属元素について、その元素含有量を示した。
(D) Metal component qualitative analysis with true specific gravity of 5.0 or more:
A polyester composition sample was mixed with ammonium sulfate, sulfuric acid, nitric acid, and perchloric acid, wet-decomposed at about 300 ° C. for 9 hours, diluted with distilled water, and then used with an ICP emission analyzer (JY170 ULTRACE) manufactured by Rigaku Corporation. Qualitative analysis was conducted to confirm the presence or absence of a metal element having a true specific gravity of 5.0 or more. About the metal element by which presence of 1 mass ppm or more was confirmed, the element content was shown.

(オ)チタン、アルミニウム、アンチモン、リン含有量:
ポリエステル組成物中のポリエステルに可溶性のチタン元素量、アルミニウム元素量、アンチモン元素量、リン元素量は粒状のポリエステル組成物サンプルをスチール板上で加熱溶融した後、圧縮プレス機で平坦面を有する試験成形体を作成し、蛍光X線装置(理学電機工業株式会社製 ZSX100e型)を用いて求めた。ただし、艶消剤として酸化チタンを添加したポリエステル組成物中のチタン元素量については、ポリエステル組成物中サンプルをオルトクロロフェノールに溶解した後、0.5規定塩酸で抽出操作を行った。この抽出液について日立製作所製Z−8100型原子吸光光度計を用いて定量を行った。ここで0.5規定塩酸抽出後の抽出液中に酸化チタンの分散が確認された場合は遠心分離機で酸化チタン粒子を沈降させた。次に傾斜法により上澄み液のみを回収して、同様の操作を行った。これらの操作によりポリエステル組成物中に酸化チタンを含有していてもポリエステルに可溶性のチタン元素の定量が可能となる。
(E) Titanium, aluminum, antimony, phosphorus content:
Polyester composition soluble titanium element amount, aluminum element amount, antimony element amount, phosphorus element amount is a test in which a granular polyester composition sample is heated and melted on a steel plate and then flattened with a compression press. A molded body was prepared and obtained using a fluorescent X-ray apparatus (ZSX100e type, manufactured by Rigaku Corporation). However, regarding the amount of elemental titanium in the polyester composition to which titanium oxide was added as a matting agent, a sample in the polyester composition was dissolved in orthochlorophenol, and then extracted with 0.5 N hydrochloric acid. The extract was quantified using a Hitachi Z-8100 atomic absorption spectrophotometer. Here, when dispersion of titanium oxide was confirmed in the extract after extraction with 0.5 N hydrochloric acid, titanium oxide particles were precipitated using a centrifuge. Next, only the supernatant was recovered by the gradient method, and the same operation was performed. By these operations, even if the polyester composition contains titanium oxide, the titanium element soluble in the polyester can be quantified.

(カ)紡糸口金に発生する付着物の層:
ポリエステル組成物をチップとなし、これを290℃で溶融し、孔径0.15mmφ、孔数12個の紡糸口金から吐出し、600m/分で2日間紡糸し、口金の吐出口外縁に発生する付着物の層の高さを測定した。この付着物層の高さが大きいほど吐出されたポリエステル組成物の溶融物のフィラメント状流にベンディングが発生しやすく、このポリエステルの成形性は低くなる。すなわち、紡糸口金に発生する付着物層の高さは、当該ポリエステルの成形性の指標である。
(F) Layer of deposits generated on the spinneret:
The polyester composition is made into chips, melted at 290 ° C., discharged from a spinneret having a hole diameter of 0.15 mmφ and 12 holes, spun at 600 m / min for 2 days, and generated at the outer edge of the discharge outlet of the base. The height of the kimono layer was measured. As the height of the adhered layer increases, bending tends to occur in the filamentous flow of the melted polyester composition, and the moldability of the polyester decreases. That is, the height of the deposit layer generated in the spinneret is an index of the moldability of the polyester.

(キ)深色染色性評価:
繊維を布帛に形成した試験片を、沸騰した0.5質量%水酸化ナトリウム水溶液に浸して、布帛の質量減少率が20%となるまでアルカリ減量処理を施した。取り出した布帛を水洗後、住友化学工業製分散染料Sumikaron Navy Blue S−2GLの2%owf溶液で浴比1:50に調製し、130℃で1時間染色した。染色布をグレタマクベス社製測色色差計(CE−3000型)により測色し、下記のクベルカ・ムンクの式により、深色度(K/S)を求めた。
(G) Evaluation of deep color dyeability:
The test piece in which the fiber was formed on the fabric was immersed in a boiled 0.5% by mass sodium hydroxide aqueous solution and subjected to an alkali reduction treatment until the mass reduction rate of the fabric reached 20%. The fabric taken out was washed with water, adjusted to a bath ratio of 1:50 with a 2% owf solution of disperse dye Sumikaron Navy Blue S-2GL manufactured by Sumitomo Chemical Co., Ltd., and dyed at 130 ° C. for 1 hour. The dyed cloth was measured with a colorimetric color difference meter (CE-3000 type) manufactured by Greta Macbeth Co., and the deep chromaticity (K / S) was determined by the following Kubelka-Munk equation.

Figure 0004634082
上記数式中、Kは吸収係数、Sは散乱係数である。Rは分光反射率を示し、このスペクトルを測定し、最大値を深色度とする。本発明においては23以上を良好と判断した。
Figure 0004634082
In the above formula, K is an absorption coefficient and S is a scattering coefficient. R represents spectral reflectance, this spectrum is measured, and the maximum value is defined as deep chromaticity. In the present invention, 23 or more was judged good.

(ク)整色剤の質量減少開始温度:
理学電機工業株式会社製TAS−200熱天秤を用いてJIS K7120に従い、窒素雰囲気下中昇温速度10℃/分で測定した。
(H) Mass reduction start temperature of color adjusting agent:
Using a TAS-200 thermobalance manufactured by Rigaku Denki Kogyo Co., Ltd., the temperature was measured in a nitrogen atmosphere at a heating rate of 10 ° C./min according to JIS K7120.

(ケ)不活性粒子の特性評価
不活性粒子の平均粒径及び粒度分布を、株式会社島津製作所製SALD−7000型(レーザー散乱型粒度分布測定装置)で測定した。さらに測定した粒度分布より粒径が0.5μmを超える不活性粒子の頻度分率を算出した。
(I) Characteristic evaluation of inert particles The average particle size and particle size distribution of the inert particles were measured with a SALD-7000 type (laser scattering type particle size distribution measuring device) manufactured by Shimadzu Corporation. Further, the frequency fraction of inert particles having a particle size exceeding 0.5 μm was calculated from the measured particle size distribution.

[参考例1]チタン触媒Aの合成
無水トリメリット酸のエチレングリコール溶液(0.2質量%)にテトラ−n−ブトキシチタンを無水トリメリット酸に対して1/2モル添加し、空気中常圧下で80℃に保持して60分間反応せしめた。その後常温に冷却し、10倍量のアセトンによって生成触媒を再結晶化させた。析出物をろ紙によって濾過し、100℃で2時間乾燥せしめ、目的の化合物を得た。これをチタン触媒Aとする。
[Reference Example 1] Synthesis of Titanium Catalyst A Tetra-n-butoxytitanium is added to an ethylene glycol solution (0.2% by mass) of trimellitic anhydride in an amount of ½ mol with respect to trimellitic anhydride, and under normal pressure in air. And kept at 80 ° C. for 60 minutes. Thereafter, it was cooled to room temperature, and the produced catalyst was recrystallized with 10 times the amount of acetone. The precipitate was filtered through filter paper and dried at 100 ° C. for 2 hours to obtain the target compound. This is designated as titanium catalyst A.

[参考例2]整色剤(整色用色素)の可視光吸収スペクトル測定、整色剤調製
表1に示す整色用色素を室温で濃度20mg/Lのクロロホルム溶液とし、光路長1cmの石英セルに充填し、対照セルにはクロロホルムのみを充填して、日立分光光度計U−3010型を用いて、380〜780nmの可視光領域での可視光吸収スペクトルを測定した。整色用色素2種を混合する場合は合計で濃度20mg/Lとなるようにした。最大吸収波長とその波長における吸光度に対する、400、500、600及び700nmの各波長での吸光度の割合を測定した。更に粉末の整色用色素の熱質量減少開始温度を測定した。結果を表1に示す。尚、実施例、比較例でこれら整色剤をポリエステル製造工程で添加する場合は、100℃の温度で、原料として用いるグリコール溶液に対し、濃度0.1質量%となるように溶解又は分散させて調製した。
[Reference Example 2] Visible light absorption spectrum measurement of color-adjusting agent (color-adjusting dye), preparation of color-adjusting agent The color-adjusting dye shown in Table 1 was made into a chloroform solution at a concentration of 20 mg / L at room temperature, and quartz having an optical path length of 1 cm. The cell was filled, and the control cell was filled with chloroform alone, and a visible light absorption spectrum in a visible light region of 380 to 780 nm was measured using a Hitachi spectrophotometer U-3010 type. In the case of mixing the two color adjusting dyes, the total concentration was 20 mg / L. The ratio of the absorbance at each wavelength of 400, 500, 600, and 700 nm to the maximum absorption wavelength and the absorbance at that wavelength was measured. Further, the thermal mass decrease start temperature of the powder color adjusting dye was measured. The results are shown in Table 1. In addition, when adding these color adjusters in the polyester production process in the Examples and Comparative Examples, the solution is dissolved or dispersed at a temperature of 100 ° C. so as to have a concentration of 0.1% by mass with respect to the glycol solution used as a raw material. Prepared.

Figure 0004634082
Figure 0004634082

[実施例1]
・ポリエステル組成物チップの製造
テレフタル酸ジメチル100質量部とエチレングリコール70質量部との混合物に、酢酸カルシウム一水和物0.063質量部(DMT1モルに対して70mmol%)を撹拌機、精留塔及びメタノール留出コンデンサーを設けた反応器に仕込み、140℃から240℃まで徐々に昇温しつつ、反応の結果生成するメタノールを系外に留出させながら、エステル交換反応を行った。その後、56質量%のリン酸水溶液0.045質量部(DMT1モルに対して50mmol%)を添加し、エステル交換反応を終了させた。その後反応生成物に表2に示す整色剤Aの0.1質量%エチレングリコール溶液0.4部(ポリエステル組成物質量に対して4質量ppm)、参考例1で調製したチタン触媒A 0.032質量部(DMT1モルに対して10mmol%)及び平均粒径0.06μmの第三リン酸カルシウムの20質量%エチレングリコールスラリー2.5質量部(ポリエステル組成物質量に対して0.5質量%)を添加して、撹拌装置、窒素導入口、減圧口及び蒸留装置を備えた反応容器に移し、285℃まで昇温し、30Pa以下の高真空で重縮合反応を行って、固有粘度0.65、ジエチレングリコール含有量が0.8質量%であるポリエステル組成物を得た。さらに常法に従いチップ化した。結果を表3に示す。
・ポリエステル繊維の製造
ポリエステル組成物チップを160℃、4時間乾燥後、紡糸温度285℃、巻取速度400m/分で333dtex/36filの原糸を作り、4.0倍に延伸して83.25dtex/36filの延伸糸を得た。得られた延伸糸は更に常法により筒編みとした。結果を表4に示す。
[Example 1]
-Manufacture of polyester composition chip To a mixture of 100 parts by mass of dimethyl terephthalate and 70 parts by mass of ethylene glycol, 0.063 parts by mass of calcium acetate monohydrate (70 mmol% with respect to 1 mol of DMT) was stirred and rectified. A reactor equipped with a tower and a methanol distillation condenser was charged, and the ester exchange reaction was carried out while gradually raising the temperature from 140 ° C. to 240 ° C. while distilling methanol produced as a result of the reaction out of the system. Thereafter, 0.045 parts by mass of a 56% by mass phosphoric acid aqueous solution (50 mmol% with respect to 1 mol of DMT) was added to complete the transesterification reaction. Thereafter, the reaction product was 0.4 parts of 0.1 wt% ethylene glycol solution of the color adjusting agent A shown in Table 2 (4 ppm by mass with respect to the amount of the polyester composition material), and the titanium catalyst A prepared in Reference Example 1. 032 parts by mass (10 mmol% with respect to 1 mol of DMT) and 2.5 parts by mass of 20 mass% ethylene glycol slurry of calcium triphosphate having an average particle size of 0.06 μm (0.5 mass% with respect to the amount of the polyester composition material) Added, transferred to a reaction vessel equipped with a stirrer, a nitrogen inlet, a vacuum port and a distillation device, heated to 285 ° C., and subjected to a polycondensation reaction at a high vacuum of 30 Pa or less, an intrinsic viscosity of 0.65, A polyester composition having a diethylene glycol content of 0.8% by mass was obtained. Furthermore, it was made into a chip according to a conventional method. The results are shown in Table 3.
-Manufacture of polyester fiber A polyester composition chip is dried at 160 ° C for 4 hours, a spinning temperature of 285 ° C and a winding speed of 400 m / min. A / 36 fil drawn yarn was obtained. The obtained drawn yarn was further knitted into a cylinder by a conventional method. The results are shown in Table 4.

[実施例2−7、実施例9、参考例8、比較例1−4]
実施例1において、リン酸、重縮合触媒、整色剤、不活性粒子を表2に示す種類、量に変更したこと以外は実施例1と同様に実施した。結果を表3、4に示す。
[Example 2-7, Example 9, Reference Example 8 , Comparative Example 1-4]
In Example 1, it implemented like Example 1 except having changed phosphoric acid, the polycondensation catalyst, the color adjusting agent, and the inert particle into the kind and quantity shown in Table 2. The results are shown in Tables 3 and 4.

Figure 0004634082
Figure 0004634082

Figure 0004634082
Figure 0004634082

Figure 0004634082
Figure 0004634082

本発明によればポリエステルの優れた特性を保持しながら、SbやGe触媒を使用しないポリエステルの欠点であった色相の悪化を解消することができる。また、口金への付着物の発生量が非常に少なく、優れた成形性を有するポリエステルを提供することが出来、その結果、色相に優れ、深みのある染色性を有するポリエステル繊維を提供することができる。これらの事項における工業的な意義は大きい。   According to the present invention, it is possible to eliminate the deterioration of hue, which is a drawback of polyesters that do not use Sb or Ge catalyst, while maintaining the excellent properties of polyesters. Further, it is possible to provide a polyester having excellent moldability with a very small amount of deposits on the die, and as a result, to provide a polyester fiber having excellent hue and deep dyeability. it can. The industrial significance of these matters is great.

Claims (7)

真比重5.0以上の金属元素の含有量が0〜10質量ppm以下である芳香族ポリエステルを主たる構成成分とし、該芳香族ポリエステルは下記一般式(I)で表わされる化合物と下記一般式(II)で表わされる芳香族多価カルボン酸若しくは無水物とを反応させた生成物であるチタン化合物を含有するものであり、ポリエステル組成物の全質量を基準として整色剤を0.1〜10質量ppm含有し、かつ該整色剤は、青色系整色用色素及び紫色系整色用色素を90:10〜40:60の質量比で含むものであり、窒素雰囲気下中、昇温速度10℃/分の条件で熱天秤にて測定したときの質量減少開始温度が250℃以上である整色用色素から選ばれるものであって、
更に平均粒径が0.01〜0.5μmの範囲であってかつ粒径が0.5μmを超える粒子の頻度分率が20質量%以下である不活性粒子を0.1〜5質量%含有し、当該不活性粒子が炭酸カルシウム、第三リン酸カルシウム、珪酸カルシウム、酸化ケイ素、酸化アルミニウム、シリコーンパウダー、カオリナイト、硫酸バリウム及び酸化チタンよりなる群から選ばれる少なくとも1つに該当するポリエステル組成物であって、該整色剤の濃度20mg/Lのクロロホルム溶液について光路長1cmにおいて波長380〜780nm領域の可視光吸収スペクトルを測定したとき、最大吸収波長が540〜600nmの範囲にあり、且つ該最大吸収波長における吸光度に対する下記各波長での吸光度の割合が下記数式(1)〜(4)のすべてを満たすポリエステル組成物。
Figure 0004634082
[上記式中、R、R、R及びRはそれぞれ互いに独立に、アルキル基又はフェニル基を示し、mは1〜4の整数を示し、かつmが2、3又は4の場合、2個、3個又は4個のR及びRは、互いに異なっていてもよい。前記アルキル基は1〜10個の炭素原子を含むものであることが好ましい。]
Figure 0004634082
[上記式中、qは2〜4の整数を表わす。]
Figure 0004634082
[上記数式中、A400、A500、A600及びA700はそれぞれ400nm、500nm、600nm及び700nmでの可視光吸収スペクトルにおける吸光度を、Amaxは最大吸収波長での可視光吸収スペクトルにおける吸光度を表す。]
An aromatic polyester having a content of a metal element having a true specific gravity of 5.0 or more is 0 to 10 ppm by mass or less, and the aromatic polyester comprises a compound represented by the following general formula (I) and the following general formula ( II) containing a titanium compound which is a product obtained by reacting the aromatic polyvalent carboxylic acid or anhydride represented by the formula (II), and containing 0.1 to 10 color adjusting agents based on the total mass of the polyester composition. It contains ppm by mass, and the color adjusting agent contains a blue color adjusting dye and a purple color adjusting dye in a mass ratio of 90:10 to 40:60, and is heated in a nitrogen atmosphere. It is selected from coloring dyes having a mass decrease starting temperature of 250 ° C. or higher when measured with a thermobalance at 10 ° C./min,
Further, 0.1 to 5% by mass of inert particles having an average particle size in the range of 0.01 to 0.5 μm and a frequency fraction of particles having a particle size exceeding 0.5 μm is 20% by mass or less. And the inert particle is a polyester composition corresponding to at least one selected from the group consisting of calcium carbonate, tricalcium phosphate, calcium silicate, silicon oxide, aluminum oxide, silicone powder, kaolinite, barium sulfate and titanium oxide. When the visible light absorption spectrum in the wavelength range of 380 to 780 nm was measured for a chloroform solution having a concentration of 20 mg / L in the color adjusting agent at an optical path length of 1 cm, the maximum absorption wavelength was in the range of 540 to 600 nm, and the maximum The ratio of the absorbance at each wavelength below to the absorbance at the absorption wavelength satisfies all of the following formulas (1) to (4). Polyester composition.
Figure 0004634082
[In the above formula, R 1 , R 2 , R 3 and R 4 each independently represent an alkyl group or a phenyl group, m represents an integer of 1 to 4, and m is 2, 3 or 4] Two, three or four R 2 and R 3 may be different from each other. The alkyl group preferably contains 1 to 10 carbon atoms. ]
Figure 0004634082
[In the above formula, q represents an integer of 2 to 4. ]
Figure 0004634082
[In the above formula, A 400 , A 500 , A 600 and A 700 are the absorbance in the visible light absorption spectrum at 400 nm, 500 nm, 600 nm and 700 nm, respectively, and A max is the absorbance in the visible light absorption spectrum at the maximum absorption wavelength. To express. ]
整色剤が、窒素雰囲気下中、昇温速度10℃/分の条件で熱天秤にて測定したときの質量減少開始温度が300℃以上である整色用色素から選ばれる請求項1記載のポリエステル組成物。   2. The color adjusting agent according to claim 1, wherein the color adjusting agent is selected from color adjusting pigments having a mass decrease starting temperature of 300 ° C. or higher when measured with a thermobalance in a nitrogen atmosphere at a temperature rising rate of 10 ° C./min. Polyester composition. 不活性粒子が炭酸カルシウム、第三リン酸カルシウム、珪酸カルシウム、二酸化ケイ素、シリコーンパウダー硫酸バリウム及び酸化チタンよりなる群から選ばれる少なくとも1つに該当する、請求項1または2記載のポリエステル組成物。 The polyester composition according to claim 1 or 2, wherein the inert particles correspond to at least one selected from the group consisting of calcium carbonate, tricalcium phosphate, calcium silicate, silicon dioxide, silicone powder , barium sulfate, and titanium oxide. 芳香族ポリエステルが、ポリエチレンテレフタレートである請求項1〜いずれか1項記載のポリエステル組成物。 The polyester composition according to any one of claims 1 to 3 , wherein the aromatic polyester is polyethylene terephthalate. 請求項1〜のいずれか1項に記載のポリエステル組成物を製造するに際し、芳香族ポリエステルが、ジカルボン酸成分及びグリコール成分をエステル化反応又はエステル交換反応させチタン化合物を含む重縮合触媒を用いて重縮合反応を行う製造方法で得られ、該チタン化合物が、下記一般式(I)で表わされる化合物と下記一般式(II)で表わされる芳香族多価カルボン酸若しくは無水物とを反応させた生成物であるポリエステル組成物の製造方法。
Figure 0004634082
[上記式中、R、R、R及びRはそれぞれ互いに独立に、アルキル基又はフェニル基を示し、mは1〜4の整数を示し、かつmが2、3又は4の場合、2個、3個又は4個のR及びRは、互いに異なっていてもよい。前記アルキル基は1〜10個の炭素原子を含むものであることが好ましい。]
Figure 0004634082
[上記式中、qは2〜4の整数を表わす。]
In producing the polyester composition according to any one of claims 1 to 4 , an aromatic polyester uses a polycondensation catalyst containing a titanium compound by esterifying or transesterifying a dicarboxylic acid component and a glycol component. The titanium compound is obtained by reacting a compound represented by the following general formula (I) with an aromatic polycarboxylic acid or anhydride represented by the following general formula (II). A method for producing a polyester composition as a product.
Figure 0004634082
[In the above formula, R 1 , R 2 , R 3 and R 4 each independently represent an alkyl group or a phenyl group, m represents an integer of 1 to 4, and m is 2, 3 or 4] Two, three or four R 2 and R 3 may be different from each other. The alkyl group preferably contains 1 to 10 carbon atoms. ]
Figure 0004634082
[In the above formula, q represents an integer of 2 to 4. ]
整色剤が、芳香族ポリエステルの製造工程における重縮合反応工程が終了するまでの任意の段階で添加される請求項に記載のポリエステル組成物の製造方法。 The method for producing a polyester composition according to claim 5 , wherein the color adjusting agent is added at any stage until the polycondensation reaction step in the production step of the aromatic polyester is completed. 請求項1〜のいずれか1項記載のポリエステル組成物を溶融紡糸することによって得られるポリエステル繊維。 The polyester fiber obtained by melt-spinning the polyester composition of any one of Claims 1-4 .
JP2004202727A 2004-07-09 2004-07-09 Polyester composition, production method thereof and fiber Expired - Fee Related JP4634082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004202727A JP4634082B2 (en) 2004-07-09 2004-07-09 Polyester composition, production method thereof and fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004202727A JP4634082B2 (en) 2004-07-09 2004-07-09 Polyester composition, production method thereof and fiber

Publications (2)

Publication Number Publication Date
JP2006022241A JP2006022241A (en) 2006-01-26
JP4634082B2 true JP4634082B2 (en) 2011-02-16

Family

ID=35795753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004202727A Expired - Fee Related JP4634082B2 (en) 2004-07-09 2004-07-09 Polyester composition, production method thereof and fiber

Country Status (1)

Country Link
JP (1) JP4634082B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238703A (en) * 2006-03-07 2007-09-20 Teijin Fibers Ltd Polyester composition excellent in fiber-forming property, and fiber consisting of the same
DE102006020558A1 (en) * 2006-05-03 2007-11-08 Lurgi Zimmer Gmbh Catalyst for polyester production, use of the catalyst for the production of polyester and polyester, obtained using the catalyst
JP2010111961A (en) * 2008-11-05 2010-05-20 Teijin Fibers Ltd Extra fine false twist yarn having antistatic property and method for producing the same
JP5341673B2 (en) * 2009-08-24 2013-11-13 帝人株式会社 Deodorant fiber and method for producing the same
WO2016117428A1 (en) * 2015-01-19 2016-07-28 帝人株式会社 Polytrimethylene terephthalate composition, polyester fibers, and method for producing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08199428A (en) * 1995-01-17 1996-08-06 Teijin Ltd Production of titanium dioxide-containing polyester fiber
WO2000026301A1 (en) * 1998-10-30 2000-05-11 Asahi Kasei Kabushiki Kaisha Polyester resin composition and fiber
JP2003012787A (en) * 2001-06-27 2003-01-15 Teijin Ltd Thermoplastic polyester resin composition and film therefrom
JP2003147635A (en) * 2001-08-29 2003-05-21 Teijin Ltd Polyester fiber and method for producing the same
JP2003238673A (en) * 2002-02-19 2003-08-27 Toray Ind Inc Method for producing polyester
JP2004183143A (en) * 2002-12-03 2004-07-02 Teijin Ltd Polyester fiber and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08199428A (en) * 1995-01-17 1996-08-06 Teijin Ltd Production of titanium dioxide-containing polyester fiber
WO2000026301A1 (en) * 1998-10-30 2000-05-11 Asahi Kasei Kabushiki Kaisha Polyester resin composition and fiber
JP2003012787A (en) * 2001-06-27 2003-01-15 Teijin Ltd Thermoplastic polyester resin composition and film therefrom
JP2003147635A (en) * 2001-08-29 2003-05-21 Teijin Ltd Polyester fiber and method for producing the same
JP2003238673A (en) * 2002-02-19 2003-08-27 Toray Ind Inc Method for producing polyester
JP2004183143A (en) * 2002-12-03 2004-07-02 Teijin Ltd Polyester fiber and method for producing the same

Also Published As

Publication number Publication date
JP2006022241A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
JP3748819B2 (en) Catalyst for producing polyester and method for producing polyester using the same
JP4817654B2 (en) Cationic dyeable polyester and high strength cationic dyeable polyester fiber
JP4634082B2 (en) Polyester composition, production method thereof and fiber
JP4233568B2 (en) Colored polyester resin composition and molded product thereof
JP4282205B2 (en) Polyester production method
JP3998942B2 (en) Catalyst for producing polyester and method for producing polyester using the same
JP2007284599A (en) Copolymer polyester composition and fiber
JP4229863B2 (en) Method for producing polyester composition, polyester composition and polyester fiber
JP4673054B2 (en) Polyester composition and method for producing the same
JP4700336B2 (en) Copolyester composition, method for producing the same, and fiber
JP2006104379A (en) Polyester composition, its preparation method and polyester molded product and hygroscopic polyester fiber made of the same
CA2426137A1 (en) Polyester based on poly(trimethylene terephthalate)
JP2007284598A (en) Copolymer polyester composition and fiber
JP4664668B2 (en) Polyester composition, method for producing the same, and polyester fiber comprising the same
JP3888871B2 (en) Method for producing polyester fiber
JP4649199B2 (en) Polyester composition and polyester fiber comprising the same
JP2004250571A (en) Polyester composition and fiber for deep color dyeing
JP2006176917A (en) Polyester monofilament
JP4664669B2 (en) Polyester composition and polyester fiber comprising the same
JP2004217752A (en) Polyester composition for deep color dyeing and fiber
JP2006176627A (en) Catalyst for polyester polymerization, polyester obtained using the same and its manufacturing method
JP2005179828A (en) Spun-dyed polyester fiber
JP2003119666A (en) Polyester fiber and method for producing the same
JP2003129341A (en) Flame retardant polyester and fiber comprising the same
JP2006104341A (en) Polyester elastomer composition, its preparation method and polyester elastomer molded product and polyester elastic fiber made of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100616

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees