JP4610589B2 - Method for producing phosphorus-containing activated alumina - Google Patents
Method for producing phosphorus-containing activated alumina Download PDFInfo
- Publication number
- JP4610589B2 JP4610589B2 JP2007219937A JP2007219937A JP4610589B2 JP 4610589 B2 JP4610589 B2 JP 4610589B2 JP 2007219937 A JP2007219937 A JP 2007219937A JP 2007219937 A JP2007219937 A JP 2007219937A JP 4610589 B2 JP4610589 B2 JP 4610589B2
- Authority
- JP
- Japan
- Prior art keywords
- alumina
- phosphorus
- activated alumina
- containing activated
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Description
本発明は、触媒担体、吸着剤、充填剤などの用途に好適な、水熱安定性および熱安定性に優れたリン含有活性アルミナの製造方法に関するものである。 The present invention relates to a method for producing phosphorus-containing activated alumina suitable for uses such as a catalyst carrier, an adsorbent, and a filler, and having excellent hydrothermal stability and thermal stability.
従来、アルミナは各種触媒担体、吸着剤、充填剤、希釈剤などとして広い分野で利用されている。この場合、それぞれの使用目的にあった比表面積、細孔容積、細孔径、細孔分布などの性状のほか、耐水熱性や耐熱性が要求される。しかし、通常、触媒担体などに使用されるγ−アルミナなどの活性アルミナは、水熱安定性や熱安定性が低いために、触媒の使用環境下で相転移を生じ、ベーマイト形アルミナ水和物やα−アルミナへ相転移し、比表面積等が著しく低下し、触媒担体としての機能が失われるなどの問題があった。 Conventionally, alumina has been used in various fields as various catalyst carriers, adsorbents, fillers, diluents and the like. In this case, hydrothermal resistance and heat resistance are required in addition to properties such as specific surface area, pore volume, pore diameter, and pore distribution suitable for each purpose of use. However, activated alumina such as γ-alumina usually used for catalyst supports has low hydrothermal stability and thermal stability, and therefore undergoes phase transition under the usage environment of the catalyst, and boehmite type alumina hydrate And phase transition to α-alumina, the specific surface area and the like are remarkably reduced, and the function as a catalyst carrier is lost.
一般に、γ−アルミナからα−アルミナへの相転移温度はγ−アルミナにシリカを添加すれば上昇し、高温下でもγ−アルミナの高い比表面積を維持しうることが知られている。しかし、α−アルミナへの相転移率を小さくするためには、シリカの添加量を多くしなければならず、そのためにアルミナの特性が損なわれるという問題があった。そこで、本発明者らは、特許文献1において、シャープな細孔分布を有し、耐熱性に優れ、かつ、α−アルミナへの相転移が起きにくく、シリカ含有量の少ないアルミナ成形体およびその製造方法を提案した。 In general, it is known that the phase transition temperature from γ-alumina to α-alumina increases when silica is added to γ-alumina, and the high specific surface area of γ-alumina can be maintained even at high temperatures. However, in order to reduce the phase transition rate to α-alumina, it is necessary to increase the amount of silica added, which causes a problem that the characteristics of alumina are impaired. Therefore, the inventors of the present invention disclosed in Patent Document 1 an alumina molded body having a sharp pore distribution, excellent heat resistance, hardly causing phase transition to α-alumina, and having a low silica content. A manufacturing method was proposed.
また、特許文献2には、自動車排ガス処理などの触媒反応に広く用いられているアルミナ触媒が高温例えば1000℃以上、とくに1300℃以上の雰囲気中にさらされるとアルミナの表面積が極端に低下し、活性を失ってしまうという欠点を改良する技術を提案している。この技術によれば、アルミニウムアルコキシドとリン酸類を、アルミニウム原子とリン原子の原子比(Al/P)が5〜200の範囲で混合し、グリコール溶媒中で加熱した後、1000℃以上で焼成することにより、1300℃で焼成した際の表面積が10m2/g以上(焼成前は通常50m2/g以上)を保つことのできるリン修飾アルミナを得るものである。しかしながらこの技術によるリン修飾アルミナは製造段階において1000℃以上で焼成しているため、アルミナの主成分はθ−アルミナになってしまっており、石油化学における反応触媒としては好ましいものではなく、かつ水蒸気にさらされると表面積が低下してしまうことが判ってきた。 Further, in Patent Document 2, when an alumina catalyst widely used for catalytic reactions such as automobile exhaust gas treatment is exposed to an atmosphere at a high temperature, for example, 1000 ° C. or more, particularly 1300 ° C. or more, the surface area of alumina is extremely reduced, A technique for improving the disadvantage of losing activity has been proposed. According to this technique, aluminum alkoxide and phosphoric acids are mixed in an atomic ratio (Al / P) of aluminum atoms to phosphorus atoms in the range of 5 to 200, heated in a glycol solvent, and then fired at 1000 ° C. or higher. Thus, a phosphorus-modified alumina capable of maintaining a surface area of 10 m 2 / g or more when fired at 1300 ° C. (usually 50 m 2 / g or more before firing) is obtained. However, since phosphorus-modified alumina by this technique is calcined at 1000 ° C. or higher in the production stage, the main component of alumina is θ-alumina, which is not preferable as a reaction catalyst in petrochemistry, and water vapor It has been found that the surface area decreases when exposed to.
従来、活性アルミナの耐熱性については、シリカまたはリンを活性アルミナに含有させることにより、一応改善されてきている。しかし、水蒸気を含む排ガスなどの処理に使用されるアルミナ系触媒においては、活性アルミナの耐水熱性が重要な特性となる。しかし、活性アルミナの耐水熱性の改善についてはほとんど検討されていなかったのが実情である。 Conventionally, the heat resistance of activated alumina has been improved by including silica or phosphorus in activated alumina. However, in an alumina-based catalyst used for treatment of exhaust gas containing water vapor, the hydrothermal resistance of activated alumina is an important characteristic. However, the fact is that little consideration has been given to the improvement of hydrothermal resistance of activated alumina.
本発明の目的は、水熱安定性に優れ、水熱処理によるベーマイト形アルミナ水和物への相転移が起きにくく、しかも、熱処理によるα−アルミナへの相転移が起きにくく、比表面積の低下の少ないリン含有活性アルミナの製造方法を提供することにある。 The object of the present invention is excellent in hydrothermal stability, hardly undergoes a phase transition to boehmite-type alumina hydrate by hydrothermal treatment, and hardly undergoes a phase transition to α-alumina by heat treatment, reducing the specific surface area. An object of the present invention is to provide a method for producing a low phosphorus-containing activated alumina.
本発明は、可溶性カルボン酸の存在下に、可溶性アルミニウム塩水溶液と塩基性水溶液を反応させて、アルミナ基準で2〜15wt%の擬ベーマイトアルミナヒドロゲルを生成させ、該アルミナヒドロゲルを洗浄して副生塩を除去してアルミナ中のアルカリ金属を酸化物として1.0wt%以下にし、次いで、洗浄したアルミナヒドロゲルにリン成分および有機高分子酸を添加し、加熱熟成して、得られた熟成スラリーを押出成型が可能な状態に水分調整し、所望の形状に押出成型し、成型された成型体を乾燥し、400〜800℃で0.5〜10時間焼成するリン含有活性アルミナの製造方法であって、前記リン含有活性アルミナは、水熱処理によるベーマイト形アルミナ水和物への相転移率が20%以下であると共に、リン含有活性アルミナの比表面積が300〜600m2/gで、且つ、水熱処理による比表面積の低下率が20%以下であることを特徴とするリン含有活性アルミナの製造方法に関する。 In the present invention, a soluble aluminum salt aqueous solution and a basic aqueous solution are reacted in the presence of a soluble carboxylic acid to produce a pseudo boehmite alumina hydrogel of 2 to 15 wt% based on alumina, and the alumina hydrogel is washed to produce a by-product. The salt is removed to reduce the alkali metal in the alumina to 1.0 wt% or less, and then the phosphorus component and the organic polymer acid are added to the washed alumina hydrogel, followed by heat aging, and the resulting aging slurry is obtained. This is a method for producing phosphorus-containing activated alumina, in which moisture is adjusted so that it can be extruded, extruded into a desired shape, the molded body is dried, and fired at 400-800 ° C. for 0.5-10 hours. The phosphorus-containing activated alumina has a phase transition rate to boehmite-type alumina hydrate by hydrothermal treatment of 20% or less, and a phosphorus-containing activated alumina. A specific surface area of 300 to 600 m 2 / g of Na, and a method for producing a phosphorus-containing activated alumina, wherein the decreasing rate of the specific surface area by hydrothermal treatment is 20% or less.
本発明の好適な実施形態について、詳細に説明する。
本発明での水熱処理によるベーマイト形アルミナ水和物への相転移率は、バイヤー法で得られたジブサイト形アルミナ水和物(Al2O3・3H2O)をオートクレーブ中250℃で30時間水熱処理して得たベーマイト形アルミナ水和物(Al2O3・1H2O)を130℃で3時間乾燥した試料のX−線回折図から2θが13.9度、28.1度、38.3度におけるピーク高さを100として、リン含有活性アルミナを180℃の飽和水蒸気中で50時間水熱処理した後、130℃で3時間乾燥した試料のX−線回折図から2θが13.9度、28.1度、38.3度におけるピーク高さの相対比(%)で表したものである。
A preferred embodiment of the present invention will be described in detail.
The phase transition rate to boehmite-type alumina hydrate by hydrothermal treatment in the present invention is as follows: dibsite-type alumina hydrate (Al 2 O 3 .3H 2 O) obtained by the Bayer method is 30 hours at 250 ° C. in an autoclave. From the X-ray diffraction pattern of a sample obtained by drying boehmite-type alumina hydrate (Al 2 O 3 .1H 2 O) obtained by hydrothermal treatment at 130 ° C. for 3 hours, 2θ was 13.9 °, 28.1 °, Assuming that the peak height at 38.3 degrees is 100, the phosphorus-containing activated alumina is hydrothermally treated in saturated steam at 180 ° C. for 50 hours and then dried at 130 ° C. for 3 hours. This is expressed as a relative ratio (%) of peak heights at 9 degrees, 28.1 degrees, and 38.3 degrees.
該相転移率が20%よりも高い場合には、リン含有活性アルミナの水熱安定性が低いため、水蒸気を含む排ガスなどの処理に使用される吸着剤や触媒などでは、活性アルミナのベーマイト形アルミナ水和物への相転移に起因する活性低下を生じるので好ましくない。本発明のリン含有活性アルミナは、前述の水熱処理によるベーマイト形アルミナ水和物への相転移率が、好ましくは15%以下、さらに好ましくは10〜0%の範囲にあることが望ましい。 When the phase transition rate is higher than 20%, the hydrothermal stability of the phosphorus-containing activated alumina is low. Therefore, in the adsorbent or catalyst used for the treatment of exhaust gas containing water vapor, the boehmite form of activated alumina is used. This is not preferable because the activity is reduced due to the phase transition to alumina hydrate. The phosphorus-containing activated alumina of the present invention has a phase transition rate to boehmite-type alumina hydrate by the above-mentioned hydrothermal treatment, preferably 15% or less, more preferably 10 to 0%.
さらに、本発明により得られるリン含有活性アルミナは、その比表面積を250m2/g以上とすることができる。該比表面積が250m2/gより小さい場合には、使用中に水熱処理を受けて200m2/g以下になることがあるので、吸着剤や触媒などとして使用した場合に所望の効果が得られないことがある。本発明のリン含有活性アルミナの比表面積(S0)は、好ましくは280m2/g以上、さらに好ましくは300〜600m2/gの範囲にあることが望ましい。また、該リン含有活性アルミナの細孔容積は0.30ml/g以上であることが望ましい。 Furthermore, the phosphorus-containing activated alumina obtained by the present invention can have a specific surface area of 250 m 2 / g or more. When the specific surface area is smaller than 250 m 2 / g, it may be hydrothermally treated during use and may be 200 m 2 / g or less, so that a desired effect can be obtained when used as an adsorbent or a catalyst. There may not be. The specific surface area of the phosphorus-containing activated alumina of the present invention (S 0) is preferably from 280 meters 2 / g or more, still more preferably in the range of 300 to 600 m 2 / g. The pore volume of the phosphorus-containing activated alumina is desirably 0.30 ml / g or more.
また本発明により、水熱処理による比表面積の低下率、即ち、リン含有活性アルミナの比表面積を(S0)とし、リン含有活性アルミナの試料を180℃の飽和水蒸気中で50時間水熱処理した後、130℃で3時間乾燥した試料の比表面積を(S1)として、
本発明により得られたリン含有活性アルミナは、熱処理によるα−アルミナへの相転移率が20%以下、好ましくは15〜0%の範囲とすることができる。なお、本発明でのα−アルミナへの相転移率は、試薬特級α−アルミナのX−線回折図の2θが25.6度、35.1度、37.7度、43.3度、52.5度、57.4度におけるピーク高さを100とし、リン含有活性アルミナを1050℃で3時間焼成した試料の2θがそれぞれの角度におけるピーク高さの相対比(%)で求めた。
熱処理によるα−アルミナへの相転移率が20%より高いリン含有活性アルミナは、高温領域で使用される吸着剤や触媒などでは、熱安定性が低いため活性低下を生じることがある。
The phosphorus-containing activated alumina obtained by the present invention has a phase transition rate to α-alumina by heat treatment of 20% or less, preferably 15 to 0%. In the present invention, the phase transition rate to α-alumina is 25.6 degrees, 35.1 degrees, 37.7 degrees, 43.3 degrees, 2θ in the X-ray diffraction pattern of reagent-grade α-alumina, The peak heights at 52.5 degrees and 57.4 degrees were set to 100, and 2θ of a sample obtained by firing phosphorus-containing activated alumina at 1050 ° C. for 3 hours was obtained as a relative ratio (%) of the peak height at each angle.
Phosphorus-containing active alumina having a phase transition rate to α-alumina of more than 20% by heat treatment may cause a decrease in activity due to low thermal stability in adsorbents and catalysts used in a high temperature region.
また、本発明により前述のリン含有活性アルミナは、リン含有量がP2O5として0.5〜10wt%、好ましくは1〜5wt%の範囲とすることができる。リン含有量がP2O5として0.5wt%より少ない場合には、水熱安定性や熱安定性が劣ることがあり、また、10wt%より多い場合には、アルミナ自体の特性が損なわれることがある。 Further, according to the present invention, the phosphorus-containing activated alumina described above can have a phosphorus content in the range of 0.5 to 10 wt%, preferably 1 to 5 wt% as P 2 O 5 . When the phosphorus content is less than 0.5 wt% as P 2 O 5 , hydrothermal stability or thermal stability may be inferior, and when it is more than 10 wt%, the characteristics of alumina itself are impaired. Sometimes.
本発明でのリン含有活性アルミナは、アルミナの形態がα−アルミナ以外のものを言い、γ−アルミナ、η−アルミナ、ρ−アルミナ、χ−アルミナ、δ−アルミナおよびこれらの混合物などが例示される。特に、γ−アルミナを主成分とする活性アルミナは触媒担体などに好適である。また、本発明のリン含有活性アルミナは、ケイ素、チタン、ジルコニウム、ハフニウムなどの第3成分を含有することもできる。 The phosphorus-containing activated alumina in the present invention refers to an alumina whose form is other than α-alumina, and examples include γ-alumina, η-alumina, ρ-alumina, χ-alumina, δ-alumina, and mixtures thereof. The In particular, activated alumina mainly composed of γ-alumina is suitable for a catalyst carrier and the like. Moreover, the phosphorus containing activated alumina of this invention can also contain 3rd components, such as silicon, titanium, a zirconium, and hafnium.
前述の本発明のリン含有活性アルミナの製造方法を以下に具体的に説明する。
可溶性カルボン酸の存在下に、可溶性アルミニウム塩水溶液と塩基性水溶液を反応させて、アルミナ基準で2〜15wt%の擬ベーマイトアルミナヒドロゲルを生成させ、該アルミナヒドロゲルを洗浄して副生塩を除去してアルミナ中のアルカリ金属を酸化物として1.0wt%以下にし、次いで、洗浄したアルミナヒドロゲルにリン酸アンモニウムなどのリン酸塩やオルトリン酸、メタリン酸、ピロリン酸などのリン成分およびグルコン酸などの有機高分子酸を添加し、加熱熟成して、得られた熟成スラリーを押出成型が可能な状態に水分調整し、所望の形状に押出成型し、成型された成型体を乾燥し、400〜800℃で0.5〜10時間焼成してリン含有活性アルミナを得る。なお、このときの温度が高すぎると活性アルミナ中のγ−アルミナ成分の割合が低下し、γ−アルミナが主成分ではなくなり、θ−アルミナが主成分となってしまうので好ましくない。
The method for producing the phosphorus-containing activated alumina of the present invention will be specifically described below.
In the presence of a soluble carboxylic acid, a soluble aluminum salt aqueous solution and a basic aqueous solution are reacted to form a pseudo-boehmite alumina hydrogel of 2 to 15 wt% based on alumina, and the alumina hydrogel is washed to remove by-product salts. Then, the alkali metal in alumina is reduced to 1.0 wt% or less as an oxide, and then the washed alumina hydrogel includes phosphate components such as ammonium phosphate, phosphorus components such as orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, and gluconic acid. Add organic polymer acid, age by heating, adjust the moisture of the resulting aged slurry so that it can be extruded, extrude into a desired shape, dry the molded body, 400-800 Calcination is performed at a temperature of 0.5 to 10 hours to obtain phosphorus-containing activated alumina. In addition, if the temperature at this time is too high, the ratio of the γ-alumina component in the activated alumina decreases, and γ-alumina is no longer the main component, and θ-alumina is the main component, which is not preferable.
本発明の製造方法を用いることにより、水熱処理によるベーマイト形アルミナ水和物の相転移率が小さく又比表面積の低下率が小さいリン含有活性アルミナが得られるので、このリン含有活性アルミナは水蒸気を含む系に使用される触媒担体や吸着剤として好適である。また、本発明により得られたリン含有活性アルミナは、熱安定性にも優れているので、高温の系で使用される触媒担体、吸着剤、充填剤としても好適である。 By using the production method of the present invention, it is possible to obtain a phosphorus-containing activated alumina having a small phase transition rate of boehmite-type alumina hydrate by hydrothermal treatment and a small reduction rate of the specific surface area. It is suitable as a catalyst carrier and an adsorbent used in the system including the catalyst. Moreover, since the phosphorus containing activated alumina obtained by this invention is excellent also in thermal stability, it is suitable also as a catalyst support | carrier, an adsorbent, and a filler used in a high temperature system.
以下に実施例を示し本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
(実施例1)
Al2O3としての濃度が22wt%のアルミン酸ナトリウム水溶液3.030kgに26.5wt%グルコン酸ナトリウム0.075kgと純水10.228kgを加えて57℃に加温した水溶液(i)を調製した。次いで、Al2O3としての濃度が7wt%の硫酸アルミニウム水溶液4.762kgに純水8.571kgを加えて希釈し57℃に加温した水溶液を前記水溶液(i)に添加して擬ベーマイトアルミナヒドロゲルを調製した。
この擬ベーマイトアルミナヒドロゲルを、濃度0.3wt%アンモニア水をかけながら濾過洗浄した。得られた洗浄ゲルは、Al2O3基準でNa2Oが0.13wt%、SO4が0.48wt%であった。この洗浄ゲルをAl2O3として10wt%濃度に希釈し、これにグルコノデルタラクトンおよびリン酸アンモニウムをP2O5として3.0wt%となるように(Al2O3基準)添加し、95℃で20時間攪拌しながら熟成した。この熟成ゲルを捏和、成型し、乾燥した後、空気雰囲気下で600℃で3時間焼成して、円柱状リン含有活性アルミナ(A)を得た。このリン含有活性アルミナ(A)の水熱処理および熱処理等による性状を表1に示す。
Example 1
An aqueous solution (i) prepared by adding 0.075 kg of 26.5 wt% sodium gluconate and 10.228 kg of pure water to 3.030 kg of an aqueous solution of sodium aluminate having a concentration of 22 wt% as Al 2 O 3 and heating to 57 ° C. is prepared. did. Next, an aqueous solution prepared by adding 8.571 kg of pure water to 4.762 kg of an aluminum sulfate aqueous solution having a concentration of 7 wt% as Al 2 O 3 , diluted and heated to 57 ° C. is added to the aqueous solution (i), and pseudo-boehmite alumina is added. A hydrogel was prepared.
This pseudo boehmite alumina hydrogel was filtered and washed while applying ammonia water having a concentration of 0.3 wt%. The obtained washing gel was 0.13 wt% Na 2 O and 0.48 wt% SO 4 based on Al 2 O 3 . This washing gel was diluted as Al 2 O 3 to a concentration of 10 wt%, and glucono delta lactone and ammonium phosphate were added as P 2 O 5 to 3.0 wt% (Al 2 O 3 standard), The mixture was aged with stirring at 95 ° C. for 20 hours. The aged gel was kneaded, molded, dried, and then fired at 600 ° C. for 3 hours in an air atmosphere to obtain cylindrical phosphorus-containing activated alumina (A). Properties of this phosphorus-containing activated alumina (A) by hydrothermal treatment and heat treatment are shown in Table 1.
(実施例2)
実施例1において、リン酸アンモニウムをP2O5として5.0wt%となるように(Al2O3基準)添加した以外は、実施例1と全く同様にしてリン含有活性アルミナ(B)を得た。このリン含有活性アルミナ(B)の水熱処理および熱処理等による性状を表1に示す。
(Example 2)
In Example 1, phosphorus-containing activated alumina (B) was added in exactly the same manner as in Example 1 except that ammonium phosphate was added as P 2 O 5 to 5.0 wt% (based on Al 2 O 3 ). Obtained. Table 1 shows the properties of this phosphorus-containing activated alumina (B) by hydrothermal treatment and heat treatment.
(比較例1)
実施例1において、リン酸アンモニウムを添加しなかった以外は実施例1と全く同様にして活性アルミナ(C)を得た。この活性アルミナ(C)の水熱処理および熱処理等による性状を表1に示す。
(Comparative Example 1)
In Example 1, activated alumina (C) was obtained in exactly the same manner as in Example 1 except that ammonium phosphate was not added. Table 1 shows the properties of this activated alumina (C) by hydrothermal treatment and heat treatment.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007219937A JP4610589B2 (en) | 2007-08-27 | 2007-08-27 | Method for producing phosphorus-containing activated alumina |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007219937A JP4610589B2 (en) | 2007-08-27 | 2007-08-27 | Method for producing phosphorus-containing activated alumina |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000046613A Division JP2001233613A (en) | 2000-02-23 | 2000-02-23 | Phosphorus-containing activated alumina |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007302558A JP2007302558A (en) | 2007-11-22 |
JP4610589B2 true JP4610589B2 (en) | 2011-01-12 |
Family
ID=38836817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007219937A Expired - Lifetime JP4610589B2 (en) | 2007-08-27 | 2007-08-27 | Method for producing phosphorus-containing activated alumina |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4610589B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010055677B4 (en) * | 2010-12-22 | 2018-09-20 | Clariant Produkte (Deutschland) Gmbh | Heat exchanger module with thermal management with a titano-silico-aluminophosphate as adsorbent and its use |
CN109534376A (en) * | 2019-01-17 | 2019-03-29 | 滨州市金毅设备有限公司 | A kind of high purification preparation method of boehmite |
EP3974386A4 (en) * | 2019-05-20 | 2022-07-27 | Panasonic Intellectual Property Management Co., Ltd. | Boehmite structure and method for producing same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5445316A (en) * | 1977-07-13 | 1979-04-10 | American Cyanamid Co | Low density alumina base body and method of making same |
JPS59152262A (en) * | 1983-02-14 | 1984-08-30 | 住友金属鉱山株式会社 | Porous alumina formed body |
JPH03261617A (en) * | 1990-03-12 | 1991-11-21 | Mitsubishi Kasei Corp | Phosphorus modified alumina and production thereof |
JPH07267633A (en) * | 1994-03-31 | 1995-10-17 | Kyocera Corp | Production of boehmite sol and production of porous alumina by using the same sol |
JP2005262034A (en) * | 2004-03-17 | 2005-09-29 | Sumitomo Chemical Co Ltd | Catalyst carrier comprising active alumina |
-
2007
- 2007-08-27 JP JP2007219937A patent/JP4610589B2/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5445316A (en) * | 1977-07-13 | 1979-04-10 | American Cyanamid Co | Low density alumina base body and method of making same |
JPS59152262A (en) * | 1983-02-14 | 1984-08-30 | 住友金属鉱山株式会社 | Porous alumina formed body |
JPH03261617A (en) * | 1990-03-12 | 1991-11-21 | Mitsubishi Kasei Corp | Phosphorus modified alumina and production thereof |
JPH07267633A (en) * | 1994-03-31 | 1995-10-17 | Kyocera Corp | Production of boehmite sol and production of porous alumina by using the same sol |
JP2005262034A (en) * | 2004-03-17 | 2005-09-29 | Sumitomo Chemical Co Ltd | Catalyst carrier comprising active alumina |
Also Published As
Publication number | Publication date |
---|---|
JP2007302558A (en) | 2007-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8147795B2 (en) | Process for preparing boehmitic aluminas having a high α-conversion temperature | |
ES2868140T3 (en) | Procedure for the conversion of at least one alcohol into light olefins | |
JP5117657B2 (en) | Process for producing pseudocrystalline boehmite from inexpensive precursors | |
KR20080067688A (en) | Stabilized flash calcined gibbsite as a catalyst support | |
CN102372288B (en) | Method for preparing SAPO-34 molecular sieve | |
JP4610589B2 (en) | Method for producing phosphorus-containing activated alumina | |
JP5802124B2 (en) | Method for producing mesoporous alumina | |
US20060120952A1 (en) | Mesostructured transition aluminas | |
JP2001233613A (en) | Phosphorus-containing activated alumina | |
KR101940851B1 (en) | Silicoaluminophosphate, method for producing same, and solid acid catalyst comprising same | |
JP2018512264A (en) | Hydrocarbon synthesis catalyst, preparation method thereof and use thereof | |
WO2014042099A1 (en) | Catalyst for exhaust gas purification, and method for producing same | |
JP3653383B2 (en) | Method for producing silica-containing alumina molded body | |
CN1323740A (en) | Prepn. of aluminium sol | |
JP2000256011A (en) | Boehmite and its production | |
Fedoročková et al. | Simplified waste-free process for synthesis of nanoporous compact alumina under technologically advantageous conditions | |
CN112007625B (en) | Alpha-alumina carrier, preparation method, silver catalyst and application | |
JP7344889B2 (en) | Composite material of rare earth phosphate and alumina used in exhaust gas control catalyst and method for producing the same | |
US20070152181A1 (en) | Mesostructured hydrated alumina - surfactant composite compositions and mesostructured transition alumina compositions derived therefrom | |
JPS5969424A (en) | Manufacture of alumina having low bulk density | |
CN113562750B (en) | Pseudo-boehmite containing phosphorus and boron, preparation method thereof, alumina containing phosphorus and boron and application thereof | |
JP2003040689A (en) | Porous titanic oxide of high purity and method of manufacturing the same | |
CN106348327B (en) | Ultra-large pore pseudo-boehmite and preparation method thereof | |
JPH054050A (en) | Heat-resistant transition alumina and its production | |
RU2584951C1 (en) | Method of producing catalyst support for conversion of hydrocarbon raw material based on mesoporous material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070827 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100513 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101012 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101012 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131022 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4610589 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |