JP4633857B1 - Method for evaluating heat-sinterability of organic-coated metal particles, method for producing heat-sinterable metal paste, and method for producing metal member assembly - Google Patents
Method for evaluating heat-sinterability of organic-coated metal particles, method for producing heat-sinterable metal paste, and method for producing metal member assembly Download PDFInfo
- Publication number
- JP4633857B1 JP4633857B1 JP2010093907A JP2010093907A JP4633857B1 JP 4633857 B1 JP4633857 B1 JP 4633857B1 JP 2010093907 A JP2010093907 A JP 2010093907A JP 2010093907 A JP2010093907 A JP 2010093907A JP 4633857 B1 JP4633857 B1 JP 4633857B1
- Authority
- JP
- Japan
- Prior art keywords
- organic
- heat
- metal particles
- coated metal
- sinterability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002923 metal particle Substances 0.000 title claims abstract description 343
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 218
- 239000002184 metal Substances 0.000 title claims abstract description 218
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 71
- 238000000034 method Methods 0.000 title claims description 81
- 239000000126 substance Substances 0.000 claims abstract description 139
- 238000005979 thermal decomposition reaction Methods 0.000 claims abstract description 125
- 238000000197 pyrolysis Methods 0.000 claims abstract description 119
- 230000004913 activation Effects 0.000 claims abstract description 47
- 238000002076 thermal analysis method Methods 0.000 claims abstract description 46
- 239000002612 dispersion medium Substances 0.000 claims abstract description 45
- 239000005416 organic matter Substances 0.000 claims abstract description 35
- 238000011156 evaluation Methods 0.000 claims abstract description 17
- 239000002245 particle Substances 0.000 claims description 185
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 123
- 229910052709 silver Inorganic materials 0.000 claims description 123
- 239000004332 silver Substances 0.000 claims description 123
- 238000010438 heat treatment Methods 0.000 claims description 47
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 43
- 229910052802 copper Inorganic materials 0.000 claims description 43
- 239000010949 copper Substances 0.000 claims description 43
- 238000005245 sintering Methods 0.000 claims description 37
- 239000005871 repellent Substances 0.000 claims description 29
- 238000006243 chemical reaction Methods 0.000 claims description 28
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 23
- 229930195729 fatty acid Natural products 0.000 claims description 23
- 239000000194 fatty acid Substances 0.000 claims description 23
- 150000004665 fatty acids Chemical class 0.000 claims description 22
- 238000002156 mixing Methods 0.000 claims description 12
- 239000011368 organic material Substances 0.000 description 59
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 50
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 50
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 49
- ZQPPMHVWECSIRJ-MDZDMXLPSA-N elaidic acid Chemical compound CCCCCCCC\C=C\CCCCCCCC(O)=O ZQPPMHVWECSIRJ-MDZDMXLPSA-N 0.000 description 49
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 48
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 48
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 48
- 239000005642 Oleic acid Substances 0.000 description 48
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 45
- 239000007789 gas Substances 0.000 description 33
- 235000021355 Stearic acid Nutrition 0.000 description 27
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 27
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 27
- 239000008117 stearic acid Substances 0.000 description 27
- 229910052759 nickel Inorganic materials 0.000 description 25
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 23
- 239000005639 Lauric acid Substances 0.000 description 22
- -1 alkane polyols Chemical class 0.000 description 18
- 238000004455 differential thermal analysis Methods 0.000 description 18
- 239000000463 material Substances 0.000 description 17
- 239000000758 substrate Substances 0.000 description 16
- 125000004432 carbon atom Chemical group C* 0.000 description 14
- 238000002411 thermogravimetry Methods 0.000 description 12
- 239000003153 chemical reaction reagent Substances 0.000 description 11
- 229940037312 stearamide Drugs 0.000 description 11
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 150000002739 metals Chemical class 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 8
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 239000012855 volatile organic compound Substances 0.000 description 8
- 125000001931 aliphatic group Chemical group 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 238000000113 differential scanning calorimetry Methods 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 7
- 238000005304 joining Methods 0.000 description 7
- 230000001590 oxidative effect Effects 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000009835 boiling Methods 0.000 description 6
- 229910001873 dinitrogen Inorganic materials 0.000 description 6
- 235000019441 ethanol Nutrition 0.000 description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 6
- 229910052737 gold Inorganic materials 0.000 description 6
- 239000010931 gold Substances 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 6
- 239000004810 polytetrafluoroethylene Substances 0.000 description 6
- 239000000956 alloy Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910052763 palladium Inorganic materials 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- VKOBVWXKNCXXDE-UHFFFAOYSA-N icosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCC(O)=O VKOBVWXKNCXXDE-UHFFFAOYSA-N 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 125000004433 nitrogen atom Chemical group N* 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 235000003441 saturated fatty acids Nutrition 0.000 description 4
- 150000004671 saturated fatty acids Chemical class 0.000 description 4
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- MHPUGCYGQWGLJL-UHFFFAOYSA-N dimethyl pentanoic acid Natural products CC(C)CCCC(O)=O MHPUGCYGQWGLJL-UHFFFAOYSA-N 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 239000002082 metal nanoparticle Substances 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- 239000011164 primary particle Substances 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000001757 thermogravimetry curve Methods 0.000 description 3
- BBMCTIGTTCKYKF-UHFFFAOYSA-N 1-heptanol Chemical compound CCCCCCCO BBMCTIGTTCKYKF-UHFFFAOYSA-N 0.000 description 2
- XDOFQFKRPWOURC-UHFFFAOYSA-N 16-methylheptadecanoic acid Chemical compound CC(C)CCCCCCCCCCCCCCC(O)=O XDOFQFKRPWOURC-UHFFFAOYSA-N 0.000 description 2
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 2
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 2
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 2
- XLLIQLLCWZCATF-UHFFFAOYSA-N 2-methoxyethyl acetate Chemical compound COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 2
- ZPVFWPFBNIEHGJ-UHFFFAOYSA-N 2-octanone Chemical compound CCCCCCC(C)=O ZPVFWPFBNIEHGJ-UHFFFAOYSA-N 0.000 description 2
- YEYKMVJDLWJFOA-UHFFFAOYSA-N 2-propoxyethanol Chemical compound CCCOCCO YEYKMVJDLWJFOA-UHFFFAOYSA-N 0.000 description 2
- OAOABCKPVCUNKO-UHFFFAOYSA-N 8-methyl Nonanoic acid Chemical compound CC(C)CCCCCCC(O)=O OAOABCKPVCUNKO-UHFFFAOYSA-N 0.000 description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- GLZPCOQZEFWAFX-UHFFFAOYSA-N Geraniol Chemical compound CC(C)=CCCC(C)=CCO GLZPCOQZEFWAFX-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000003973 alkyl amines Chemical class 0.000 description 2
- 125000005233 alkylalcohol group Chemical group 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 238000000889 atomisation Methods 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- KEMQGTRYUADPNZ-UHFFFAOYSA-N heptadecanoic acid Chemical compound CCCCCCCCCCCCCCCCC(O)=O KEMQGTRYUADPNZ-UHFFFAOYSA-N 0.000 description 2
- XMHIUKTWLZUKEX-UHFFFAOYSA-N hexacosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCC(O)=O XMHIUKTWLZUKEX-UHFFFAOYSA-N 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- SIOLDWZBFABPJU-UHFFFAOYSA-N isotridecanoic acid Chemical compound CC(C)CCCCCCCCCC(O)=O SIOLDWZBFABPJU-UHFFFAOYSA-N 0.000 description 2
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 2
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- NUKZAGXMHTUAFE-UHFFFAOYSA-N methyl hexanoate Chemical compound CCCCCC(=O)OC NUKZAGXMHTUAFE-UHFFFAOYSA-N 0.000 description 2
- ZWRUINPWMLAQRD-UHFFFAOYSA-N nonan-1-ol Chemical compound CCCCCCCCCO ZWRUINPWMLAQRD-UHFFFAOYSA-N 0.000 description 2
- SECPZKHBENQXJG-FPLPWBNLSA-N palmitoleic acid Chemical compound CCCCCC\C=C/CCCCCCCC(O)=O SECPZKHBENQXJG-FPLPWBNLSA-N 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229920002545 silicone oil Polymers 0.000 description 2
- 229910001923 silver oxide Inorganic materials 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 235000007586 terpenes Nutrition 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 239000011135 tin Substances 0.000 description 2
- SZHOJFHSIKHZHA-UHFFFAOYSA-N tridecanoic acid Chemical compound CCCCCCCCCCCCC(O)=O SZHOJFHSIKHZHA-UHFFFAOYSA-N 0.000 description 2
- ZDPHROOEEOARMN-UHFFFAOYSA-N undecanoic acid Chemical compound CCCCCCCCCCC(O)=O ZDPHROOEEOARMN-UHFFFAOYSA-N 0.000 description 2
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 2
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- YHQGMYUVUMAZJR-UHFFFAOYSA-N α-terpinene Chemical compound CC(C)C1=CC=C(C)CC1 YHQGMYUVUMAZJR-UHFFFAOYSA-N 0.000 description 2
- OBETXYAYXDNJHR-SSDOTTSWSA-M (2r)-2-ethylhexanoate Chemical compound CCCC[C@@H](CC)C([O-])=O OBETXYAYXDNJHR-SSDOTTSWSA-M 0.000 description 1
- 239000001490 (3R)-3,7-dimethylocta-1,6-dien-3-ol Substances 0.000 description 1
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- CDOSHBSSFJOMGT-JTQLQIEISA-N (R)-linalool Natural products CC(C)=CCC[C@@](C)(O)C=C CDOSHBSSFJOMGT-JTQLQIEISA-N 0.000 description 1
- QXJSBBXBKPUZAA-CMDGGOBGSA-N (e)-octadec-10-enoic acid Chemical compound CCCCCCC\C=C\CCCCCCCCC(O)=O QXJSBBXBKPUZAA-CMDGGOBGSA-N 0.000 description 1
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- LEEANUDEDHYDTG-UHFFFAOYSA-N 1,2-dimethoxypropane Chemical compound COCC(C)OC LEEANUDEDHYDTG-UHFFFAOYSA-N 0.000 description 1
- GDXHBFHOEYVPED-UHFFFAOYSA-N 1-(2-butoxyethoxy)butane Chemical compound CCCCOCCOCCCC GDXHBFHOEYVPED-UHFFFAOYSA-N 0.000 description 1
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 1
- RRQYJINTUHWNHW-UHFFFAOYSA-N 1-ethoxy-2-(2-ethoxyethoxy)ethane Chemical compound CCOCCOCCOCC RRQYJINTUHWNHW-UHFFFAOYSA-N 0.000 description 1
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 1
- QJRRBVNPIKYRQJ-UHFFFAOYSA-N 10-methylundecanoic acid Chemical compound CC(C)CCCCCCCCC(O)=O QJRRBVNPIKYRQJ-UHFFFAOYSA-N 0.000 description 1
- FRPZMMHWLSIFAZ-UHFFFAOYSA-N 10-undecenoic acid Chemical compound OC(=O)CCCCCCCCC=C FRPZMMHWLSIFAZ-UHFFFAOYSA-N 0.000 description 1
- AZKSXXWROJGHGN-UHFFFAOYSA-N 12-hydroxyoctadecanoic acid Chemical compound CCCCCCC(O)CCCCCCCCCCC(O)=O.CCCCCCC(O)CCCCCCCCCCC(O)=O AZKSXXWROJGHGN-UHFFFAOYSA-N 0.000 description 1
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- DJCYDDALXPHSHR-UHFFFAOYSA-N 2-(2-propoxyethoxy)ethanol Chemical compound CCCOCCOCCO DJCYDDALXPHSHR-UHFFFAOYSA-N 0.000 description 1
- PTTPXKJBFFKCEK-UHFFFAOYSA-N 2-Methyl-4-heptanone Chemical compound CC(C)CC(=O)CC(C)C PTTPXKJBFFKCEK-UHFFFAOYSA-N 0.000 description 1
- OARDBPIZDHVTCK-UHFFFAOYSA-N 2-butyloctanoic acid Chemical compound CCCCCCC(C(O)=O)CCCC OARDBPIZDHVTCK-UHFFFAOYSA-N 0.000 description 1
- BLPHMQXDEVUSKD-UHFFFAOYSA-N 2-heptyldodecanoic acid Chemical compound CCCCCCCCCCC(C(O)=O)CCCCCCC BLPHMQXDEVUSKD-UHFFFAOYSA-N 0.000 description 1
- GMWUGZRYXRJLCX-UHFFFAOYSA-N 2-methoxypentan-2-ol Chemical compound CCCC(C)(O)OC GMWUGZRYXRJLCX-UHFFFAOYSA-N 0.000 description 1
- YNXFWNKTAOTVGR-UHFFFAOYSA-N 2-pentylnonanoic acid Chemical compound CCCCCCCC(C(O)=O)CCCCC YNXFWNKTAOTVGR-UHFFFAOYSA-N 0.000 description 1
- WRMNZCZEMHIOCP-UHFFFAOYSA-N 2-phenylethanol Chemical compound OCCC1=CC=CC=C1 WRMNZCZEMHIOCP-UHFFFAOYSA-N 0.000 description 1
- RXGPYPPCEXISOV-UHFFFAOYSA-N 2-propylheptanoic acid Chemical compound CCCCCC(C(O)=O)CCC RXGPYPPCEXISOV-UHFFFAOYSA-N 0.000 description 1
- SYTQFBVTZCYXOV-UHFFFAOYSA-N 3,5,5-trimethylcyclohex-2-en-1-one Chemical compound CC1=CC(=O)CC(C)(C)C1.CC1=CC(=O)CC(C)(C)C1 SYTQFBVTZCYXOV-UHFFFAOYSA-N 0.000 description 1
- AWQSAIIDOMEEOD-UHFFFAOYSA-N 5,5-Dimethyl-4-(3-oxobutyl)dihydro-2(3H)-furanone Chemical compound CC(=O)CCC1CC(=O)OC1(C)C AWQSAIIDOMEEOD-UHFFFAOYSA-N 0.000 description 1
- OEOIWYCWCDBOPA-UHFFFAOYSA-N 6-methyl-heptanoic acid Chemical compound CC(C)CCCCC(O)=O OEOIWYCWCDBOPA-UHFFFAOYSA-N 0.000 description 1
- XZOYHFBNQHPJRQ-UHFFFAOYSA-N 7-methyloctanoic acid Chemical compound CC(C)CCCCCC(O)=O XZOYHFBNQHPJRQ-UHFFFAOYSA-N 0.000 description 1
- VSAJTRPXXNCHGB-UHFFFAOYSA-N 9-methyl-decanoic acid Chemical compound CC(C)CCCCCCCC(O)=O VSAJTRPXXNCHGB-UHFFFAOYSA-N 0.000 description 1
- DPUOLQHDNGRHBS-UHFFFAOYSA-N Brassidinsaeure Natural products CCCCCCCCC=CCCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- URXZXNYJPAJJOQ-UHFFFAOYSA-N Erucic acid Natural products CCCCCCC=CCCCCCCCCCCCC(O)=O URXZXNYJPAJJOQ-UHFFFAOYSA-N 0.000 description 1
- 239000005792 Geraniol Substances 0.000 description 1
- GLZPCOQZEFWAFX-YFHOEESVSA-N Geraniol Natural products CC(C)=CCC\C(C)=C/CO GLZPCOQZEFWAFX-YFHOEESVSA-N 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- JGFBQFKZKSSODQ-UHFFFAOYSA-N Isothiocyanatocyclopropane Chemical compound S=C=NC1CC1 JGFBQFKZKSSODQ-UHFFFAOYSA-N 0.000 description 1
- WSTYNZDAOAEEKG-UHFFFAOYSA-N Mayol Natural products CC1=C(O)C(=O)C=C2C(CCC3(C4CC(C(CC4(CCC33C)C)=O)C)C)(C)C3=CC=C21 WSTYNZDAOAEEKG-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 235000021319 Palmitoleic acid Nutrition 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 1
- 235000009754 Vitis X bourquina Nutrition 0.000 description 1
- 235000012333 Vitis X labruscana Nutrition 0.000 description 1
- 240000006365 Vitis vinifera Species 0.000 description 1
- 235000014787 Vitis vinifera Nutrition 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- HTRXGEPDTFSKLI-UHFFFAOYSA-N butanoic acid;ethyl acetate Chemical compound CCCC(O)=O.CCOC(C)=O HTRXGEPDTFSKLI-UHFFFAOYSA-N 0.000 description 1
- PWLNAUNEAKQYLH-UHFFFAOYSA-N butyric acid octyl ester Natural products CCCCCCCCOC(=O)CCC PWLNAUNEAKQYLH-UHFFFAOYSA-N 0.000 description 1
- KHAVLLBUVKBTBG-UHFFFAOYSA-N caproleic acid Natural products OC(=O)CCCCCCCC=C KHAVLLBUVKBTBG-UHFFFAOYSA-N 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000003985 ceramic capacitor Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- SECPZKHBENQXJG-UHFFFAOYSA-N cis-palmitoleic acid Natural products CCCCCCC=CCCCCCCCC(O)=O SECPZKHBENQXJG-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- HABLENUWIZGESP-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O.CCCCCCCCCC(O)=O HABLENUWIZGESP-UHFFFAOYSA-N 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 1
- 238000007416 differential thermogravimetric analysis Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- POLCUAVZOMRGSN-UHFFFAOYSA-N dipropyl ether Chemical compound CCCOCCC POLCUAVZOMRGSN-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- AGDANEVFLMAYGL-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O.CCCCCCCCCCCCCCCCCCCCCC(O)=O AGDANEVFLMAYGL-UHFFFAOYSA-N 0.000 description 1
- DPUOLQHDNGRHBS-KTKRTIGZSA-N erucic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-KTKRTIGZSA-N 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229940113087 geraniol Drugs 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 238000000892 gravimetry Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- MHIBEGOZTWERHF-UHFFFAOYSA-N heptane-1,1-diol Chemical compound CCCCCCC(O)O MHIBEGOZTWERHF-UHFFFAOYSA-N 0.000 description 1
- KYYWBEYKBLQSFW-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O.CCCCCCCCCCCCCCCC(O)=O KYYWBEYKBLQSFW-UHFFFAOYSA-N 0.000 description 1
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 description 1
- ZILMEHNWSRQIEH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O.CCCCCC(O)=O ZILMEHNWSRQIEH-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- JMOLZNNXZPAGBH-UHFFFAOYSA-N hexyldecanoic acid Chemical compound CCCCCCCCC(C(O)=O)CCCCCC JMOLZNNXZPAGBH-UHFFFAOYSA-N 0.000 description 1
- 229950004531 hexyldecanoic acid Drugs 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- YAQXGBBDJYBXKL-UHFFFAOYSA-N iron(2+);1,10-phenanthroline;dicyanide Chemical compound [Fe+2].N#[C-].N#[C-].C1=CN=C2C3=NC=CC=C3C=CC2=C1.C1=CN=C2C3=NC=CC=C3C=CC2=C1 YAQXGBBDJYBXKL-UHFFFAOYSA-N 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- FGKJLKRYENPLQH-UHFFFAOYSA-N isocaproic acid Chemical compound CC(C)CCC(O)=O FGKJLKRYENPLQH-UHFFFAOYSA-N 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 235000001510 limonene Nutrition 0.000 description 1
- 229940087305 limonene Drugs 0.000 description 1
- 229930007744 linalool Natural products 0.000 description 1
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- UUIQMZJEGPQKFD-UHFFFAOYSA-N n-butyric acid methyl ester Natural products CCCC(=O)OC UUIQMZJEGPQKFD-UHFFFAOYSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- WSGCRAOTEDLMFQ-UHFFFAOYSA-N nonan-5-one Chemical compound CCCCC(=O)CCCC WSGCRAOTEDLMFQ-UHFFFAOYSA-N 0.000 description 1
- BMQNWLUEXNQIGL-UHFFFAOYSA-N nonanoic acid Chemical compound CCCCCCCCC(O)=O.CCCCCCCCC(O)=O BMQNWLUEXNQIGL-UHFFFAOYSA-N 0.000 description 1
- SWDYEOBSKYXKLZ-UHFFFAOYSA-N octacosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCC(O)=O.CCCCCCCCCCCCCCCCCCCCCCCCCCCC(O)=O SWDYEOBSKYXKLZ-UHFFFAOYSA-N 0.000 description 1
- RQFLGKYCYMMRMC-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O.CCCCCCCCCCCCCCCCCC(O)=O RQFLGKYCYMMRMC-UHFFFAOYSA-N 0.000 description 1
- OEIJHBUUFURJLI-UHFFFAOYSA-N octane-1,8-diol Chemical compound OCCCCCCCCO OEIJHBUUFURJLI-UHFFFAOYSA-N 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- UWJJYHHHVWZFEP-UHFFFAOYSA-N pentane-1,1-diol Chemical compound CCCCC(O)O UWJJYHHHVWZFEP-UHFFFAOYSA-N 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- WBHHMMIMDMUBKC-XLNAKTSKSA-N ricinelaidic acid Chemical compound CCCCCC[C@@H](O)C\C=C\CCCCCCCC(O)=O WBHHMMIMDMUBKC-XLNAKTSKSA-N 0.000 description 1
- FEUQNCSVHBHROZ-UHFFFAOYSA-N ricinoleic acid Natural products CCCCCCC(O[Si](C)(C)C)CC=CCCCCCCCC(=O)OC FEUQNCSVHBHROZ-UHFFFAOYSA-N 0.000 description 1
- 229960003656 ricinoleic acid Drugs 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 229910000108 silver(I,III) oxide Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- CBYCSRICVDBHMZ-UHFFFAOYSA-N tetracosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCCCC(O)=O.CCCCCCCCCCCCCCCCCCCCCCCC(O)=O CBYCSRICVDBHMZ-UHFFFAOYSA-N 0.000 description 1
- ZTUXEFFFLOVXQE-UHFFFAOYSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCCC(O)=O.CCCCCCCCCCCCCC(O)=O ZTUXEFFFLOVXQE-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000013008 thixotropic agent Substances 0.000 description 1
- 229960002703 undecylenic acid Drugs 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Manufacturing Of Electrical Connectors (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Investigating And Analyzing Materials By Characteristic Methods (AREA)
Abstract
【課題】有機物被覆金属粒子の加熱焼結性を簡易・迅速・容易に判定できる評価方法、加熱焼結性に優れる加熱焼結性金属ペーストの効率的な製造方法、および接合性が優れた金属製部材接合体の効率的な製造方法を提供する。
【解決手段】有機物被覆金属粒子と該有機物自体の各々を空気気流中における熱分析に供して、該金属粒子の表面を被覆している有機物の熱分解ピーク温度と該有機物自体の熱分解ピーク温度を比較することにより、該金属粒子の加熱焼結性を判定する。該有機物の熱分解反応における活性化エネルギーを算出し、その値により、該金属粒子の加熱焼結性を判定する。これらの評価方法により加熱焼結性に優れる有機物被覆金属粒子を選別し揮発性分散媒と混合し、ペーストを製造する。その加熱焼結性金属ペーストを金属製部材間に介在させて加熱焼結し金属製部材接合体を製造する。
【選択図】図2[PROBLEMS] To provide an evaluation method capable of easily, quickly and easily judging the heat-sinterability of organic-coated metal particles, an efficient method for producing a heat-sinterable metal paste excellent in heat-sinterability, and a metal having excellent bondability. Provided is an efficient manufacturing method for a member-made assembly.
Each of the organic-coated metal particles and the organic substance itself is subjected to thermal analysis in an air stream, and the pyrolysis peak temperature of the organic substance covering the surface of the metal particles and the pyrolysis peak temperature of the organic substance itself. Are compared to determine the heat sinterability of the metal particles. The activation energy in the thermal decomposition reaction of the organic matter is calculated, and the heat sinterability of the metal particles is determined from the value. By using these evaluation methods, organic coated metal particles having excellent heat sinterability are selected and mixed with a volatile dispersion medium to produce a paste. The heat-sinterable metal paste is interposed between metal members and heat-sintered to produce a metal member assembly.
[Selection] Figure 2
Description
本発明は、有機物被覆金属粒子の加熱焼結性の評価方法、この評価方法により加熱焼結性の優れる有機物被覆金属粒子を選別し揮発性分散媒と混合することからなる加熱焼結性金属ペーストの製造方法、および、この製造方法により加熱焼結性金属ペーストを製造し、これを金属製部材間で加熱焼結することからなる金属製部材接合体の製造方法に関する。 The present invention relates to a method for evaluating the heat-sinterability of organic-coated metal particles, and a heat-sinterable metal paste comprising selecting organic-coated metal particles having excellent heat-sinterability by this evaluation method and mixing with a volatile dispersion medium. And a manufacturing method of a metal member assembly comprising manufacturing a heat-sinterable metal paste by this manufacturing method and heat-sintering the metal paste between the metal members.
加熱焼結性金属粒子を導電性フィラーとして用いた導電性インクは優れた導電性を有するという特徴を有する。特に平均粒径が100nm以下の金属ナノ粒子は、そのバルク材の融点(例えば、金は1064℃、銀は962℃)よりは相当に低い温度でも焼結することが知られており、例えば、数nmから数十nmの銀ナノ粒子では200℃程度で焼結が可能であり、このような金属ナノ粒子を液状のバインダー(例えば、エポキシ樹脂、有機溶剤)に分散させた導電性インクが配線パターン形成用のペースト剤として数多く提案されている(特許文献1〜特許文献3)。 A conductive ink using heat-sinterable metal particles as a conductive filler has a characteristic of having excellent conductivity. In particular, it is known that metal nanoparticles having an average particle size of 100 nm or less sinter even at temperatures considerably lower than the melting point of the bulk material (for example, 1064 ° C. for gold and 962 ° C. for silver). Silver nanoparticles of several nm to several tens of nm can be sintered at about 200 ° C., and conductive ink in which such metal nanoparticles are dispersed in a liquid binder (for example, epoxy resin, organic solvent) is wired. Many paste agents for pattern formation have been proposed (Patent Documents 1 to 3).
平均粒径が100nm以上であるいわゆる非ナノ金属粒子はナノ粒子に比べ低温での焼結性は必然的に劣ることになる。しかし、低温でもまったく焼結しないわけではなく、その製造方法、粒子径、表面被覆剤、製造会社などの違いによっては低温で焼結できるものも極めてまれには存在する。しかし、こうした非ナノ金属粒子が低温で焼結が可能であるかどうかは実際にミキサー等を使用してペースト剤を調合して加熱し、焼結物の諸特性を評価する以外に方法がなく、試験機器と時間を要する煩雑な作業を強いられていた(特許文献4)。 So-called non-nanometallic particles having an average particle diameter of 100 nm or more necessarily have a lower sinterability at a lower temperature than nanoparticles. However, it does not sinter at all even at low temperatures, and there are very rare cases that can be sintered at low temperatures depending on the manufacturing method, particle diameter, surface coating agent, manufacturing company, and the like. However, whether such non-nanometallic particles can be sintered at low temperature is not a method other than evaluating the various properties of the sintered product by actually preparing and heating a paste using a mixer or the like. However, the laborious work which requires time with a test equipment was forced (patent document 4).
本発明者らは上記の問題点を解決するため鋭意研究した結果、有機物被覆金属粒子が加熱焼結性に優れるかどうかを簡易・迅速・容易に判定できる、有機物被覆金属粒子の加熱焼結性の評価方法を見出して本発明を完成させた。
本発明の目的は、有機物被覆金属粒子の加熱焼結性を簡易・迅速・容易に判定できる評価方法、加熱焼結性に優れる加熱焼結性金属ペーストの的確かつ効率的な製造方法、および接合性が優れた金属製部材接合体の的確かつ効率的な製造方法を提供することにある。
As a result of diligent research to solve the above problems, the present inventors can easily, quickly, and easily determine whether organic-coated metal particles are excellent in heat-sinterability. Heat-sinterability of organic-coated metal particles The present invention was completed by finding an evaluation method.
An object of the present invention is to provide an evaluation method that can easily, quickly, and easily determine the heat-sinterability of organic-coated metal particles, an accurate and efficient method for producing a heat-sinterable metal paste having excellent heat-sinterability, and bonding An object of the present invention is to provide an accurate and efficient method for producing a metal member assembly having excellent properties.
この目的は、
「[1] 有機物被覆金属粒子の加熱焼結性を熱分析により評価する方法であって、
有機物被覆金属粒子と該有機物自体の各々を、空気気流中における熱分析に供し、該金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)が該有機物自体の熱分解ピーク温度(2)より低い場合は、該有機物被覆金属粒子の加熱焼結性が優れると判定し、
該金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)が該有機物自体の熱分解ピーク温度(2)と同等以上の場合は、該有機物被覆金属粒子の加熱焼結性が劣ると判定することを特徴とする、有機物被覆金属粒子の加熱焼結性の評価方法。
[2] 熱分解ピーク温度(1)が熱分解ピーク温度(2)より2℃以上低い場合は、該有機物被覆金属粒子の加熱焼結性が優れると判定し、熱分解ピーク温度(1)が熱分解ピーク温度(2)より2℃以上高い場合は、該有機物被覆金属粒子の加熱焼結性が劣ると判定することを特徴とする、[1]に記載の有機物被覆金属粒子の加熱焼結性の評価方法。
[2-1] 熱分解ピーク温度(1)が熱分解ピーク温度(2)より低い場合が,2℃以上低い場合であって、熱分解ピーク温度(1)が熱分解ピーク温度(2)と同等以上の場合が,2℃以上高い場合であることを特徴とする、[1]に記載の有機物被覆金属粒子の加熱焼結性の評価方法。
[2-2] 熱分解ピーク温度(1)が熱分解ピーク温度(2)より5℃以上低い場合は、該有機物被覆金属粒子の加熱焼結性が優れると判定し、熱分解ピーク温度(1)が熱分解ピーク温度(2)より5℃以上高い場合は、該有機物被覆金属粒子の加熱焼結性が劣ると判定することを特徴とする、[1]に記載の有機物被覆金属粒子の加熱焼結性の評価方法。
[2-3] 熱分解ピーク温度(1)が熱分解ピーク温度(2)より低い場合が,5℃以上低い場合であって、熱分解ピーク温度(1)が熱分解ピーク温度(2)と同等以上の場合が,5℃以上高い場合であることを特徴とする、[1]に記載の有機物被覆金属粒子の加熱焼結性の評価方法。
[2-4] 有機物被覆金属粒子が、平均粒径(メディアン径D50)が0.1μm以上50μm以下の銀粒子または銅粒子であり、有機物被覆金属粒子の表面を被覆している有機物が、高・中級脂肪酸およびその撥水性誘導体から選択されることを特徴とする、[1]、[2]、[2-1]、[2-2]、[2-3]のいずれかに記載の有機物被覆金属粒子の加熱焼結性の評価方法。
[3] 有機物被覆金属粒子の加熱焼結性を熱分析により評価する方法であって、
有機物被覆金属粒子を、空気気流中における熱分析に供し、該熱分析における昇温速度と該金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)との関係から算出される該有機物の熱分解反応における活性化エネルギーが95kJ/モル未満である場合は、該有機物被覆金属粒子の加熱焼結性が優れると判定し、
該熱分析における昇温速度と該金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)との関係から算出される該有機物の熱分解反応における活性化エネルギーが95kJ/モル以上である場合は、該有機物被覆金属粒子の加熱焼結性が劣ると判定することを特徴とする、有機物被覆金属粒子の加熱焼結性の評価方法。
[3-1] 有機物被覆金属粒子が、平均粒径(メディアン径D50)が0.1μm以上50μm以下の銀粒子または銅粒子であり、有機物被覆金属粒子の表面を被覆している有機物が、高・中級脂肪酸およびその撥水性誘導体から選択されることを特徴とする、[3]に記載の有機物被覆金属粒子の加熱焼結性の評価方法。」により達成される。
This purpose is
“[1] A method for evaluating the heat-sinterability of organic-coated metal particles by thermal analysis,
Each of the organic substance-coated metal particles and the organic substance itself is subjected to thermal analysis in an air stream, and the pyrolysis peak temperature (1) of the organic substance covering the surface of the metal particles is the pyrolysis peak temperature of the organic substance itself ( 2) If lower, it is determined that the heat-sinterability of the organic-coated metal particles is excellent,
When the pyrolysis peak temperature (1) of the organic substance covering the surface of the metal particles is equal to or higher than the pyrolysis peak temperature (2) of the organic substance itself, the heat-sinterability of the organic substance-coated metal particles is poor. The method for evaluating heat-sinterability of organic-coated metal particles, characterized in that
[2] If the pyrolysis peak temperature (1) is 2 ° C or more lower than the pyrolysis peak temperature (2), it is judged that the organic-coated metal particles have excellent heat sinterability, and the pyrolysis peak temperature (1) is Heat-sintering of organic-coated metal particles according to [1], characterized in that when the temperature is higher than the thermal decomposition peak temperature (2) by 2 ° C or more, the organic-coated metal particles are judged to have poor heat-sinterability Evaluation method of sex.
[2-1] The case where the pyrolysis peak temperature (1) is lower than the pyrolysis peak temperature (2) is lower than 2 ° C, and the pyrolysis peak temperature (1) is the same as the pyrolysis peak temperature (2). The method for evaluating the heat-sinterability of organic-coated metal particles according to [1], wherein the case of equality or higher is higher by 2 ° C or higher.
[2-2] If the pyrolysis peak temperature (1) is 5 ° C. or more lower than the pyrolysis peak temperature (2), it is determined that the organic-coated metal particles have excellent heat sinterability, and the pyrolysis peak temperature (1 ) Is higher than the thermal decomposition peak temperature (2) by 5 ° C. or more, it is determined that the heat-sinterability of the organic-coated metal particles is inferior, and the heating of the organic-coated metal particles according to [1] Evaluation method of sinterability.
[2-3] The case where the pyrolysis peak temperature (1) is lower than the pyrolysis peak temperature (2) is lower than 5 ° C, and the pyrolysis peak temperature (1) is the same as the pyrolysis peak temperature (2). The method for evaluating the heat-sinterability of organic-coated metal particles according to [1], wherein the case of equality or higher is higher by 5 ° C or higher.
[2-4] The organic-coated metal particles are silver particles or copper particles having an average particle diameter (median diameter D50) of 0.1 μm or more and 50 μm or less, and the organic material covering the surface of the organic-coated metal particles is high. -Organic substance according to any one of [1], [2], [2-1], [2-2], [2-3], characterized in that it is selected from intermediate fatty acids and water-repellent derivatives thereof Evaluation method of heat-sinterability of coated metal particles.
[3] A method for evaluating the heat-sinterability of organic-coated metal particles by thermal analysis,
The organic matter-coated metal particles are subjected to thermal analysis in an air stream, and are calculated from the relationship between the temperature increase rate in the thermal analysis and the thermal decomposition peak temperature (1) of the organic matter covering the surface of the metal particles. When the activation energy in the pyrolysis reaction of the organic substance is less than 95 kJ / mol, it is determined that the heat-sintering property of the organic-coated metal particles is excellent,
The activation energy in the pyrolysis reaction of the organic substance calculated from the relationship between the rate of temperature increase in the thermal analysis and the thermal decomposition peak temperature (1) of the organic substance covering the surface of the metal particles is 95 kJ / mol or more. In some cases, the method for evaluating the heat-sinterability of the organic-coated metal particles is characterized by determining that the heat-sinterability of the organic-coated metal particles is poor.
[3-1] The organic-coated metal particles are silver particles or copper particles having an average particle diameter (median diameter D50) of 0.1 μm or more and 50 μm or less, and the organic material covering the surface of the organic-coated metal particles is high. -The method for evaluating heat-sinterability of organic-coated metal particles according to [3], wherein the method is selected from intermediate fatty acids and water-repellent derivatives thereof. Is achieved.
また、この目的は、
「[4] 有機物被覆金属粒子と該有機物自体の各々を、空気気流中における熱分析に供し、該金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)が該有機物自体の熱分解ピーク温度(2)より低い場合は、該有機物被覆金属粒子の加熱焼結性が優れると判定し、該金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)が該有機物自体の熱分解ピーク温度(2)と同等以上の場合は、該有機物被覆金属粒子の加熱焼結性が劣ると判定し、次いで、加熱焼結性が優れると判定された有機物被覆金属粒子を揮発性分散媒と混合してペースト化することを特徴とする、加熱焼結性金属ペーストの製造方法。
[5] 熱分解ピーク温度(1)が熱分解ピーク温度(2)より2℃以上低い場合は、該有機物被覆金属粒子の加熱焼結性が優れると判定し、熱分解ピーク温度(1)が熱分解ピーク温度(2)より2℃以上高い場合は、該有機物被覆金属粒子の加熱焼結性が劣ると判定することを特徴とする、[4]に記載の加熱焼結性金属ペーストの製造方法。
[5-1] 熱分解ピーク温度(1)が熱分解ピーク温度(2)より低い場合が,2℃以上低い場合であって、熱分解ピーク温度(1)が熱分解ピーク温度(2)と同等以上の場合が,2℃以上高い場合であることを特徴とする、[4]に記載の加熱焼結性金属ペーストの製造方法。
[5-2] 熱分解ピーク温度(1)が熱分解ピーク温度(2)より5℃以上低い場合は、該有機物被覆金属粒子の加熱焼結性が優れると判定し、熱分解ピーク温度(1)が熱分解ピーク温度(2)より5℃以上高い場合は、該有機物被覆金属粒子の加熱焼結性が劣ると判定することを特徴とする、[4]に記載の加熱焼結性金属ペーストの製造方法。
[5-3] 熱分解ピーク温度(1)が熱分解ピーク温度(2)より低い場合が,5℃以上低い場合であって、熱分解ピーク温度(1)が熱分解ピーク温度(2)と同等以上の場合が,5℃以上高い場合であることを特徴とする、[4]に記載の加熱焼結性金属ペーストの製造方法。
[6] 有機物被覆金属粒子が、平均粒径(メディアン径D50)が0.1μm以上50μm以下の銀粒子または銅粒子であり、有機物被覆金属粒子の表面を被覆している有機物が、高・中級脂肪酸およびその撥水性誘導体から選択されることを特徴とする、[4]、[5]、[5-1]、[5-2]、[5-3]のいずれかに記載の加熱焼結性金属ペーストの製造方法。
[6-1] 揮発性分散媒の沸点が、有機物被覆金属粒子の融点より低く、60℃〜300℃であることを特徴とする、[4]、[5]、[5-1]、[5-2]、[5-3]、[6]のいずれかに記載の加熱焼結性金属ペーストの製造方法。
[7] 有機物被覆金属粒子を、空気気流中における熱分析に供し、該熱分析における昇温速度と該金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)との関係から算出される該有機物の熱分解反応における活性化エネルギーが95kJ/モル未満である場合は、該有機物被覆金属粒子の加熱焼結性が優れると判定し、
該熱分析における昇温速度と該金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)との関係から算出される該有機物の熱分解反応における活性化エネルギーが95kJ/モル以上である場合は、該有機物被覆金属粒子の加熱焼結性が劣ると判定し、次いで、加熱焼結性が優れると判定された有機物被覆金属粒子を揮発性分散媒と混合してペースト化することを特徴とする、加熱焼結性金属ペーストの製造方法。
[8] 有機物被覆金属粒子が、平均粒径(メディアン径D50)が0.1μm以上50μm以下の銀粒子または銅粒子であり、有機物被覆金属粒子の表面を被覆している有機物が、高・中級脂肪酸およびその撥水性誘導体から選択されることを特徴とする、[7]に記載の加熱焼結性金属ペーストの製造方法。
[8-1] 揮発性分散媒の沸点が、有機物被覆金属粒子の融点より低く、60℃〜300℃であることを特徴とする、[7]または[8]に記載の加熱焼結性金属ペーストの製造方法。」により達成される。
This purpose is also
“[4] Each of the organic-coated metal particles and the organic matter itself is subjected to thermal analysis in an air stream, and the pyrolysis peak temperature (1) of the organic matter covering the surface of the metal particles is the heat of the organic matter itself. If it is lower than the decomposition peak temperature (2), it is determined that the heat-sinterability of the organic-coated metal particles is excellent, and the thermal decomposition peak temperature (1) of the organic material covering the surface of the metal particles is the organic material itself. When the thermal decomposition peak temperature (2) is equal to or higher than the thermal decomposition peak temperature (2), it is determined that the organic-coated metal particles have poor heat-sinterability, and then the organic-coated metal particles determined to have excellent heat-sinterability are volatile. A method for producing a heat-sinterable metal paste, wherein the paste is mixed with a dispersion medium to form a paste.
[5] If the pyrolysis peak temperature (1) is 2 ° C or more lower than the pyrolysis peak temperature (2), it is determined that the organic-coated metal particles have excellent heat sinterability, and the pyrolysis peak temperature (1) is The production of the heat-sinterable metal paste according to [4], wherein the heat-sinterability of the organic-coated metal particles is judged to be inferior when the temperature is 2 ° C or higher than the thermal decomposition peak temperature (2) Method.
[5-1] The case where the pyrolysis peak temperature (1) is lower than the pyrolysis peak temperature (2) is lower than 2 ° C, and the pyrolysis peak temperature (1) is the same as the pyrolysis peak temperature (2). The method for producing a heat-sinterable metal paste according to [4], wherein the case of equality or higher is a case of higher by 2 ° C. or higher.
[5-2] If the pyrolysis peak temperature (1) is 5 ° C. or more lower than the pyrolysis peak temperature (2), it is determined that the organic-coated metal particles have excellent heat sinterability, and the pyrolysis peak temperature (1 ) Is higher than the thermal decomposition peak temperature (2) by 5 ° C. or more, the heat-sinterable metal paste according to [4], wherein the organic-coated metal particles are judged to have poor heat-sinterability Manufacturing method.
[5-3] The case where the pyrolysis peak temperature (1) is lower than the pyrolysis peak temperature (2) is lower than 5 ° C, and the pyrolysis peak temperature (1) is the same as the pyrolysis peak temperature (2). The method for producing a heat-sinterable metal paste according to [4], wherein the case of equality or higher is higher by 5 ° C or higher.
[6] Organic coated metal particles are silver particles or copper particles having an average particle size (median diameter D50) of 0.1 μm or more and 50 μm or less, and organic materials covering the surface of organic coated metal particles are high / intermediate Heat-sintered according to any of [4], [5], [5-1], [5-2], [5-3], characterized by being selected from fatty acids and water-repellent derivatives thereof For producing a conductive metal paste.
[6-1] The boiling point of the volatile dispersion medium is lower than the melting point of the organic-coated metal particles and is 60 ° C. to 300 ° C. [4], [5], [5-1], [ 5-2], [5-3], [6] The method for producing a heat-sinterable metal paste according to any one of [6].
[7] The organic-coated metal particles are subjected to thermal analysis in an air stream, and calculated from the relationship between the rate of temperature increase in the thermal analysis and the thermal decomposition peak temperature (1) of the organic material covering the surface of the metal particles. When the activation energy in the thermal decomposition reaction of the organic material is less than 95 kJ / mol, it is determined that the heat-sintering property of the organic material-coated metal particles is excellent,
The activation energy in the pyrolysis reaction of the organic substance calculated from the relationship between the rate of temperature increase in the thermal analysis and the thermal decomposition peak temperature (1) of the organic substance covering the surface of the metal particles is 95 kJ / mol or more. In some cases, it is determined that the heat-sinterability of the organic-coated metal particles is inferior, and then the organic-coated metal particles determined to have excellent heat-sinterability are mixed with a volatile dispersion medium to form a paste. A method for producing a heat-sinterable metal paste.
[8] The organic-coated metal particles are silver particles or copper particles having an average particle size (median diameter D50) of 0.1 μm or more and 50 μm or less, and the organic material covering the surface of the organic-coated metal particles is a high / intermediate grade. The method for producing a heat-sinterable metal paste according to [7], wherein the heat-sinterable metal paste is selected from fatty acids and water-repellent derivatives thereof.
[8-1] The heat-sinterable metal according to [7] or [8], wherein the volatile dispersion medium has a boiling point lower than the melting point of the organic-coated metal particles and is 60 ° C. to 300 ° C. Manufacturing method of paste. Is achieved.
また、この目的は、
「[9] 有機物被覆金属粒子と該有機物自体の各々を、空気気流中における熱分析に供し、該金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)が該有機物自体の熱分解ピーク温度(2)より低い場合は、該有機物被覆金属粒子の加熱焼結性が優れると判定し、該金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)が該有機物自体の熱分解ピーク温度(2)と同等以上の場合は、該有機物被覆金属粒子の加熱焼結性が劣ると判定し、加熱焼結性が優れると判定された有機物被覆金属粒子を揮発性分散媒と混合してペースト化して加熱焼結性金属ペーストを調製し、次いで、該加熱焼結性金属ペーストを、複数の金属製部材間に介在させ、加熱焼結性金属の焼結可能な温度以上で加熱することを特徴とする、金属製部材接合体の製造方法。
[10] 熱分解ピーク温度(1)が熱分解ピーク温度(2)より2℃以上低い場合は、該有機物被覆金属粒子の加熱焼結性が優れると判定し、熱分解ピーク温度(1)が熱分解ピーク温度(2)より2℃以上高い場合は、該有機物被覆金属粒子の加熱焼結性が劣ると判定することを特徴とする、[9]に記載の金属製部材接合体の製造方法。
[10-1] 熱分解ピーク温度(1)が熱分解ピーク温度(2)より低い場合が,2℃以上低い場合であって、熱分解ピーク温度(1)が熱分解ピーク温度(2)と同等以上の場合が,2℃以上高い場合であることを特徴とする、[9]に記載の金属製部材接合体の製造方法。
[10-2] 熱分解ピーク温度(1)が熱分解ピーク温度(2)より5℃以上低い場合は、該有機物被覆金属粒子の加熱焼結性が優れると判定し、熱分解ピーク温度(1)が熱分解ピーク温度(2)より5℃以上高い場合は、該有機物被覆金属粒子の加熱焼結性が劣ると判定することを特徴とする、[9]に記載の金属製部材接合体の製造方法。
[10-3] 熱分解ピーク温度(1)が熱分解ピーク温度(2)より低い場合が,5℃以上低い場合であって、熱分解ピーク温度(1)が熱分解ピーク温度(2)と同等以上の場合が,5℃以上高い場合であることを特徴とする、[9]に記載の金属製部材接合体の製造方法。
[11] 有機物被覆金属粒子が、平均粒径(メディアン径D50)が0.1μm以上50μm以下の銀粒子または銅粒子であり、有機物被覆金属粒子の表面を被覆している有機物が、高・中級脂肪酸およびその撥水性誘導体から選択されることを特徴とする、[9]、[10]、[10-1]、[10-2]、[10-3]のいずれかに記載の金属製部材接合体の製造方法。
[11-1] 金属製部材の材質が金、銀、銅、白金、パラジウムまたはこれら各金属の合金であることを特徴とする、[9]、[10]、[10-1]、[10-2]、[10-3]、[11]のいずれかに記載の金属製部材接合体の製造方法。
[11-2] 加熱温度が70℃以上400℃以下であり、加熱焼結時の雰囲気ガスが酸素を含む酸化性ガスであることを特徴とする、[9]、[10]、[10-1]、[10-2]、[10-3]、[11]、[11-1]のいずれかに記載の金属製部材接合体の製造方法。
[12] 金属製部材接合体が電子部品であることを特徴とする、[9]、[10]、[10-1]、[10-2]、[10-3]、[11]、[11-1]、[11-2]のいずれかに記載の金属製部材接合体の製造方法。
[13] 有機物被覆金属粒子を、空気気流中における熱分析に供し、該熱分析における昇温速度と該金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)との関係から算出される該有機物の熱分解反応における活性化エネルギーが95kJ/モル未満である場合は、該有機物被覆金属粒子の加熱焼結性が優れると判定し、
該熱分析における昇温速度と該金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)との関係から算出される該有機物の熱分解反応における活性化エネルギーが95kJ/モル以上である場合は、該有機物被覆金属粒子の加熱焼結性が劣ると判定し、加熱焼結性が優れると判定された有機物被覆金属粒子を揮発性分散媒と混合してペースト化して加熱焼結性金属ペーストを調製し、次いで、該加熱焼結性金属ペーストを複数の金属製部材間に介在させ、加熱焼結性金属の焼結可能な温度以上で加熱することを特徴とする、金属製部材接合体の製造方法。
[14] 有機物被覆金属粒子が、平均粒径(メディアン径D50)が0.1μm以上50μm以下の銀粒子または銅粒子であり、有機物被覆金属粒子の表面を被覆している有機物が、高・中級脂肪酸およびその撥水性誘導体から選択されることを特徴とする、[13]に記載の金属製部材接合体の製造方法。
[14-1] 金属製部材の材質が金、銀、銅、白金、パラジウムまたはこれら各金属の合金であることを特徴とする、[13]または[14]に記載の金属製部材接合体の製造方法。
[14-2] 加熱温度が70℃以上400℃以下であり、加熱焼結時の雰囲気ガスが酸素を含む酸化性ガスであることを特徴とする、[13]、[14]、[14-1]のいずれかに記載の金属製部材接合体の製造方法。
[15] 金属製部材接合体が電子部品であることを特徴とする、[13]、[14]、[14-1]、[14-2]のいずれかに記載の金属製部材接合体の製造方法。」により達成される。
This purpose is also
“[9] Each of the organic-coated metal particles and the organic matter itself is subjected to thermal analysis in an air stream, and the pyrolysis peak temperature (1) of the organic matter covering the surface of the metal particles is the heat of the organic matter itself. If it is lower than the decomposition peak temperature (2), it is determined that the heat-sinterability of the organic-coated metal particles is excellent, and the thermal decomposition peak temperature (1) of the organic material covering the surface of the metal particles is the organic material itself. When the thermal decomposition peak temperature (2) is equal to or higher than the thermal decomposition peak temperature (2), it is determined that the organic-coated metal particles have poor heat-sinterability, and the organic-coated metal particles determined to have excellent heat-sinterability are used as volatile dispersion media. To prepare a heat-sinterable metal paste, and then interpose the heat-sinterable metal paste between a plurality of metal members so that the heat-sinterable metal can be sintered at a temperature higher than that. A method for producing a metal member assembly, comprising heating at
[10] If the pyrolysis peak temperature (1) is 2 ° C or more lower than the pyrolysis peak temperature (2), it is determined that the organic-coated metal particles have excellent heat sinterability, and the pyrolysis peak temperature (1) is The method for producing a metal member assembly according to [9], wherein when the temperature is higher than the thermal decomposition peak temperature (2) by 2 ° C or more, it is determined that the heat-sinterability of the organic-coated metal particles is poor. .
[10-1] The case where the pyrolysis peak temperature (1) is lower than the pyrolysis peak temperature (2) is lower than 2 ° C, and the pyrolysis peak temperature (1) is the same as the pyrolysis peak temperature (2). The method for producing a metal member assembly according to [9], wherein the case of equality or higher is a case where the temperature is higher by 2 ° C or higher.
[10-2] When the pyrolysis peak temperature (1) is 5 ° C. or more lower than the pyrolysis peak temperature (2), it is determined that the organic-coated metal particles have excellent heat sinterability, and the pyrolysis peak temperature (1 ) Is higher than the thermal decomposition peak temperature (2) by 5 ° C. or more, it is determined that the heat-sintering property of the organic-coated metal particles is inferior. The metal member assembly according to [9] Production method.
[10-3] The case where the pyrolysis peak temperature (1) is lower than the pyrolysis peak temperature (2) is 5 ° C or more lower than the pyrolysis peak temperature (1). The method for producing a metal member joined body according to [9], wherein the case of equality or higher is a case of higher by 5 ° C or higher.
[11] The organic coated metal particles are silver particles or copper particles having an average particle diameter (median diameter D50) of 0.1 μm or more and 50 μm or less, and the organic material covering the surface of the organic coated metal particles is a high / intermediate grade. The metal member according to any one of [9], [10], [10-1], [10-2], and [10-3], which is selected from fatty acids and water-repellent derivatives thereof Manufacturing method of joined body.
[11-1] The metal member is made of gold, silver, copper, platinum, palladium, or an alloy of these metals, [9], [10], [10-1], [10 -2], [10-3], [11] The method for producing a metal member assembly according to any one of [11].
[11-2] [9], [10], [10-], characterized in that the heating temperature is 70 ° C. or higher and 400 ° C. or lower, and the atmospheric gas during the heating and sintering is an oxidizing gas containing oxygen. [1], [10-2], [10-3], [11], [11-1] The method for producing a metal member assembly according to any one of [11-1].
[12] The metal member assembly is an electronic component, [9], [10], [10-1], [10-2], [10-3], [11], [ 11-1], [11-2] The method for producing a metal member assembly according to any one of [11-2].
[13] The organic-coated metal particles are subjected to thermal analysis in an air stream, and are calculated from the relationship between the heating rate in the thermal analysis and the thermal decomposition peak temperature (1) of the organic material covering the surface of the metal particles. When the activation energy in the thermal decomposition reaction of the organic material is less than 95 kJ / mol, it is determined that the heat-sintering property of the organic material-coated metal particles is excellent,
The activation energy in the pyrolysis reaction of the organic substance calculated from the relationship between the rate of temperature increase in the thermal analysis and the thermal decomposition peak temperature (1) of the organic substance covering the surface of the metal particles is 95 kJ / mol or more. In some cases, it is determined that the heat-sinterability of the organic-coated metal particles is poor, and the organic-coated metal particles determined to have excellent heat-sinterability are mixed with a volatile dispersion medium to form a paste and heat-sinterable. A metal member characterized in that a metal paste is prepared, and then the heat-sinterable metal paste is interposed between a plurality of metal members and heated at a temperature at which the heat-sinterable metal can be sintered. Manufacturing method of joined body.
[14] The organic coated metal particles are silver particles or copper particles having an average particle diameter (median diameter D50) of 0.1 μm or more and 50 μm or less, and the organic material covering the surface of the organic coated metal particles is a high / intermediate grade. The method for producing a metal member assembly according to [13], wherein the metal member assembly is selected from fatty acids and water-repellent derivatives thereof.
[14-1] The metal member assembly according to [13] or [14], wherein the material of the metal member is gold, silver, copper, platinum, palladium, or an alloy of these metals. Production method.
[14-2] [13], [14], [14-], wherein the heating temperature is 70 ° C. or more and 400 ° C. or less, and the atmospheric gas during the heating and sintering is an oxidizing gas containing oxygen. [1] The method for producing a metal member assembly according to any one of [1].
[15] The metal member assembly according to any one of [13], [14], [14-1], and [14-2], wherein the metal member assembly is an electronic component. Production method. Is achieved.
本発明の有機物被覆金属粒子の加熱焼結性の評価方法によると、有機物被覆金属粒子を揮発性分散媒と混合して金属ペーストにしてから加熱焼結性を評価するという煩雑な方法によることなく、有機物被覆金属粒子の加熱焼結性を簡易・迅速・容易に評価できる。 According to the method for evaluating the heat-sinterability of the organic-coated metal particles of the present invention, without using the complicated method of evaluating the heat-sinterability after mixing the organic-coated metal particles with a volatile dispersion medium to form a metal paste. In addition, the heat-sinterability of organic-coated metal particles can be evaluated easily, quickly and easily.
本発明の加熱焼結性金属ペーストの製造方法によると、本発明の加熱焼結性の評価方法により加熱焼結性良好な有機物被覆金属粒子を選別し、これを揮発性分散媒と混合してペースト化するので、加熱焼結性が優れた加熱焼結性金属ペーストを的確かつ効率的に製造できる。 According to the method for producing a heat-sinterable metal paste of the present invention, organic coated metal particles having good heat-sinterability are selected by the method for evaluating heat-sinterability of the present invention, and this is mixed with a volatile dispersion medium. Since it is made into a paste, a heat-sinterable metal paste having excellent heat-sinterability can be produced accurately and efficiently.
本発明の金属製部材接合体の製造方法は、本発明の加熱焼結性金属ペーストの製造方法により加熱焼結性金属ペーストを製造し、これを用いて金属製部材を接合するので、複数の金属製部材同士が強固に接合され、接合性に優れた金属製部材接合体を的確かつ効率的に製造することができる。 Since the manufacturing method of the metal member assembly of the present invention manufactures a heat-sinterable metal paste by the manufacturing method of the heat-sinterable metal paste of the present invention and uses this to bond the metal members, Metal members are firmly bonded to each other, and a metal member bonded body excellent in bondability can be accurately and efficiently manufactured.
本発明の有機物被覆金属粒子の加熱焼結性の評価方法は、有機物被覆金属粒子の加熱焼結性を熱分析により評価する方法であって、有機物被覆金属粒子と該有機物自体の各々を、空気気流中における熱分析に供し、該金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)が該有機物自体の熱分解ピーク温度(2)より低い場合は、該有機物被覆金属粒子の加熱焼結性が優れると判定し、該金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)が該有機物自体の熱分解ピーク温度(2)と同等以上の場合は、該有機物被覆金属粒子の加熱焼結性が劣ると判定することを特徴とする。 The method for evaluating the heat-sinterability of the organic-coated metal particles according to the present invention is a method for evaluating the heat-sinterability of the organic-coated metal particles by thermal analysis. When the thermal decomposition peak temperature (1) of the organic substance covering the surface of the metal particle is lower than the thermal decomposition peak temperature (2) of the organic substance itself, subjected to thermal analysis in an air stream, the organic substance-coated metal particle When the thermal decomposition peak temperature (1) of the organic substance covering the surface of the metal particles is determined to be excellent in heat sinterability, and the organic substance is more than or equal to the thermal decomposition peak temperature (2) of the organic substance itself, It is determined that the heat-sinterability of the coated metal particles is inferior.
上記の有機物被覆金属粒子の加熱焼結性の評価方法は、熱分解ピーク温度(1)が熱分解ピーク温度(2)より2℃以上低い場合は、該有機物被覆金属粒子の加熱焼結性が優れると判定し、熱分解ピーク温度(1)が熱分解ピーク温度(2)より2℃以上高い場合は、該有機物被覆金属粒子の加熱焼結性が劣ると判定することを好ましい実施態様とする。
上記の有機物被覆金属粒子の加熱焼結性の評価方法は、熱分解ピーク温度(1)が熱分解ピーク温度(2)より5℃以上低い場合は、該有機物被覆金属粒子の加熱焼結性が優れると判定し、熱分解ピーク温度(1)が熱分解ピーク温度(2)より5℃以上高い場合は、該有機物被覆金属粒子の加熱焼結性が劣ると判定することを、より好ましい実施態様とする。
The above-mentioned evaluation method for the heat-sinterability of the organic-coated metal particles is that when the pyrolysis peak temperature (1) is 2 ° C. or more lower than the pyrolysis peak temperature (2), the heat-sinterability of the organic-coated metal particles is When it is determined that the pyrolysis peak temperature (1) is 2 ° C. or more higher than the pyrolysis peak temperature (2), it is preferable to determine that the heat-sinterability of the organic-coated metal particles is inferior. .
The above-mentioned evaluation method for the heat-sinterability of the organic-coated metal particles is that when the pyrolysis peak temperature (1) is 5 ° C. or more lower than the pyrolysis peak temperature (2), the heat-sinterability of the organic-coated metal particles is It is determined that the thermal decomposition peak temperature (1) is 5 ° C. or more higher than the thermal decomposition peak temperature (2), and it is determined that the heat-sinterability of the organic-coated metal particles is inferior. And
本発明のもうひとつの有機物被覆金属粒子の加熱焼結性の評価方法は、有機物被覆金属粒子の加熱焼結性を熱分析により評価する方法であって、有機物被覆金属粒子を、空気気流中における熱分析に供し、該熱分析における昇温速度と該金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)との関係から算出される該有機物の熱分解反応における活性化エネルギーが95kJ/モル未満である場合は、該有機物被覆金属粒子の加熱焼結性が優れると判定し、該熱分析における昇温速度と該金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)との関係から算出される該有機物の熱分解反応における活性化エネルギーが95kJ/モル以上である場合は、該有機物被覆金属粒子の加熱焼結性が劣ると判定することを特徴とする。
以下、これらの有機物被覆金属粒子の加熱焼結性の評価方法について、詳細に説明する。
Another method for evaluating the heat-sinterability of organic-coated metal particles according to the present invention is a method for evaluating the heat-sinterability of organic-coated metal particles by thermal analysis. For the thermal analysis, the activation energy in the thermal decomposition reaction of the organic matter calculated from the relationship between the rate of temperature rise in the thermal analysis and the thermal decomposition peak temperature (1) of the organic matter covering the surface of the metal particles is If it is less than 95 kJ / mol, it is determined that the heat-sintering property of the organic-coated metal particles is excellent, and the rate of temperature increase in the thermal analysis and the thermal decomposition peak temperature of the organic material covering the surface of the metal particles ( When the activation energy in the thermal decomposition reaction of the organic substance calculated from the relationship with 1) is 95 kJ / mol or more, it is determined that the heat-sinterability of the organic substance-coated metal particles is inferior.
Hereinafter, a method for evaluating the heat-sinterability of these organic-coated metal particles will be described in detail.
上記2つの有機物被覆金属粒子の加熱焼結性の評価方法は、以下の理由で技術的に密接に関連しており、共通の技術的特徴を有する。
有機物被覆金属粒子中の金属粒子が焼結するためには加熱により該有機物が熱分解して該有機物被覆金属粒子から除去されることが必要である。有機物被覆金属粒子の加熱焼結性が優れる場合は、該有機物自体の熱分解温度よりも低い温度で該有機物被覆金属粒子の表面を被覆している有機物が熱分解して該有機物被覆金属粒子から除去されるが、このことは該有機物被覆金属粒子がその表面を被覆している該有機物の熱分解を促進する作用を有することを意味する。熱分解は化学反応であり、化学反応の起こりやすさは活性化エネルガーの大小で比較でき、有機物被覆金属粒子が該有機物の熱分解反応における触媒作用を有する場合の活性化エネルギーは、該触媒作用がない場合の活性化エネルギーよりも小さいことになる。
すなわち、該有機物被覆金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)が該有機物自体の熱分解ピーク温度(2)よりも低い場合は、該有機物被覆金属粒子が該有機物の熱分解を促進する触媒として作用しているということにほかならず、触媒は化学反応を促進するものであるから、この熱分解における活性化エネルギーは小さく、具体的には95kJ/モル未満である。
The method for evaluating the heat-sinterability of the two organic-coated metal particles is technically closely related for the following reasons and has common technical features.
In order for the metal particles in the organic material-coated metal particles to sinter, it is necessary that the organic material is thermally decomposed by heating and removed from the organic material-coated metal particles. When the heat-sintering property of the organic material-coated metal particles is excellent, the organic material covering the surface of the organic material-coated metal particles is thermally decomposed at a temperature lower than the thermal decomposition temperature of the organic material itself, and the organic material-coated metal particles Although it is removed, this means that the organic-coated metal particles have an action of promoting the thermal decomposition of the organic material covering the surface. Thermal decomposition is a chemical reaction, and the susceptibility of the chemical reaction can be compared by the size of the activation energy, and the activation energy when the organic-coated metal particles have a catalytic action in the thermal decomposition reaction of the organic substance is the catalytic action. This is smaller than the activation energy in the absence of.
That is, when the pyrolysis peak temperature (1) of the organic substance covering the surface of the organic substance-coated metal particles is lower than the pyrolysis peak temperature (2) of the organic substance itself, the organic substance-coated metal particles are In addition to acting as a catalyst for promoting thermal decomposition, the catalyst promotes a chemical reaction. Therefore, the activation energy in this thermal decomposition is small, specifically less than 95 kJ / mol.
有機物で被覆された金属粒子の材質は、常温で固体である金、銀、銅、パラジウム、ニッケル、スズ、アルミニウム、および、これら各金属の合金が例示され、さらにはこれら各金属の金属化合物が例示されるが、熱伝導性および導電性の点で銀および銅が好ましく、ニッケルも好ましい。銀粒子は、表面または内部の、一部または全部が酸化銀または過酸化銀であってもよい。銅は酸化銅が少ないことが好ましい。また、金属粒子は、通常、単独の材質からなるが、複数の材質の粒子の混合物であってもよい。 Examples of the material of the metal particles coated with the organic substance include gold, silver, copper, palladium, nickel, tin, aluminum, and alloys of these metals that are solid at room temperature, and further, metal compounds of these metals are included. Illustratively, silver and copper are preferable in terms of thermal conductivity and conductivity, and nickel is also preferable. The silver particles may be partly or entirely silver oxide or silver peroxide on the surface or inside. It is preferable that copper has little copper oxide. The metal particles are usually made of a single material, but may be a mixture of particles made of a plurality of materials.
有機物で被覆された金属粒子は、それら金属(例えば、銀)により表面がメッキされた金属(例えば、銅、ニッケル、アルミニウム)粒子、それら金属(例えば、銀)により表面がメッキされた樹脂(例えば、エポキシ樹脂、ポリエーテルサルフォン樹脂)粒子であってもよい。 Metal particles coated with organic matter are metal (for example, copper, nickel, aluminum) particles whose surfaces are plated with these metals (for example, silver), and resins whose surfaces are plated with these metals (for example, silver) (for example, , Epoxy resin, polyethersulfone resin) particles.
有機物被覆金属粒子の形状は特に限定されず、球状、針状、角状、樹枝状、繊維状、フレーク状(片状)、粒状、不規則形状、涙滴状が例示される(JIS Z 2500参照)。さらには楕円球状、海綿状、ぶどう状、紡錘状、略立方体状等が例示される。このうち本発明の加熱焼結性金属ペーストの保存安定性の点で、球状、粒状またはフレーク状が好ましい。
ここで言う球状とは、ほぼ球に近い形状である(JIS Z2500:2000参照)。必ずしも真球状である必要はなく、粒子の長径(DL)と短径(DS)との比(DL)/(DS)(真球度あるいは球状係数と言うことがある)が1.0〜1.2の範囲にあるものが好ましい。
粒状とは、不規則形状のものではなくほぼ等しい寸法をもつ形状である(JIS Z2500:2000参照)。
フレーク状(片状)とは、板のような形状であり(JIS Z2500:2000参照)、鱗のように薄い板状であることから鱗片状とも言われるものである。いずれの形状であっても粒度分布は限定されない。
The shape of the organic-coated metal particles is not particularly limited, and examples thereof include a spherical shape, a needle shape, a square shape, a dendritic shape, a fiber shape, a flake shape (a piece shape), a granular shape, an irregular shape, and a teardrop shape (JIS Z 2500). reference). Furthermore, an elliptical spherical shape, a spongy shape, a grape shape, a spindle shape, a substantially cubic shape, and the like are exemplified. Among these, spherical shape, granular shape, or flake shape is preferable from the viewpoint of storage stability of the heat-sinterable metal paste of the present invention.
The spherical shape referred to here is a shape that is almost a sphere (see JIS Z2500: 2000). The spherical shape is not necessarily required, and the ratio of the major axis (DL) to the minor axis (DS) of the particle (DL) / (DS) (sometimes referred to as sphericity or spherical coefficient) is 1.0 to 1. Those in the range of .2 are preferred.
Granular is not an irregular shape but a shape with almost equal dimensions (see JIS Z2500: 2000).
The flake shape (strip shape) is a plate-like shape (see JIS Z2500: 2000) and is also called a scale shape because it is a thin plate shape like a scale. No matter the shape, the particle size distribution is not limited.
有機物被覆金属粒子の製造方法は限定されないが、還元法または湿式法であることが好ましい。還元法による金属粒子の製造方法は多く提案されており、例えば、硝酸銀水溶液に水酸化ナトリウム水溶液を加えて酸化銀を調製し、これにホルマリンのような還元剤の水溶液を加えることにより酸化銀を還元して銀粒子分散液とし、分散液をろ過し、必要によりろ過残渣を洗浄し、乾燥をおこなうことにより製造するという方法が例示される。この際に銀粒子同士の凝集を防止するため、例えば、高・中級脂肪酸またはその誘導体である撥水性有機物を添加して銀粒子表面を被覆する(特開昭54−121270号公報参照)。このように有機物被覆金属粒子は、製造後の保存中に表面の酸化防止と該粒子同士の凝集防止のため表面が有機物で被覆されている。 The method for producing the organic-coated metal particles is not limited, but is preferably a reduction method or a wet method. Many methods for producing metal particles by the reduction method have been proposed. For example, silver oxide is prepared by adding an aqueous solution of sodium hydroxide to an aqueous solution of silver nitrate, and an aqueous solution of a reducing agent such as formalin is added thereto. An example is a method of producing a silver particle dispersion by reduction, filtering the dispersion, washing the filtration residue if necessary, and drying. At this time, in order to prevent aggregation of the silver particles, for example, a water-repellent organic substance which is a high / intermediate fatty acid or a derivative thereof is added to coat the surface of the silver particles (see Japanese Patent Laid-Open No. 54-121270). As described above, the surface of the organic-coated metal particles is coated with an organic material to prevent surface oxidation and aggregation of the particles during storage after production.
有機物被覆金属粒子の表面を被覆している有機物は、金属粒子の加熱焼結性を阻害しなければ特に限定されず、炭素原子数が5以下の脂肪族炭化水素基とヒドロキシ基からなるアルキルアルコール、炭素原子数が5以下の脂肪族炭化水素基とアミノ基からなるアルキルアミン、炭素原子数が5以下の脂肪族炭化水素基とスルファニル基からなるアルカンチオール、脂肪族炭化水素基とヒドロキシ基を2個以上有するアルカンポリオール、炭素原子数が5以下の脂肪族炭化水素基とカルボキシル基からなる低級脂肪酸等の親水性有機物;高・中級脂肪酸およびその撥水性誘導体、炭素原子数が6以上の脂肪族炭化水素基とヒドロキシ基からなるアルキルアルコール、炭素原子数が6以上の脂肪族炭化水素基とアミノ基からなるアルキルアミン、炭素原子数が6以上の脂肪族炭化水素基とスルファニル基からなるアルカンチオール等の撥水性有機物が例示されるが、有機物被覆金属粒子の常温における保存安定性に優れる撥水性有機物であることが好ましい。撥水性は疎水性ともいう。 The organic substance covering the surface of the organic-coated metal particles is not particularly limited as long as the heat-sinterability of the metal particles is not hindered, and an alkyl alcohol comprising an aliphatic hydrocarbon group having 5 or less carbon atoms and a hydroxy group An alkylamine composed of an aliphatic hydrocarbon group having 5 or less carbon atoms and an amino group, an alkanethiol composed of an aliphatic hydrocarbon group having 5 or less carbon atoms and a sulfanyl group, an aliphatic hydrocarbon group and a hydroxy group. 2 or more alkane polyols, hydrophilic organic substances such as lower fatty acids composed of aliphatic hydrocarbon groups having 5 or less carbon atoms and carboxyl groups; high and intermediate fatty acids and their water-repellent derivatives, fats having 6 or more carbon atoms An alkyl alcohol composed of an aromatic hydrocarbon group and a hydroxy group, an alkylamine composed of an aliphatic hydrocarbon group having 6 or more carbon atoms and an amino group, Illustrative are water-repellent organic substances such as alkanethiols composed of aliphatic hydrocarbon groups having 6 or more elemental atoms and sulfanyl groups, but water-repellent organic substances having excellent storage stability at room temperature of organic-coated metal particles are preferred. . Water repellency is also called hydrophobicity.
撥水性有機物は、高・中級脂肪酸またはその撥水性誘導体であることがより好ましい。高・中級脂肪酸の誘導体としては、高・中級脂肪酸金属塩(ただし、アルカリ金属塩を除く)、高・中級脂肪酸アミドおよび高・中級脂肪酸エステルが例示される。被覆効果、処理効果の点で特には高・中級脂肪酸が好ましい。 The water-repellent organic substance is more preferably a high / intermediate fatty acid or a water-repellent derivative thereof. Examples of the derivatives of high / intermediate fatty acids include high / intermediate fatty acid metal salts (excluding alkali metal salts), high / intermediate fatty acid amides, and high / intermediate fatty acid esters. High and intermediate fatty acids are particularly preferred in terms of coating effect and treatment effect.
高級脂肪酸は、炭素原子数15以上の脂肪酸であり、ペンタデカン酸、ヘキサデカン酸(パルミチン酸)、ヘプタデカン酸、オクタデカン酸(ステアリン酸)、12−ヒドロキシオクタデカン酸(12−ヒドロキシステアリン酸)、エイコサン酸(アラキン酸)、ドコサン酸(ベヘン酸)、テトラコサン酸(リグノセリン酸)、ヘキサコサン酸(セロチン酸)、オクタコサン酸(モンタン酸)等の直鎖飽和脂肪酸;2−ペンチルノナン酸、2−ヘキシルデカン酸、2−ヘプチルドデカン酸、イソステアリン酸等の分枝飽和脂肪酸;パルミトレイン酸、オレイン酸、イソオレイン酸、エライジン酸、リノール酸、リノレン酸、リシノール酸、ガドレン酸、エルカ酸、セラコレイン酸等の不飽和脂肪酸が例示される。 A higher fatty acid is a fatty acid having 15 or more carbon atoms, such as pentadecanoic acid, hexadecanoic acid (palmitic acid), heptadecanoic acid, octadecanoic acid (stearic acid), 12-hydroxyoctadecanoic acid (12-hydroxystearic acid), eicosanoic acid ( Linear saturated fatty acids such as arachidic acid), docosanoic acid (behenic acid), tetracosanoic acid (lignoceric acid), hexacosanoic acid (serotic acid), octacosanoic acid (montanic acid); 2-pentylnonanoic acid, 2-hexyldecanoic acid, 2- Examples include branched saturated fatty acids such as heptyldodecanoic acid and isostearic acid; unsaturated fatty acids such as palmitoleic acid, oleic acid, isooleic acid, elaidic acid, linoleic acid, linolenic acid, ricinoleic acid, gadrenic acid, erucic acid, and ceracolic acid The
中級脂肪酸は、炭素原子数が6〜14の脂肪酸であり、ヘキサン酸(カプロン酸)、ヘプタン酸、オクタン酸(カプリル酸)、ノナン酸(ペラルゴン酸)、デカン酸(カプリン酸)、ウンデカン酸、ドデカン酸(ラウリン酸)、トリデカン酸、テトラデカン酸(ミリスチン酸)等の直鎖飽和脂肪酸;イソヘキサン酸、イソヘプタン酸、2−エチルヘキサン酸、イソオクタン酸、イソノナン酸、2−プロピルヘプタン酸、イソデカン酸、イソウンデカン酸、2−ブチルオクタン酸、イソドデカン酸、イソトリデカン酸等の分枝飽和脂肪酸;10−ウンデセン酸等の不飽和脂肪酸が例示される。 Intermediate fatty acids are fatty acids having 6 to 14 carbon atoms, such as hexanoic acid (caproic acid), heptanoic acid, octanoic acid (caprylic acid), nonanoic acid (pelargonic acid), decanoic acid (capric acid), undecanoic acid, Linear saturated fatty acids such as dodecanoic acid (lauric acid), tridecanoic acid, tetradecanoic acid (myristic acid); isohexanoic acid, isoheptanoic acid, 2-ethylhexanoic acid, isooctanoic acid, isononanoic acid, 2-propylheptanoic acid, isodecanoic acid, Illustrative examples include branched saturated fatty acids such as isoundecanoic acid, 2-butyloctanoic acid, isododecanoic acid and isotridecanoic acid; and unsaturated fatty acids such as 10-undecenoic acid.
有機物被覆金属粒子の表面を被覆している有機物の量は、金属粒子の平均粒径、比表面積、形状、比重などにより変わるが、金属粒子の0.01〜10重量%が好ましく、0.1〜2重量%がより好ましい。少なすぎると有機物被覆金属粒子が凝集しやすく保存安定性が低下し、多すぎると該金属粒子の加熱焼結性が低下するからである。 The amount of the organic substance covering the surface of the organic-coated metal particles varies depending on the average particle diameter, specific surface area, shape, specific gravity, etc. of the metal particles, but is preferably 0.01 to 10% by weight of the metal particles, 0.1 More preferred is ˜2% by weight. This is because if the amount is too small, the organic-coated metal particles tend to aggregate and the storage stability is lowered, and if too much, the heat-sinterability of the metal particles is lowered.
有機物被覆金属粒子の表面を被覆している有機物の量は通常の方法で測定できる。有機物が揮発可能な温度(例えば、沸点近傍あるいはそれ以上)に加熱して重量減少を測定する方法、金属粒子を酸素気流中で加熱して金属粒子に付着していた有機物中の炭素を炭酸ガスに変え、炭酸ガスを赤外線吸収スペクトル法により定量分析する方法等が例示される。 The amount of the organic substance covering the surface of the organic substance-coated metal particle can be measured by a usual method. A method of measuring weight loss by heating to a temperature at which organic substances can volatilize (for example, near or above the boiling point), heating carbon particles in an oxygen stream, and carbon in organic substances adhering to the metal particles to carbon dioxide Instead, a method of quantitatively analyzing carbon dioxide gas by infrared absorption spectroscopy is exemplified.
有機物被覆金属粒子が加熱により焼結するためには、表面を被覆している有機物が除去されることが必要である。一方、該有機物は安定して長期間、金属粒子の酸化防止と凝集防止をするため、金属粒子表面と配位的な結合をするものが好ましい(特開2007-83288号公報参照)。 In order for the organic material-coated metal particles to be sintered by heating, it is necessary to remove the organic material covering the surface. On the other hand, in order to stably prevent oxidation and aggregation of the metal particles for a long period of time, the organic substance preferably has a coordinate bond with the surface of the metal particles (see JP-A-2007-83288).
有機物被覆金属粒子が加熱されると表面を被覆している有機物が除去され、それにあわせて金属粒子同士が焼結する。
この際、特に金属粒子表面と直接接して被覆している有機物(金属表面に直接接している単分子層状の有機物)は単に金属表面に付着しているのでなく、金属粒子表面と結合しているので揮発させて除去することは困難である。例えば有機物被覆金属粒子を常温から昇温していくと金属粒子の表面を被覆している有機物は、まず過剰な分(金属表面に直接接している単分子層状の有機物を除く)が主に揮発によって徐々に除去されていくが、金属粒子表面に直接接している単分子層状の有機物は金属粒子表面と結合状態にあるので揮発によっては除去されず、雰囲気中の酸素と熱により酸化され分解することで除去できる。このとき酸化による分解反応は発熱反応であるため、熱分析によりその熱分解の温度を測定することができ、その発熱ピーク温度を金属表面から該有機物が除去された温度とすることができる。なお、この発熱ピーク温度では、金属粒子の焼結を阻害していた金属粒子表面の有機物が除去されるため、金属粒子の焼結も同時に起こる。このため、加熱焼結性を熱分析により評価する方法における発熱ピークには金属粒子の焼結にともなう発熱もしくは吸熱による寄与分を含んでいても良い。
When the organic material-coated metal particles are heated, the organic material covering the surface is removed, and the metal particles are sintered together.
At this time, in particular, the organic substance (monolayer organic substance directly in contact with the metal surface) coated directly in contact with the metal particle surface is not simply attached to the metal surface but is bonded to the metal particle surface. Therefore, it is difficult to volatilize and remove. For example, when the temperature of organic coated metal particles is raised from room temperature, the organic material covering the surface of the metal particles is first volatilized mainly in excess (except for monolayer organic materials that are in direct contact with the metal surface). However, the organic substance in the monomolecular layer directly in contact with the metal particle surface is in a bonded state with the metal particle surface, so it is not removed by volatilization, but is oxidized and decomposed by oxygen and heat in the atmosphere. Can be removed. At this time, since the decomposition reaction due to oxidation is an exothermic reaction, the temperature of the thermal decomposition can be measured by thermal analysis, and the exothermic peak temperature can be set to the temperature at which the organic matter is removed from the metal surface. Note that, at this exothermic peak temperature, organic substances on the surface of the metal particles that hindered the sintering of the metal particles are removed, so that the metal particles are also sintered at the same time. For this reason, the exothermic peak in the method for evaluating the heat sinterability by thermal analysis may include a contribution due to heat generation or endotherm accompanying the sintering of the metal particles.
このような熱分析は、示差熱分析(DTA)、示差走査熱量分析(DSC)が例示されるが、装置が簡便で、しかも試料から発生する熱分解ガスによる分析装置のセンサーへの影響の小さい示差熱分析が好ましい。 Examples of such thermal analysis include differential thermal analysis (DTA) and differential scanning calorimetry (DSC), but the apparatus is simple and the pyrolysis gas generated from the sample has little influence on the sensor of the analyzer. Differential thermal analysis is preferred.
示差熱分析の方法は、常温から一定の昇温速度で昇温していき、2個のサンプルホルダーに設置された熱電対の起電力による一方のレファレンスともう一方のサンプルとの間に生じる温度差を検出し、発熱反応や吸熱反応を示差熱曲線として検出するものであり、有機物被覆金属粒子の表面を被覆している有機物が熱分解する際に発熱ピークとして測定することができる。このとき、熱重量分析(TGA)を同時に行うと、有機物の除去の程度を有機物の重量減少という形で確認できるので、示差熱分析と熱重量分析を同時に行う示差熱熱重量同時分析が好ましい。このような測定装置は数多く市販されている。例えば、株式会社島津製作所製の示差熱熱重量同時測定装置DTG−60A型はオートサンプラーが併用できるため、連続的に有機物被覆金属粒子の評価ができ、数多くの金属粒子の中から加熱焼結性に優れる金属粒子を効率よく選択できる。 In the differential thermal analysis method, the temperature is raised from room temperature at a constant rate of temperature, and the temperature generated between one reference and the other sample due to the electromotive force of the thermocouples installed in the two sample holders. A difference is detected, and an exothermic reaction or an endothermic reaction is detected as a differential heat curve, and can be measured as an exothermic peak when the organic substance covering the surface of the organic substance-coated metal particles is thermally decomposed. At this time, if thermogravimetric analysis (TGA) is performed at the same time, the degree of organic matter removal can be confirmed in the form of weight loss of the organic matter, and therefore differential thermothermal gravimetric simultaneous analysis in which differential thermal analysis and thermogravimetric analysis are performed simultaneously is preferable. Many such measuring devices are commercially available. For example, the DTG-60A differential thermal thermogravimetric simultaneous measurement device manufactured by Shimadzu Corporation can be used in combination with an autosampler, so it is possible to continuously evaluate organic-coated metal particles, and heat sinterability from many metal particles. It is possible to efficiently select metal particles that are superior to the above.
示差走査熱量分析の方法は、常温から一定の昇温速度で昇温していき、2個のサンプルホルダーに設置された熱電対の起電力による一方のレファレンスともう一方のサンプルとの間に生じる温度差を熱量として検出し、発熱反応や吸熱反応を示差走査熱量曲線として検出するものであり、有機物被覆金属粒子の表面を被覆している有機物が熱分解する際に発熱ピークとして測定することができる。このような測定装置は数多く市販されており、パーキンエルマー社製の示差走査熱量測定装置、セイコー電子工業株式会社製の示差走査熱量測定装置が例示される。 In the differential scanning calorimetry method, the temperature is raised from room temperature at a constant rate of heating, and is generated between one reference and the other sample due to the electromotive force of thermocouples installed in two sample holders. The temperature difference is detected as calorific value, and the exothermic reaction and endothermic reaction are detected as a differential scanning calorimetric curve. It can be measured as an exothermic peak when the organic matter covering the surface of the organic matter-coated metal particles is thermally decomposed. it can. Many such measuring apparatuses are commercially available, and examples include a differential scanning calorimeter manufactured by Perkin Elmer and a differential scanning calorimeter manufactured by Seiko Electronics Corporation.
このように、示差熱分析と示差走査熱量分析は、ともにレファレンスとサンプルの温度差を検出している点で共通しており、よって本発明における熱分解ピーク温度は、個々の装置の感度による差を除けば基本的に同じである。 Thus, both differential thermal analysis and differential scanning calorimetry are common in that they detect the temperature difference between the reference and the sample. Therefore, the pyrolysis peak temperature in the present invention is different depending on the sensitivity of each device. Is basically the same except for.
示差熱分析(DTA)の場合は、有機物被覆金属粒子の表面を被覆している有機物は、空気中で有機物被覆金属粒子を常温から昇温していくと該金属粒子固有のある温度に達した時点で酸化による熱分解反応がおこり、一気に発熱して急速に有機物の量がゼロとなる。このとき示差熱分析における示差熱(DTA)曲線は発熱側にピークを形成するが、このときの温度が該有機物の熱分解ピーク温度(1)である。
この熱分解ピーク温度が発熱側に現れるのは、有機物の酸化による熱分解は燃焼という発熱反応であるためである。
In the case of differential thermal analysis (DTA), the organic matter covering the surface of the organic-coated metal particles reaches a certain temperature unique to the metal particles when the organic-coated metal particles are heated from room temperature in air. At that time, a thermal decomposition reaction due to oxidation occurs, and the amount of organic matter rapidly becomes zero by generating heat at a stretch. At this time, the differential heat (DTA) curve in the differential thermal analysis forms a peak on the exothermic side, and the temperature at this time is the thermal decomposition peak temperature (1) of the organic matter.
This thermal decomposition peak temperature appears on the exothermic side because thermal decomposition due to oxidation of organic substances is an exothermic reaction called combustion.
示差走査熱量分析(DSC)の場合は、有機物被覆金属粒子の表面を被覆している有機物は、空気中で有機物被覆金属粒子を常温から昇温していくと該金属粒子固有のある温度に達した時点で酸化による熱分解反応がおこり、一気に発熱して急速に有機物の量がゼロとなる。このとき示差走査熱量分析における示差走査熱量(DSC)曲線は発熱側にピークを形成するが、このときの温度が該有機物の熱分解ピーク温度(1)である。
この熱分解ピーク温度が発熱側に現れるのは、有機物の酸化による熱分解は燃焼という発熱反応であるためである。
In the case of differential scanning calorimetry (DSC), the organic matter covering the surface of the organic-coated metal particles reaches a certain temperature unique to the metal particles when the organic-coated metal particles are heated from room temperature in air. At that time, a thermal decomposition reaction due to oxidation takes place and heat is generated at once, and the amount of organic matter rapidly becomes zero. At this time, the differential scanning calorimetry (DSC) curve in the differential scanning calorimetry analysis forms a peak on the exothermic side, and the temperature at this time is the thermal decomposition peak temperature (1) of the organic matter.
This thermal decomposition peak temperature appears on the exothermic side because thermal decomposition due to oxidation of organic substances is an exothermic reaction called combustion.
このように測定した有機物被覆金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)と、同様に測定した該有機物自体の熱分解ピーク温度(2)とは、本来同程度のはずであるが、有機物被覆金属粒子が加熱焼結性に優れる場合には、該金属粒子自体がその表面を被覆している有機物の熱分解を促進するため、熱分解ピーク温度(1)を低下させる結果、熱分解ピーク温度(1)は該有機物自体の熱分解ピーク温度(2)よりも低温となる。
一方、有機物被覆金属粒子の加熱焼結性が劣る場合には、有機物被覆金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)は、該有機物自体の熱分解ピーク温度(2)と同一か、より高温となる。すなわち、同等以上となる。
The pyrolysis peak temperature (1) of the organic substance covering the surface of the organic-coated metal particles measured in this way should be essentially the same as the pyrolysis peak temperature (2) of the organic substance measured in the same manner. However, when the organic-coated metal particles are excellent in heat sinterability, the metal particles themselves promote the thermal decomposition of the organic material covering the surface, so that the thermal decomposition peak temperature (1) is lowered. As a result, the pyrolysis peak temperature (1) is lower than the pyrolysis peak temperature (2) of the organic substance itself.
On the other hand, when the heat-sinterability of the organic-coated metal particles is inferior, the thermal decomposition peak temperature (1) of the organic material covering the surface of the organic-coated metal particles is the thermal decomposition peak temperature (2) of the organic material itself. The same or higher. That is, it becomes equal or better.
上記いずれの場合も、有機物被覆金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)と該有機物自体の熱分解ピーク温度(2)の温度差が、好ましくは2℃以上、より好ましくは5℃以上であると、有機物被覆金属粒子の加熱焼結性の判定が容易となる。
なお、加熱焼結性金属粒子を被覆するための有機物自体の熱分解ピーク温度、および、加熱焼結性金属粒子の表面を被覆している有機物の熱分解ピーク温度は、通常100〜330℃であるので、この判定方法は、通常熱分解ピーク温度が100〜330℃である場合に有用であるが、この温度範囲に限定されるものではない。
In any of the above cases, the temperature difference between the pyrolysis peak temperature (1) of the organic substance covering the surface of the organic-coated metal particles and the pyrolysis peak temperature (2) of the organic substance itself is preferably 2 ° C. or more. When it is preferably 5 ° C. or higher, the determination of the heat-sinterability of the organic-coated metal particles becomes easy.
The pyrolysis peak temperature of the organic substance itself for coating the heat-sinterable metal particles, and the pyrolysis peak temperature of the organic substance covering the surface of the heat-sinterable metal particles are usually 100 to 330 ° C. Therefore, this determination method is useful when the thermal decomposition peak temperature is usually 100 to 330 ° C., but is not limited to this temperature range.
以上により、有機物被覆金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)が該有機物自体の熱分解ピーク温度(2)より低ければ、該金属粒子の加熱焼結性が優れると判定できる。有機物被覆金属粒子の加熱焼結性が優れると、より低温でも焼結が可能となるので、有機物被覆金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)は該有機物自体の熱分解ピーク温度(2)よりも、2℃以上低いことが好ましく、5℃以上低いことがより好ましい。 As described above, if the pyrolysis peak temperature (1) of the organic substance covering the surface of the organic substance-coated metal particles is lower than the pyrolysis peak temperature (2) of the organic substance itself, the heat sinterability of the metal particles is excellent. Can be judged. If the organic-coated metal particles are excellent in heat-sinterability, sintering is possible even at a lower temperature. Therefore, the pyrolysis peak temperature (1) of the organic material covering the surface of the organic-coated metal particles is the heat of the organic material itself. It is preferably 2 ° C. or more lower than the decomposition peak temperature (2), more preferably 5 ° C. or more.
本願発明の加熱焼結性の評価方法で評価された有機物被覆金属粒子は、その評価が「優れる」の場合は、加熱焼結温度に関わらず実際の焼結性がよく、その評価が「劣る」の場合は、加熱焼結温度に関わらず実際の焼結性が悪い。つまり、本願発明の加熱焼結性の評価方法で「優れる」と判定された場合、実際の加熱温度が、該金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)より高い場合はもとより、熱分解ピーク温度(1)より低い場合でも加熱焼結性は優れている。また本願発明の加熱焼結性の評価方法で「劣る」と判定された場合、実際の加熱温度を該金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)より高くしても加熱焼結性は劣ったままである。 When the evaluation is “excellent”, the organic-coated metal particles evaluated by the heat sinterability evaluation method of the present invention have good sinterability regardless of the heat sintering temperature, and the evaluation is “poor”. ", The actual sinterability is poor regardless of the heating and sintering temperature. In other words, when it is determined as “excellent” by the evaluation method for heat sinterability of the present invention, the actual heating temperature is higher than the thermal decomposition peak temperature (1) of the organic substance covering the surface of the metal particles. Needless to say, the heat-sinterability is excellent even when the temperature is lower than the thermal decomposition peak temperature (1). Further, when it is determined as “inferior” by the heat sinterability evaluation method of the present invention, the actual heating temperature may be higher than the thermal decomposition peak temperature (1) of the organic substance covering the surface of the metal particles. Heat sinterability remains poor.
有機物被覆金属粒子中の金属粒子が、その表面を被覆している有機物の熱分解温度を低下させる場合には、有機物被覆金属粒子が該有機物の熱分解を促進する触媒としての機能を有することを意味する。
本発明の加熱焼結性の評価方法において、該金属粒子が加熱焼結性に優れると判定されるためには、有機物被覆金属粒子の表面を被覆している該有機物の熱分解反応における活性化エネルギーは低いことが必要であり、具体的には95kJ/モル未満である。該活性化エネルギーが95kJ/モル以上であると、該金属粒子の加熱焼結性は劣ると判定される。
この活性化エネルギーは、加熱分解反応の反応速度が未反応物量の割合の一次反応と仮定することにより導かれるKissingerの式から、本発明の熱分析において昇温速度を変えて有機物被覆金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)を測定することにより容易に求めることができる。
When the metal particles in the organic material-coated metal particles lower the thermal decomposition temperature of the organic material covering the surface, the organic material-coated metal particles have a function as a catalyst for promoting the thermal decomposition of the organic material. means.
In order to determine that the metal particles are excellent in heat sinterability in the heat sinterability evaluation method of the present invention, activation in the pyrolysis reaction of the organic material covering the surface of the organic material-coated metal particles The energy needs to be low, specifically less than 95 kJ / mol. When the activation energy is 95 kJ / mol or more, it is determined that the heat sinterability of the metal particles is inferior.
This activation energy is derived from the Kissinger equation derived from the assumption that the reaction rate of the thermal decomposition reaction is a primary reaction in the proportion of the amount of unreacted substances. It can be easily determined by measuring the thermal decomposition peak temperature (1) of the organic substance covering the surface.
具体的な活性化エネルギーの測定方法は、例えば、次のとおりである。示差熱分析(DTA)の場合は、示差熱熱重量同時測定装置を用いて、空気気流中で有機物被覆金属粒子を昇温速度1℃/分、5℃/分、10℃/分、50℃/分で各々23℃から400℃まで昇温し、各昇温速度(Φ、単位K/s)と昇温途上にDTA曲線に現れる発熱ピーク温度(T、単位K)との関係を測定する。次にKissinngerの式を適用して、横軸に1/T、縦軸にln(Φ/RT2)をとったグラフにプロットし、得られた直線の傾きを−E/Rとして求め、活性化エネルギー(E、単位kJ/モル)を算出する。ここでRは気体定数である。 A specific method for measuring the activation energy is, for example, as follows. In the case of differential thermal analysis (DTA), using an apparatus for simultaneous differential thermothermal gravimetry, organic-coated metal particles are heated at a rate of 1 ° C./min, 5 ° C./min, 10 ° C./min, 50 ° C. in an air stream. The temperature is raised from 23 ° C. to 400 ° C. per minute, and the relationship between each heating rate (Φ, unit K / s) and the exothermic peak temperature (T, unit K) appearing in the DTA curve during the temperature rising is measured. . Next, Kissinnger's formula was applied, plotted on a graph with 1 / T on the horizontal axis and ln (Φ / RT 2 ) on the vertical axis, and the slope of the obtained straight line was determined as -E / R, and the activity The conversion energy (E, unit kJ / mol) is calculated. Here, R is a gas constant.
示差走査熱量分析(DSC)の場合は、示差走査熱量測定装置を用いて、空気気流中で有機物被覆金属粒子を昇温速度1℃/分、5℃/分、10℃/分、50℃/分で各々23℃から400℃まで昇温し、各昇温速度(Φ、単位K/s)と昇温途上にDSC曲線に現れる発熱ピーク温度(T、単位K)との関係を測定する。次にKissinngerの式を適用して、横軸に1/T、縦軸にln(Φ/RT2)をとったグラフにプロットし、得られた直線の傾きを−E/Rとして求め、活性化エネルギー(E、単位kJ/モル)を算出する。ここでRは気体定数である。 In the case of differential scanning calorimetry (DSC), using a differential scanning calorimeter, the organic coated metal particles are heated at a rate of 1 ° C./min, 5 ° C./min, 10 ° C./min, 50 ° C./min in an air stream. The temperature is raised from 23 ° C. to 400 ° C. per minute, and the relationship between each heating rate (Φ, unit K / s) and the exothermic peak temperature (T, unit K) appearing in the DSC curve during the temperature increase is measured. Next, Kissinnger's formula was applied, plotted on a graph with 1 / T on the horizontal axis and ln (Φ / RT 2 ) on the vertical axis, and the slope of the obtained straight line was determined as -E / R, and the activity The conversion energy (E, unit kJ / mol) is calculated. Here, R is a gas constant.
本発明における加熱焼結性金属ペーストの製造方法は、有機物被覆金属粒子と該有機物自体の各々を、空気気流中における熱分析に供し、該金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)が該有機物自体の熱分解ピーク温度(2)より低い場合は、該有機物被覆金属粒子の加熱焼結性が優れると判定し、該金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)が該有機物自体の熱分解ピーク温度(2)と同等以上の場合は、該有機物被覆金属粒子の加熱焼結性が劣ると判定し、次いで、加熱焼結性が優れると判定された有機物被覆金属粒子を揮発性分散媒と混合してペースト化することを特徴とする。 In the method for producing a heat-sinterable metal paste in the present invention, each of the organic substance-coated metal particles and the organic substance itself is subjected to thermal analysis in an air stream, and the thermal decomposition peak of the organic substance covering the surface of the metal particles. If the temperature (1) is lower than the pyrolysis peak temperature (2) of the organic substance itself, it is determined that the heat-sintering property of the organic substance-coated metal particles is excellent, and the heat of the organic substance covering the surface of the metal particles is determined. When the decomposition peak temperature (1) is equal to or higher than the thermal decomposition peak temperature (2) of the organic substance itself, it is determined that the heat-sintering property of the organic-coated metal particles is poor, and then the heat-sintering property is excellent. The organic coated metal particles thus determined are mixed with a volatile dispersion medium to form a paste.
本発明のもうひとつの加熱焼結性金属ペーストの製造方法は、有機物被覆金属粒子を、空気気流中における熱分析に供し、該熱分析における昇温速度と該金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)との関係から算出される該有機物の熱分解反応における活性化エネルギーが95kJ/モル未満である場合は、該有機物被覆金属粒子の加熱焼結性が優れると判定し、該熱分析における昇温速度と該金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)との関係から算出される該有機物の熱分解反応における活性化エネルギーが95kJ/モル以上である場合は、該有機物被覆金属粒子の加熱焼結性が劣ると判定し、次いで、加熱焼結性が優れると判定された有機物被覆金属粒子を揮発性分散媒と混合してペースト化することを特徴とする。 In another method for producing a heat-sinterable metal paste according to the present invention, organic-coated metal particles are subjected to thermal analysis in an air stream, and the temperature rise rate in the thermal analysis and the surface of the metal particles are coated. When the activation energy in the thermal decomposition reaction of the organic substance calculated from the relationship with the thermal decomposition peak temperature (1) of the organic substance is less than 95 kJ / mol, it is determined that the heat-sintering property of the organic substance-coated metal particles is excellent. And the activation energy in the pyrolysis reaction of the organic substance calculated from the relationship between the rate of temperature increase in the thermal analysis and the thermal decomposition peak temperature (1) of the organic substance covering the surface of the metal particles is 95 kJ / mol. If it is above, it is determined that the heat-sinterability of the organic-coated metal particles is poor, and then the organic-coated metal particles determined to have excellent heat-sinterability are mixed with a volatile dispersion medium to form a paste. And wherein the door.
有機物被覆金属粒子の材質、形状、該金属粒子の表面を被覆している有機物の種類と量、該金属粒子の加熱焼結性の判定方法は、有機物被覆金属粒子の加熱焼結性の評価方法に関して説明したとおりである。 The material and shape of the organic-coated metal particles, the type and amount of the organic material covering the surface of the metal particles, and the method for determining the heat-sinterability of the metal particles are the method for evaluating the heat-sinterability of organic-coated metal particles Is as described above.
有機物被覆金属粒子は、金属の種類、金属粒子の製造方法、金属粒子の平均粒径、金属粒子の形状、該金属粒子の表面を被覆する有機物などの種類により数多くの品種が存在するが、加熱焼結性が優れる金属粒子は少なく、特に70℃〜250℃程度の温度でも焼結が可能であり、金属製部材を強固に接合できる金属粒子は極めてまれである。
数多くの有機物被覆金属粒子の中から加熱焼結性が優れる金属粒子を選択するには、従来の方法では、該金属粒子を1種類ずつ揮発性分散媒と混合して金属ペーストを製造し、該金属ペーストを加熱することにより加熱焼結性を評価して判定するので容易なことではないが、本発明の有機物被覆金属粒子の加熱焼結性の評価方法によれば、数多くの金属粒子の中から加熱焼結性の優れた金属粒子を簡易・迅速・容易に選択できるので、加熱焼結性の優れた加熱焼結性金属ペーストを的確かつ効率的に製造することができる。
There are many varieties of organic-coated metal particles depending on the type of metal, the method for producing the metal particles, the average particle size of the metal particles, the shape of the metal particles, the type of organic material that coats the surface of the metal particles, etc. There are few metal particles with excellent sinterability, and sintering is possible even at a temperature of about 70 ° C. to 250 ° C., and metal particles capable of firmly joining metal members are extremely rare.
In order to select metal particles having excellent heat sinterability from a large number of organic-coated metal particles, in the conventional method, the metal particles are mixed with a volatile dispersion medium one by one to produce a metal paste, Although it is not easy to evaluate by judging the heat sinterability by heating the metal paste, according to the method for evaluating the heat sinterability of the organic-coated metal particles of the present invention, Therefore, it is possible to easily, quickly and easily select metal particles having excellent heat sinterability, so that a heat sinterable metal paste having excellent heat sinterability can be accurately and efficiently manufactured.
本発明における有機物被覆金属粒子の平均粒径は0.1μm以上50μm以下であることが好ましい。この平均粒径はレーザー回折散乱式粒度分布測定法により得られる一次粒子の平均粒径(メディアン径D50)である。平均粒径が50μmを越えると、加熱焼結性金属ペーストを調製した後、口径の小さいニードルを有するシリンジからのディスペンス(吐出)が困難になるためであり、この点からは平均粒径は小さい方が好ましい。
このため平均粒径は20μm以下であることが好ましく、特には10μm以下であることが好ましい。平均粒径の下限は限定されないが、平均粒径が0.1μm未満である、いわゆる金属ナノ粒子は製造コストが非常に高く、汎用性が失われるので、平均粒径は0.1μm以上であることが好ましい。この観点から平均粒径は0.2μm以上であることがより好ましく、0.7μm以上であることがより好ましい。
なお、メディアン径D50は、レーザー回折法50%粒径と称されたり(特開2003−55701参照)、体積累積粒径D50と称されてもいる(特開2007−84860参照)。
The average particle size of the organic-coated metal particles in the present invention is preferably from 0.1 μm to 50 μm. This average particle diameter is an average particle diameter (median diameter D50) of primary particles obtained by a laser diffraction / scattering particle size distribution measurement method. If the average particle diameter exceeds 50 μm, it becomes difficult to dispense (discharge) from a syringe having a needle having a small diameter after preparing a heat-sinterable metal paste. From this point, the average particle diameter is small. Is preferred.
For this reason, it is preferable that an average particle diameter is 20 micrometers or less, and it is especially preferable that it is 10 micrometers or less. The lower limit of the average particle diameter is not limited, but so-called metal nanoparticles having an average particle diameter of less than 0.1 μm are very expensive to manufacture and lose versatility, so the average particle diameter is 0.1 μm or more. It is preferable. From this viewpoint, the average particle size is more preferably 0.2 μm or more, and more preferably 0.7 μm or more.
The median diameter D50 is also referred to as a laser diffraction method 50% particle size (see Japanese Patent Application Laid-Open No. 2003-55701) or a volume cumulative particle size D50 (see Japanese Patent Application Laid-Open No. 2007-84860).
レーザー回折散乱式粒度分布測定法は、金属粒子にレーザービームを照射し、その金属粒子の大きさに応じて様々な方向へ発せられる回折光や散乱光のレーザー光の強度を測定することにより一次粒子の粒径を求めるという汎用の測定方法である。数多くの測定装置が市販されており(例えば、株式会社島津製作所製レーザ回折式粒度分布測定装置SALD、日機装株式会社製レーザー回折散乱式粒度分布測定装置マイクロトラック)、これらを用いて容易に平均粒径(メディアン径D50)を測定することができる。なお金属粒子の凝集が強い場合には、ホモジナイザーにより一次粒子の状態に分散してから測定することが好ましい。 The laser diffraction / scattering particle size distribution measurement method is a method of irradiating a metal beam with a laser beam and measuring the intensity of the diffracted light or scattered light emitted in various directions depending on the size of the metal particle. This is a general-purpose measurement method for determining the particle size of particles. Many measuring devices are commercially available (for example, a laser diffraction particle size distribution measuring device SALD manufactured by Shimadzu Corporation, a laser diffraction scattering particle size distribution measuring device Microtrac manufactured by Nikkiso Co., Ltd.), and using these, the average particle size can be easily obtained. The diameter (median diameter D50) can be measured. In the case where the aggregation of the metal particles is strong, it is preferably measured after being dispersed in a primary particle state by a homogenizer.
有機物被覆金属粒子の表面は、該有機物により半分以上が被覆されていればよいが、全部が被覆されていることが好ましい。金属粒子の表面を有機物で被覆するには、金属粒子の製造途上で有機物を投入して該金属粒子表面を被覆するという方法、金属粒子を製造後、有機物の溶液中に該金属粒子を浸漬した後、該金属粒子を取り出して乾燥するという方法、金属粒子を製造後、有機物の溶液を噴霧して乾燥するという方法が例示される。 The surface of the organic-coated metal particles only needs to be covered with more than half of the organic material, but it is preferable that the entire surface is covered. In order to coat the surface of the metal particles with an organic material, a method of coating the surface of the metal particles by introducing an organic material during the production of the metal particles, after the metal particles are produced, the metal particles are immersed in an organic solution. Thereafter, a method of taking out and drying the metal particles, and a method of spraying and drying an organic solution after producing the metal particles are exemplified.
揮発性分散媒は、粉末状である有機物被覆金属粒子をペースト状にするために配合されるものであり、ペースト状はクリーム状やスラリー状を含むものである。
このように調製された加熱焼結性金属ペーストを加熱して該金属粒子同士を焼結するためには、分散媒は非揮発性ではなく、揮発性であることが必要である。該金属粒子同士が焼結する際に分散媒が揮散すると、該金属粒子同士が焼結して接合剤、配線材料として利用しやすくなるからである。揮発性分散媒の沸点は、有機物被覆金属粒子の融点より低く、60℃〜300℃であることが好ましい。沸点が60℃未満であると、加熱焼結性金属ペーストを調製する作業中に溶媒が揮散しやすく、沸点が300℃を越えると、加熱後も揮発性分散媒が残留しかねないからである。
The volatile dispersion medium is blended in order to form organic powder-coated metal particles in a paste form, and the paste form includes a cream form or a slurry form.
In order to heat the heat-sinterable metal paste thus prepared to sinter the metal particles, the dispersion medium needs to be volatile rather than non-volatile. This is because if the dispersion medium is volatilized when the metal particles are sintered, the metal particles are sintered and easily used as a bonding agent and a wiring material. The boiling point of the volatile dispersion medium is preferably lower than the melting point of the organic-coated metal particles, and is preferably 60 ° C to 300 ° C. This is because if the boiling point is less than 60 ° C., the solvent easily evaporates during the operation of preparing the heat-sinterable metal paste, and if the boiling point exceeds 300 ° C., the volatile dispersion medium may remain even after heating. .
そのような揮発性分散媒は、炭素原子および水素原子からなる揮発性炭化水素化合物、炭素原子,水素原子および酸素原子からなる揮発性有機化合物、炭素原子,水素原子および窒素原子からなる揮発性有機化合物、炭素原子,水素原子,酸素原子および窒素原子からなる揮発性有機化合物、前記揮発性有機化合物のうちの親水性揮発性有機化合物と水との混合物などから選択される。これらはいずれも常温において液状である。
水は純水が好ましく、その電気伝導度は100μS/cm以下が好ましく、10μS/cm以下がより好ましい。純水の製造方法は、通常の方法で良く、イオン交換法、逆浸透法、蒸留法が例示される。
Such volatile dispersion media include volatile hydrocarbon compounds composed of carbon atoms and hydrogen atoms, volatile organic compounds composed of carbon atoms, hydrogen atoms and oxygen atoms, volatile organic compounds composed of carbon atoms, hydrogen atoms and nitrogen atoms. A compound, a volatile organic compound composed of a carbon atom, a hydrogen atom, an oxygen atom and a nitrogen atom, a mixture of a hydrophilic volatile organic compound of the volatile organic compounds and water, and the like are selected. These are all liquid at room temperature.
The water is preferably pure water, and its electric conductivity is preferably 100 μS / cm or less, more preferably 10 μS / cm or less. The pure water production method may be a normal method, and examples include an ion exchange method, a reverse osmosis method, and a distillation method.
炭素原子,水素原子および酸素原子からなる揮発性有機化合物として、具体的にはエチルアルコール、プロピルアルコール、ブチルアルコール、ペンチルアルコール、ヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコール等の揮発性一価アルコール;エチレングリコールモノメチルエーテル(メチルセロソルブ、メチルカルビトール)、エチレングリコールモノエチルエーテル(エメチルセロソルブ、エチルカルビトール)、エチレングリコールモノプロピルエーテル(プロピルセロソルブ、プロピルカルビトール)、エチレングリコールモノブチルエーテル(ブチルセロソルブ、ブチルカルビトール)、プロピレングリコールモノメチルエーテル、メチルメトキシブタノール、ジエチレングリコール、ジプロピレングリコール等のエーテル結合を有する揮発性一価アルコールおよび揮発性二価アルコール;テルピネオール、リナロール、ゲラニオール等の揮発性テルペン系アルコール;ベンジルアルコール、2−フェニルエチルアルコールなどの揮発性アラルキルアルコール;エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、グリセリンなどの揮発性多価アルコールが例示される。 Specific examples of volatile organic compounds composed of carbon, hydrogen and oxygen include volatile compounds such as ethyl alcohol, propyl alcohol, butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol and decyl alcohol. Monohydric alcohol: ethylene glycol monomethyl ether (methyl cellosolve, methyl carbitol), ethylene glycol monoethyl ether (emethyl cellosolve, ethyl carbitol), ethylene glycol monopropyl ether (propyl cellosolve, propyl carbitol), ethylene glycol monobutyl ether (Butyl cellosolve, butyl carbitol), propylene glycol monomethyl ether, methyl methoxybutanol, diethylene glycol Volatile monohydric alcohols and volatile dihydric alcohols having ether bonds such as recall and dipropylene glycol; Volatile terpene alcohols such as terpineol, linalool and geraniol; Volatile aralkyl alcohols such as benzyl alcohol and 2-phenylethyl alcohol And volatile polyhydric alcohols such as ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, heptanediol, octanediol and glycerin are exemplified.
さらにはアセトン、メチルエチルケトン、メチルイゾブチルケトン、シクロヘキサノン、ジアセトンアルコール(4−ヒドロキシ−4−メチル−2−ペンタノン)、2−オクタノン、イソホロン(3、5、5−トリメチル−2−シクロヘキセン−1−オン)、ジイブチルケトン(2、6−ジメチル−4−ヘプタノン)等の揮発性脂肪族ケトン;酢酸エチル(エチルアセテート)、酢酸ブチル、アセトキシエタン、酪酸メチル、ヘキサン酸メチル、オクタン酸メチル、デカン酸メチル、メチルセロソルブアセテート、プロピレングリコールモノメチルエーテルアセテートのような揮発性脂肪族カルボン酸エステル;テトラヒドロフラン、ジプロピルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジメチルエーテル、エトキシエチルエーテル等の揮発性脂肪族エーテルが例示される。 Furthermore, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diacetone alcohol (4-hydroxy-4-methyl-2-pentanone), 2-octanone, isophorone (3,5,5-trimethyl-2-cyclohexene-1- ON), volatile aliphatic ketones such as dibutylketone (2,6-dimethyl-4-heptanone); ethyl acetate (ethyl acetate), butyl acetate, acetoxyethane, methyl butyrate, methyl hexanoate, methyl octoate, decane Volatile aliphatic carboxylic acid esters such as methyl acid, methyl cellosolve acetate, propylene glycol monomethyl ether acetate; tetrahydrofuran, dipropyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene Glycol dibutyl ether, propylene glycol dimethyl ether, volatile aliphatic ethers such as ethoxyethyl ether, and the like.
炭素原子および水素原子からなる揮発性炭化水素化合物として、低級n−パラフィン、低級イソパラフィン等の揮発性脂肪族炭化水素;リモネン、α-テルピネンなどの揮発性テルペン系炭化水素;トルエン、キシレン等の揮発性芳香族炭化水素が例示される。 As volatile hydrocarbon compounds composed of carbon atoms and hydrogen atoms, volatile aliphatic hydrocarbons such as lower n-paraffins and lower isoparaffins; volatile terpene hydrocarbons such as limonene and α-terpinene; volatilization of toluene, xylene and the like An aromatic hydrocarbon is exemplified.
炭素原子,水素原子および窒素原子からなる揮発性有機化合物として、アセトニトリル、プロピオニトリルのような揮発性アルキルニトリルが例示される。
炭素原子,水素原子,酸素原子および窒素原子からなる揮発性有機化合物として、アセトアミド、N、N-ジメチルホルムアミドのような揮発性カルボン酸アミドが例示される。その他に、低分子量の揮発性シリコーンオイルおよび揮発性有機変成シリコーンオイルが例示される。
Examples of volatile organic compounds composed of carbon atoms, hydrogen atoms and nitrogen atoms include volatile alkyl nitriles such as acetonitrile and propionitrile.
Examples of volatile organic compounds composed of carbon atoms, hydrogen atoms, oxygen atoms and nitrogen atoms include volatile carboxylic acid amides such as acetamide and N, N-dimethylformamide. Other examples include low molecular weight volatile silicone oils and volatile organic modified silicone oils.
揮発性分散媒の配合量は、有機物被覆金属粒子を常温においてペースト状にするのに十分な量である。ペースト状にするのに十分な量は有機物被覆金属粒子の材質、粒径、表面積、形状、比重、揮発性分散媒の種類、粘度、比重などにより変動するが、具体的には、例えば、有機物被覆金属粒子100重量部当たり3〜30重量部である。
本発明で使用する加熱焼結性金属ペーストには、本発明の目的に反しない限り、有機物被覆金属粒子以外の金属粒子、非金属系の粉体、金属化合物、金属錯体、チクソ剤、着色剤等の添加物を少量ないし微量含有しても良い。
The blending amount of the volatile dispersion medium is an amount sufficient to make the organic-coated metal particles into a paste at room temperature. The amount sufficient to form a paste varies depending on the material, particle size, surface area, shape, specific gravity, type of volatile dispersion medium, viscosity, specific gravity, etc. of the organic-coated metal particles. 3 to 30 parts by weight per 100 parts by weight of the coated metal particles.
The heat-sinterable metal paste used in the present invention includes metal particles other than organic-coated metal particles, non-metallic powders, metal compounds, metal complexes, thixotropic agents, and colorants, unless they are contrary to the object of the present invention. Such additives may be contained in a small amount or a trace amount.
本発明の加熱焼結性金属ペーストの製造方法は、具体的には、本発明の有機物被覆金属粒子の加熱焼結性の評価方法により選択された加熱焼結性に優れる有機物被覆金属粒子と揮発性分散媒とをミキサーに投入し、均一なペースト状になるまで撹拌混合することによる。 Specifically, the method for producing the heat-sinterable metal paste of the present invention includes organic-coated metal particles excellent in heat-sinterability and volatilization selected by the method for evaluating the heat-sinterability of organic-coated metal particles of the present invention. This is because the conductive dispersion medium is charged into a mixer and mixed with stirring until a uniform paste is obtained.
本発明の加熱焼結性金属ペーストの製造方法により製造された加熱焼結性金属ペーストは、有機物被覆金属粒子と揮発性分散媒との混合物であり、常温でペースト状である。なお、ペースト状はクリーム状やスラリー状を含む。ペースト化することによりシリンダーやノズルからドット状や細い線状に吐出でき、また、メタルマスクによる印刷塗布が容易である。複数の金属製部材間に介在させる場合の加熱焼結性金属ペーストの厚さは限定されないが、通常、5μm以上1000μm以下である。 The heat-sinterable metal paste produced by the method for producing a heat-sinterable metal paste of the present invention is a mixture of organic-coated metal particles and a volatile dispersion medium, and is paste-like at room temperature. The paste form includes a cream form and a slurry form. By making it into a paste, it can be ejected from a cylinder or nozzle into dots or fine lines, and printing with a metal mask is easy. Although the thickness of the heat-sinterable metal paste in the case of interposing between a plurality of metal members is not limited, it is usually 5 μm or more and 1000 μm or less.
本発明の加熱焼結性金属ペーストの製造方法により製造された加熱焼結性金属ペーストは、金属製部材間に介在させて、有機物被覆金属粒子の焼結温度以上の温度に加熱することにより、揮発性分散媒が揮散して、該金属粒子同士が焼結し、導電性と熱伝導性が優れた多孔質焼結物となり金属製部材同士を接合できる。 The heat-sinterable metal paste produced by the heat-sinterable metal paste production method of the present invention is interposed between metal members and heated to a temperature equal to or higher than the sintering temperature of the organic-coated metal particles. The volatile dispersion medium is volatilized and the metal particles are sintered to form a porous sintered product having excellent conductivity and thermal conductivity, and metal members can be joined to each other.
この際、揮発性分散媒が揮散し、ついで金属粒子同士が焼結してもよく、揮発性分散媒の揮散と共に該金属粒子同士が焼結してもよい。特に該金属粒子が銀粒子または銅粒子の場合は、銀または銅が本来大きな強度と極めて高い電気伝導性と熱伝導性を有するため、銀粒子同士または銅粒子同士の焼結物も、大きな強度ときわめて高い電気伝導性と熱伝導性を有する。 At this time, the volatile dispersion medium is volatilized, and then the metal particles may be sintered together, or the metal particles may be sintered together with the volatilization of the volatile dispersion medium. In particular, when the metal particles are silver particles or copper particles, silver or copper inherently has high strength and extremely high electrical and thermal conductivity, so that sintered products of silver particles or copper particles also have high strength. It has extremely high electrical and thermal conductivity.
この際の加熱温度は、揮発性分散媒が揮散し、有機物被覆金属粒子が焼結できる温度であればよく、通常70℃以上であり、150℃以上がより好ましい。しかし、400℃を越えると揮発性分散媒が突沸的に蒸発する可能性があるため、400℃以下であることが必要であり、好ましくは350℃以下であり、より好ましくは300℃以下である。 The heating temperature at this time may be a temperature at which the volatile dispersion medium is volatilized and the organic-coated metal particles can be sintered, and is usually 70 ° C. or higher, and more preferably 150 ° C. or higher. However, if the temperature exceeds 400 ° C., the volatile dispersion medium may evaporate suddenly. Therefore, the temperature must be 400 ° C. or less, preferably 350 ° C. or less, more preferably 300 ° C. or less. .
有機物被覆金属粒子同士の加熱焼結物は、数多くの微細な空孔や空隙、連続した空隙などの細孔を有しており、すなわち多孔質であり、その空隙率は通常5〜50面積%であることが好ましく、加圧焼結時には1〜50面積%であることが好ましい。空隙率が前記下限未満であると、焼結物のヤング率が高くなり熱衝撃に対する応力緩和性が低下するからである。また空隙率が50面積%を越えると、加熱焼結物の強度が低下してもろくなり接着力が低下するからである。
なお、空隙率の測定方法は、通常の測定方法が利用できる。例えば、焼結体の断面を電子顕微鏡で写真撮影し、画像解析ソフトにより、写真における金属部分と空間部分の面積比率を求める方法、電子顕微鏡により撮影した写真を均質な紙等に印刷し、金属部分と空間部分をはさみ等で切り分けて各々の重量を測定し、その重量比率を面積%とする方法が例示される。
The heat-sintered product of organic-coated metal particles has many fine pores, voids, and continuous pores, that is, is porous, and the porosity is usually 5 to 50% by area. It is preferable that it is 1 to 50 area% during pressure sintering. This is because if the porosity is less than the lower limit, the Young's modulus of the sintered product is increased and the stress relaxation property against thermal shock is lowered. Moreover, if the porosity exceeds 50 area%, even if the strength of the heat-sintered material is lowered, it becomes brittle and the adhesive strength is lowered.
In addition, the normal measuring method can be utilized for the measuring method of the porosity. For example, a cross-section of a sintered body is photographed with an electron microscope, image analysis software is used to determine the area ratio between the metal part and the space part, and the photograph taken with the electron microscope is printed on homogeneous paper, etc. An example is a method in which a portion and a space portion are separated with scissors or the like to measure the weight of each portion and the weight ratio is set to area%.
また、有機物被覆金属粒子同士の加熱焼結物は、固体状の金属からなるため導電性と熱伝導性に優れている。特に、有機物被覆金属粒子中の金属が銀である場合は、体積抵抗率が5×10-5Ω・cm以下であることが好ましく、1×10-5Ω・cm以下であることがより好ましい。熱伝導率は、20W/m・K以上であることが好ましく、30W/m・K以上であることがより好ましい。有機物被覆金属粒子中の金属が銅である場合は、体積抵抗率が1×10-2Ω・cm以下であることが好ましく、1×10-3Ω・cm以下であることがより好ましい。熱伝導率は、20W/m・K以上であることが好ましく、30W/m・K以上であることがより好ましい。 Moreover, since the heat-sintered material of organic-coated metal particles is made of a solid metal, it has excellent conductivity and thermal conductivity. In particular, when the metal of the organic-coated metal particles is silver, it is preferable that the volume resistivity is not more than 5 × 10 -5 Ω · cm, more preferably not more than 1 × 10 -5 Ω · cm . The thermal conductivity is preferably 20 W / m · K or more, and more preferably 30 W / m · K or more. When the metal in the organic-coated metal particles is copper, the volume resistivity is preferably 1 × 10 −2 Ω · cm or less, and more preferably 1 × 10 −3 Ω · cm or less. The thermal conductivity is preferably 20 W / m · K or more, and more preferably 30 W / m · K or more.
本発明の金属製部材接合体の製造方法は、有機物被覆金属粒子と該有機物自体の各々を、空気気流中における熱分析に供し、該金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)が該有機物自体の熱分解ピーク温度(2)より低い場合は、該有機物被覆金属粒子の加熱焼結性が優れると判定し、該金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)が該有機物自体の熱分解ピーク温度(2)と同等以上の場合は、該有機物被覆金属粒子の加熱焼結性が劣ると判定し、加熱焼結性が優れると判定された有機物被覆金属粒子を揮発性分散媒と混合してペースト化して加熱焼結性金属ペーストを調製し、次いで、該加熱焼結性金属ペーストを、複数の金属製部材間に介在させ、加熱焼結性金属の焼結可能な温度以上で加熱することを特徴とする。該加熱焼結性金属同士が焼結して生成した多孔質焼結物により、複数の金属製部材同士が接合され、金属製部材接合体が製造される。 In the method for producing a metal member assembly of the present invention, each of the organic substance-coated metal particles and the organic substance itself is subjected to thermal analysis in an air stream, and the pyrolysis peak temperature of the organic substance covering the surface of the metal particles. When (1) is lower than the thermal decomposition peak temperature (2) of the organic substance itself, it is determined that the organic material-coated metal particles are excellent in heat-sinterability, and the organic substance covering the surface of the metal particles is thermally decomposed. When the peak temperature (1) is equal to or higher than the pyrolysis peak temperature (2) of the organic matter itself, it was determined that the heat-sinterability of the organic-coated metal particles was poor and the heat-sinterability was determined to be excellent. Organic coated metal particles are mixed with a volatile dispersion medium to make a paste to prepare a heat-sinterable metal paste, and then the heat-sinterable metal paste is interposed between a plurality of metal members and heat-sintered. Heating at a temperature above the sinterable temperature of porous metal That. A plurality of metal members are joined together by a porous sintered product produced by sintering the heat-sinterable metals to produce a metal member joined body.
本発明のもうひとつの金属製部材接合体の製造方法は、有機物被覆金属粒子を、空気気流中における熱分析に供し、該熱分析における昇温速度と該金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)との関係から算出される該有機物の熱分解反応における活性化エネルギーが95kJ/モル未満である場合は、該有機物被覆金属粒子の加熱焼結性が優れると判定し、該熱分析における昇温速度と該金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)との関係から算出される該有機物の熱分解反応における活性化エネルギーが95kJ/モル以上である場合は、該有機物被覆金属粒子の加熱焼結性が劣ると判定し、加熱焼結性が優れると判定された有機物被覆金属粒子を揮発性分散媒と混合してペースト化して加熱焼結性金属ペーストを調製し、次いで、該加熱焼結性金属ペーストを複数の金属製部材間に介在させ、加熱焼結性金属の焼結可能な温度以上で加熱することを特徴とする。該加熱焼結性金属同士が焼結して生成した多孔質焼結物により、複数の金属製部材同士が接合され、金属製部材接合体が製造される。 Another method for producing a metal member assembly according to the present invention is to provide organic matter-coated metal particles for thermal analysis in an air stream and to coat the surface of the metal particles with a temperature increase rate in the thermal analysis. When the activation energy in the thermal decomposition reaction of the organic substance calculated from the relationship with the thermal decomposition peak temperature (1) of the organic substance is less than 95 kJ / mol, it is determined that the heat-sintering property of the organic-coated metal particles is excellent. The activation energy in the thermal decomposition reaction of the organic substance calculated from the relationship between the rate of temperature increase in the thermal analysis and the thermal decomposition peak temperature (1) of the organic substance covering the surface of the metal particles is 95 kJ / mol or more Is determined to be poor in heat-sinterability of the organic-coated metal particles, and the organic-coated metal particles determined to have excellent heat-sinterability are mixed with a volatile dispersion medium to form a paste and heat-sintered. Metal Prepared paste, then the heating sintered metal paste is interposed between the plurality of metallic members, characterized by heating by heat sintering metal sinterable temperature more. A plurality of metal members are joined together by a porous sintered product produced by sintering the heat-sinterable metals to produce a metal member joined body.
有機物被覆金属粒子の材質、形状、該金属粒子の表面を被覆している有機物の種類と量、該金属粒子の加熱焼結性の判定方法は、有機物被覆金属粒子の加熱焼結性の評価方法に関して説明したとおりである。 The material and shape of the organic-coated metal particles, the type and amount of the organic material covering the surface of the metal particles, and the method for determining the heat-sinterability of the metal particles are the method for evaluating the heat-sinterability of the organic-coated metal particles. Is as described above.
本発明の金属製部材接合体の製造方法で使用する金属製部材は、塗布された前記加熱焼結性金属ペーストが加熱により該組成物中の揮発性分散媒が揮発し、該金属粒子同士が焼結して接合する被接合体である。金属製部材の材質としては、金、銀、銅、白金、パラジウム、ニッケル、スズ、アルミニウム、および、これら各金属の合金が例示される。これらのうちでは導電性、接合性の点で、金、銀、銅、白金、パラジウムまたはこれら各金属の合金が好ましい。金属製部材は前記金属でメッキされたものであってもよい。金属製部材としては、全体または一部が金属で形成されたリードフレーム、プリント基板、半導体チップ、放熱板が例示される。 In the metal member used in the method for producing a metal member assembly of the present invention, the applied heat-sinterable metal paste is heated to volatilize the volatile dispersion medium in the composition, and the metal particles are It is an object to be joined that is sintered and joined. Examples of the material of the metal member include gold, silver, copper, platinum, palladium, nickel, tin, aluminum, and alloys of these metals. Among these, gold, silver, copper, platinum, palladium, or an alloy of these metals is preferable in terms of conductivity and bondability. The metal member may be plated with the metal. Examples of the metal member include a lead frame, a printed circuit board, a semiconductor chip, and a heat sink, all or part of which is made of metal.
加熱焼結性金属粒子が焼結可能な温度以上の温度として、70℃以上400℃以下が好ましい。加熱焼結時の雰囲気ガスは酸化性ガス、還元性ガス、不活性ガスが例示されるが、酸素を含む酸化性ガスであることが好ましい。このような酸化性ガスとしては空気、酸素ガスと窒素ガスなどの不活性ガスとの混合ガスが例示される。酸化性ガス中で酸化するような加熱焼結性金属粒子あるいは金属製部材である場合には、酸化性ガス中で焼結した後に、還元性ガス中で加熱することにより還元することができる。 The temperature above the temperature at which the heat-sinterable metal particles can be sintered is preferably 70 ° C. or higher and 400 ° C. or lower. The atmosphere gas at the time of heating and sintering is exemplified by an oxidizing gas, a reducing gas, and an inert gas, but is preferably an oxidizing gas containing oxygen. Examples of such oxidizing gas include air and a mixed gas of oxygen gas and inert gas such as nitrogen gas. In the case of a heat-sinterable metal particle or metal member that oxidizes in an oxidizing gas, it can be reduced by heating in a reducing gas after sintering in the oxidizing gas.
還元性ガスとしては水素ガスが例示されるが、取扱の容易な水素ガスと不活性ガスとの混合ガスが好ましい。還元性ガスと不活性ガスの比率は限定されないが、還元性ガスが水素ガスである場合は1〜40体積%であることが好ましく、特には水素ガスが5〜25体積%と窒素ガス95〜75体積%とからなるフォーミングガスと称される還元性ガスが好ましい。 The reducing gas is exemplified by hydrogen gas, but a mixed gas of hydrogen gas and inert gas that is easy to handle is preferable. The ratio of the reducing gas to the inert gas is not limited, but when the reducing gas is hydrogen gas, it is preferably 1 to 40% by volume, and particularly, the hydrogen gas is 5 to 25% by volume and the nitrogen gas 95 to 95%. A reducing gas called forming gas composed of 75% by volume is preferred.
本発明の金属製部材接合体の製造方法では、金属製部材間に介在させた加熱焼結性金属ペーストの加熱焼結時に圧力や超音波振動を加えても良い。 In the method for producing a metal member assembly of the present invention, pressure or ultrasonic vibration may be applied during the heat sintering of the heat-sinterable metal paste interposed between the metal members.
加圧時の圧力の下限は限定されないが0.001MPa以上であることが好ましく、0.01MPa以上であることがより好ましい。上限は接合する金属製部材が破壊されない圧力の最大値である。 Although the minimum of the pressure at the time of pressurization is not limited, It is preferable that it is 0.001 MPa or more, and it is more preferable that it is 0.01 MPa or more. The upper limit is the maximum pressure at which the metal member to be joined is not destroyed.
超音波振動の周波数は2kHz以上であり、10kHz以上であることが好ましく、上限は特に制限されないが、装置の能力上500kHz位である。また、超音波振動の振幅は好ましくは0.1〜40μm、より好ましくは0.3〜20μm、特に好ましくは0.5〜12μmである。このとき圧力を加えても良く、その圧力の程度は先に記載の通りである。 The frequency of ultrasonic vibration is 2 kHz or more, preferably 10 kHz or more, and the upper limit is not particularly limited, but is about 500 kHz due to the capability of the apparatus. The amplitude of the ultrasonic vibration is preferably 0.1 to 40 μm, more preferably 0.3 to 20 μm, and particularly preferably 0.5 to 12 μm. At this time, pressure may be applied, and the degree of the pressure is as described above.
本発明の金属製部材接合体の製造方法を使用して製造された金属製部材接合体は、複数の金属製部材同士が加熱焼結性金属粒子の燒結物により強固に接合されている。 In the metal member assembly manufactured using the method for manufacturing a metal member assembly of the present invention, a plurality of metal members are firmly bonded to each other by a sintered product of heat-sinterable metal particles.
本発明の金属製部材接合体の製造方法を使用して製造された金属製部材接合体における複数の金属製部材間のせん断接着強さは、5MPa以上であることが好ましく、より好ましくは10MPa以上である。 The shear bond strength between the plurality of metal members in the metal member assembly manufactured using the method for manufacturing a metal member assembly of the present invention is preferably 5 MPa or more, more preferably 10 MPa or more. It is.
本発明の金属製部材接合体の製造方法に使用する加熱焼結性金属ペーストは、加熱により揮発性分散媒が揮散し、加熱焼結性金属粒子同士が焼結する。これを複数の金属製部材間の接合に用いた場合、接触していた金属製部材、例えば金メッキ基板、銀基板、銀メッキ金属基板、銅基板、アルミニウム基板、ニッケルメッキ基板、スズメッキ金属基板等の金属系基板へ強固に接着し、電気絶縁性基板上の電極等金属部分へ強固に接着するので、金属系基板や金属部分を有する電子部品、電子装置、電気部品、電気装置等の接合に有用である。 In the heat-sinterable metal paste used in the method for producing a metal member assembly of the present invention, the volatile dispersion medium is volatilized by heating, and the heat-sinterable metal particles are sintered. When this is used for joining between a plurality of metal members, the metal member that has been in contact, such as a gold-plated substrate, silver substrate, silver-plated metal substrate, copper substrate, aluminum substrate, nickel-plated substrate, tin-plated metal substrate, etc. Adhering firmly to metal substrates and strongly adhering to metal parts such as electrodes on electrically insulating substrates, it is useful for joining metal substrates and electronic parts, electronic devices, electric components, electric devices etc. with metal parts It is.
そのような接合として、コンデンサ、抵抗等のチップ部品と回路基板との接合、ダイオード、メモリ、IC、CPU等の半導体チップとリードフレームもしくは回路基板との接合、高発熱のCPUチップと冷却板との接合が例示される。したがって、本発明の金属製部材接合体の製造方法において、金属製部材接合体が金属系基板や金属部分を有する電子部品、電子装置、電気部品、電気装置等であることが好ましい。 Such bonding includes bonding of chip parts such as capacitors and resistors and circuit boards, bonding of semiconductor chips such as diodes, memories, ICs, and CPUs to lead frames or circuit boards, and high-heat generation CPU chips and cooling plates. Are exemplified. Therefore, in the method for producing a metal member assembly according to the present invention, the metal member assembly is preferably an electronic component, an electronic device, an electrical component, an electrical device, or the like having a metal substrate or a metal portion.
本発明の実施例を掲げる。実施例中、部と記載されているのは、重量部を意味する。有機物被覆金属粒子の平均粒径、有機物被覆金属粒子の表面を被覆している有機物の量、有機物被覆金属粒子の表面を被覆している有機物の熱分解ピーク温度、有機物被覆金属粒子の表面を被覆している有機物の熱分解反応の活性化エネルギー、該有機物自体の熱分解ピーク温度、加熱焼結性金属ペーストの焼結物である多孔質焼結物の空隙率、体積抵抗率および熱伝導率、金属製部材接合体のせん断接着強さは下記のとおり測定した。なお、特に記載のない場合の測定温度は23℃である。 Examples of the present invention will be given below. In the examples, “parts” means “parts by weight”. The average particle size of organic coated metal particles, the amount of organic material covering the surface of organic coated metal particles, the thermal decomposition peak temperature of the organic material coating the surface of organic coated metal particles, and the surface of organic coated metal particles Activation energy of the pyrolysis reaction of the organic matter, the pyrolysis peak temperature of the organic matter itself, the porosity, volume resistivity and thermal conductivity of the porous sintered product which is a sintered product of the heat-sinterable metal paste The shear bond strength of the metal member assembly was measured as follows. In addition, the measurement temperature in case there is no description in particular is 23 degreeC.
[有機物被覆金属粒子の平均粒径]
有機物被覆金属粒子の平均粒径は、株式会社島津製作所製レーザ回折式粒度分布測定装置SALDを使用してレーザー回折散乱式粒度分布測定法により得られる一次粒子の平均粒径(メディアン径D50)である。
[有機物被覆金属粒子の表面を被覆している有機物の量]
有機物被覆金属粒子の表面を被覆している有機物の量は、有機物被覆金属粒子を酸素気流中で加熱して金属粒子に付着していた有機物中の炭素を炭酸ガスに変え、炭酸ガスを赤外線吸収スペクトル法により定量分析する方法によった。
[Average particle diameter of organic coated metal particles]
The average particle diameter of the organic-coated metal particles is the average particle diameter (median diameter D50) of primary particles obtained by a laser diffraction / scattering particle size distribution measuring method using a laser diffraction particle size distribution measuring device SALD manufactured by Shimadzu Corporation. is there.
[Amount of organic material covering the surface of organic-coated metal particles]
The amount of organic material covering the surface of organic coated metal particles is determined by heating the organic coated metal particles in an oxygen stream to change the carbon in the organic material adhering to the metal particles to carbon dioxide, and absorbing carbon dioxide by infrared radiation. According to the method of quantitative analysis by the spectral method.
[有機物被覆金属粒子の表面を被覆している有機物の熱分解ピーク温度]
示差熱熱重量同時測定装置(島津製作所株式会社製DTG−60AH型)を用い、空気気流中で有機物被覆金属粒子を昇温速度5℃/分にて23℃から400℃まで昇温し、昇温途上にDTA曲線に現れる発熱ピーク温度をもって金属粒子表面を被覆している有機物の熱分解温度とした。この際、一部の実施例では熱重量分析(TGA)を同時に行い、TGA曲線をとった。
[Pyrolysis peak temperature of organic substance covering the surface of organic substance-coated metal particles]
Using a differential thermothermal gravimetric simultaneous measurement device (DTG-60AH type, manufactured by Shimadzu Corporation), the organic-coated metal particles were heated from 23 ° C. to 400 ° C. at a temperature rising rate of 5 ° C./min. The exothermic peak temperature appearing in the DTA curve during the warming was taken as the thermal decomposition temperature of the organic substance covering the metal particle surface. At this time, in some examples, thermogravimetric analysis (TGA) was simultaneously performed to obtain a TGA curve.
[有機物被覆金属粒子の表面を被覆している有機物の熱分解反応の活性化エネルギー]
示差熱熱重量同時測定装置(島津製作所株式会社製DTG−60AH型)を用い、空気気流中で有機物被覆金属粒子を昇温速度1℃/分、5℃/分、10℃/分、50℃/分で各々23℃から400℃まで昇温し、各昇温速度(Φ、単位K/s)と昇温途上にDTA曲線に現れる発熱ピーク温度(T、単位K)との関係を測定した。
次にKissinngerの式を適用して、横軸に1/T、縦軸にln(Φ/RT2)をとったグラフにプロットし、得られた直線の傾きを−E/Rとして求め、活性化エネルギー(E、単位kJ/モル)を算出した。ここでRは気体定数である。
[Activation energy of thermal decomposition reaction of organic substance covering organic substance-coated metal particle surface]
Using a differential thermothermal gravimetric simultaneous measurement device (DTG-60AH type, manufactured by Shimadzu Corporation), the organic coated metal particles were heated at a rate of 1 ° C./min, 5 ° C./min, 10 ° C./min, 50 ° C. in an air stream. The temperature was increased from 23 ° C. to 400 ° C. at a rate of 1 min / min, and the relationship between each heating rate (Φ, unit K / s) and the exothermic peak temperature (T, unit K) appearing in the DTA curve during the temperature increase was measured. .
Next, Kissinnger's formula was applied, plotted on a graph with 1 / T on the horizontal axis and ln (Φ / RT 2 ) on the vertical axis, and the slope of the obtained straight line was determined as -E / R, and the activity The conversion energy (E, unit kJ / mol) was calculated. Here, R is a gas constant.
[有機物自体の熱分解ピーク温度]
示差熱熱重量同時測定装置(島津製作所株式会社製DTG−60AH型)を用い、空気気流中で有機物を昇温速度5℃/分にて23℃から400℃まで昇温し、昇温途上にDTA曲線に現れる発熱ピーク温度をもって有機物自体の熱分解ピーク温度とした。
[Pyrolysis peak temperature of organic substance itself]
Using a differential thermothermal gravimetric simultaneous measurement device (DTG-60AH type, manufactured by Shimadzu Corporation), the organic matter was heated from 23 ° C. to 400 ° C. at a rate of temperature increase of 5 ° C./min in the air stream. The exothermic peak temperature appearing in the DTA curve was defined as the pyrolysis peak temperature of the organic substance itself.
[多孔質焼結物の空隙率]
ポリテトラフルオロエチレン樹脂板上に15mm角の開口部を有する厚さ1mmのステンレス製のマスクを置き、加熱焼結性金属ペーストを印刷塗布した。これを熱風循環式オーブンで、各々、180℃で2時間、250℃で1時間および300℃で1時間、加熱して取り出し、冷却後、ポリテトラフルオロエチレン樹脂板からはずして加熱焼結性金属粒子の多孔質焼結物である金属製シートを作成した。この金属製シートの断面を電子顕微鏡で撮影し、画像解析ソフト(アメリカ合衆国のNational Institute of Health社製のNIH Image)を用いて、断面における空間の占める面積の割合を算出し、その面積比率(単位;面積%)で示した。
なお、金属粒子が空気気流中の加熱により酸化しやすい、銅粒子およびニッケル粒子の場合は、上記の各々、180℃で2時間、250℃で1時間および300℃で1時間、加熱後、水素ガス10体積%と窒素ガス90体積%の混合ガスであるフォーミングガス気流中で、各々、180℃で2時間、250℃で1時間および300℃で1時間、加熱して酸化した銅、酸化したニッケルを還元する処理をおこなった。
[Porosity of porous sintered product]
A 1 mm thick stainless steel mask having a 15 mm square opening was placed on the polytetrafluoroethylene resin plate, and a heat-sinterable metal paste was applied by printing. This was heated and removed in a hot air circulation oven at 180 ° C. for 2 hours, 250 ° C. for 1 hour and 300 ° C. for 1 hour, and after cooling, it was removed from the polytetrafluoroethylene resin plate and heat-sinterable metal A metal sheet, which is a porous sintered product of particles, was prepared. Take a cross-section of this metal sheet with an electron microscope and use image analysis software (NIH Image, manufactured by the National Institute of Health, USA) to calculate the proportion of the area occupied by the space in the cross-section. ; Area%).
In addition, in the case of copper particles and nickel particles, in which the metal particles are easily oxidized by heating in an air stream, each of the above is heated at 180 ° C. for 2 hours, 250 ° C. for 1 hour and 300 ° C. for 1 hour. In a forming gas stream, which is a mixed gas of 10% by volume of gas and 90% by volume of nitrogen gas, copper was oxidized by heating at 180 ° C. for 2 hours, 250 ° C. for 1 hour and 300 ° C. for 1 hour, respectively. Nickel was reduced.
[多孔質焼結物の体積抵抗率]
ポリテトラフルオロエチレン樹脂板上に15mm角の開口部を有する厚さ1mmのステンレス製のマスクを置き、加熱焼結性金属ペーストを印刷塗布した。これを熱風循環式オーブンで、各々、180℃で2時間、250℃で1時間および300℃で1時間、加熱して取り出し、冷却後、ポリテトラフルオロエチレン樹脂板からはずして加熱焼結性金属粒子の多孔質焼結物である金属製シートを作成した。この金属製シートをJIS K 7194に準じた方法により体積抵抗率(単位;Ω・cm)を測定した。
なお、金属粒子が空気気流中の加熱により酸化しやすい銅粒子およびニッケル粒子の場合は、上記の各々、180℃で2時間、250℃で1時間および300℃で1時間、加熱後、水素ガス10体積%と窒素ガス90体積%の混合ガスであるフォーミングガス気流中で各々、180℃で2時間、250℃で1時間および300℃で1時間加熱することにより、酸化した銅、酸化したニッケルを還元する処理をおこなった。
[Volume resistivity of porous sintered product]
A 1 mm thick stainless steel mask having a 15 mm square opening was placed on the polytetrafluoroethylene resin plate, and a heat-sinterable metal paste was applied by printing. This was heated and removed in a hot air circulation oven at 180 ° C. for 2 hours, 250 ° C. for 1 hour and 300 ° C. for 1 hour, and after cooling, it was removed from the polytetrafluoroethylene resin plate and heat-sinterable metal A metal sheet, which is a porous sintered product of particles, was prepared. The volume resistivity (unit: Ω · cm) of this metal sheet was measured by a method according to JIS K 7194.
When the metal particles are copper particles and nickel particles that are easily oxidized by heating in an air stream, hydrogen gas is heated after heating at 180 ° C. for 2 hours, at 250 ° C. for 1 hour, and at 300 ° C. for 1 hour, respectively. Oxidized copper, oxidized nickel by heating at 180 ° C. for 2 hours, 250 ° C. for 1 hour and 300 ° C. for 1 hour in a forming gas stream which is a mixed gas of 10% by volume and 90% by volume of nitrogen gas, respectively. The process which reduced was performed.
[多孔質焼結物の熱伝導率]
ポリテトラフルオロエチレン樹脂板上に10mm角の開口部を有する厚さ2mmのステンレス製のマスクを置き、加熱焼結性金属ペーストを印刷塗布した。これを熱風循環式オーブンで、各々、180℃で2時間、250℃で1時間および300℃で1時間、加熱して取り出し、冷却後、ポリテトラフルオロエチレン樹脂板からはずして加熱焼結性金属粒子の多孔質焼結物である金属製シートを作成した。この金属製シートを熱定数測定装置によるレーザーフラッシュ法により熱伝導率(単位;W/m・K)を測定した。
なお、金属粒子が空気気流中の加熱により酸化しやすい銅粒子およびニッケル粒子の場合は、上記の各々、180℃で2時間、250℃で1時間および300℃で1時間加熱後、水素ガス10体積%と窒素ガス90体積%の混合ガスであるフォーミングガス気流中で各々、180℃で2時間、250℃で1時間および300℃で1時間加熱することにより、酸化した銅、酸化したニッケルを還元する処理をおこなった。
[Thermal conductivity of porous sintered product]
A 2 mm thick stainless steel mask having a 10 mm square opening was placed on the polytetrafluoroethylene resin plate, and a heat-sinterable metal paste was applied by printing. This was heated and removed in a hot air circulation oven at 180 ° C. for 2 hours, 250 ° C. for 1 hour and 300 ° C. for 1 hour, and after cooling, it was removed from the polytetrafluoroethylene resin plate and heat-sinterable metal A metal sheet, which is a porous sintered product of particles, was prepared. The thermal conductivity (unit: W / m · K) of this metal sheet was measured by a laser flash method using a thermal constant measuring device.
When the metal particles are copper particles and nickel particles that are easily oxidized by heating in an air stream, the hydrogen gas 10 is heated after heating at 180 ° C. for 2 hours, 250 ° C. for 1 hour, and 300 ° C. for 1 hour, respectively. By heating at 180 ° C. for 2 hours, 250 ° C. for 1 hour and 300 ° C. for 1 hour in a forming gas stream which is a mixed gas of volume% and nitrogen gas 90 volume%, respectively, oxidized copper and oxidized nickel Processing to reduce.
[金属製部材接合体のせん断接着強さ]
幅25mm×長さ70mm×厚さ1.0mmの銀基板(銀純度99.99%)上に、10mmの間隔をおいて4つの開口部(2.5mm×2.5mm)を有する100μm厚のステンレス製のマスクを用いて、加熱焼結性金属ペーストを印刷塗布し、その上にサイズが2.5mm×2.5mm×0.5mmの銀チップ(銀純度99.99%)を搭載した。これを熱風循環式オーブンで、各々、180℃で2時間、250℃で1時間および300℃で1時間、加熱して接合した。この金属製部材接合体を接着強さ試験機にセットし、該銀チップの側面を速度23mm/分で押し、接合部がせん断破壊したときの荷重をもってせん断接着強さ(単位;MPa)とした。
なお、金属粒子が空気気流中の加熱により酸化しやすい銅粒子およびニッケル粒子の場合は、上記の各々、180℃で2時間、250℃で1時間および300℃で1時間、加熱後、水素ガス10体積%と窒素ガス90体積%の混合ガスであるフォーミングガス気流中で、各々、180℃で2時間、250℃で1時間および300℃で1時間、加熱することにより、酸化した銅、酸化したニッケルを還元する処理をおこなった。
[Shear bond strength of metal member assembly]
100 μm thick having four openings (2.5 mm × 2.5 mm) at a distance of 10 mm on a silver substrate (silver purity 99.99%) of width 25 mm × length 70 mm × thickness 1.0 mm A heat-sinterable metal paste was printed and applied using a stainless steel mask, and a silver chip (silver purity 99.99%) having a size of 2.5 mm × 2.5 mm × 0.5 mm was mounted thereon. This was joined by heating in a hot air circulation oven at 180 ° C. for 2 hours, 250 ° C. for 1 hour and 300 ° C. for 1 hour, respectively. This metal member joined body was set in an adhesive strength tester, the side surface of the silver chip was pushed at a speed of 23 mm / min, and the load when the joint was sheared was determined as the shear adhesive strength (unit: MPa). .
When the metal particles are copper particles and nickel particles that are easily oxidized by heating in an air stream, hydrogen gas is heated after heating at 180 ° C. for 2 hours, at 250 ° C. for 1 hour, and at 300 ° C. for 1 hour, respectively. In a forming gas stream, which is a mixed gas of 10% by volume and 90% by volume of nitrogen gas, by heating at 180 ° C. for 2 hours, at 250 ° C. for 1 hour and at 300 ° C. for 1 hour, oxidized copper, oxidized The nickel was reduced.
[参考例1]
撥水性有機物であるステアリン酸(関東化学株式会社製、試薬1級)自体の熱分解ピーク温度を測定した。熱分解ピーク温度は254℃であった。その測定結果を図3に示した。
[Reference Example 1]
The thermal decomposition peak temperature of stearic acid (Kanto Chemical Co., Ltd., reagent grade 1) itself, which is a water-repellent organic substance, was measured. The thermal decomposition peak temperature was 254 ° C. The measurement results are shown in FIG.
[参考例2]
撥水性有機物であるオレイン酸(関東化学株式会社製、試薬1級)自体の熱分解ピーク温度を測定した。熱分解ピーク温度は240℃であった。その測定結果を図4に示した。
[Reference Example 2]
The thermal decomposition peak temperature of oleic acid (Kanto Chemical Co., Ltd., reagent grade 1) itself, which is a water-repellent organic substance, was measured. The thermal decomposition peak temperature was 240 ° C. The measurement results are shown in FIG.
[参考例3]
撥水性有機物であるラウリン酸(関東化学株式会社製、試薬1級)自体の熱分解ピーク温度を測定した。熱分解ピーク温度は209℃であった。
[Reference Example 3]
The thermal decomposition peak temperature of lauric acid (Kanto Chemical Co., Ltd., reagent grade 1) itself, which is a water-repellent organic substance, was measured. The thermal decomposition peak temperature was 209 ° C.
[参考例4]
撥水性有機物であるステアリン酸アミド(関東化学株式会社製、試薬1級)自体の熱分解ピーク温度を測定した。熱分解ピーク温度は263℃であった。
[Reference Example 4]
The thermal decomposition peak temperature of stearamide (Kanto Chemical Co., Ltd., reagent grade 1) itself, which is a water-repellent organic substance, was measured. The thermal decomposition peak temperature was 263 ° C.
[実施例1]
還元法で製造された粒状の銀粒子にステアリン酸を添加してフレーク化された、表面が撥水性有機物であるステアリン酸で被覆された平均粒径が3.5μmである市販のフレーク状の銀粒子(ステアリン酸量が0.4重量%)について、ステアリン酸の熱分解ピーク温度を測定した。またこの際、ステアリン酸の熱重量分析を同時におこない、図5にDTA曲線とTGA曲線とを合わせて示した。
その結果、銀粒子表面のステアリン酸の熱分解ピーク温度は203℃であり、参考例1で測定したステアリン酸自体の熱分解ピーク温度である254℃よりも51℃低かった。これより、このステアリン酸で被覆されたフレーク状銀粒子は加熱焼結性が優れると判定した。
また、このフレーク状銀粒子の表面を被覆しているステアリン酸の熱分解反応の活性化エネルギーを測定したところ71kJ/モルであった。これより、このステアリン酸で被覆されたフレーク状銀粒子は加熱焼結性が優れると判定した。熱分解ピーク温度および活性化エネルギーを表1に示した。
[Example 1]
Commercially available flaky silver particles having an average particle size of 3.5 μm coated with stearic acid, which is a water-repellent organic substance, and flakes formed by adding stearic acid to granular silver particles produced by the reduction method The thermal decomposition peak temperature of stearic acid was measured for the particles (the amount of stearic acid was 0.4% by weight). At this time, thermogravimetric analysis of stearic acid was simultaneously performed, and FIG. 5 shows a DTA curve and a TGA curve together.
As a result, the thermal decomposition peak temperature of stearic acid on the surface of the silver particles was 203 ° C., which was 51 ° C. lower than 254 ° C. which is the thermal decomposition peak temperature of stearic acid itself measured in Reference Example 1. From this, it was determined that the flaky silver particles coated with stearic acid were excellent in heat sinterability.
The activation energy of the thermal decomposition reaction of stearic acid coating the surface of the flaky silver particles was 71 kJ / mol. From this, it was determined that the flaky silver particles coated with stearic acid were excellent in heat sinterability. The pyrolysis peak temperature and activation energy are shown in Table 1.
このステアリン酸で被覆されたフレーク状銀粒子100部に、揮発性分散媒としてジプロピレングリコール(関東化学株式会社製、試薬1級)10部を添加し、ヘラを用いて均一に混合することにより加熱焼結性銀ペーストを調製した。 By adding 10 parts of dipropylene glycol (manufactured by Kanto Chemical Co., Ltd., reagent grade 1) as a volatile dispersion medium to 100 parts of the flaky silver particles coated with stearic acid, and uniformly mixing with a spatula A heat-sinterable silver paste was prepared.
この加熱焼結性銀ペーストについて、多孔質焼結物の空隙率、体積抵抗率および熱伝導率、金属製部材接合体のせん断接着強さの測定をして結果を表1にまとめて示した。
この加熱焼結性銀ペーストは加熱により硬化して導電性と熱伝導性に優れた多孔質焼結物となり、金属製部材接合体を強固に接合した。
以上の結果より、この加熱焼結性銀粒子の加熱焼結性の評価方法は、ステアリン酸で被覆されたフレーク状銀粒子の加熱焼結性を判定するのに有用なことがわかった。
For this heat-sinterable silver paste, the porosity, volume resistivity and thermal conductivity of the porous sintered material, and the shear bond strength of the metal member assembly were measured, and the results are summarized in Table 1. .
This heat-sinterable silver paste was cured by heating to become a porous sintered product excellent in conductivity and thermal conductivity, and the metal member joined body was firmly joined.
From the above results, it was found that this method for evaluating the heat sinterability of heat-sinterable silver particles is useful for determining the heat-sinterability of flaky silver particles coated with stearic acid.
[実施例2]
特開昭54−121270号公報の実施例に記載の還元法に準じて製造された、表面が撥水性有機物であるオレイン酸で被覆された平均粒径が0.8μmである粒状の銀粒子(オレイン酸量が0.3重量%)について、オレイン酸の熱分解ピーク温度を測定した。
その結果、銀粒子表面のオレイン酸の熱分解ピーク温度は227℃であり、参考例2で測定したオレイン酸自体の熱分解ピーク温度である240℃よりも13℃低かった。これより、このオレイン酸で被覆された粒状銀粒子は加熱焼結性が優れると判定した。
また、この粒状銀粒子の表面を被覆しているオレイン酸の熱分解反応の活性化エネルギーを測定したところ87kJ/モルであった。これより、このオレイン酸で被覆された粒状銀粒子は加熱焼結性が優れると判定した。熱分解ピーク温度および活性化エネルギーを表2に示した。
[Example 2]
A granular silver particle having an average particle diameter of 0.8 μm and coated with oleic acid, which is a water-repellent organic substance, manufactured according to the reduction method described in the examples of JP-A No. 54-121270. The oleic acid thermal decomposition peak temperature was measured for an oleic acid amount of 0.3% by weight.
As a result, the thermal decomposition peak temperature of oleic acid on the silver particle surface was 227 ° C., which was 13 ° C. lower than 240 ° C., which is the thermal decomposition peak temperature of oleic acid itself measured in Reference Example 2. From this, it was determined that the granular silver particles coated with oleic acid were excellent in heat sinterability.
The activation energy of the thermal decomposition reaction of oleic acid covering the surface of the granular silver particles was measured and found to be 87 kJ / mol. From this, it was determined that the granular silver particles coated with oleic acid were excellent in heat sinterability. The thermal decomposition peak temperature and activation energy are shown in Table 2.
このオレイン酸で被覆された粒状銀粒子100部に、揮発性分散媒としてジプロピレングリコール(関東化学株式会社製、試薬1級)10部を添加し、ヘラを用いて均一に混合することにより加熱焼結性銀ペーストを調製した。 To 100 parts of the granular silver particles coated with oleic acid, 10 parts of dipropylene glycol (manufactured by Kanto Chemical Co., Ltd., reagent grade 1) is added as a volatile dispersion medium, and heated by uniformly mixing with a spatula. A sinterable silver paste was prepared.
この加熱焼結性銀ペーストについて、多孔質焼結物の空隙率、体積抵抗率および熱伝導率、金属製部材接合体のせん断接着強さの測定をして結果を表2にまとめて示した。
この加熱焼結性銀ペーストは加熱により硬化して導電性と熱伝導性に優れた多孔質焼結物となり、金属製部材接合体を強固に接合した。
以上の結果より、この加熱焼結性銀粒子の加熱焼結性の評価方法は、オレイン酸で被覆された粒状銀粒子の加熱焼結性を判定するのに有用なことがわかった。
With respect to this heat-sinterable silver paste, the porosity, volume resistivity and thermal conductivity of the porous sintered material, and the shear bond strength of the metal member assembly were measured, and the results are summarized in Table 2. .
This heat-sinterable silver paste was cured by heating to become a porous sintered product excellent in conductivity and thermal conductivity, and the metal member joined body was firmly joined.
From the above results, it was found that this method for evaluating the heat-sinterability of heat-sinterable silver particles is useful for determining the heat-sinterability of granular silver particles coated with oleic acid.
[実施例3]
アトマイズ法で製造された球状(真球度1.07)の銀粒子をオレイン酸に浸漬して引き上げ、メタノールで洗浄後風乾して粒子表面を撥水性有機物であるオレイン酸で被覆した平均粒径が1.5μmである球状(真球度1.07)の銀粒子(オレイン酸量が0.3重量%)について、オレイン酸の熱分解ピーク温度を測定した。またこの際、オレイン酸の熱重量分析を同時におこない、図6にDTA曲線とTGA曲線とを合わせて示した。
その結果、銀粒子表面のオレイン酸の熱分解ピーク温度は282℃であり、参考例2で測定したオレイン酸自体の熱分解ピーク温度である240℃よりも42℃高かった。これより、このオレイン酸で被覆された球状銀粒子は加熱焼結性が劣る、と判定した。
また、この球状銀粒子の表面を被覆しているオレイン酸の熱分解反応の活性化エネルギーを測定したところ99kJ/モルであった。これより、このオレイン酸で被覆された球状銀粒子は加熱焼結性が劣ると判定した。熱分解ピーク温度および活性化エネルギーを表3に示した。
[Example 3]
Spherical (sphericity: 1.07) silver particles produced by the atomization method are dipped in oleic acid, pulled up, washed with methanol and air-dried, and the particle surface is coated with oleic acid, a water-repellent organic substance. The thermal decomposition peak temperature of oleic acid was measured for spherical silver particles having a sphericity of 1.07 (the amount of oleic acid was 0.3% by weight) having a particle size of 1.5 μm. At this time, thermogravimetric analysis of oleic acid was simultaneously performed, and FIG. 6 shows a DTA curve and a TGA curve together.
As a result, the thermal decomposition peak temperature of oleic acid on the surface of the silver particles was 282 ° C., which was 42 ° C. higher than 240 ° C., which is the thermal decomposition peak temperature of oleic acid itself measured in Reference Example 2. From this, it was determined that the spherical silver particles coated with oleic acid were inferior in heat sinterability.
The activation energy of the thermal decomposition reaction of oleic acid covering the surface of the spherical silver particles was measured and found to be 99 kJ / mol. From this, it was determined that the spherical silver particles coated with oleic acid were inferior in heat sinterability. The thermal decomposition peak temperature and activation energy are shown in Table 3.
このオレイン酸で被覆された球状銀粒子100部に、揮発性分散媒としてジプロピレングリコール(関東化学株式会社製、試薬1級)10部を添加し、ヘラを用いて均一に混合することにより加熱焼結性銀ペーストを調製した。 To 100 parts of the spherical silver particles coated with oleic acid, 10 parts of dipropylene glycol (manufactured by Kanto Chemical Co., Ltd., reagent grade 1) is added as a volatile dispersion medium, and heated by uniformly mixing with a spatula. A sinterable silver paste was prepared.
この加熱焼結性銀ペーストについて、多孔質焼結物の空隙率、体積抵抗率および熱伝導率、金属製部材接合体のせん断接着強さの測定をして結果を表3にまとめて示した。
この加熱焼結性銀ペーストは加熱しても十分に硬化せず、導電性、熱伝導性および金属製部材接合体の接合は不十分であった。
以上の結果より、この加熱焼結性銀粒子の加熱焼結性の評価方法は、オレイン酸で被覆された球状銀粒子の加熱焼結性を判定するのに有用なことがわかった。
For this heat-sinterable silver paste, the porosity, volume resistivity and thermal conductivity of the porous sintered material, and the shear bond strength of the metal member assembly were measured, and the results are summarized in Table 3. .
This heat-sinterable silver paste was not sufficiently cured even when heated, and the electrical conductivity, thermal conductivity, and joining of the metal member assembly were insufficient.
From the above results, it was found that this method for evaluating the heat-sinterability of heat-sinterable silver particles is useful for determining the heat-sinterability of spherical silver particles coated with oleic acid.
[実施例4]
湿式法で製造された,表面が撥水性有機物であるオレイン酸で被覆された平均粒径が1.2μmである市販の粒状の銅粒子(オレイン酸量が0.8重量%)について、オレイン酸の熱分解ピーク温度を測定した。
その結果、銅粒子表面のオレイン酸の熱分解ピーク温度は234℃であり、参考例2で測定したオレイン酸自体の熱分解ピーク温度である240℃よりも6℃低かった。これより、このオレイン酸で被覆された粒状銅粒子は加熱焼結性が優れると判定した。その測定結果を図7に示した。
また、この粒状銅粒子の表面を被覆しているオレイン酸の熱分解反応の活性化エネルギーを測定したところ91kJ/モルであった。これより、このオレイン酸で被覆された粒状銅粒子は加熱焼結性が優れると判定した。熱分解ピーク温度および活性化エネルギーを表4に示した。
[Example 4]
For commercially available copper particles (the amount of oleic acid is 0.8% by weight) produced by a wet method and coated with oleic acid whose surface is coated with water-repellent organic material and having an average particle size of 1.2 μm, oleic acid is used. The pyrolysis peak temperature of was measured.
As a result, the thermal decomposition peak temperature of oleic acid on the copper particle surface was 234 ° C., which was 6 ° C. lower than 240 ° C., which is the thermal decomposition peak temperature of oleic acid itself measured in Reference Example 2. From this, it was determined that the granular copper particles coated with oleic acid were excellent in heat sinterability. The measurement results are shown in FIG.
The activation energy of the thermal decomposition reaction of oleic acid covering the surface of the granular copper particles was measured and found to be 91 kJ / mol. From this, it was determined that the granular copper particles coated with oleic acid were excellent in heat sinterability. The thermal decomposition peak temperature and activation energy are shown in Table 4.
このオレイン酸で被覆された粒状銅粒子100部に、揮発性分散媒としてジプロピレングリコール(関東化学株式会社製、試薬1級)10部を添加し、ヘラを用いて均一に混合することにより加熱焼結性銅ペーストを調製した。 Heat by adding 10 parts of dipropylene glycol (manufactured by Kanto Chemical Co., Ltd., reagent grade 1) as a volatile dispersion medium to 100 parts of the granular copper particles coated with oleic acid, and mixing uniformly using a spatula. A sinterable copper paste was prepared.
この加熱焼結性銅ペーストについて、多孔質焼結物の空隙率、体積抵抗率および熱伝導率、金属製部材接合体のせん断接着強さの測定をして結果を表4にまとめて示した。
この加熱焼結性銅ペーストは加熱により硬化して導電性と熱伝導性に優れた多孔質焼結物となり、金属製部材接合体を強固に接合した。
以上の結果より、この加熱焼結性銅粒子の加熱焼結性の評価方法は、オレイン酸で被覆された粒状銅粒子の加熱焼結性を判定するのに有用なことがわかった。
For this heat-sinterable copper paste, the porosity, volume resistivity and thermal conductivity of the porous sintered product, and the shear bond strength of the metal member assembly were measured, and the results are summarized in Table 4. .
This heat-sinterable copper paste was cured by heating to become a porous sintered product excellent in conductivity and thermal conductivity, and the metal member joined body was firmly joined.
From the above results, it was found that this method for evaluating the heat sinterability of heat-sinterable copper particles is useful for determining the heat-sinterability of granular copper particles coated with oleic acid.
[実施例5]
カーボニル法で製造された粒状のニッケル粒子にステアリン酸を添加してフレーク化した、粒子表面を撥水性有機物であるステアリン酸で被覆した平均粒径が7.5μmである市販のフレーク状のニッケル粒子(ステアリン酸量が0.3重量%)について、ステアリン酸の熱分解ピーク温度を測定した。その測定結果を図8に示した。
その結果、ニッケル粒子表面のステアリン酸の熱分解ピーク温度は279℃であり、参考例2で測定したステアリン酸自体の熱分解ピーク温度である254℃よりも25℃高かった。これより、このステアリン酸で被覆されたフレーク状ニッケル粒子は加熱焼結性が劣ると判定した。
また、このフレーク状ニッケル粒子の表面を被覆しているステアリン酸の熱分解反応の活性化エネルギーを測定したところ97kJ/モルであった。これより、このステアリン酸で被覆されたフレーク状ニッケル粒子は加熱焼結性が劣ると判定した。熱分解ピーク温度および活性化エネルギーを表5に示した。
[Example 5]
Commercially available flaky nickel particles having an average particle diameter of 7.5 μm, which is obtained by adding stearic acid to granular nickel particles produced by the carbonyl method and coating the surface with stearic acid which is a water-repellent organic substance. For (the amount of stearic acid is 0.3% by weight), the thermal decomposition peak temperature of stearic acid was measured. The measurement results are shown in FIG.
As a result, the thermal decomposition peak temperature of stearic acid on the nickel particle surface was 279 ° C., which was 25 ° C. higher than 254 ° C. which is the thermal decomposition peak temperature of stearic acid itself measured in Reference Example 2. From this, it was determined that the flaky nickel particles coated with stearic acid had poor heat sinterability.
The activation energy of the thermal decomposition reaction of stearic acid covering the surface of the flaky nickel particles was measured and found to be 97 kJ / mol. From this, it was determined that the flaky nickel particles coated with stearic acid had poor heat sinterability. The thermal decomposition peak temperature and activation energy are shown in Table 5.
このステアリン酸で被覆されたフレーク状ニッケル粒子100部に、揮発性分散媒としてジプロピレングリコール(関東化学株式会社製、試薬1級)10部を添加し、ヘラを用いて均一に混合することにより加熱焼結性ニッケルペーストを調製した。 By adding 10 parts of dipropylene glycol (manufactured by Kanto Chemical Co., Ltd., reagent grade 1) as a volatile dispersion medium to 100 parts of the flaky nickel particles coated with stearic acid, and uniformly mixing with a spatula A heat-sinterable nickel paste was prepared.
この加熱焼結性ニッケルペーストについて、多孔質焼結物の空隙率、体積抵抗率および熱伝導率、金属製部材接合体のせん断接着強さの測定をして結果を表5にまとめて示した。
この加熱焼結性ニッケルペーストは加熱しても十分に硬化せず、導電性、熱伝導性および金属製部材接合体の接合は不十分であった。
以上の結果より、この加熱焼結性ニッケル粒子の加熱焼結性の評価方法は、ステアリン酸で被覆されたフレーク状ニッケル粒子の加熱焼結性を判定するのに有用なことがわかった。
For this heat-sinterable nickel paste, the porosity, volume resistivity and thermal conductivity of the porous sintered material, and the shear bond strength of the metal member assembly were measured, and the results are summarized in Table 5. .
This heat-sinterable nickel paste was not sufficiently cured even when heated, and the electrical conductivity, thermal conductivity, and joining of the metal member assembly were insufficient.
From the above results, it was found that this method for evaluating the heat-sinterability of the heat-sinterable nickel particles is useful for determining the heat-sinterability of the flaky nickel particles coated with stearic acid.
[実施例6]
特開昭54−121270号公報の実施例に記載の還元法に準じて製造された、表面が撥水性有機物であるラウリン酸で被覆された平均粒径が0.9μmである粒状の銀粒子(ラウリン酸量が0.2重量%)について、ラウリン酸の熱分解ピーク温度を測定した。
その結果、銀粒子表面のラウリン酸の熱分解ピーク温度は201℃であり、参考例3で測定したラウリン酸自体の熱分解ピーク温度である209℃よりも8℃低かった。これより、このラウリン酸で被覆された粒状銀粒子は加熱焼結性が優れると判定した。
また、この粒状銀粒子の表面を被覆しているラウリン酸の熱分解反応の活性化エネルギーを測定したところ83kJ/モルであった。これより、このラウリン酸で被覆された粒状銀粒子は加熱焼結性が優れると判定した。熱分解ピーク温度および活性化エネルギーを表6に示した。
[Example 6]
A granular silver particle having an average particle diameter of 0.9 μm (coated with lauric acid, which is a water-repellent organic substance), manufactured according to the reduction method described in the examples of JP-A No. 54-121270. The thermal decomposition peak temperature of lauric acid was measured for a lauric acid amount of 0.2% by weight.
As a result, the thermal decomposition peak temperature of lauric acid on the silver particle surface was 201 ° C., which was 8 ° C. lower than 209 ° C., which is the thermal decomposition peak temperature of lauric acid itself measured in Reference Example 3. From this, it was determined that the granular silver particles coated with lauric acid were excellent in heat sinterability.
The activation energy of the thermal decomposition reaction of lauric acid covering the surface of the granular silver particles was measured and found to be 83 kJ / mol. From this, it was determined that the granular silver particles coated with lauric acid were excellent in heat sinterability. The pyrolysis peak temperature and activation energy are shown in Table 6.
このラウリン酸で被覆された粒状銀粒子100部に、揮発性分散媒としてジプロピレングリコール(関東化学株式会社製、試薬1級)10部を添加し、ヘラを用いて均一に混合することにより加熱焼結性銀ペーストを調製した。 To 100 parts of the granular silver particles coated with lauric acid, 10 parts of dipropylene glycol (manufactured by Kanto Chemical Co., Ltd., reagent grade 1) is added as a volatile dispersion medium, and heated by uniformly mixing with a spatula. A sinterable silver paste was prepared.
この加熱焼結性銀ペーストについて、多孔質焼結物の空隙率、体積抵抗率および熱伝導率、金属製部材接合体のせん断接着強さの測定をして結果を表6にまとめて示した。
この加熱焼結性銀ペーストは加熱により硬化して導電性と熱伝導性に優れた多孔質焼結物となり、金属製部材接合体を強固に接合した。
以上の結果より、この加熱焼結性銀粒子の加熱焼結性の評価方法は、ラウリン酸で被覆された粒状銀粒子の加熱焼結性を判定するのに有用なことがわかった。
For this heat-sinterable silver paste, the porosity, volume resistivity and thermal conductivity of the porous sintered product, and the shear bond strength of the metal member assembly were measured, and the results are summarized in Table 6. .
This heat-sinterable silver paste was cured by heating to become a porous sintered product excellent in conductivity and thermal conductivity, and the metal member joined body was firmly joined.
From the above results, it was found that this method for evaluating the heat sinterability of heat-sinterable silver particles is useful for determining the heat-sinterability of granular silver particles coated with lauric acid.
[実施例7]
還元法で製造された表面が有機物で被覆されていない粒状の銀粒子をラウリン酸に浸漬して引き上げ、メタノールで洗浄後風乾して粒子表面を撥水性有機物であるラウリン酸で被覆した平均粒径が1.1μmである粒状の銀粒子(ラウリン酸量が0.1重量%)について、ラウリン酸の熱分解ピーク温度を測定した。
その結果、銀粒子表面のラウリン酸の熱分解ピーク温度は226℃であり、ラウリン酸自体の熱分解ピーク温度である209℃よりも17℃高かった。これより、このラウリン酸で被覆された粒状銀粒子は加熱焼結性が劣る、と判定した。
また、この粒状の銀粒子の表面を被覆しているラウリン酸の熱分解反応の活性化エネルギーを測定したところ97kJ/モルであった。これより、このラウリン酸で被覆された粒状の銀粒子は加熱焼結性が劣ると判定した。熱分解ピーク温度および活性化エネルギーを表7に示した。
[Example 7]
The average particle size is obtained by dipping granular silver particles whose surface is not coated with organic matter in lauric acid, pulling them up, washing with methanol, and air drying to coat the surface of particles with water-repellent organic lauric acid. The thermal decomposition peak temperature of lauric acid was measured for granular silver particles (the amount of lauric acid was 0.1% by weight) having a particle size of 1.1 μm.
As a result, the thermal decomposition peak temperature of lauric acid on the silver particle surface was 226 ° C., which was 17 ° C. higher than 209 ° C., which is the thermal decomposition peak temperature of lauric acid itself. From this, it was determined that the granular silver particles coated with lauric acid were poor in heat sinterability.
The activation energy of the thermal decomposition reaction of lauric acid covering the surface of the granular silver particles was measured and found to be 97 kJ / mol. From this, it was determined that the granular silver particles coated with lauric acid had poor heat sinterability. The pyrolysis peak temperature and activation energy are shown in Table 7.
このラウリン酸で被覆された粒状銀粒子100部に、揮発性分散媒として炭化水素であるイソパラフィン(新日本石油株式会社製、商品名アイソゾール。アイソゾールは登録商標である。)8部を添加し、ヘラを用いて均一に混合することにより加熱焼結性銀ペーストを調製した。 To 100 parts of the granular silver particles coated with lauric acid, 8 parts of isoparaffin which is a hydrocarbon as a volatile dispersion medium (manufactured by Shin Nippon Oil Co., Ltd., trade name isozole, isozole is a registered trademark), A heat-sinterable silver paste was prepared by mixing uniformly using a spatula.
この加熱焼結性銀ペーストについて、多孔質焼結物の空隙率、体積抵抗率および熱伝導率、金属製部材接合体のせん断接着強さの測定をして結果を表7にまとめて示した。
この加熱焼結性銀ペーストは加熱しても十分に硬化せず、導電性、熱伝導性および金属製部材接合体の接合は不十分であった。
以上の結果より、この加熱焼結性銀粒子の加熱焼結性の評価方法は、ラウリン酸で被覆された粒状銀粒子の加熱焼結性を判定するのに有用なことがわかった。
For this heat-sinterable silver paste, the porosity, volume resistivity and thermal conductivity of the porous sintered product, and the shear bond strength of the metal member assembly were measured, and the results are summarized in Table 7. .
This heat-sinterable silver paste was not sufficiently cured even when heated, and the electrical conductivity, thermal conductivity, and joining of the metal member assembly were insufficient.
From the above results, it was found that this method for evaluating the heat sinterability of heat-sinterable silver particles is useful for determining the heat-sinterability of granular silver particles coated with lauric acid.
[実施例8]
還元法で製造された表面が有機物で被覆されていない粒状の銀粒子にステアリン酸アミドを添加してフレーク化された、表面が撥水性有機物であるステアリン酸アミドで被覆された平均粒径が3.5μmである市販のフレーク状の銀粒子(ステアリン酸アミド量が0.2重量%)について、ステアリン酸アミドの熱分解ピーク温度を測定した。
その結果、銀粒子表面のステアリン酸アミドの熱分解ピーク温度は251℃であり、ステアリン酸アミド自体熱分解ピーク温度である263℃よりも12℃低かった。これより、このステアリン酸アミドで被覆されたフレーク状銀粒子は加熱焼結性が優れる、と判定した。
また、このフレーク状銀粒子の表面を被覆しているステアリン酸アミドの熱分解反応の活性化エネルギーを測定したところ85kJ/モルであった。これより、このステアリン酸アミドで被覆されたフレーク状銀粒子は加熱焼結性が優れると判定した。熱分解ピーク温度および活性化エネルギーを表8に示した。
[Example 8]
An average particle size of 3 coated with stearamide, which is a water-repellent organic material, is formed into flakes by adding stearamide to granular silver particles whose surface is not coated with an organic material manufactured by the reduction method. The thermal decomposition peak temperature of stearamide was measured for commercially available flaky silver particles having a particle size of 0.5 μm (the amount of stearamide is 0.2% by weight).
As a result, the thermal decomposition peak temperature of stearamide on the silver particle surface was 251 ° C., which was 12 ° C. lower than 263 ° C. which is the thermal decomposition peak temperature of stearamide itself. From this, it was determined that the flaky silver particles coated with stearamide had excellent heat sintering properties.
The activation energy of the thermal decomposition reaction of stearamide that coats the surface of the flaky silver particles was measured and found to be 85 kJ / mol. From this, it was determined that the flaky silver particles coated with stearamide had excellent heat sinterability. The thermal decomposition peak temperature and activation energy are shown in Table 8.
このステアリン酸アミドで被覆されたフレーク状銀粒子100部に、揮発性分散媒としてジプロピレングリコール(関東化学株式会社製、試薬1級)10部を添加し、ヘラを用いて均一に混合することにより加熱焼結性銀ペーストを調製した。 To 100 parts of the flaky silver particles coated with stearic acid amide, 10 parts of dipropylene glycol (Kanto Chemical Co., Ltd., reagent grade 1) is added as a volatile dispersion medium, and mixed uniformly using a spatula. Thus, a heat-sinterable silver paste was prepared.
この加熱焼結性銀ペーストについて、多孔質焼結物の空隙率、体積抵抗率および熱伝導率、金属製部材接合体のせん断接着強さの測定をして結果を表8にまとめて示した。
この加熱焼結性銀ペーストは加熱により硬化して導電性と熱伝導性に優れた多孔質焼結物となり、金属製部材接合体を強固に接合した。
以上の結果より、この加熱焼結性銀粒子の加熱焼結性の評価方法は、ステアリン酸アミドで被覆されたフレーク状銀粒子の加熱焼結性を判定するのに有用なことがわかった。
With respect to this heat-sinterable silver paste, the porosity, volume resistivity and thermal conductivity of the porous sintered material, and the shear bond strength of the metal member assembly were measured, and the results are summarized in Table 8. .
This heat-sinterable silver paste was cured by heating to become a porous sintered product excellent in conductivity and thermal conductivity, and the metal member joined body was firmly joined.
From the above results, it was found that the method for evaluating the heat sinterability of the heat-sinterable silver particles is useful for determining the heat-sinterability of the flaky silver particles coated with stearamide.
[実施例9]
アトマイズ法で製造された球状(真球度1.15)の銀粒子をオレイン酸に浸漬して引き上げ、メタノールで洗浄後風乾して粒子表面を撥水性有機物であるオレイン酸で被覆した平均粒径が1.1μmである球状(真球度1.15)の銀粒子(オレイン酸量が0.3重量%)について、オレイン酸の熱分解ピーク温度を測定した。
その結果、銀粒子表面のオレイン酸の熱分解ピーク温度は249℃であり、オレイン酸自体の熱分解ピーク温度である240℃よりも9℃高かった。これより、このオレイン酸で被覆された球状銀粒子は加熱焼結性が劣る、と判定した。
また、この球状の銀粒子の表面を被覆しているオレイン酸の熱分解反応の活性化エネルギーを測定したところ100kJ/モルであった。これより、このオレイン酸で被覆された球状の銀粒子は加熱焼結性が劣ると判定した。熱分解ピーク温度および活性化エネルギーを表9に示した。
[Example 9]
Spherical (sphericity: 1.15) silver particles produced by the atomization method are dipped in oleic acid, pulled up, washed with methanol, air-dried, and the particle surface coated with oleic acid, which is a water-repellent organic substance. The thermal decomposition peak temperature of oleic acid was measured for spherical silver particles having a sphericity of 1.15 (the amount of oleic acid was 0.3% by weight) having a diameter of 1.1 μm.
As a result, the thermal decomposition peak temperature of oleic acid on the silver particle surface was 249 ° C., which was 9 ° C. higher than 240 ° C., which is the thermal decomposition peak temperature of oleic acid itself. From this, it was determined that the spherical silver particles coated with oleic acid were inferior in heat sinterability.
The activation energy of the thermal decomposition reaction of oleic acid covering the surface of the spherical silver particles was measured and found to be 100 kJ / mol. From this, it was determined that the spherical silver particles coated with oleic acid were inferior in heat sinterability. The pyrolysis peak temperature and activation energy are shown in Table 9.
このオレイン酸で被覆された球状銀粒子100部に、揮発性分散媒として炭化水素であるイソパラフィン(新日本石油株式会社製、商品名アイソゾール。アイソゾールは登録商標である。)8部を添加し、ヘラを用いて均一に混合することにより加熱焼結性銀ペーストを調製した。
この加熱焼結性銀ペーストについて、多孔質焼結物の空隙率、体積抵抗率および熱伝導率、金属製部材接合体のせん断接着強さの測定をして結果を表9にまとめて示した。
To 100 parts of the spherical silver particles coated with oleic acid, 8 parts of isoparaffin which is a hydrocarbon as a volatile dispersion medium (manufactured by Shin Nippon Oil Co., Ltd., trade name ISOZOL, ISOZOL is a registered trademark) is added, A heat-sinterable silver paste was prepared by mixing uniformly using a spatula.
For this heat-sinterable silver paste, the porosity, volume resistivity and thermal conductivity of the porous sintered product, and the shear bond strength of the metal member assembly were measured, and the results are summarized in Table 9. .
この加熱焼結性銀ペーストは加熱しても十分に硬化せず、導電性、熱伝導性および金属製部材接合体の接合は不十分であった。
以上の結果より、この加熱焼結性銀粒子の加熱焼結性の評価方法は、オレイン酸で被覆された球状銀粒子の加熱焼結性を判定するのに有用なことがわかった。
This heat-sinterable silver paste was not sufficiently cured even when heated, and the electrical conductivity, thermal conductivity, and joining of the metal member assembly were insufficient.
From the above results, it was found that this method for evaluating the heat-sinterability of heat-sinterable silver particles is useful for determining the heat-sinterability of spherical silver particles coated with oleic acid.
本発明の有機物被覆金属粒子の加熱焼結性の評価方法は、加熱焼結性に優れる有機物被覆金属粒子を的確かつ効率よく選択するのに有用である。
本発明の加熱焼結性金属ペーストの製造方法は、導電性、熱伝導性および接合強度に優れた多孔質焼結物となる加熱焼結性金属ペーストを的確かつ効率よく容易に製造するのに有用である。
本発明の製造方法により製造された加熱焼結性金属ペーストは、抵抗器やコンデンサ等の各種電子部品及び各種表示素子の電極の形成;電磁波シールド用電気伝導性被膜の形成;コンデンサ、抵抗、ダイオード、メモリ、演算素子(CPU)等のチップ部品の基板への接合;太陽電池の電極の形成;積層セラミックコンデンサ、積層セラミックインダクタ、積層セラミックアクチュエータ等のチップ型セラミック電子部品の外部電極の形成等に有用である。
本発明の金属製部材接合体の製造方法は、接合性に優れた金属製部材接合体を的確かつ効率的に製造するのに有用である。
The method for evaluating the heat-sinterability of organic-coated metal particles of the present invention is useful for accurately and efficiently selecting organic-coated metal particles having excellent heat-sinterability.
The method for producing a heat-sinterable metal paste according to the present invention is suitable for producing a heat-sinterable metal paste that is a porous sintered material having excellent conductivity, heat conductivity, and bonding strength accurately and efficiently. Useful.
The heat-sinterable metal paste produced by the production method of the present invention is used to form electrodes for various electronic components such as resistors and capacitors and various display elements; to form an electrically conductive film for electromagnetic shielding; capacitors, resistors, and diodes. Bonding chip components such as memory and arithmetic elements (CPU) to substrates; forming solar cell electrodes; forming external electrodes for chip-type ceramic electronic components such as multilayer ceramic capacitors, multilayer ceramic inductors and multilayer ceramic actuators Useful.
The method for producing a metal member assembly of the present invention is useful for accurately and efficiently producing a metal member assembly excellent in bondability.
A 接合強度測定用試験体
1 銀基板
2 ペースト状金属粒子組成物(加熱焼結後は多孔質焼結物)
3 銀チップ
A Bonding strength test specimen 1 Silver substrate 2 Paste-like metal particle composition (porous sintered product after heat sintering)
3 Silver chip
Claims (15)
有機物被覆金属粒子と該有機物自体の各々を、空気気流中における熱分析に供し、該金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)が該有機物自体の熱分解ピーク温度(2)より低い場合は、該有機物被覆金属粒子の加熱焼結性が優れると判定し、
該金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)が該有機物自体の熱分解ピーク温度(2)と同等以上の場合は、該有機物被覆金属粒子の加熱焼結性が劣ると判定することを特徴とする、有機物被覆金属粒子の加熱焼結性の評価方法。 A method for evaluating the heat-sinterability of organic-coated metal particles by thermal analysis,
Each of the organic substance-coated metal particles and the organic substance itself is subjected to thermal analysis in an air stream, and the pyrolysis peak temperature (1) of the organic substance covering the surface of the metal particles is the pyrolysis peak temperature of the organic substance itself ( 2) If lower, it is determined that the heat-sinterability of the organic-coated metal particles is excellent,
When the pyrolysis peak temperature (1) of the organic substance covering the surface of the metal particles is equal to or higher than the pyrolysis peak temperature (2) of the organic substance itself, the heat-sinterability of the organic substance-coated metal particles is poor. The method for evaluating heat-sinterability of organic-coated metal particles, characterized in that
有機物被覆金属粒子を、空気気流中における熱分析に供し、該熱分析における昇温速度と該金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)との関係から算出される該有機物の熱分解反応における活性化エネルギーが95kJ/モル未満である場合は、該有機物被覆金属粒子の加熱焼結性が優れると判定し、
該熱分析における昇温速度と該金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)との関係から算出される該有機物の熱分解反応における活性化エネルギーが95kJ/モル以上である場合は、該有機物被覆金属粒子の加熱焼結性が劣ると判定することを特徴とする、有機物被覆金属粒子の加熱焼結性の評価方法。 A method for evaluating the heat-sinterability of organic-coated metal particles by thermal analysis,
The organic matter-coated metal particles are subjected to thermal analysis in an air stream, and are calculated from the relationship between the temperature increase rate in the thermal analysis and the thermal decomposition peak temperature (1) of the organic matter covering the surface of the metal particles. When the activation energy in the pyrolysis reaction of the organic substance is less than 95 kJ / mol, it is determined that the heat-sintering property of the organic-coated metal particles is excellent,
The activation energy in the pyrolysis reaction of the organic substance calculated from the relationship between the rate of temperature increase in the thermal analysis and the thermal decomposition peak temperature (1) of the organic substance covering the surface of the metal particles is 95 kJ / mol or more. In some cases, the method for evaluating the heat-sinterability of the organic-coated metal particles is characterized by determining that the heat-sinterability of the organic-coated metal particles is poor.
該金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)が該有機物自体の熱分解ピーク温度(2)と同等以上の場合は、該有機物被覆金属粒子の加熱焼結性が劣ると判定し、次いで、加熱焼結性が優れると判定された有機物被覆金属粒子を揮発性分散媒と混合してペースト化することを特徴とする、加熱焼結性金属ペーストの製造方法。 Each of the organic substance-coated metal particles and the organic substance itself is subjected to thermal analysis in an air stream, and the pyrolysis peak temperature (1) of the organic substance covering the surface of the metal particles is the pyrolysis peak temperature of the organic substance itself ( 2) If lower, it is determined that the heat-sinterability of the organic-coated metal particles is excellent,
When the pyrolysis peak temperature (1) of the organic substance covering the surface of the metal particles is equal to or higher than the pyrolysis peak temperature (2) of the organic substance itself, the heat-sinterability of the organic substance-coated metal particles is poor. Next, a method for producing a heat-sinterable metal paste comprising mixing organic substance-coated metal particles determined to have excellent heat-sinterability with a volatile dispersion medium to form a paste.
該熱分析における昇温速度と該金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)との関係から算出される該有機物の熱分解反応における活性化エネルギーが95kJ/モル以上である場合は、該有機物被覆金属粒子の加熱焼結性が劣ると判定し、次いで、加熱焼結性が優れると判定された有機物被覆金属粒子を揮発性分散媒と混合してペースト化することを特徴とする、加熱焼結性金属ペーストの製造方法。 The organic matter-coated metal particles are subjected to thermal analysis in an air stream, and are calculated from the relationship between the temperature increase rate in the thermal analysis and the thermal decomposition peak temperature (1) of the organic matter covering the surface of the metal particles. When the activation energy in the pyrolysis reaction of the organic substance is less than 95 kJ / mol, it is determined that the heat-sintering property of the organic-coated metal particles is excellent,
The activation energy in the pyrolysis reaction of the organic substance calculated from the relationship between the rate of temperature increase in the thermal analysis and the thermal decomposition peak temperature (1) of the organic substance covering the surface of the metal particles is 95 kJ / mol or more. In some cases, it is determined that the heat-sinterability of the organic-coated metal particles is inferior, and then the organic-coated metal particles determined to have excellent heat-sinterability are mixed with a volatile dispersion medium to form a paste. A method for producing a heat-sinterable metal paste.
該金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)が該有機物自体の熱分解ピーク温度(2)と同等以上の場合は、該有機物被覆金属粒子の加熱焼結性が劣ると判定し、加熱焼結性が優れると判定された有機物被覆金属粒子を揮発性分散媒と混合してペースト化して加熱焼結性金属ペーストを調製し、次いで、該加熱焼結性金属ペーストを、複数の金属製部材間に介在させ、加熱焼結性金属の焼結可能な温度以上で加熱することを特徴とする、金属製部材接合体の製造方法。 Each of the organic substance-coated metal particles and the organic substance itself is subjected to thermal analysis in an air stream, and the pyrolysis peak temperature (1) of the organic substance covering the surface of the metal particles is the pyrolysis peak temperature of the organic substance itself ( 2) If lower, it is determined that the heat-sinterability of the organic-coated metal particles is excellent,
When the pyrolysis peak temperature (1) of the organic substance covering the surface of the metal particles is equal to or higher than the pyrolysis peak temperature (2) of the organic substance itself, the heat-sinterability of the organic substance-coated metal particles is poor. The organic-coated metal particles determined to have excellent heat sinterability are mixed with a volatile dispersion medium to prepare a paste, and then the heat sinterable metal paste is prepared. A method for producing a metal member assembly, comprising interposing between a plurality of metal members and heating at a temperature at which the heat-sinterable metal can be sintered.
該熱分析における昇温速度と該金属粒子の表面を被覆している有機物の熱分解ピーク温度(1)との関係から算出される該有機物の熱分解反応における活性化エネルギーが95kJ/モル以上である場合は、該有機物被覆金属粒子の加熱焼結性が劣ると判定し、加熱焼結性が優れると判定された有機物被覆金属粒子を揮発性分散媒と混合してペースト化して加熱焼結性金属ペーストを調製し、次いで、該加熱焼結性金属ペーストを複数の金属製部材間に介在させ、加熱焼結性金属の焼結可能な温度以上で加熱することを特徴とする、金属製部材接合体の製造方法。 The organic matter-coated metal particles are subjected to thermal analysis in an air stream, and are calculated from the relationship between the temperature increase rate in the thermal analysis and the thermal decomposition peak temperature (1) of the organic matter covering the surface of the metal particles. When the activation energy in the pyrolysis reaction of the organic substance is less than 95 kJ / mol, it is determined that the heat-sintering property of the organic-coated metal particles is excellent,
The activation energy in the pyrolysis reaction of the organic substance calculated from the relationship between the rate of temperature increase in the thermal analysis and the thermal decomposition peak temperature (1) of the organic substance covering the surface of the metal particles is 95 kJ / mol or more. In some cases, it is determined that the heat-sinterability of the organic-coated metal particles is poor, and the organic-coated metal particles determined to have excellent heat-sinterability are mixed with a volatile dispersion medium to form a paste and heat-sinterable. A metal member characterized in that a metal paste is prepared, and then the heat-sinterable metal paste is interposed between a plurality of metal members and heated at a temperature at which the heat-sinterable metal can be sintered. Manufacturing method of joined body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010093907A JP4633857B1 (en) | 2009-04-16 | 2010-04-15 | Method for evaluating heat-sinterability of organic-coated metal particles, method for producing heat-sinterable metal paste, and method for producing metal member assembly |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009100102 | 2009-04-16 | ||
JP2009230553 | 2009-10-02 | ||
JP2010093907A JP4633857B1 (en) | 2009-04-16 | 2010-04-15 | Method for evaluating heat-sinterability of organic-coated metal particles, method for producing heat-sinterable metal paste, and method for producing metal member assembly |
Publications (2)
Publication Number | Publication Date |
---|---|
JP4633857B1 true JP4633857B1 (en) | 2011-02-23 |
JP2011095244A JP2011095244A (en) | 2011-05-12 |
Family
ID=43768643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010093907A Active JP4633857B1 (en) | 2009-04-16 | 2010-04-15 | Method for evaluating heat-sinterability of organic-coated metal particles, method for producing heat-sinterable metal paste, and method for producing metal member assembly |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4633857B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103499598A (en) * | 2013-10-16 | 2014-01-08 | 南京林业大学 | Method for evaluating suppression effect of smoke suppressor on release process of asphalt thermal decomposition product |
TWI646277B (en) | 2014-06-05 | 2019-01-01 | 日商Smc股份有限公司 | Gate valve |
US10207373B2 (en) | 2014-06-30 | 2019-02-19 | Nippon Steel Chemical & Material Co., Ltd. | Nickel particle composition, bonding material, and bonding method in which said material is used |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6021816B2 (en) * | 2011-10-24 | 2016-11-09 | バンドー化学株式会社 | Bonding composition |
JP5648619B2 (en) * | 2011-10-26 | 2015-01-07 | 信越化学工業株式会社 | Thermally conductive silicone composition |
JP5606421B2 (en) * | 2011-10-27 | 2014-10-15 | 株式会社日立製作所 | Sinterable bonding material using copper nanoparticles, manufacturing method thereof, and bonding method of electronic member |
KR101940358B1 (en) * | 2011-11-18 | 2019-01-18 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Silver powder, method for producing silver powder, and conductive paste |
JP6262139B2 (en) * | 2012-10-12 | 2018-01-17 | バンドー化学株式会社 | Bonding composition |
JP6405867B2 (en) * | 2013-12-16 | 2018-10-17 | 日立化成株式会社 | Resin paste composition and semiconductor device |
EP3238239A4 (en) | 2014-12-26 | 2018-07-25 | Henkel AG & Co. KGaA | Sinterable bonding material and semiconductor device using the same |
JP6857125B2 (en) | 2014-12-26 | 2021-04-14 | ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA | Sinterable bonding material and semiconductor devices using it |
JP6796937B2 (en) | 2016-03-16 | 2020-12-09 | 日東電工株式会社 | Manufacturing method of joint |
JP6561096B2 (en) * | 2017-09-29 | 2019-08-14 | 本田技研工業株式会社 | Residual amount measurement method of resin material in porous metal body |
JP6713182B1 (en) * | 2019-04-04 | 2020-06-24 | ニホンハンダ株式会社 | Selection method of sinterable silver particles and volatile dispersion medium |
JP6854030B1 (en) * | 2019-07-24 | 2021-04-07 | ニホンハンダ株式会社 | Method of calculating the average thickness of the silver particle sintered portion and method of selecting a volatile dispersion medium for the paste-like silver particle composition |
JP2021079644A (en) * | 2019-11-20 | 2021-05-27 | 凸版印刷株式会社 | Printed matter, manufacturing method thereof and pressure sensing sheet |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007254841A (en) * | 2006-03-24 | 2007-10-04 | Nagaoka Univ Of Technology | Method for producing metal hyperfine particle in which organic matter film is formed on the surface and production device used for the production method |
JP2009167436A (en) * | 2008-01-10 | 2009-07-30 | Hitachi Ltd | Joining material and junction forming method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04247801A (en) * | 1991-01-24 | 1992-09-03 | Tokyo Yogyo Co Ltd | Injecting parts for die casting machine |
JPH04353380A (en) * | 1991-05-30 | 1992-12-08 | Matsushita Refrig Co Ltd | Refrigerator |
-
2010
- 2010-04-15 JP JP2010093907A patent/JP4633857B1/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007254841A (en) * | 2006-03-24 | 2007-10-04 | Nagaoka Univ Of Technology | Method for producing metal hyperfine particle in which organic matter film is formed on the surface and production device used for the production method |
JP2009167436A (en) * | 2008-01-10 | 2009-07-30 | Hitachi Ltd | Joining material and junction forming method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103499598A (en) * | 2013-10-16 | 2014-01-08 | 南京林业大学 | Method for evaluating suppression effect of smoke suppressor on release process of asphalt thermal decomposition product |
TWI646277B (en) | 2014-06-05 | 2019-01-01 | 日商Smc股份有限公司 | Gate valve |
US10207373B2 (en) | 2014-06-30 | 2019-02-19 | Nippon Steel Chemical & Material Co., Ltd. | Nickel particle composition, bonding material, and bonding method in which said material is used |
Also Published As
Publication number | Publication date |
---|---|
JP2011095244A (en) | 2011-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4633857B1 (en) | Method for evaluating heat-sinterability of organic-coated metal particles, method for producing heat-sinterable metal paste, and method for producing metal member assembly | |
JP4870223B1 (en) | Pasty silver particle composition, method for producing metal member assembly, and metal member assembly | |
JP4795483B1 (en) | Method for manufacturing metal member assembly and metal member assembly | |
JP4685145B2 (en) | Method for manufacturing metal member assembly and metal member assembly | |
JP4470193B2 (en) | Method for producing heat-sinterable silver particles, method for producing solid silver, method for joining metal members, method for producing printed wiring board, and method for producing bumps for electrical circuit connection | |
JP4353380B2 (en) | Paste-like silver particle composition, method for producing solid silver, solid silver, joining method, and method for producing printed wiring board | |
JP5301385B2 (en) | Metal member bonding agent, metal member assembly manufacturing method, metal member assembly, and electric circuit connecting bump manufacturing method | |
JP4247801B2 (en) | Paste-like metal particle composition and joining method | |
JP6118489B2 (en) | Paste-like metal particle composition, method for producing metal member assembly, and method for producing porous metal particle sintered product | |
JP4247800B2 (en) | Sinterable metal particle composition having plasticity, its production method, bonding agent and bonding method | |
JP5425962B2 (en) | Heat-sinterable silver particle production method, paste-like silver particle composition, solid silver production method, metal member joining method, printed wiring board production method, and electrical circuit connection bump production method | |
WO2009122467A1 (en) | Method for joining metallic members, metallic member joined product, and method for manufacturing bump for electric circuit connection | |
JP5011225B2 (en) | Metal member bonding agent, metal member bonded body manufacturing method, metal member bonded body, and electric circuit connecting bump manufacturing method | |
JP2010248617A (en) | Porous silver sheet, method of manufacturing metal member joined body, metal member joined body, method of manufacturing bump for connecting electric circuit, and bump for connecting electric circuit | |
JP6422289B2 (en) | Nickel particle composition, bonding material and bonding method | |
JP2016525495A (en) | Sintered paste with silver oxide coated on precious and non-precious metal surfaces that are difficult to sinter | |
JP2010053377A (en) | Method for joining metallic member and method for producing metallic member-joined body | |
JP2012191238A (en) | Conductive sintered layer forming composition, and conductive coating film forming method and jointing method using the same | |
WO2012053034A1 (en) | Method for evaluating heat sinterability of metal particles coated in organic matter, method for producing heat sinterable metal paste, and production method for metal member bonded product | |
JP6556302B1 (en) | Paste-like silver particle composition, method for producing metal member assembly, and method for producing composite of sintered porous silver particle and cured resin | |
KR20190082255A (en) | Conductive bonding material and method for manufacturing semiconductor device | |
JP2016188419A (en) | Nickel particle composition, joint material and joint method using the same | |
JP6624620B1 (en) | Paste-like silver particle composition, method for producing metal member joined body, and metal member joined body | |
JP6944734B2 (en) | Joins and electronics | |
JP6823856B1 (en) | Manufacturing method of joint |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101116 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101117 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4633857 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131126 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131126 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |