JP4604242B2 - X-ray diffraction analyzer and X-ray diffraction analysis method - Google Patents

X-ray diffraction analyzer and X-ray diffraction analysis method Download PDF

Info

Publication number
JP4604242B2
JP4604242B2 JP2005066120A JP2005066120A JP4604242B2 JP 4604242 B2 JP4604242 B2 JP 4604242B2 JP 2005066120 A JP2005066120 A JP 2005066120A JP 2005066120 A JP2005066120 A JP 2005066120A JP 4604242 B2 JP4604242 B2 JP 4604242B2
Authority
JP
Japan
Prior art keywords
ray
sample
rays
incident
sensitive detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005066120A
Other languages
Japanese (ja)
Other versions
JP2006250646A (en
Inventor
健次 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2005066120A priority Critical patent/JP4604242B2/en
Priority to PCT/JP2005/018063 priority patent/WO2006095468A1/en
Publication of JP2006250646A publication Critical patent/JP2006250646A/en
Application granted granted Critical
Publication of JP4604242B2 publication Critical patent/JP4604242B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

この出願の発明は、固定保持されている不均一な結晶構造を有する試料、例えば多結晶体、歪みや欠陥を有する部材等、の局所構造情報を含んだX線回折図形を、試料を照らす入射X線として所定の元素の特性X線を発生させるX線管と、二次元に配列された複数の検出素子からなる二次元位置敏感型検出器とを用いて取得するためのX線回折分析装置およびX線回折分析方法に関するものである。   The invention of this application irradiates a sample with an X-ray diffraction pattern including local structure information of a sample having an inhomogeneous crystal structure that is fixedly held, such as a polycrystalline body, a member having a strain or a defect, and the like. X-ray diffraction analysis apparatus for obtaining using an X-ray tube that generates characteristic X-rays of a predetermined element as X-rays and a two-dimensional position sensitive detector composed of a plurality of detection elements arranged two-dimensionally And an X-ray diffraction analysis method.

X線回折法は、X線を結晶性の試料に照射したときに生じる回折X線を検出することにより、その試料の結晶構造に対応するX線回折図形を得る技術である。X線回折図形は、目的や使用する装置に応じてさまざまな形式で取得されることが知られている。例えば、通常の粉末X線回折計では回折角度と回折X線強度が組となったデータの形で取得され、横軸に回折角をとり縦軸に回折X線強度をとったグラフで表現される。デバイ・シェラーカメラ等では、回折X線の強度が濃淡として現れた写真としてX線回折図形が取得される。   The X-ray diffraction method is a technique for obtaining an X-ray diffraction pattern corresponding to the crystal structure of a sample by detecting diffraction X-rays generated when the crystalline sample is irradiated with X-rays. It is known that X-ray diffraction patterns are acquired in various formats depending on the purpose and the apparatus used. For example, in a normal powder X-ray diffractometer, it is acquired in the form of a set of diffraction angle and diffraction X-ray intensity data, and is represented by a graph with the horizontal axis representing the diffraction angle and the vertical axis representing the diffraction X-ray intensity. The In a Debye-Scherrer camera or the like, an X-ray diffraction pattern is acquired as a photograph in which the intensity of diffracted X-rays appears as shading.

一般的に粉末(多結晶体)を対象として用いる粉末X線回折法は、均一で且つランダムな配向をもつ試料の結晶構造を知ることを目的としている。したがって、複数の回折スポット(回折X線強度が強いところ、回折角度に対する回折X線強度プロファイルではピークとしてあらわれる)を収集してその強度や相互の幾何学的な位置関係を把握することが重要である。そのために、典型的には、試料を照らす入射X線としてX線管からの特性X線を用い、2軸ゴニオメータのいわゆるθ/2θ走査によって試料からの回折X線の強度の回折角依存性強度プロファイルを測定する。その際、通常は集中法を近似的に満足する光学系が用いられる。すなわち、焦点円上にある光源から発散したX線のうち平行スリットを経て発散スリットを通過したX線だけが、焦点円に接する平面試料によって回折される。回折されたX線は焦点円上の受光スリットに集中し、平行スリットと散乱スリットを経て検出器で検出される(非特許文献1)。   In general, the powder X-ray diffraction method using powder (polycrystal) as a target is intended to know the crystal structure of a sample having a uniform and random orientation. Therefore, it is important to collect a plurality of diffraction spots (where the diffraction X-ray intensity is strong, which appears as a peak in the diffraction X-ray intensity profile with respect to the diffraction angle) and to grasp the intensity and the geometrical positional relationship between them. is there. Therefore, typically, characteristic X-rays from an X-ray tube are used as incident X-rays to illuminate the sample, and the diffraction angle-dependent intensity of the intensity of the diffracted X-rays from the sample by so-called θ / 2θ scanning with a two-axis goniometer Measure the profile. In this case, an optical system that approximately satisfies the concentration method is usually used. That is, only the X-rays that have passed through the diverging slit through the parallel slit among the X-rays diverged from the light source on the focal circle are diffracted by the plane sample in contact with the focal circle. Diffracted X-rays concentrate on the light receiving slit on the focal circle, and are detected by the detector through the parallel slit and the scattering slit (Non-Patent Document 1).

一方、X線回折測定を目的に作られた試料ではない、いわゆる実試料は、例えば、異なる結晶構造が共存する、方位の異なる集合組織が含まれている、欠陥がある、負荷を与えられたことによる結晶構造の歪みがある、等の不均一な場合が多く、試料の各部位の局所的な結晶構造を知ることも重要となる。しかし、上述の一般的な粉末X線回折法で得られる情報は試料のうちの入射X線で照らされた領域の平均情報であるため、その領域内の部位による結晶構造の差異についての情報を得ることはできない。   On the other hand, a so-called real sample that is not a sample made for the purpose of X-ray diffraction measurement includes, for example, a texture in which different crystal structures coexist, different orientations are included, is defective, and is loaded. In many cases, the crystal structure is not uniform due to the distortion, and it is important to know the local crystal structure of each part of the sample. However, since the information obtained by the above general powder X-ray diffraction method is the average information of the region illuminated by the incident X-ray of the sample, information on the difference in crystal structure depending on the site in the region is used. I can't get it.

そこで、試料に照射するX線のビームサイズを小さくして試料の各部位の情報を得る技術が提案された(非特許文献2)。確かに、微小なビームサイズの入射X線を用い、試料ステージのXY走査で試料上のX線照射領域を変え、各照射領域で従来の粉末X線回折法と同様に2軸ゴニオメータのθ/2θ走査による測定を行えば、試料の各部位の情報を得ることは可能である。しかし、一試料の測定に膨大な時間がかかってしまうという問題がある。例えば、試料上の一点(一つのX線照射領域)についてのX線回折図形を得るのに要する時間が一般的な粉末X線回折法による測定時間と同様の20〜30分程度であるとすれば、もし試料上での測定点数が100×100の10000点であれば測定に約5000時間、すなわち約200日もかかることになる。   Therefore, a technique has been proposed in which the X-ray beam size irradiated on the sample is reduced to obtain information on each part of the sample (Non-Patent Document 2). Certainly, incident X-rays with a small beam size are used, the X-ray irradiation area on the sample is changed by XY scanning of the sample stage, and in each irradiation area, as in the conventional powder X-ray diffraction method, θ / If measurement is performed by 2θ scanning, it is possible to obtain information on each part of the sample. However, there is a problem that it takes a long time to measure one sample. For example, the time required to obtain an X-ray diffraction pattern for one point (one X-ray irradiation region) on the sample is about 20 to 30 minutes, which is the same as the measurement time by a general powder X-ray diffraction method. For example, if the number of measurement points on the sample is 10000 points of 100 × 100, the measurement takes about 5000 hours, that is, about 200 days.

測定時間を短縮するために、最近では、一次元または二次元の位置敏感型検出器を用いて検出器の各素子で異なる回折角度の回折X線の情報を検出することにより、2軸ゴニオ
メータのθ/2θ走査を省略する技術が一般的となっている。しかし、試料の各部位の情報を得るためには1点ずつ部位ごとに測定しなければならないことにはかわりがないため、試料の広い領域中の各部位の情報を得ようとすると測定点が多数となり依然として測定に長時間を要してしまう。
In order to shorten the measurement time, recently, by using a one-dimensional or two-dimensional position sensitive detector, each element of the detector detects information of diffracted X-rays having different diffraction angles. A technique in which θ / 2θ scanning is omitted is common. However, in order to obtain information on each part of the sample, it is not necessary to measure one point at a time. Therefore, when trying to obtain information on each part in a wide area of the sample, the measurement point is It becomes a large number and still takes a long time for measurement.

他方、試料を入射X線の光軸に対して垂直な軸のまわりで回転可能に支持し、位置敏感型検出器を入射X線に対する散乱角(2θ角)を固定して設置し、試料と位置敏感型検出器との間にコリメータを配置することによって試料表面の被測定領域中の各部位と位置敏感型検出器の各検出素子とを一対一で対応付け、被測定領域全体を平行性のよい単色X線で照らして各部位からの回折X線をそれぞれ別の検出素子で検出することにより、試料上の測定点の走査を省略して試料のθ走査だけによって回折図形を得る技術も提案されている(特許文献1)。この技術では、試料上でX線照射位置を走査する必要がないので、一般的な粉末回折法で要する測定時間と同程度の時間で試料の各部位の結晶構造の情報を得ることができる。しかし、試料を回転させるため、常に所望の領域を入射X線で照らすためにはサイズの大きい入射X線が必要になる。特許文献1では、X線管を入射X線源として用いることも想定しているが、X線管は放射光のような強度の強いX線源ではないので、検出される回折X線の強度が弱くなり、一つの回折図形を得るためにかかる時間がどうしても長くなってしまうという問題がある。例えば、特許文献1に係る発明の発明者らの報告によれば、放射光を利用した場合に1秒以下の撮像時間で画像を取得できる試料であっても、1mradの発散光として入射X線を発生させる1mmの点焦点のX線管を試料から1m離して配置して用いると15分程度の撮像時間が必要となってしまう(非特許文献3)。非特許文献3では、その対策として、X線管の下流に多層膜からなる平行化素子をおくことで入射X線の強度をかせぐことが提案されているが、この場合には試料上での入射X線照射領域が狭くなってしまうという問題点も同時に指摘している。
加藤誠軌、『X線回折分析』、東京工業大学工学部無機材料工学科編セラミックス基礎講座3、内田老鶴圃、1990年、pp.119-120 Y. Chikaura, Y. Yoneda and G. Hildebrandt, "Polycrystal scattering topography", Journal of Applied Crystallography, vol.15, pp.48-54, 1982 ドイツ特許第4430615号公報(DE4430615C2) T. Wroblewski, D. Breuer, H.-A. Crostack, F. Fandrich, M. Gross and P. Klimanek, "Mapping in Real and Reciprocal Space", Materials Science Forum, vols. 278-281, pp. 216-220, 1998
On the other hand, the sample is supported so as to be rotatable about an axis perpendicular to the optical axis of the incident X-ray, and the position sensitive detector is installed with a fixed scattering angle (2θ angle) with respect to the incident X-ray. By placing a collimator between the position-sensitive detector and each part in the measurement area on the sample surface and each detection element of the position-sensitive detector, the entire measurement area is parallel. A technique to obtain diffraction patterns only by θ-scanning of the sample without scanning the measurement point on the sample by detecting the diffracted X-rays from each part with separate detection elements by illuminating with good monochromatic X-rays It has been proposed (Patent Document 1). In this technique, since it is not necessary to scan the X-ray irradiation position on the sample, information on the crystal structure of each part of the sample can be obtained in a time comparable to the measurement time required for a general powder diffraction method. However, since the sample is rotated, incident X-rays having a large size are required to always illuminate a desired region with incident X-rays. In Patent Document 1, it is assumed that an X-ray tube is used as an incident X-ray source. However, since the X-ray tube is not a strong X-ray source such as radiated light, the intensity of detected diffracted X-rays However, there is a problem that the time required to obtain one diffraction pattern becomes long. For example, according to the report of the inventors of the invention according to Patent Document 1, even if the sample can acquire an image with an imaging time of 1 second or less when using radiated light, incident X-rays are emitted as 1 mrad diverging light. When a 1 mm point-focused X-ray tube that generates 1 mm is placed 1 m away from the sample and used, an imaging time of about 15 minutes is required (Non-patent Document 3). In Non-Patent Document 3, as a countermeasure, it is proposed to increase the intensity of incident X-rays by placing a parallel element made of a multilayer film downstream of the X-ray tube. It also points out the problem that the incident X-ray irradiation area becomes narrow.
Makoto Kato, “X-ray diffraction analysis”, Department of Inorganic Materials Engineering, Faculty of Engineering, Tokyo Institute of Technology, Ceramics Course 3, Uchida Otsukuru, 1990, pp.119-120 Y. Chikaura, Y. Yoneda and G. Hildebrandt, "Polycrystal scattering topography", Journal of Applied Crystallography, vol.15, pp.48-54, 1982 German Patent No. 4430615 (DE 4430615 C2) T. Wroblewski, D. Breuer, H.-A. Crostack, F. Fandrich, M. Gross and P. Klimanek, "Mapping in Real and Reciprocal Space", Materials Science Forum, vols. 278-281, pp. 216- 220, 1998

この出願の発明は、X線管から出射されたX線ビームが試料に到達するまでの光路における強度の減衰を極力小さくすることにより、例えば多結晶体、歪みや欠陥を有する部材等のような不均一な結晶構造を有する試料の局所構造情報を備えるX線回折図形、特に特定の結晶格子面に注目したときの回折X線強度の二次元分布画像を、実験室や、残留応力測定等の非破壊検査を要する構造物が設置されている現場で短時間且つ簡単に取得することを可能とするX線回折分析装置およびX線回折分析方法を提供することを課題とする。   The invention of this application reduces the intensity attenuation in the optical path until the X-ray beam emitted from the X-ray tube reaches the sample as much as possible, for example, a polycrystalline body, a member having a strain or a defect, etc. X-ray diffraction pattern with local structure information of sample with non-uniform crystal structure, especially two-dimensional distribution image of diffracted X-ray intensity when focusing on specific crystal lattice plane, such as laboratory and residual stress measurement It is an object of the present invention to provide an X-ray diffraction analysis apparatus and an X-ray diffraction analysis method that can be acquired easily and in a short time at a site where a structure requiring nondestructive inspection is installed.

この出願の発明によれば、前記課題は、固定保持されている不均一な結晶構造を有する試料の局所構造情報を含んだX線回折図形を、試料を照らす入射X線として所定の元素の特性X線を発生させるX線管と、二次元に配列された複数の検出素子からなる二次元位置敏感型検出器とを用いて取得するためのX線回折分析装置において、前記X線管を、前記入射X線が試料表面の観察しようとする被測定領域全体を照らすことのできる位置であって且つ前記試料と接触しない範囲で限りなく前記試料に接近した位置に固定保持し、前記二次元位置敏感型検出器を、試料表面に前記被測定領域の中心を通って入射X線の光軸に対して垂直に延在する回転軸線のまわりで回動可能に、かつ、試料と二次元位置敏感型検出器との間の距離を調節する機構を用いて前記試料表面に対して前記二次元位置敏感型検出器の検出器面が正対した位置で前記試料表面と前記の検出器面との間の距離が2〜5mmとなるように配置し、前記試料で回折されて前記被測定領域内の各部位から出射する回折X線をそれぞれ前記二次元位置敏感型検出器の異なる検出素子で区別して検出するために当該回折X線の角度発散を制限する角度発散制限手段を、前記回転軸線のまわりで前記二次元位置敏感型検出器と一体的に回動するように設け、前記検出素子でそれぞれ検出した回折X線の強度を各画素値とする二次元の回折X線画像を形成し記録する画像形成記録部を有することを特徴とするX線回折分析装置によって解決される。
According to the invention of this application, the problem is that an X-ray diffraction pattern including local structure information of a sample having a non-uniform crystal structure that is fixedly held is used as an incident X-ray that illuminates the sample, and the characteristics of a predetermined element. In an X-ray diffraction analysis apparatus for obtaining using an X-ray tube for generating X-rays and a two-dimensional position sensitive detector composed of a plurality of detector elements arranged in two dimensions, the X-ray tube comprises: The incident X-ray is a position that can illuminate the entire measurement region to be observed on the sample surface, and is fixed and held at a position that is as close as possible to the sample as long as it is not in contact with the sample. The sensitive detector can be rotated around a rotation axis extending perpendicularly to the optical axis of the incident X-ray through the center of the measurement area on the sample surface, and is sensitive to the sample in two dimensions. For adjusting the distance to the detector Arranged such distance is 2~5mm between the sample surface and the detector surface at a position where the detector plane of the two-dimensional position sensitive detector is directly opposite to the sample surface by using a In order to distinguish and detect the diffracted X-rays diffracted by the sample and emitted from each part in the measured region by different detection elements of the two-dimensional position sensitive detector, the angle divergence of the diffracted X-rays is detected. An angle divergence limiting means for limiting the angle is provided so as to rotate integrally with the two-dimensional position sensitive detector around the rotation axis, and the intensity of the diffracted X-ray detected by the detection element is set for each pixel value. This is solved by an X-ray diffraction analyzer characterized by having an image forming recording section for forming and recording a two-dimensional diffraction X-ray image.

また、固定保持されている不均一な結晶構造を有する試料の局所構造情報を含んだX線回折図形を、試料を照らす入射X線として所定の元素の特性X線を発生させるX線管と、二次元に配列された複数の検出素子からなる二次元位置敏感型検出器とを用いて取得するためのX線回折分析方法において、試料に近接して配置されたX線管から出射して試料に入射する入射X線によって試料表面の観察しようとする被測定領域全体を照らすこと、試料で回折されて前記被測定領域内の各部位から出射する回折X線の角度発散を制限することにより、各部位から出射する回折X線をそれぞれ二次元位置敏感型検出器の異なる検出素子で区別して検出すること、および、試料と二次元位置敏感型検出器との間の距離を調節する機構を用いて前記試料表面に対して前記二次元位置敏感型検出器の検出器面が正対した位置で前記試料表面と前記の検出器面との間の距離が2〜5mmとなるように、かつ、二次元位置敏感型検出器を試料表面に被測定領域の中心を通って入射X線の光軸に垂直に延在する回転軸線のまわりで回動移動させて所望の角度位置に二次元位置敏感型検出器を保持し、その位置で各検出素子が検出した回折X線の強度を各画素値とする二次元の回折X線画像を形成して記録することを特徴とするX線回折分析方法によって解決される。

An X-ray tube that generates a characteristic X-ray of a predetermined element as an incident X-ray that illuminates the sample, and an X-ray diffraction pattern including local structure information of the sample having a non-uniform crystal structure that is fixedly held; In an X-ray diffraction analysis method for obtaining using a two-dimensional position sensitive detector composed of a plurality of detector elements arranged two-dimensionally, the sample is emitted from an X-ray tube arranged close to the sample By illuminating the entire measurement region to be observed on the sample surface with incident X-rays incident on the sample, by limiting the angular divergence of the diffracted X-rays that are diffracted by the sample and emitted from each part in the measurement region, Using a mechanism that distinguishes and detects the diffracted X-rays emitted from each part with different detection elements of the two-dimensional position sensitive detector and adjusts the distance between the sample and the two-dimensional position sensitive detector the sample table Te The distance between the sample surface and the detector surface is 2 to 5 mm at the position where the detector surface of the two-dimensional position sensitive detector is directly facing the two-dimensional position sensitive detector. The two-dimensional position sensitive detector is moved to a desired angular position by rotating the type detector around a rotation axis extending perpendicularly to the optical axis of the incident X-ray through the center of the measurement area on the sample surface. This is solved by an X-ray diffraction analysis method characterized in that a two-dimensional diffraction X-ray image is formed and recorded with each pixel value being the intensity of the diffraction X-ray detected by each detection element at that position. .

この出願の発明に係るX線回折分析装置およびX線回折分析方法では、試料は固定保持されており、すなわち、測定中に試料が動かされることがなく、試料を照らす入射X線として所定の元素の特性X線を発生させるX線管が試料の被測定領域全体を照らすことのできる位置であって且つ試料と接触しない範囲で限りなく試料に接近した位置に固定保持されている。すなわち、試料のすぐ近くで発生させられたX線ビームが、当該X線ビームを単色化したり平行化したりする光学素子を一切通らずに試料に入射するので、X線ビームが光学素子を通過することによる強度損失がない上に、X線管と試料との間の距離が短いことにより大気での散乱・吸収による強度損失も極力小さくすることができる。つまり、特許文献1で想定しているように入射X線を平行化された単色X線とするのに比べてX線強度損失が極端に小さくてすむ。これによって、放射光のような強力なX線源を使用できない実験室や現場でも、X線管を利用して短時間で試料の局所構造情報を含んだ二次元の回折X線画像を取得することが可能となる。また、測定中は試料とX線管が動かされることはないので、試料上の入射X線が照らす領域が変化することもない。   In the X-ray diffraction analyzer and the X-ray diffraction analysis method according to the invention of this application, the sample is fixedly held, that is, the sample is not moved during the measurement, and a predetermined element is used as incident X-rays that illuminate the sample. The X-ray tube for generating the characteristic X-ray is fixed and held at a position where it can illuminate the entire measurement region of the sample and as close as possible to the sample as long as it does not contact the sample. That is, the X-ray beam generated in the immediate vicinity of the sample is incident on the sample without passing through any optical element that monochromatic or parallelizes the X-ray beam, so that the X-ray beam passes through the optical element. In addition, since the distance between the X-ray tube and the sample is short, the intensity loss due to scattering / absorption in the atmosphere can be minimized. In other words, the X-ray intensity loss can be extremely small as compared with the case where the incident X-ray is converted into a parallel monochromatic X-ray as assumed in Patent Document 1. As a result, even in a laboratory or field where a strong X-ray source such as synchrotron radiation cannot be used, a two-dimensional diffracted X-ray image including the local structure information of the sample is acquired in a short time using an X-ray tube. It becomes possible. Further, since the sample and the X-ray tube are not moved during the measurement, the region illuminated by the incident X-ray on the sample does not change.

この出願の発明のX線回折分析装置において、入射X線を発生させるX線管が線状の細い長方形断面を有するX線ビームを発生させるX線管であり、前記長方形断面の長軸が前記回転軸線に平行に延在し且つ試料表面と前記入射X線の光軸とがなす角度が0〜3度となるように当該X線管が固定保持されていると、X線管を試料に近接させて配置しても試料の広い領域を均一に照らすことができる。   In the X-ray diffraction analyzer of the invention of this application, the X-ray tube for generating incident X-rays is an X-ray tube for generating an X-ray beam having a linear thin rectangular cross section, and the long axis of the rectangular cross section is the above-mentioned When the X-ray tube is fixed and held so that the angle extending between the sample surface and the optical axis of the incident X-ray is 0 to 3 degrees, the X-ray tube is used as a sample. Even if they are arranged close to each other, a wide area of the sample can be illuminated uniformly.

この出願の発明のX線回折分析装置において、X線管が、交換可能であり、異なる元素の特性X線を発生させる複数のX線管の中からX線管を選択して使用可能であると、試料に応じて蛍光X線の生じない波長の入射X線を使用すること、二次元位置敏感型検出器の回動(旋回)角度範囲が限られている場合に対象とする格子面の回折角度が測定上好都合な角度となるような波長の入射X線を使用することなどが可能となる。   In the X-ray diffraction analyzer of the invention of this application, the X-ray tube can be exchanged, and the X-ray tube can be selected from a plurality of X-ray tubes that generate characteristic X-rays of different elements. And the use of incident X-rays with wavelengths that do not generate fluorescent X-rays depending on the sample, and the target lattice plane when the rotation (swivel) angle range of the two-dimensional position sensitive detector is limited. It is possible to use incident X-rays having such a wavelength that the diffraction angle is an angle convenient for measurement.

この出願の発明のX線回折分析装置において、前記X線管と前記試料との間の距離および試料表面と前記入射X線の光軸とがなす角度を調整するための機構が設けられていると、試料の形状やサイズが一定しない実試料を測定する場合にも、入射X線による被測定領
域の最適な照明を実現することができる。また、これらの調整は測定前に行われ、測定が始まると試料とX線管は動かされることがないので、当該機構は手動操作のものでよい。
The X-ray diffraction analyzer of the invention of this application is provided with a mechanism for adjusting the distance between the X-ray tube and the sample and the angle formed by the sample surface and the optical axis of the incident X-ray. Even in the case of measuring an actual sample whose shape and size are not constant, it is possible to realize optimal illumination of the measurement region by incident X-rays. These adjustments are made before measurement, and when the measurement starts, the sample and the X-ray tube are not moved, so that the mechanism may be manually operated.

この出願の発明のX線回折分析装置において、X線管のX線取り出し窓が当該X線管で発生する特性X線のうちのKβ線を吸収するフィルター材からなると、Kα線とKβ線(これら以外の波長のX線も含まれる可能性はあるが強度が弱いので無視できる)の両方が混ざったX線ビームを入射X線として使用することにより取得される回折X線画像に悪影響が生じる場合に、Kβ線成分を排除することができる。その際、別の光学素子を入射X線光路に挿入するのではなくフィルター材からなる取り出し窓を使用することによって、X線管と試料との間の距離を離す必要がない。   In the X-ray diffraction analyzer of the invention of this application, when the X-ray extraction window of the X-ray tube is made of a filter material that absorbs Kβ rays out of characteristic X-rays generated in the X-ray tube, Kα rays and Kβ rays ( X-rays of wavelengths other than these may be included, but the intensity is weak and can be ignored). Using a mixed X-ray beam as incident X-rays adversely affects the diffracted X-ray image acquired. In some cases, the Kβ ray component can be eliminated. At this time, it is not necessary to increase the distance between the X-ray tube and the sample by using an extraction window made of a filter material instead of inserting another optical element into the incident X-ray optical path.

この出願の発明のX線回折分析装置において、二次元位置敏感型検出器および角度発散制限手段の回動角度範囲が、試料表面に対して60度の位置から120度の位置までであると、二次元位置敏感型検出器と試料との間の距離を大きく離さなくてもそれらの回動が妨げられることが無いので、装置をコンパクトに構成することが可能である。大部分の試料については、この回動角度範囲内で回折図形の取得を行えば、結晶構造の分布の画像化、残留応力分布の画像化等の目的を充分果たすことができる。   In the X-ray diffraction analyzer of the invention of this application, the rotation angle range of the two-dimensional position sensitive detector and the angle divergence limiting means is from a position of 60 degrees to a position of 120 degrees with respect to the sample surface. Since the rotation of the two-dimensional position sensitive detector and the sample is not hindered even if the distance between the two-dimensional position sensitive detector and the sample is not greatly separated, the apparatus can be configured compactly. For most samples, if the diffraction pattern is acquired within this rotation angle range, the purpose of imaging the distribution of crystal structure, imaging of the residual stress distribution, etc. can be sufficiently achieved.

この出願の発明のX線回折分析装置において、試料表面と前記二次元位置敏感型検出器との間の距離を調整する機構が設けられていると、二次元位置敏感型検出器の回動角度位置に応じて、入射X線を遮らず且つ部材が接触しない範囲で最も試料に近接させた二次元位置敏感型検出器の配置を実現できる。ただし、二次元位置敏感型検出器の回動角度走査中はこの距離は固定であるので、当該機構は手動操作の機構でもよい。   In the X-ray diffraction analyzer of the invention of this application, when a mechanism for adjusting the distance between the sample surface and the two-dimensional position sensitive detector is provided, the rotation angle of the two-dimensional position sensitive detector is provided. Depending on the position, it is possible to realize the arrangement of the two-dimensional position sensitive detector that is closest to the sample as long as the incident X-rays are not blocked and the member does not contact. However, since this distance is fixed during the rotation angle scanning of the two-dimensional position sensitive detector, the mechanism may be a manually operated mechanism.

以下に、図面に基づいてこの出願の発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the invention of this application will be described in detail with reference to the drawings.

図1に、この出願の発明に係るX線回折分析装置の概念図を示す。   FIG. 1 shows a conceptual diagram of an X-ray diffraction analyzer according to the invention of this application.

試料(1)は、試料支持部(2)によって固定保持されており、測定中に動かされることはない。   The sample (1) is fixedly held by the sample support part (2) and is not moved during the measurement.

二次元に配列された複数の検出素子からなる二次元位置敏感型検出器(3)は、検出器支持部(4)によって、試料表面の観察しようとする被測定領域(A)と同一面内で被測定領域(A)の中心を通って延びる回転軸線(5)のまわりで回動(旋回)可能に保持されており、あらゆる回動位置において二次元位置敏感型検出器(3)の検出器面(すべての検出素子の検出面によって形成される二次元の面)が常に被測定領域(A)を見込む。試料(1)と二次元位置敏感型検出器(3)との間には、試料(1)で発生して試料表面の被測定領域(A)内の各部位から出射する回折X線(6)の角度発散を制限することによって被測定領域(A)内の異なる部位から出射する回折X線(6)を二次元位置敏感型検出器(3)の別々の検出素子で区別して検出できるようにするコリメータ(例えば合成石英製キャピラリを集合させたキャピラリプレート、リソグラフィ技術により軽金属に同様の加工を施したもの)等の角度発散制限手段(7)が設けられている。角度発散制限手段(7)は、二次元位置敏感型検出器(3)と一体的に回転軸線(5)のまわりで回動させられる。したがって、二次元位置敏感型検出器(3)がどの回動位置にある場合にも、それぞれの検出素子は被測定領域(A)内の別々の特定の一つの部位から出射する回折X線(6)だけを検出する。二次元位置敏感型検出器(3)と角度発散制限手段(7)は一体構成となっていてもよい。   A two-dimensional position sensitive detector (3) comprising a plurality of detector elements arranged two-dimensionally is in the same plane as the measured region (A) to be observed on the sample surface by the detector support (4). Is held so as to be able to turn (turn) around a rotation axis (5) extending through the center of the area (A) to be measured, and the two-dimensional position sensitive detector (3) is detected at every turning position. The vessel surface (a two-dimensional surface formed by the detection surfaces of all the detection elements) always anticipates the region to be measured (A). Between the sample (1) and the two-dimensional position sensitive detector (3), diffracted X-rays (6) generated by the sample (1) and emitted from each part in the measurement area (A) on the sample surface ), The diffracted X-rays (6) emitted from different parts in the measurement region (A) can be distinguished and detected by separate detection elements of the two-dimensional position sensitive detector (3). An angle divergence restricting means (7) such as a collimator (for example, a capillary plate in which synthetic quartz capillaries are assembled, or a light metal subjected to the same processing by a lithography technique) is provided. The angle divergence limiting means (7) is rotated around the rotation axis (5) integrally with the two-dimensional position sensitive detector (3). Therefore, regardless of the rotational position of the two-dimensional position sensitive detector (3), each detection element is diffracted X-rays emitted from a specific specific part (A). Only 6) is detected. The two-dimensional position sensitive detector (3) and the angle divergence limiting means (7) may be integrated.

図1には示していないが、二次元位置敏感型検出器(3)は、各検出素子で検出した回
折X線強度を各画素値とする二次元の回折X線画像を生成して記録するための画像形成記録部を内部もしくは外部に有している。
Although not shown in FIG. 1, the two-dimensional position sensitive detector (3) generates and records a two-dimensional diffraction X-ray image having the diffraction X-ray intensity detected by each detection element as each pixel value. For this purpose, an image forming recording unit is provided inside or outside.

所定の元素の特性X線を発生させ、細い長方形断面(線状焦点)を有する特性X線ビームを入射X線(8)として出射するX線管(9)は、入射X線(8)の長方形断面の長軸が回転軸線(5)と平行に位置するようにX線管支持部(10)によって固定保持される。X線管(9)から出射するX線は発散光であるが、X線管(9)の狭いX線取り出し窓から出射する時点では入射X線(8)はほぼ線状の細い長方形断面を有するX線ビームである。仮に入射X線(8)の長方形断面が出射時と同程度のサイズのままで入射X線(8)が試料(1)に入射したとしても、試料表面に対して低角で入射すれば、試料表面の広い領域を均一に照らすことができる。したがって、入射X線(8)が試料表面に入射する入射角度が試料表面に対して0〜3度程度の低角(ただし、必ず3度より小さい角度でなければならないというものではない)であるいわゆる薄膜配置となるようにX線管(9)が固定保持される。   An X-ray tube (9) that generates a characteristic X-ray of a predetermined element and emits a characteristic X-ray beam having a thin rectangular cross section (linear focal point) as an incident X-ray (8) is provided for the incident X-ray (8). It is fixed and held by the X-ray tube support part (10) so that the long axis of the rectangular cross section is positioned parallel to the rotation axis (5). The X-rays emitted from the X-ray tube (9) are divergent light, but the incident X-rays (8) have a substantially linear thin rectangular cross section when they are emitted from the narrow X-ray extraction window of the X-ray tube (9). X-ray beam. Even if the incident X-ray (8) is incident on the sample (1) while the rectangular cross section of the incident X-ray (8) remains the same size as that at the time of emission, A wide area of the sample surface can be illuminated uniformly. Therefore, the incident angle at which the incident X-ray (8) is incident on the sample surface is a low angle of about 0 to 3 degrees with respect to the sample surface (however, the angle does not necessarily have to be smaller than 3 degrees). The X-ray tube (9) is fixed and held so as to form a so-called thin film arrangement.

X線管(9)と試料(1)との間の入射X線光路上には単色化のためのモノクロメータや平行化するための光学素子等は一切設けない。それによって、X線管(9)は試料(1)ないし試料支持部(2)と接触しない範囲で限りなく被測定領域(A)に接近させて配置することができる。実際にどこまでX線管(9)を被測定領域(A)に近づけて配置するかは、試料(1)やその支持部分あるは二次元位置敏感型検出器(3)がX線管(9)とどこで物理的に接触するかによって決まるが、例えば、50mm〜70mm程度に設定することができる。このとき、上記の薄膜配置の採用は、X線管(9)を試料(1)に近接させても入射X線(8)で被測定領域(A)全体を均一に照らすことができるという点で有利である。このようにX線管(9)と試料(1)とを極めて近接させて配置することにより、真空パスを導入しなくても、大気による入射X線の減衰を極力抑制することができる。また、入射X線光路上に一切光学素子を配置しないことにより、光学素子を経ることによる強度減衰を排除できることも大きな利点である。光学素子を経ないため、入射X線(8)はX線管(9)で発生した発散光のままであるが、X線管(9)を試料(1)に極めて近接させて配置するので、入射X線(8)が発散光であることが取得される回折X線図形に及ぼす影響は無視することができる。   On the incident X-ray optical path between the X-ray tube (9) and the sample (1), there is no monochromator for monochromatization or optical elements for parallelization. Thereby, the X-ray tube (9) can be arranged as close as possible to the measurement area (A) as long as it does not contact the sample (1) or the sample support (2). The extent to which the X-ray tube (9) is actually arranged close to the measurement area (A) depends on whether the sample (1) or its supporting part or the two-dimensional position sensitive detector (3) is the X-ray tube (9 ) And where it physically comes into contact, but can be set to about 50 mm to 70 mm, for example. At this time, the use of the above-described thin film arrangement allows the entire measurement area (A) to be illuminated uniformly with the incident X-ray (8) even if the X-ray tube (9) is brought close to the sample (1). Is advantageous. By arranging the X-ray tube (9) and the sample (1) in close proximity in this way, attenuation of incident X-rays by the atmosphere can be suppressed as much as possible without introducing a vacuum path. It is also a great advantage that no optical element is disposed on the incident X-ray optical path, thereby eliminating the intensity attenuation caused by the optical element. The incident X-ray (8) remains divergent light generated in the X-ray tube (9) because it does not go through the optical element, but the X-ray tube (9) is placed very close to the sample (1). The influence of the incident X-ray (8) on the diffracted X-ray pattern acquired that is divergent light can be ignored.

上述の被測定領域(A)とは、試料表面を二次元の面としてみたときに、二次元位置敏感型検出器(3)が見込む領域、つまり、二次元位置敏感型検出器(3)によって検出され得る回折X線(6)が出射する地点が形成する領域のことをさしている。すなわち、入射X線(8)が試料内部に侵入して試料内部で回折X線(6)が発生し、その回折X線(6)が試料表面から出射するときに、試料表面を二次元の面としてみたときの被測定領域(A)内のいずれかの部位から出射する回折X線(6)だけが検出器(3)の検出素子で検出される。また、その出射部位(出射位置)が回折X線(6)の発生位置と判断される。その際、試料内での実際の発生位置と出射位置との試料面上でのずれは検出器の分解能に対して無視できる程度の誤差にすぎない。二次元位置敏感型検出器(3)は角度発散制限手段(7)を経てきた回折X線(6)だけを検出するので、被測定領域(A)は、二次元位置敏感型検出器(3)の検出器面とほぼ同じ大きさである。例えば二次元位置敏感型検出器(3)の検出器面が10mm角であれば被測定領域(A)もまたほぼ10mm角となる。したがって、この場合には入射X線(8)が10mm角の領域を一度に均一に照らすようにX線管(9)と試料(1)との間の距離を、またこの距離をできるだけ接近させられるように入射X線(8)の試料表面に対する入射角度を決める必要がある。よって、X線管支持部(10)がそのためのX線管位置調整機構を備えていると有利である。ただし、ほぼ同じサイズで同じ形状の試料ばかりを測定対象とする場合など、X線管位置調整機構がなくてもよい場合もある。検出器位置を角度走査しながら測定している最中は試料が動かされることはないので、X線管(9)と試料(1)との間の距離も測定中は固定さ
れる。
The above-described measured region (A) is a region that the two-dimensional position sensitive detector (3) expects when the sample surface is viewed as a two-dimensional surface, that is, the two-dimensional position sensitive detector (3). It refers to the area formed by the point where the diffracted X-ray (6) that can be detected is emitted. That is, when the incident X-ray (8) enters the inside of the sample and the diffracted X-ray (6) is generated inside the sample, and the diffracted X-ray (6) is emitted from the sample surface, Only the diffracted X-rays (6) emitted from any part in the measured region (A) when viewed as a plane are detected by the detection element of the detector (3). Further, the emission part (exit position) is determined as the generation position of the diffracted X-ray (6). At that time, the deviation between the actual generation position and the emission position in the sample on the sample surface is only an error that can be ignored with respect to the resolution of the detector. Since the two-dimensional position sensitive detector (3) detects only the diffracted X-rays (6) that have passed through the angle divergence limiting means (7), the area to be measured (A) is the two-dimensional position sensitive detector (3). ) Is approximately the same size as the detector surface. For example, if the detector surface of the two-dimensional position sensitive detector (3) is 10 mm square, the area to be measured (A) is also approximately 10 mm square. Therefore, in this case, the distance between the X-ray tube (9) and the sample (1) is set as close as possible so that the incident X-ray (8) uniformly illuminates a 10 mm square region at a time. Therefore, it is necessary to determine the incident angle of the incident X-ray (8) with respect to the sample surface. Therefore, it is advantageous if the X-ray tube support part (10) is provided with an X-ray tube position adjusting mechanism therefor. However, there may be a case where the X-ray tube position adjusting mechanism is not necessary, for example, when only samples having substantially the same size and shape are measured. Since the sample is not moved during the measurement while scanning the detector position at an angle, the distance between the X-ray tube (9) and the sample (1) is also fixed during the measurement.

試料表面と検出器面との間の距離(試料・検出器間距離)は近ければ近いほど回折X線(6)を効率よく検出し、短時間で回折X線画像を取得することができるが、試料表面と検出器面とを限りなく近接させないと測定ができないというものではない。したがって、この距離は二次元位置敏感型検出器(3)およびそれと一体的に回動する角度発散制限手段(7)が入射X線(8)をさえぎらない範囲で最も試料表面に近接した位置を基準とするが、装置の他の部材との接触を回避することなどを考慮してそれより離れた位置を選んでもよい。   The closer the distance between the sample surface and the detector surface (distance between the sample and the detector), the more efficiently the diffracted X-ray (6) can be detected, and a diffracted X-ray image can be acquired in a short time. This does not mean that measurement cannot be performed unless the sample surface and the detector surface are placed as close as possible. Therefore, this distance is the position closest to the sample surface within the range in which the two-dimensional position sensitive detector (3) and the angle divergence limiting means (7) rotating integrally therewith do not block the incident X-ray (8). Although the reference is used, a position farther away may be selected in consideration of avoiding contact with other members of the apparatus.

この出願の発明に係るX線回折分析装置は、回折X線強度分布画像を取得することにより試料中に存在する異なる構造の分布の情報を得ることを第一の目的とする装置であるので、通常の粉末X線回折法で行うように広い散乱角度範囲の走査を行って回折角度とそこでの回折X線強度を取得するという使い方よりも、特定の格子面間隔をもつ構造に注目して、その格子面間隔に対応する理論上の回折角度位置近傍で角度の連続走査ないしステップ走査を行うことにより、当該格子面間隔を有する構造の試料中での分布や理論上の回折角度と実際の回折角度とのずれなどを観察する使い方のほうがより効果的である。特に、後者のような使い方に特化する場合には、二次元位置敏感型検出器(3)の回動角度範囲を制限することができるので、装置を小型化できるという利点もある。   Since the X-ray diffraction analyzer according to the invention of this application is an apparatus whose first purpose is to obtain distribution information of different structures existing in a sample by acquiring a diffraction X-ray intensity distribution image, Focus on structures with a specific lattice spacing, rather than using a wide range of scattering angles to obtain diffraction angles and diffracted X-ray intensities there, as with normal powder X-ray diffraction methods. By performing continuous or step scanning of the angle near the theoretical diffraction angle position corresponding to the lattice spacing, the distribution of the structure having the lattice spacing in the sample, the theoretical diffraction angle, and the actual diffraction It is more effective to observe the deviation from the angle. In particular, when specializing in the latter method of use, the rotational angle range of the two-dimensional position-sensitive detector (3) can be limited, and there is an advantage that the apparatus can be miniaturized.

この出願の発明に係るX線回折分析装置を用いて、後者のような使い方をする方法、すなわち試料中での特定の結晶構造の分布をあらわす回折X線画像を取得するための一つの方法を示すと以下のようになる。まず、その結晶構造の特定の格子面に着目し、当該格子面の面間隔に対応する理論上の回折角度に相当する散乱角度(入射X線の光軸と回折X線の光軸のなす角度)位置へ二次元位置敏感型検出器(3)を移動させる。入射X線(8)を照射した状態でこの位置を中心として二次元位置敏感型検出器(3)の回動位置(散乱角度位置)を連続走査しながら最適角度位置を探し、最適角度位置で回折X線画像を取得すると、注目する格子面についての回折X線強度分布が得られる。その画像から、注目している結晶構造が試料(1)のどの部位に観察されるのかを特定することができる。他方、二次元位置敏感型検出器(3)による角度走査をステップ走査として、理論上の回折角度に対応する検出器回動角度位置のまわりの複数の検出器回動角度位置でそれぞれ回折X線画像を得るということも考えられる。散乱角度位置を走査するのは、理論上の回折角度と実際の回折角度とが厳密に一致するとはかぎらないからである。ここで、回折角度は入射X線(8)の光軸に対する角度であるので、入射X線(8)の入射角度が0度でない限り回折X線(6)の試料表面に対する出射角度とは一致しない。   A method of using the latter method using the X-ray diffraction analyzer according to the invention of this application, that is, a method for acquiring a diffraction X-ray image representing the distribution of a specific crystal structure in a sample. Shown below. First, focusing on a specific lattice plane of the crystal structure, a scattering angle corresponding to a theoretical diffraction angle corresponding to the plane spacing of the lattice plane (an angle formed by the optical axis of incident X-rays and the optical axis of diffracted X-rays). ) Move the two-dimensional position sensitive detector (3) to the position. While irradiating the incident X-ray (8), the optimal angular position is searched while continuously scanning the rotational position (scattering angular position) of the two-dimensional position sensitive detector (3) around this position. When a diffracted X-ray image is acquired, a diffracted X-ray intensity distribution is obtained for the lattice plane of interest. From that image, it is possible to specify in which part of the sample (1) the crystal structure of interest is observed. On the other hand, diffracted X-rays are respectively detected at a plurality of detector rotation angle positions around the detector rotation angle position corresponding to the theoretical diffraction angle, using angle scanning by the two-dimensional position sensitive detector (3) as step scanning. It is also conceivable to obtain an image. The reason for scanning the scattering angle position is that the theoretical diffraction angle and the actual diffraction angle do not always coincide with each other. Here, since the diffraction angle is the angle with respect to the optical axis of the incident X-ray (8), the diffraction angle of the diffracted X-ray (6) with respect to the sample surface coincides unless the incident angle of the incident X-ray (8) is 0 degree. do not do.

試料・検出器間距離の決定は、目的に応じて範囲の大小はあるものの上述のように検出器の角度走査を行う必要があることと角度走査中は試料・検出器間距離が固定されることを念頭において、角度走査範囲の最大角度および最小角度で部材間の接触が生じたり入射X線(8)を遮ったりしないように注意して行う必要がある。薄膜配置の場合には、試料・検出器間距離は二次元位置敏感型検出器(3)の検出器面が試料表面に正対する場合(回折X線(6)の試料表面に対する出射角が90度)に入射X線(8)を妨げず且つ部材間の接触なしに最も近づけることができるので、このような配置がこの出願の発明に係るX線回折分析装置において最も検出効率がよい配置である。使用する装置の構造、試料の形状やサイズにもよるが、この配置では2〜5mm程度まで試料・検出器間距離を短くすることができる。一方、この位置から検出し得る回折X線(6)の出射角度が大きくなるようにあるいは小さくなるように二次元位置敏感型検出器(3)を回動させていくと、試料表面と検出器面との距離を離さなければ試料(1)、試料支持部(2)、X線管(9)、X線管支持部(10)等の部材との接触や入射X線(8)を遮るという問題が生じてしまう。したがって、試料表面に正対する位置から二次元位置敏感型検出器(3)を約±3
0度回動させた位置では、試料・検出器間距離は12〜15mm程度が目安となる。ただし、それより離れたら測定が行えないというものではない。試料・検出器間距離が離れすぎないということを考慮すると、試料表面に対して60〜120度の範囲の出射角度をもつ回折X線(6)だけを利用するという選択、すなわち、二次元位置敏感型検出器(3)の回動角度範囲をこの範囲に限定してしまうということも十分に考え得る。注目する格子面としてこの角度範囲内で回折X線(6)を検出できる格子面を選べばよいのである。
In determining the distance between the sample and the detector, although there is a range depending on the purpose, it is necessary to perform the angle scan of the detector as described above, and the distance between the sample and the detector is fixed during the angle scan. With this in mind, care must be taken so that contact between members does not occur and incident X-rays (8) are not blocked at the maximum and minimum angles of the angular scanning range. In the case of the thin film arrangement, the distance between the sample and the detector is 90 ° when the detector surface of the two-dimensional position sensitive detector (3) faces the sample surface (the angle of emission of the diffraction X-ray (6) with respect to the sample surface is 90). ), The X-ray diffraction analyzer according to the invention of this application has the highest detection efficiency. is there. Depending on the structure of the apparatus used and the shape and size of the sample, this arrangement can shorten the distance between the sample and the detector to about 2 to 5 mm. On the other hand, when the two-dimensional position sensitive detector (3) is rotated so that the emission angle of the diffracted X-ray (6) detectable from this position is increased or decreased, the sample surface and the detector are detected. If the distance from the surface is not separated, contact with members such as the sample (1), sample support part (2), X-ray tube (9), X-ray tube support part (10) and incident X-rays (8) are blocked. The problem will arise. Accordingly, the two-dimensional position sensitive detector (3) is moved about ± 3 from the position facing the sample surface.
At the position rotated by 0 degrees, the distance between the sample and the detector is approximately 12 to 15 mm. However, it does not mean that measurement cannot be performed if it is further away. Considering that the distance between the sample and the detector is not too far away, the choice to use only diffracted X-rays (6) having an exit angle in the range of 60 to 120 degrees with respect to the sample surface, that is, a two-dimensional position It is fully conceivable that the rotational angle range of the sensitive detector (3) is limited to this range. The grating plane that can detect the diffracted X-rays (6) within this angular range should be selected as the grating plane of interest.

X線管(9)は交換可能であるので、複数のX線管の中から測定対象に応じた適切なX線エネルギー(波長)をもつ特性X線を発生させるX線管を選んで使用すれば、二次元位置敏感型検出器(3)の回動角度範囲が制限されていても十分に広範囲の試料に対応できる。たとえば、クロム管からのクロムKα線(5414eV)、鉄管からの鉄Kα線(6403eV)、銅管からの銅Kα線(8047eV)等を次の2つの基準で選択する。第1には、二次元位置敏感型検出器(3)が動くことのできる回転軸線(5)のまわりでの回動角度範囲内で注目している格子面の面間隔に対応する回折角(入射X線(8)と回折X線(6)がなす角、すなわち散乱角)を有する回折X線(6)を検出できるように選ぶ。回折X線(6)の強度の点から目安としては、目的とする格子面からの回折X線(6)の試料表面に対する出射角度が60〜120度、有利には90度近傍となるような波長の特性X線を発生させるX線管(9)を選択するとよい。第2には、試料中の主成分元素の吸収端に留意し、蛍光X線によるバックグラウンドに回折像が埋もれないように、吸収端波長よりも長波長(低いX線エネルギー)の特性X線を発生させるX線管(9)を選ぶ。   Since the X-ray tube (9) is replaceable, an X-ray tube that generates characteristic X-rays having an appropriate X-ray energy (wavelength) according to the object to be measured is selected from a plurality of X-ray tubes. For example, even if the rotation angle range of the two-dimensional position sensitive detector (3) is limited, a sufficiently wide range of samples can be handled. For example, a chromium Kα ray (5414 eV) from a chromium tube, an iron Kα ray (6403 eV) from an iron tube, a copper Kα ray (8047 eV) from a copper tube, and the like are selected based on the following two criteria. First, a diffraction angle (corresponding to the lattice spacing of interest within a rotation angle range around the rotation axis (5) in which the two-dimensional position sensitive detector (3) can move ( The diffracted X-ray (6) having the angle formed by the incident X-ray (8) and the diffracted X-ray (6), that is, the scattering angle, is selected. As a guideline from the point of intensity of the diffracted X-ray (6), the angle of emission of the diffracted X-ray (6) from the target lattice plane with respect to the sample surface is 60 to 120 degrees, preferably around 90 degrees. An X-ray tube (9) that generates a characteristic X-ray with a wavelength may be selected. Second, paying attention to the absorption edge of the main component element in the sample, characteristic X-rays having a wavelength longer than the absorption edge wavelength (lower X-ray energy) so that the diffraction image is not buried in the background of fluorescent X-rays. Select the X-ray tube (9) that generates

X線管(9)が発生させる特性X線はKα線のほかにKβ線等も含んでいる。Kβ線を含むことで、取得されるX線回折図形に不都合な影響が生じる場合にはX線管9の取り出し窓としてKβ線を吸収するフィルター材を用いることによりKβ線を排除するとよい。このとき、X線管(9)と試料(1)とを近接配置するためには、入射X線の光路上にKβ線を吸収する光学素子を設けるのではなく、X線管(9)の一部であるX線取り出し窓をKβ線を吸収する材料で形成することが重要である。フィルター材としては、クロム管ではチタン、鉄管ではマンガン、銅管ではニッケルの金属箔等が有望である。   Characteristic X-rays generated by the X-ray tube (9) include Kβ rays and the like in addition to Kα rays. If the X-ray diffraction pattern to be acquired is adversely affected by including Kβ rays, the Kβ rays may be eliminated by using a filter material that absorbs Kβ rays as the extraction window of the X-ray tube 9. At this time, in order to arrange the X-ray tube (9) and the sample (1) close to each other, an optical element that absorbs Kβ rays is not provided on the optical path of the incident X-ray, but the X-ray tube (9) is not provided. It is important to form part of the X-ray extraction window with a material that absorbs Kβ rays. As a filter material, a metal foil of titanium is promising for a chromium tube, manganese for an iron tube, nickel for a copper tube, and the like.

図1では、この出願の発明に係るX線回折分析装置を実験室で使用することを想定して試料支持部(2)を図示しているが、試料支持部(2)の役割は試料(1)を動かないように固定保持することであるので、試料(1)が固定された構造物の一部であれば試料支持部(2)は当然に不要である。そのような場合には試料の位置は定まった位置から移動させることができないので、観察しようとする被測定領域の場所に応じてX線管(9)、二次元位置敏感型検出器(3)等を最適な位置に据えることとなる。一方、実験室で使用することを念頭においた装置の場合には、二次元位置敏感型検出器(3)の回動に関する回転軸線(5)の位置を定めておいて、回転軸線(5)が被測定領域(A)と同一面内で被測定領域(A)の中心を通る位置関係となるように試料位置を調整し、最後にX線管(9)の位置を定めるという手順をとってもよい。実験室で使用するための装置では、試料(1)の表面が水平になるように装置を構成すると、溶液からの析出物等のように液体に浮いているような不安定な試料をも測定対象とすることができる。   In FIG. 1, the sample support part (2) is illustrated on the assumption that the X-ray diffraction analyzer according to the invention of this application is used in a laboratory, but the role of the sample support part (2) is the sample ( Since 1) is fixed and held so as not to move, the sample support part (2) is naturally unnecessary if it is a part of the structure to which the sample (1) is fixed. In such a case, since the position of the sample cannot be moved from a fixed position, an X-ray tube (9), a two-dimensional position sensitive detector (3) depending on the location of the measurement region to be observed. Etc. will be placed in the optimum position. On the other hand, in the case of an apparatus intended for use in a laboratory, the position of the rotation axis (5) relating to the rotation of the two-dimensional position sensitive detector (3) is determined, and the rotation axis (5) Takes the procedure of adjusting the sample position so that the position of the sample passes through the center of the measurement area (A) in the same plane as the measurement area (A), and finally determining the position of the X-ray tube (9). Good. In an apparatus for use in the laboratory, if the apparatus is configured so that the surface of the sample (1) is horizontal, even an unstable sample such as a precipitate from a solution is measured. Can be targeted.

二次元位置敏感型検出器(3)としては、多素子の半導体検出器、X線検出能力を有するCCDカメラ、CMOSイメージセンサー等を用いることができる。X線を直接検出することができるCCDカメラあるいはCMOSイメージセンサーでは、発生する電荷量から検出したX線のエネルギーを決定することにより、回折X線と蛍光X線を区別することも可能となる。他方、X線を直接検出するのではなく、X線によって発光するシンチレータを有し、そのシンチレータの発光を検知するような検出器であってもこの出願の発明を実施するうえではなんら問題はない。   As the two-dimensional position sensitive detector (3), a multi-element semiconductor detector, a CCD camera having an X-ray detection capability, a CMOS image sensor, or the like can be used. In a CCD camera or a CMOS image sensor capable of directly detecting X-rays, it is possible to distinguish between diffracted X-rays and fluorescent X-rays by determining the detected X-ray energy from the amount of generated charges. On the other hand, there is no problem in practicing the invention of this application even if the detector has a scintillator that emits light by X-rays instead of directly detecting X-rays and detects the light emission of the scintillator. .

画像形成記録部は、一般的にはコンピュータをその一部として有するが、コンピュータの機能をマイクロチップとして二次元位置敏感型検出器(3)に内蔵させて構成することも可能である。   The image forming / recording unit generally includes a computer as a part thereof, but may be configured by incorporating the function of the computer as a microchip in the two-dimensional position sensitive detector (3).

この出願の発明に係るX線回折分析装置の概念図である。It is a conceptual diagram of the X-ray diffraction analyzer which concerns on invention of this application.

符号の説明Explanation of symbols

1 試料
2 試料支持部
3 二次元位置敏感型検出器
4 検出器支持部
5 二次元位置敏感型検出器の回動に関する回転軸線
6 回折X線
7 角度発散制限手段
8 入射X線
9 X線管
10 X線管支持部
A 被測定領域
DESCRIPTION OF SYMBOLS 1 Sample 2 Sample support part 3 Two-dimensional position sensitive detector 4 Detector support part 5 Rotation axis regarding rotation of two-dimensional position sensitive detector 6 Diffracted X-ray 7 Angle divergence limiting means 8 Incident X-ray 9 X-ray tube 10 X-ray tube support section A Measurement area

Claims (7)

固定保持されている不均一な結晶構造を有する試料の局所構造情報を含んだX線回折図形を、試料を照らす入射X線として所定の元素の特性X線を発生させるX線管と、二次元に配列された複数の検出素子からなる二次元位置敏感型検出器とを用いて取得するためのX線回折分析装置において、
前記X線管を、前記入射X線が試料表面の観察しようとする被測定領域全体を照らすことのできる位置であって且つ前記試料と接触しない範囲で限りなく前記試料に接近した位置に固定保持し、
前記二次元位置敏感型検出器を、試料表面に前記被測定領域の中心を通って入射X線の光軸に垂直に延在する回転軸線のまわりで回動可能に、かつ、試料と二次元位置敏感型検出器との間の距離を調節する機構を用いて前記試料表面に対して前記二次元位置敏感型検出器の検出器面が正対した位置で前記試料表面と前記の検出器面との間の距離が2〜5mmとなるように配置し、
前記試料で回折されて前記被測定領域内の各部位から出射する回折X線をそれぞれ前記二次元位置敏感型検出器の異なる検出素子で区別して検出するために当該回折X線の角度発散を制限する角度発散制限手段を、前記回転軸線のまわりで前記二次元位置敏感型検出器と一体的に回動するように設け、
前記検出素子でそれぞれ検出した回折X線の強度を各画素値とする二次元の回折X線画像を形成し記録する画像形成記録部を有することを特徴とするX線回折分析装置。
An X-ray tube for generating a characteristic X-ray of a predetermined element as an incident X-ray that illuminates the sample, an X-ray diffraction pattern including local structure information of the sample having a non-uniform crystal structure that is fixed and held, and two-dimensional In an X-ray diffraction analyzer for acquisition using a two-dimensional position sensitive detector consisting of a plurality of detector elements arranged in
The X-ray tube is fixedly held at a position where the incident X-ray can illuminate the entire measurement region to be observed on the sample surface and close to the sample as long as it is not in contact with the sample. And
The two-dimensional position sensitive detector can be rotated around a rotation axis extending perpendicularly to the optical axis of incident X-rays through the center of the region to be measured on the sample surface, and two-dimensionally with the sample. The sample surface and the detector surface at a position where the detector surface of the two-dimensional position sensitive detector faces the sample surface using a mechanism for adjusting the distance between the position sensitive detector and the surface. Arranged so that the distance between and becomes 2-5 mm,
Limiting the angle divergence of the diffracted X-rays in order to distinguish and detect the diffracted X-rays diffracted by the sample and emitted from each part in the measurement area by different detection elements of the two-dimensional position sensitive detector. An angle divergence limiting means for rotating so as to rotate integrally with the two-dimensional position sensitive detector around the rotation axis;
An X-ray diffraction analysis apparatus comprising: an image forming recording unit that forms and records a two-dimensional diffracted X-ray image with each pixel value corresponding to the intensity of the diffracted X-ray detected by the detection element.
前記X線管が、線状の細い長方形断面を有するX線ビームを発生させるX線管であり、前記長方形断面の長軸が前記回転軸線に平行に延在し且つ試料表面と前記入射X線の光軸とがなす角度が0〜3度となるように前記X線管が固定保持されていること、を特徴とする請求項1に記載のX線回折分析装置。   The X-ray tube is an X-ray tube that generates an X-ray beam having a linear thin rectangular cross section, the long axis of the rectangular cross section extends parallel to the rotation axis, and the sample surface and the incident X-ray The X-ray diffraction analyzer according to claim 1, wherein the X-ray tube is fixedly held so that an angle formed by the optical axis of the X-ray tube is 0 to 3 degrees. 前記X線管が、交換可能であり、異なる元素の特性X線を発生させる複数のX線管の中からX線管を選択して使用可能であることを特徴とする、請求項1または2に記載のX線回折分析装置。   The X-ray tube is replaceable, and can be used by selecting an X-ray tube from among a plurality of X-ray tubes that generate characteristic X-rays of different elements. X-ray diffraction analyzer described in 1. 前記X線管と前記試料との間の距離および試料表面と前記入射X線の光軸とがなす角度を調整するための機構が設けられていることを特徴とする、請求項1から3のいずれか一項に記載のX線回折分析装置。   The mechanism for adjusting the distance between the X-ray tube and the sample and the angle formed between the sample surface and the optical axis of the incident X-ray is provided. The X-ray diffraction analyzer as described in any one of Claims. 前記X線管のX線取り出し窓が、前記X線管で発生する特性X線のうちのKβ線を吸収するフィルター材からなることを特徴とする、請求項1から4のいずれか一項に記載のX線回折分析装置。   The X-ray extraction window of the X-ray tube is made of a filter material that absorbs Kβ rays out of characteristic X-rays generated in the X-ray tube. The described X-ray diffraction analyzer. 前記二次元位置敏感型検出器および前記角度発散制限手段の回動角度範囲が、試料表面に対して60度の位置から120度の位置までであることを特徴とする、請求項1から5のいずれか一項に記載のX線回折分析装置。   6. The rotation angle range of the two-dimensional position sensitive detector and the angle divergence limiting means is from a position of 60 degrees to a position of 120 degrees with respect to the sample surface. The X-ray diffraction analyzer as described in any one of Claims. 固定保持されている不均一な結晶構造を有する試料の局所構造情報を含んだX線回折図形を、試料を照らす入射X線として所定の元素の特性X線を発生させるX線管と、二次元に配列された複数の検出素子からなる二次元位置敏感型検出器とを用いて取得するためのX線回折分析方法において、
試料に近接して配置されたX線管から出射して試料に入射する入射X線によって試料表面の観察しようとする被測定領域全体を照らすこと、
試料で回折されて前記被測定領域内の各部位から出射する回折X線の角度発散を制限することにより、各部位から出射する回折X線をそれぞれ二次元位置敏感型検出器の異なる検出素子で区別して検出すること、および、
試料と二次元位置敏感型検出器との間の距離を調節する機構を用いて前記試料表面に対して前記二次元位置敏感型検出器の検出器面が正対した位置で前記試料表面と前記の検出器面との間の距離が2〜5mmとなるように、かつ、前記試料表面に被測定領域の中心を通って入射X線の光軸に垂直に延在する回転軸線のまわりで二次元位置敏感型検出器を回動移動させて所望の角度位置に二次元位置敏感型検出器を保持し、その位置で各検出素子が検出した回折X線の強度を各画素値とする二次元の回折X線画像を形成して記録することを特徴とするX線回折分析方法。
An X-ray tube for generating a characteristic X-ray of a predetermined element as an incident X-ray that illuminates the sample, an X-ray diffraction pattern including local structure information of the sample having a non-uniform crystal structure that is fixed and held, and two-dimensional In an X-ray diffraction analysis method for obtaining using a two-dimensional position sensitive detector composed of a plurality of detector elements arranged in a
Illuminating the entire region to be measured to be observed on the sample surface by incident X-rays emitted from an X-ray tube arranged close to the sample and incident on the sample;
By restricting the angular divergence of the diffracted X-rays diffracted by the sample and emitted from each part in the measured region, the diffracted X-rays emitted from each part are respectively detected by different detection elements of the two-dimensional position sensitive detector. Distinguishing and detecting, and
Using the mechanism for adjusting the distance between the sample and the two-dimensional position sensitive detector, the sample surface and the sample surface at a position where the detector surface of the two-dimensional position sensitive detector faces the sample surface. And about a rotation axis extending perpendicularly to the optical axis of incident X-rays through the center of the measurement area on the sample surface. Two-dimensional position-sensitive detector is rotated and moved to hold the two-dimensional position-sensitive detector at a desired angular position, and the intensity of diffracted X-rays detected by each detection element at that position is used as a pixel value. An X-ray diffraction analysis method comprising: forming and recording a diffraction X-ray image of
JP2005066120A 2005-03-09 2005-03-09 X-ray diffraction analyzer and X-ray diffraction analysis method Expired - Fee Related JP4604242B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005066120A JP4604242B2 (en) 2005-03-09 2005-03-09 X-ray diffraction analyzer and X-ray diffraction analysis method
PCT/JP2005/018063 WO2006095468A1 (en) 2005-03-09 2005-09-22 X-ray diffraction analyzer and analyzing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005066120A JP4604242B2 (en) 2005-03-09 2005-03-09 X-ray diffraction analyzer and X-ray diffraction analysis method

Publications (2)

Publication Number Publication Date
JP2006250646A JP2006250646A (en) 2006-09-21
JP4604242B2 true JP4604242B2 (en) 2011-01-05

Family

ID=36953074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005066120A Expired - Fee Related JP4604242B2 (en) 2005-03-09 2005-03-09 X-ray diffraction analyzer and X-ray diffraction analysis method

Country Status (2)

Country Link
JP (1) JP4604242B2 (en)
WO (1) WO2006095468A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2818851B1 (en) * 2013-06-26 2023-07-26 Malvern Panalytical B.V. Diffraction Imaging
CN111175325B (en) * 2020-01-02 2024-10-22 中国科学院金属研究所 Method and special device for preparing thin-wall pipe flattening texture test sample

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292379A (en) * 1999-04-12 2000-10-20 Rigaku Corp X-ray diffraction device and measuring method of x-ray locking curve
JP2002039970A (en) * 2000-07-28 2002-02-06 Rigaku Corp X-ray device
JP2002310950A (en) * 2001-04-06 2002-10-23 Rigaku Corp Apparatus and method for x-ray topography
JP2004510156A (en) * 2000-09-27 2004-04-02 ユーラトム Microbeam collimator and method for realizing high-resolution X-ray diffraction using the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02219000A (en) * 1989-02-18 1990-08-31 Shimadzu Corp Automatic control device of x-ray apparatus
JPH05107203A (en) * 1991-10-15 1993-04-27 Jeol Ltd X-ray apparatus for evaluating surface condition of sample
JPH0735706A (en) * 1993-07-19 1995-02-07 Natl Inst For Res In Inorg Mater Thin film x-ray diffraction equipment employing x-ray tube optical system
JP2002333409A (en) * 2001-05-09 2002-11-22 Shimadzu Corp X-ray stress measuring device
US7065175B2 (en) * 2003-03-03 2006-06-20 Varian Medical Systems Technologies, Inc. X-ray diffraction-based scanning system
JP2005017014A (en) * 2003-06-24 2005-01-20 Rigaku Corp X-ray diffractometer
JP3834652B2 (en) * 2003-09-10 2006-10-18 独立行政法人物質・材料研究機構 X-ray diffraction microscope apparatus and X-ray diffraction measurement method using X-ray diffraction microscope apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292379A (en) * 1999-04-12 2000-10-20 Rigaku Corp X-ray diffraction device and measuring method of x-ray locking curve
JP2002039970A (en) * 2000-07-28 2002-02-06 Rigaku Corp X-ray device
JP2004510156A (en) * 2000-09-27 2004-04-02 ユーラトム Microbeam collimator and method for realizing high-resolution X-ray diffraction using the same
JP2002310950A (en) * 2001-04-06 2002-10-23 Rigaku Corp Apparatus and method for x-ray topography

Also Published As

Publication number Publication date
WO2006095468A1 (en) 2006-09-14
JP2006250646A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
US9383324B2 (en) Laboratory X-ray micro-tomography system with crystallographic grain orientation mapping capabilities
KR101912907B1 (en) X-ray topography apparatus
US20020191747A1 (en) Combined X-ray analysis apparatus
JPH11502025A (en) Apparatus for simultaneous X-ray diffraction and X-ray fluorescence measurement
JP3706110B2 (en) X-ray analyzer and X-ray analysis method
JP5116014B2 (en) Small-angle wide-angle X-ray measurement system
JP2012122746A5 (en)
JP3834652B2 (en) X-ray diffraction microscope apparatus and X-ray diffraction measurement method using X-ray diffraction microscope apparatus
US7564947B2 (en) Tomographic energy dispersive X-ray diffraction apparatus comprising an array of detectors of associated collimators
JP5081556B2 (en) X-ray diffraction measurement apparatus equipped with a Debye-Scherrer optical system and X-ray diffraction measurement method therefor
JP5403728B2 (en) Neutron diffractometer
JPH06258260A (en) X-ray diffraction device
CN114486971A (en) Multi-source designed X-ray analysis system and method
JPH05264479A (en) X-ray analyzer
JP4604242B2 (en) X-ray diffraction analyzer and X-ray diffraction analysis method
US20020097834A1 (en) X-ray analysis apparatus
WO2014041675A1 (en) X-ray imaging device and x-ray imaging method
JP4581126B2 (en) X-ray diffraction analysis method and X-ray diffraction analysis apparatus
JP2010286346A (en) Spectroscope
JP4694296B2 (en) X-ray fluorescence three-dimensional analyzer
JP5346916B2 (en) X-ray analysis apparatus of sample provided with diffraction analyzer system for performing energy filter and angle filter
JP4674352B2 (en) Titanium oxide analysis method and titanium oxide analyzer for carrying out this method
JP2013181914A (en) X-ray intensity correction method and x-ray diffraction device
JP2988995B2 (en) Storage phosphor, X-ray diffraction apparatus and X-ray diffraction method
WO2022013127A1 (en) LABORATORY-BASED 3D SCANNING X-RAY LAUE MICRO-DIFFRACTION SYSTEM AND METHOD (LAB3DμXRD)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100915

R150 Certificate of patent or registration of utility model

Ref document number: 4604242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees