JP4562041B2 - Optical glass, glass gob for press molding, and optical element - Google Patents
Optical glass, glass gob for press molding, and optical element Download PDFInfo
- Publication number
- JP4562041B2 JP4562041B2 JP2006161263A JP2006161263A JP4562041B2 JP 4562041 B2 JP4562041 B2 JP 4562041B2 JP 2006161263 A JP2006161263 A JP 2006161263A JP 2006161263 A JP2006161263 A JP 2006161263A JP 4562041 B2 JP4562041 B2 JP 4562041B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- optical
- less
- optical glass
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011521 glass Substances 0.000 title claims description 95
- 239000005304 optical glass Substances 0.000 title claims description 88
- 238000000465 moulding Methods 0.000 title claims description 57
- 230000003287 optical effect Effects 0.000 title claims description 51
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 28
- 229910052760 oxygen Inorganic materials 0.000 claims description 22
- 238000002834 transmittance Methods 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 18
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 17
- 229910021193 La 2 O 3 Inorganic materials 0.000 claims description 16
- 229910005793 GeO 2 Inorganic materials 0.000 claims description 13
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 9
- 229910052715 tantalum Inorganic materials 0.000 claims description 8
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 5
- 229910052787 antimony Inorganic materials 0.000 claims description 3
- 239000007791 liquid phase Substances 0.000 claims 1
- 238000004031 devitrification Methods 0.000 description 21
- 239000006060 molten glass Substances 0.000 description 18
- 238000004040 coloring Methods 0.000 description 14
- 229910018068 Li 2 O Inorganic materials 0.000 description 11
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 238000003384 imaging method Methods 0.000 description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 230000003595 spectral effect Effects 0.000 description 7
- 239000010408 film Substances 0.000 description 6
- 238000003754 machining Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000005498 polishing Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 3
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000006082 mold release agent Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000006025 fining agent Substances 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000012857 radioactive material Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/064—Glass compositions containing silica with less than 40% silica by weight containing boron
- C03C3/068—Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
- C03C3/14—Silica-free oxide glass compositions containing boron
- C03C3/15—Silica-free oxide glass compositions containing boron containing rare earths
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
- C03C3/14—Silica-free oxide glass compositions containing boron
- C03C3/15—Silica-free oxide glass compositions containing boron containing rare earths
- C03C3/155—Silica-free oxide glass compositions containing boron containing rare earths containing zirconium, titanium, tantalum or niobium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
- C03C3/253—Silica-free oxide glass compositions containing germanium
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Compositions (AREA)
Description
本発明は、光学ガラス、プレス成形用ガラスゴブおよび光学素子に関する。さらに詳しくは、本発明は、屈折率が高く、かつ着色が低減された光学ガラス、およびこの光学ガラスからなるプレス成形用ガラスゴブと光学素子に関するものである。 The present invention relates to an optical glass, a glass gob for press molding, and an optical element. More specifically, the present invention relates to an optical glass having a high refractive index and reduced coloring, and a glass gob for press molding and an optical element made of the optical glass.
近年、デジタルカメラの普及に伴い、小型レンズの需要はますます高まってきている。このような小型レンズを作製するための光学ガラス材料として、高屈折率ガラスは好適である。しかしながら、従来のガラスにおいては、屈折率が高くなると共に、着色する傾向が強くなるという不都合があった。特に、デジタルカメラの場合、撮像素子にCCDを用いるので、撮像装置全体として見た場合、三原色のうち、短波長側にある青色の感度が減衰するという問題があった。また、この種の用途に使用される高屈折率低分散光学ガラスとして特許文献1に記載されたガラスがあるが、このガラスは、高価なHfO2を使用しなければならないという問題があった。 In recent years, with the widespread use of digital cameras, the demand for small lenses is increasing. A high refractive index glass is suitable as an optical glass material for producing such a small lens. However, the conventional glass has the disadvantages that the refractive index is increased and the tendency to color is increased. In particular, in the case of a digital camera, since a CCD is used as an image pickup device, there is a problem in that the blue sensitivity on the short wavelength side among the three primary colors is attenuated when viewed as the whole image pickup apparatus. Further, there is a glass described in Patent Document 1 as a high-refractive-index low-dispersion optical Glass used for this kind of application, the glass has a problem that must be used expensive HfO 2.
本発明は、このような事情のもとで、屈折率が高く、着色が低減された光学ガラス、および該光学ガラスからなるプレス成形用ガラスゴブと光学素子を提供することを目的とするものである。 Under such circumstances, an object of the present invention is to provide an optical glass having a high refractive index and reduced coloring, and a glass gob for press molding and an optical element made of the optical glass. .
本発明者は、前記目的を達成するために鋭意研究を重ねた結果、特定の組成を有する光学ガラスにより、その目的を達成し得ることを見出し、この知見に基づいて本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventor has found that the object can be achieved by using an optical glass having a specific composition, and the present invention has been completed based on this finding. It was.
すなわち、本発明は、
(1)重量%表示で、B2O3を2〜45%、SiO2を0〜30%(ただし、B2O3の含有量>SiO2含有量)、La2O3を10〜50%、TiO2を0〜30%、ZnOを0〜15%、ZrO2を0〜15%、Nb2O5を0〜35%、BaOを0〜35%、SrOを0〜5%、CaOを0%以上8%未満、MgOを0%以上13%未満(ただし、BaO、SrO、CaOおよびMgOの合計含有量0〜40%)、Gd2O3を0〜
20%、Y2O3を0〜15%、Ta2O5を0〜18%、WO3を0%以上0.5%未満、Na2OとK2OとLi2Oを合計で0%以上1.5%未満、GeO2を0〜10%、Bi2O3を0〜20%、Yb2O3を0〜10%、Al2O3を0〜10%、Sb2O3を0%以上2%未満およびSnO2を0〜1%含むことを特徴とする光学ガラス、
(2)屈折率(nd)が1.8〜2.1で、アッベ数(νd)が20〜40である上記(1)項に記載の光学ガラス、
(3)上記(1)または(2)項に記載の光学ガラスからなり、かつ加熱、軟化してプレス成形に供することを特徴とするプレス成形用ガラスゴブ、および
(4)上記(1)または(2)項に記載の光学ガラスからなることを特徴とする光学素子、
を提供するものである。
That is, the present invention
(1) By weight%, B 2 O 3 is 2 to 45%, SiO 2 is 0 to 30% (however, the content of B 2 O 3 > SiO 2 content), and La 2 O 3 is 10 to 50 %, TiO 2 0-30%, ZnO 0-15%, ZrO 2 0-15%, Nb 2 O 5 0-35%, BaO 0-35%, SrO 0-5%, CaO From 0% to less than 8%, MgO from 0% to less than 13% (however, the total content of BaO, SrO, CaO and MgO is 0 to 40%), Gd 2 O 3 is 0 to
20%, Y 2 O 3 from 0 to 15%, Ta 2 O 5 from 0 to 18%, WO 3 from 0% to less than 0.5%, Na 2 O, K 2 O and Li 2 O in total 0 % To less than 1.5%, GeO 2 0 to 10%, Bi 2 O 3 0 to 20%, Yb 2 O 3 0 to 10%, Al 2 O 3 0 to 10%, Sb 2 O 3 An optical glass comprising 0% or more and less than 2% and SnO 2 in an amount of 0 to 1%,
(2) The optical glass according to (1), wherein the refractive index (nd) is 1.8 to 2.1 and the Abbe number (νd) is 20 to 40,
(3) A glass gob for press molding comprising the optical glass as described in (1) or (2) above, and heated and softened for use in press molding, and (4) (1) or ( An optical element comprising the optical glass according to item 2),
Is to provide.
本発明によれば、屈折率が高く、着色が低減された光学ガラスを提供することができる。
また、本発明によれば、屈折率が高く、着色が低減された光学ガラスからなる光学素子をプレス成形によって作製するためのプレス成形用ガラスゴブを提供することができる。
さらに、本発明によれば、屈折率が高く、着色が低減された光学ガラスからなる光学素子を提供することができる。
According to the present invention, an optical glass having a high refractive index and reduced coloring can be provided.
Further, according to the present invention, it is possible to provide a glass gob for press molding for producing an optical element made of optical glass having a high refractive index and reduced coloring by press molding.
Furthermore, according to the present invention, an optical element made of optical glass having a high refractive index and reduced coloring can be provided.
本発明の光学ガラスは、重量%表示で、B2O3を2〜45%、SiO2を0〜30%(ただし、B2O3の含有量>SiO2含有量)、La2O3を10〜50%、TiO2を0〜30%、ZnOを0〜15%、ZrO2を0〜15%、Nb2O5を0〜35%、BaOを0〜35%、SrOを0〜5%、CaOを0%以上8%未満、MgOを0%以上13%未満(ただし、BaO、SrO、CaOおよびMgOの合計含有量0〜40%)、Gd2O3を0〜20%、Y2O3を0〜15%、Ta2O5を0〜18%、WO3を0%以上0.5%未満、Na2OとK2OとLi2Oを合計で0%以上1.5%未満、GeO2を0〜10%、Bi2O3を0〜20%、Yb2O3を0〜10%、Al2O3を0〜10%、Sb2O3を0%以上2%未満およびSnO2を0〜1%含むものである。 The optical glass of the present invention is expressed by weight%, 2 to 45% of B 2 O 3 , 0 to 30% of SiO 2 (however, the content of B 2 O 3 > SiO 2 content), La 2 O 3 10 to 50%, TiO 2 0 to 30%, ZnO 0 to 15%, ZrO 2 0 to 15%, Nb 2 O 5 0 to 35%, BaO 0 to 35%, SrO 0 to 5%, CaO 0% or more and less than 8%, MgO 0% or more and less than 13% (however, the total content of BaO, SrO, CaO and MgO is 0 to 40%), Gd 2 O 3 is 0 to 20%, Y 2 O 3 is 0 to 15%, Ta 2 O 5 is 0 to 18%, WO 3 is 0% or more and less than 0.5%, and Na 2 O, K 2 O, and Li 2 O are 0% or more in total 1 less than .5%, the GeO 2 0%, the Bi 2 O 3 0 to 20%, the Yb 2 O 3 0%, the Al 2 O 3 0 10%, is intended Sb 2 O 3 less than 2% 0% or more and containing SnO 2 0 to 1%.
上記光学ガラスによれば、可視光領域において高い透過率を得ることができ、特に、可視域の短波長領域において、高い透過率を得ることができる。
また、屈折率(nd)が1.8〜2.1、アッベ数(νd)が20〜40の範囲でより安定したガラスを得ることができる。
According to the optical glass, a high transmittance can be obtained in the visible light region, and in particular, a high transmittance can be obtained in a short wavelength region in the visible region.
Further, a more stable glass can be obtained when the refractive index (nd) is 1.8 to 2.1 and the Abbe number (νd) is 20 to 40.
次に上記組成範囲について詳細に説明する。以下、各成分の含有量は重量%表示とする。
B2O3は、上記ガラスにおいて網目形成酸化物として、またガラスの溶融性、流動粘性の温度低下に効果的な成分であり、2%以上を必要とする。しかし、45%を上回ると屈折率が低下するので、B2O3を2〜45%とする。好ましくは3〜24%であり、より好ましくは5〜18%である。
Next, the composition range will be described in detail. Hereinafter, the content of each component is expressed by weight%.
B 2 O 3 is a component effective as a network-forming oxide in the glass and for reducing the temperature of the meltability and flow viscosity of the glass, and requires 2% or more. However, if it exceeds 45%, the refractive index decreases, so B 2 O 3 is set to 2 to 45%. Preferably it is 3 to 24%, more preferably 5 to 18%.
SiO2は、上記ガラスにおいて耐失透性を維持する機能を果たす。SiO2を導入した場合、ガラス網目形成成分として機能する。しかし、30%を上回ると溶解性が悪化し、安定に製造することが難しくなるため、SiO2の量を0〜30%とする。好ましい量は0〜18%であり、さらに好ましい量は1〜18%である。
また、B2O3の含有量がSiO2の含有量以下になると、ガラスに着色が生じやすくなるとともに、溶解性・耐失透性が悪化してしまうため、B2O3の量をSiO2の量よりも多くする。
SiO 2 fulfills the function of maintaining devitrification resistance in the glass. When SiO 2 is introduced, it functions as a glass network forming component. However, if it exceeds 30%, the solubility deteriorates and it becomes difficult to produce stably, so the amount of SiO 2 is made 0 to 30%. A preferred amount is 0 to 18%, and a more preferred amount is 1 to 18%.
Further, when the content of B 2 O 3 is less than or equal to the content of SiO 2 , the glass is likely to be colored and the solubility and devitrification resistance are deteriorated, so the amount of B 2 O 3 is reduced to SiO 2. More than the amount of 2 .
La2O3は高屈折率、低分散ガラスを得るために必須の成分であり、10%より少ないと、屈折率が低下し、50%より多いと耐失透性が低下するため、安定生産可能なガラスが得られにくくなる。したがって、La2O3の導入量は10〜50%とする。好ましくは、18〜47%であり、より好ましくは25〜47%である。 La 2 O 3 is an essential component for obtaining a high refractive index and low dispersion glass. If it is less than 10%, the refractive index is lowered, and if it is more than 50%, the devitrification resistance is lowered. It becomes difficult to obtain possible glass. Therefore, the introduction amount of La 2 O 3 is 10 to 50%. Preferably, it is 18 to 47%, more preferably 25 to 47%.
TiO2は、屈折率やアッベ数などの光学的特性を調整しつつ、化学的耐久性、耐失透性を向上させるための成分であり、ガラスに上記性質を付与する上から、その導入量は0〜30%が必要であり、0〜26%が好ましく、1〜26%がより好ましく、8〜26%がさらに好ましい。 TiO 2 is a component for improving chemical durability and devitrification resistance while adjusting optical characteristics such as refractive index and Abbe number. 0 to 30% is necessary, 0 to 26% is preferable, 1 to 26% is more preferable, and 8 to 26% is more preferable.
ZnOは、ガラスに高屈折率と低分散性(屈折率の波長依存性が小さい)を付与するとともに、耐失透性の良化、粘性流動の温度を低下させる効果を有する成分である。しかし
、導入量が15%を上回ると失透性が強くなり、安定製造可能なガラスが得られにくくなる。したがって、ZnOを0〜15%とする。好ましくは0〜12%である。ZnOは適量の添加で分光透過率の短波長端の立上りが急峻になるので、0%超かつ5%以下添加するのがより好ましく、0.5〜5%添加するのがさらに好ましく、1〜5%添加するのがより一層好ましい。
ZnO is a component having the effects of imparting high refractive index and low dispersion (small refractive index wavelength dependency) to glass, improving devitrification resistance, and reducing the temperature of viscous flow. However, when the introduction amount exceeds 15%, the devitrification becomes strong, and it becomes difficult to obtain a glass that can be stably manufactured. Therefore, ZnO is set to 0 to 15%. Preferably it is 0 to 12%. When ZnO is added in an appropriate amount, the rise of the short wavelength end of the spectral transmittance becomes steep, so it is more preferable to add more than 0% and 5% or less, more preferably 0.5 to 5%. It is even more preferable to add 5%.
ZrO2は、高屈折率をもたらす成分であり、少量の添加で耐失透性を改善する効果を有する。しかし、15%を上回ると逆に耐失透性が低下し、溶解性も悪化する。したがってZrO2を0〜15%とする。好ましくは0〜10%であり、より好ましくは1〜10%である。 ZrO 2 is a component that provides a high refractive index, and has the effect of improving devitrification resistance when added in a small amount. However, if it exceeds 15%, the devitrification resistance decreases, and the solubility also deteriorates. Therefore, ZrO 2 is set to 0 to 15%. Preferably it is 0 to 10%, more preferably 1 to 10%.
Nb2O5は、高屈折率を付与するための成分であり、耐失透性を改善する効果も有する。その導入量は、0〜35%とすることが適当である。35%を超えると短波長域での吸収が強まり、着色を生じる傾向が強い。好ましくは0〜30%であり、より好ましくは1〜30%であり、さらに好ましくは1〜20%であり、より一層好ましくは1〜15%である。 Nb 2 O 5 is a component for imparting a high refractive index and also has an effect of improving devitrification resistance. The introduction amount is suitably 0 to 35%. If it exceeds 35%, the absorption in the short wavelength region becomes strong, and there is a strong tendency to cause coloring. Preferably it is 0-30%, More preferably, it is 1-30%, More preferably, it is 1-20%, More preferably, it is 1-15%.
BaO、SrO、CaO、MgOはガラス原料として炭酸塩、硝酸塩を用いることにより脱泡を促進する効果が有る。
BaOは、0〜35%の添加で着色を改善する効果がある。しかし、35%を上回ると耐失透性が悪化する。好ましくは0〜32%であり、より好ましくは1〜32%、さらに好ましくは1〜25%である。
BaO, SrO, CaO, and MgO have an effect of promoting defoaming by using carbonate or nitrate as a glass raw material.
BaO has an effect of improving coloring by addition of 0 to 35%. However, if it exceeds 35%, devitrification resistance deteriorates. Preferably it is 0-32%, More preferably, it is 1-32%, More preferably, it is 1-25%.
SrOは、BaOとの置換により0〜5%添加が可能である。同様にCaOを0%以上8%未満、MgOを0%以上13%未満添加することが可能である。SrOはガラスを再加熱して成形する場合の耐失透性を向上させる上から、0%以上1%未満とすることが好ましい。特に屈折率(nd)が1.8〜1.86の場合、上記耐失透性の低下に留意したほうがよく、屈折率(nd)が1.8〜1.86の場合、SrOを0%以上1%未満、屈折率(nd)が1.86超〜2.1の場合、SrOを0〜5%とするのがよい。また、屈折率(nd)が1.8〜2.1の場合、SrOを0〜0.8%とするのがより好ましい。 SrO can be added at 0 to 5% by substitution with BaO. Similarly, 0% or more and less than 8% of CaO and 0% or more and less than 13% of MgO can be added. SrO is preferably 0% or more and less than 1% from the viewpoint of improving the devitrification resistance when the glass is reheated and molded. In particular, when the refractive index (nd) is 1.8 to 1.86, it is better to pay attention to the decrease in devitrification resistance. When the refractive index (nd) is 1.8 to 1.86, SrO is 0%. When the above is less than 1% and the refractive index (nd) is more than 1.86 to 2.1, SrO is preferably 0 to 5%. Further, when the refractive index (nd) is 1.8 to 2.1, it is more preferable that SrO is 0 to 0.8%.
また、BaO、SrO、CaO、MgOの合計含有量が40%を上回ると耐失透性が低下し、安定生産可能なガラスが得られにくくなるため、BaO、SrO、CaO、MgOの合計含有量を0〜40%とする。 Further, if the total content of BaO, SrO, CaO, and MgO exceeds 40%, the devitrification resistance decreases, and it becomes difficult to obtain a glass that can be stably produced. Therefore, the total content of BaO, SrO, CaO, and MgO 0 to 40%.
Gd2O3は、La2O3との置換により20%まで添加することが可能であるが、20%を超えると耐失透性が悪化し、安定生産可能なガラスが得られにくくなる。したがって、Gd2O3の含有量を0〜20%とする。好ましくは、0〜10%である。 Gd 2 O 3 can be added up to 20% by substitution with La 2 O 3 , but if it exceeds 20%, devitrification resistance deteriorates, and it becomes difficult to obtain a glass that can be stably produced. Therefore, the content of Gd 2 O 3 is set to 0 to 20%. Preferably, it is 0 to 10%.
Y2O3、Yb2O3もまた、La2O3との置換によりそれぞれ0〜15%、0〜10%の添加が可能である。しかし、これらの量を上回ると耐失透性が悪化し、安定生産可能なガラスが得られにくくなる。好ましい範囲はY2O3が0%以上2%未満、Yb2O3が0〜4%である。より好ましいY2O3の範囲は0〜1.5%である。 Y 2 O 3 and Yb 2 O 3 can also be added at 0 to 15% and 0 to 10%, respectively, by substitution with La 2 O 3 . However, when these amounts are exceeded, the devitrification resistance deteriorates, and it becomes difficult to obtain a glass that can be stably produced. A preferable range is 0 to 4% for Y 2 O 3 and 0 to 4% for Yb 2 O 3 . A more preferable range of Y 2 O 3 is 0 to 1.5%.
Ta2O5は、高屈折率、低分散特性を付与するための成分であり、ガラスを低分散にさせる場合には有用であるが、18%を超えると溶解性が悪化する。したがってTa2O5の含有量は0〜18%が適当である。 Ta 2 O 5 is a component for imparting a high refractive index and low dispersion characteristics, and is useful when making the glass low dispersion. However, if it exceeds 18%, the solubility deteriorates. Therefore, 0 to 18% is appropriate for the content of Ta 2 O 5 .
WO3は少量の添加によって 耐失透性を良化させる成分であるが、0.5%以上にな
るとガラスの短波長域の吸収が強まり着色を生じる傾向が強い。したがってWO3の量を
0%以上0.5%未満とする。0〜0.4%が好ましい。
WO 3 is a component that improves devitrification resistance by addition of a small amount, but when it is 0.5% or more, the absorption in the short wavelength region of the glass becomes strong and the tendency to cause coloring is strong. Therefore, the amount of WO 3 is set to 0% or more and less than 0.5%. 0 to 0.4% is preferable.
Na2O、K2O、Li2Oは、ガラス転移温度(Tg)の低下に効果的な成分である。特にLi2Oは極めて効果が高い。しかし、耐失透性の低下および屈折率の低下が大きいため、Na2O、K2O、Li2Oの合計含有量を0%以上1.5%未満とする。 Na 2 O, K 2 O, and Li 2 O are effective components for reducing the glass transition temperature (Tg). In particular, Li 2 O is extremely effective. However, since the devitrification resistance and the refractive index are greatly reduced, the total content of Na 2 O, K 2 O, and Li 2 O is set to 0% or more and less than 1.5%.
GeO2は、SiO2と同様の効果を有し、10%まで添加することができる。しかし、10%を上回ると耐失透性が低下する。したがってGeO2の量は0〜10%が適当である。しかし、上記ガラスでは、GeO2を添加しなくても所望の特性、性質を得ることができるので、高価なGeO2を導入しないことが好ましい。 GeO 2 has the same effect as SiO 2 and can be added up to 10%. However, if it exceeds 10%, the devitrification resistance decreases. Accordingly, the appropriate amount of GeO 2 is 0 to 10%. However, in the glass, the desired properties without addition of GeO 2, it is possible to obtain a property, it is preferred not to introduce an expensive GeO 2.
Bi2O3は、少量の添加でガラス転移温度(Tg)を低下させる効果を有するが、20%を超えると耐失透性が低下し、また着色を生じる。したがってBi2O3の量は0〜20%が適当である。 Bi 2 O 3 has the effect of lowering the glass transition temperature (Tg) when added in a small amount, but when it exceeds 20%, the devitrification resistance is lowered and coloration occurs. Therefore, the amount of Bi 2 O 3 is suitably 0 to 20%.
Al2O3は、少量の添加で耐失透性を改善する作用を有する場合があるが、同時に屈折率が低下するため、その添加量は0〜10%とする。
なお、Ga2O3、In2O3も10%程度まで添加することはできるが、添加によって耐失透性が悪化するおそれがあること、高価な原料であることからGa2O3、In2O3を導入しないことが望ましい。
Al 2 O 3 may have an effect of improving devitrification resistance with a small amount of addition, but at the same time the refractive index is lowered, so the addition amount is 0 to 10%.
Ga 2 O 3 and In 2 O 3 can also be added up to about 10%. However, devitrification resistance may be deteriorated by addition, and since it is an expensive raw material, Ga 2 O 3 and In It is desirable not to introduce 2 O 3 .
上記成分以外に一般的に清澄剤として用いられているSb2O3、SnO2の添加が可能である。Sb2O3の添加量は0%以上2%未満、SnOの添加量は0〜1%である。
ただし、清澄剤として強力な作用を有するAs2O3は毒性があるため、添加しないことが望ましい。
In addition to the above components, Sb 2 O 3 and SnO 2 that are generally used as fining agents can be added. The addition amount of Sb 2 O 3 is 0% or more and less than 2%, and the addition amount of SnO is 0 to 1%.
However, it is desirable not to add As 2 O 3 having a strong action as a clarifier because it is toxic.
その他、導入しないことが望ましいものとしては、鉛及びその化合物、UやThなどの放射性物質などである。また、ガラスの着色を低減するという観点から、Cu、Cr、V、Fe、Ni、Coなどの着色原因となる物質の導入も避けるべきである。また、Te、Se、Cdの添加も避けるべきである。
なお上述の特許文献1に記載された光学ガラスは、高価なHfO2を必須成分としているが、本発明においてはHfO2を用いなくても所望の光学ガラスを得ることができる。
上記説明において、各成分の好ましい含有量として示した範囲を任意に組合せた組成範囲は、所要のガラスを得る上から好ましいものである。
Other things that should not be introduced include lead and its compounds, radioactive materials such as U and Th. In addition, from the viewpoint of reducing the coloring of the glass, introduction of substances that cause coloring such as Cu, Cr, V, Fe, Ni, and Co should be avoided. Also, addition of Te, Se, Cd should be avoided.
In addition, although the optical glass described in the above-mentioned patent document 1 uses expensive HfO 2 as an essential component, a desired optical glass can be obtained without using HfO 2 in the present invention.
In the above description, a composition range obtained by arbitrarily combining the ranges shown as the preferred contents of each component is preferable for obtaining the required glass.
本発明の光学ガラスにおいて、好ましい屈折率(nd)及びアッベ数(νd)の範囲は、屈折率(nd)が1.8〜2.1、アッベ数(νd)が20〜40である。より好ましいアッベ数(νd)は20〜39の範囲である。また、より好ましい屈折率(nd)は1.81〜2.1、さらに好ましくは1.85〜2.1である。 In the optical glass of the present invention, preferable refractive index (nd) and Abbe number (νd) ranges are 1.8 to 2.1 for refractive index (nd) and 20 to 40 for Abbe number (νd). A more preferable Abbe number (νd) is in the range of 20 to 39. Moreover, a more preferable refractive index (nd) is 1.81-2.1, More preferably, it is 1.85-2.1.
本発明の光学ガラスの透過率特性について説明する。透過率は、次のようにして定量的に評価する。まず、上記光学ガラスよりなる両面が互いに平行に研磨された厚さ10mm±0.1mmの板状ガラスを準備する。この板状ガラスの研磨面に垂直方向から光を入射して、波長280nm〜700nmの範囲で表面反射損失を含む分光透過率を測定する。分光透過率が70%になる波長をλ70、分光透過率が5%になる波長をλ5とする。波長280nm〜700nmの範囲にλ70、λ5は一波長のみ存在することが好ましい。そして、λ5〜700nmの全領域において分光透過率が5%以上を、λ70〜700nmの全領域において分光透過率が70%以上を示すことが望ましい。 The transmittance characteristics of the optical glass of the present invention will be described. The transmittance is quantitatively evaluated as follows. First, a plate-like glass having a thickness of 10 mm ± 0.1 mm is prepared by polishing both surfaces of the optical glass in parallel with each other. Light is incident on the polished surface of the plate glass from the vertical direction, and the spectral transmittance including the surface reflection loss is measured in the wavelength range of 280 nm to 700 nm. A wavelength at which the spectral transmittance is 70% is λ 70 , and a wavelength at which the spectral transmittance is 5% is λ 5 . It is preferable that λ 70 and λ 5 have only one wavelength in the wavelength range of 280 nm to 700 nm. It is desirable that the spectral transmittance is 5% or more in the entire region of λ 5 to 700 nm, and the spectral transmittance is 70% or more in the entire region of λ 70 to 700 nm.
このような透過率特性を備える光学ガラスでは、λ70、λ5をより短波長化すること
により、可視領域の広い範囲にわたり高い透過率を示すことになる。
本発明において、λ70が460nm以下の光学ガラスが好ましく、450nm以下の光学ガラスがより好ましく、440nm以下の光学ガラスがさらに好ましい。また、上記屈折率、アッベ数をはじめとする諸性質をガラスに付与する上から、λ70を350〜4
60nmの範囲とすることが好ましく、350〜450nmの範囲とすることがより好ましく、350〜440nmの範囲とすることがさらに好ましい。
In an optical glass having such a transmittance characteristic, by reducing the wavelengths of λ 70 and λ 5 , high transmittance is exhibited over a wide range in the visible region.
In the present invention, optical glass with λ 70 of 460 nm or less is preferable, optical glass with 450 nm or less is more preferable, and optical glass with 440 nm or less is more preferable. Further, from the viewpoint of imparting various properties including the refractive index and the Abbe number to the glass, λ 70 is set to 350-4.
The range is preferably 60 nm, more preferably 350 to 450 nm, and even more preferably 350 to 440 nm.
また、本発明において、λ5が400nm以下の光学ガラスが好ましく、390nm以下の光学ガラスがより好ましい。また、上記屈折率、アッベ数をはじめとする諸性質をガラスに付与する上から、λ5を300〜390nmの範囲とすることがさらに好ましい。
さらに、λ70、λ5が上記範囲を同時に満たす光学ガラスが一層好ましい。
λ70、λ5(特にλ70)はガラスの溶解条件で変化しやすいため、ガラスの溶解温度、溶解時間の設定においては、λ70、λ5がより短波長になるように留意すべきである。また、着色の原因となる不純物も極力低減すべきである。
In the present invention, an optical glass with λ 5 of 400 nm or less is preferable, and an optical glass with 390 nm or less is more preferable. Moreover, it is more preferable to set λ 5 in the range of 300 to 390 nm from the viewpoint of imparting various properties including the refractive index and Abbe number to the glass.
Furthermore, optical glass in which λ 70 and λ 5 simultaneously satisfy the above range is more preferable.
Since λ 70 and λ 5 (especially λ 70 ) are likely to change depending on the melting conditions of the glass, it should be noted that λ 70 and λ 5 have shorter wavelengths when setting the melting temperature and melting time of the glass. is there. Also, impurities that cause coloring should be reduced as much as possible.
ここで、より好ましい組成範囲、光学恒数、λ70の範囲を例示しておく。
(光学ガラス1)
B2O3を2〜45%、SiO2を0〜30%(ただし、B2O3含有量>SiO2含有量)、La2O3を10〜50%、TiO2を0〜30%、ZnOを0〜15%、ZrO2を0〜15%、Nb2O5を0〜35%、BaOを0〜35%、SrOを0〜5%、CaOを0%以上8%未満、MgOを0%以上13%未満(ただし、BaOとSrOとCaOとMgOの合計含有量が0〜40%)、Gd2O3を0〜20%、Y2O3を0〜15%、Ta2O5を0〜18%、WO3を0%以上0.5%未満、Na2OとK2OとLi2Oの合計含有量が0%以上1.5%未満、GeO2を0〜10%、Bi2O3を0〜20%、Yb2O3を0〜10%、Al2O3を0〜10%、Sb2O3を0%以上2%未満、SnO2を0〜1%含み、屈折率(nd)が1.86超〜2.1であり、λ70が460nm以下であることを特徴とする光学ガラス。
Here, a more preferable composition range, optical constant, and λ 70 range are exemplified.
(Optical glass 1)
B 2 O 3 and 2-45%, a SiO 2 0 to 30% (although, B 2 O 3 content> SiO 2 content), La 2 O 3 10 to 50% of TiO 2 0 to 30% ZnO 0-15%, ZrO 2 0-15%, Nb 2 O 5 0-35%, BaO 0-35%, SrO 0-5%, CaO 0% or more and less than 8%, MgO 0% or more and less than 13% (however, the total content of BaO, SrO, CaO and MgO is 0 to 40%), Gd 2 O 3 is 0 to 20%, Y 2 O 3 is 0 to 15%, Ta 2 O 5 is 0 to 18%, WO 3 is 0% or more and less than 0.5%, the total content of Na 2 O, K 2 O and Li 2 O is 0% or more and less than 1.5%, GeO 2 is 0 to 0% 10% Bi 2 O 3 0-20% and Yb 2 O 3 0% to Al 2 O 3 0% to Sb 2 O 3 0% 2 Below, comprises SnO 2 0 to 1%, a refractive index (nd) of a 1.86 super to 2.1, optical glass, wherein a lambda 70 is 460nm or less.
(光学ガラス2)
B2O3を2〜45%、SiO2を0〜30%(ただし、B2O3含有量>SiO2含有量)、La2O3を10〜50%、TiO2を0〜30%、ZnOを0〜15%、ZrO2を0〜15%、Nb2O5を0〜35%、BaOを0〜35%、SrOを0%以上2%未満、CaOを0%以上8%未満、MgOを0%以上13%未満(ただし、BaOとSrOとCaOとMgOの合計含有量が0〜40%)、Gd2O3を0〜20%、Y2O3を0〜15%、Ta2O5を0〜18%、WO3を0%以上0.5%未満、Na2OとK2OとLi2Oの合計含有量が0%以上1.5%未満、GeO2を0〜10%、Bi2O3を0〜20%、Yb2O3を0〜10%、Al2O3を0〜10%、Sb2O3を0%以上2%未満、SnO2を0〜1%含み、屈折率(nd)が1.8〜1.86であり、λ70が460nm以下であることを特徴とする光学ガラス。
(Optical glass 2)
B 2 O 3 and 2-45%, a SiO 2 0 to 30% (although, B 2 O 3 content> SiO 2 content), La 2 O 3 10 to 50% of TiO 2 0 to 30% the ZnO 0 to 15% of ZrO 2 0~15%, Nb 2 O 5 0 to 35% of BaO 0-35%, 2% or more and less than 0% SrO, CaO, 0% or more and less than 8% MgO from 0% to less than 13% (however, the total content of BaO, SrO, CaO and MgO is 0 to 40%), Gd 2 O 3 is 0 to 20%, Y 2 O 3 is 0 to 15%, Ta 2 O 5 is 0 to 18%, WO 3 is 0% or more and less than 0.5%, the total content of Na 2 O, K 2 O and Li 2 O is 0% or more and less than 1.5%, GeO 2 0-10%, a Bi 2 O 3 0 to 20% of Yb 2 O 3 0 to 10%, the Al 2 O 3 0-10%, the Sb 2 O 3 0 More than 2%, a SnO 2 containing 0 to 1%, a refractive index (nd) of a 1.8 to 1.86, the optical glass, wherein a lambda 70 is 460nm or less.
(光学ガラス3)
B2O3を2〜45%、SiO2を0〜30%(ただし、B2O3含有量>SiO2含有量)、La2O3を10〜50%、TiO2を0〜30%、ZnOを0〜15%、ZrO2を0〜15%、Nb2O5を0〜35%、BaOを0〜35%、SrOを0%以上1%未満、CaOを0%以上8%未満、MgOを0%以上13%未満(ただし、BaOとSrOとCaOとMgOの合計含有量が0〜40%)、Gd2O3を0〜20%、Y2O3を0〜15%、Ta2O5を0〜18%、WO3を0%以上0.5%未満、Na2OとK2OとLi2Oの合計含有量が0%以上1.5%未満、GeO2を0〜10%、Bi2O3を0〜20%、Yb2O3を0〜10%、Al2O3を0〜10%、Sb2O3を0%以上2%未満、SnO2を0〜1%含み、屈折率(nd)が1.8〜2.1であり、λ7
0が460nm以下であることを特徴とする光学ガラス。
(Optical glass 3)
B 2 O 3 and 2-45%, a SiO 2 0 to 30% (although, B 2 O 3 content> SiO 2 content), La 2 O 3 10 to 50% of TiO 2 0 to 30% the ZnO 0 to 15% of ZrO 2 0~15%, Nb 2 O 5 0 to 35% of BaO 0-35%, 1% or more and less than 0% SrO, CaO, 0% or more and less than 8% MgO from 0% to less than 13% (however, the total content of BaO, SrO, CaO and MgO is 0 to 40%), Gd 2 O 3 is 0 to 20%, Y 2 O 3 is 0 to 15%, Ta 2 O 5 is 0 to 18%, WO 3 is 0% or more and less than 0.5%, the total content of Na 2 O, K 2 O and Li 2 O is 0% or more and less than 1.5%, GeO 2 0-10%, a Bi 2 O 3 0 to 20% of Yb 2 O 3 0 to 10%, the Al 2 O 3 0-10%, the Sb 2 O 3 0 More than 2%, a SnO 2 containing 0 to 1%, a refractive index (nd) of a 1.8-2.1, lambda 7
An optical glass characterized in that 0 is 460 nm or less.
(光学ガラス4)
B2O3を2〜45%、SiO2を0〜30%(ただし、B2O3含有量>SiO2含有量)、La2O3を10〜50%、TiO2を0〜30%、ZnOを0〜15%、ZrO2を0〜15%、Nb2O5を0〜35%、BaOを0〜35%、SrOを0〜0.8%、CaOを0〜7%、MgOを0〜12%(ただし、BaOとSrOとCaOとMgOの合計含有量が0〜40%)、Gd2O3を0〜20%、Y2O3を0〜15%、Ta2O5を0〜18%、WO3を0〜0.4%、Na2OとK2OとLi2Oの合計含有量が0〜1.2%、GeO2を0〜10%、Bi2O3を0〜20%、Yb2O3を0〜10%、Al2O3を0〜10%、Sb2O3を0〜1.8%、SnO2を0〜1%含み、λ70が460nm以下であることを特徴とする光学ガラス。
(Optical glass 4)
B 2 O 3 and 2-45%, a SiO 2 0 to 30% (although, B 2 O 3 content> SiO 2 content), La 2 O 3 10 to 50% of TiO 2 0 to 30% ZnO 0-15%, ZrO 2 0-15%, Nb 2 O 5 0-35%, BaO 0-35%, SrO 0-0.8%, CaO 0-7%, MgO 0-12% (however, the total content of BaO, SrO, CaO and MgO is 0-40%), Gd 2 O 3 is 0-20%, Y 2 O 3 is 0-15%, Ta 2 O 5 0 to 18%, WO 3 0 to 0.4%, the total content of Na 2 O, K 2 O and Li 2 O is 0 to 1.2%, GeO 2 is 0 to 10%, Bi 2 O 3 0-20% and Yb 2 O 3 0% to Al 2 O 3 0% to Sb 2 O 3 0 to 1.8% include SnO 2 0 to 1% An optical glass characterized in that λ 70 is 460 nm or less.
(光学ガラス5)
B2O3を2〜45%、SiO2を0〜30%(ただし、B2O3含有量>SiO2含有量)、La2O3を10〜50%、TiO2を0〜30%、ZnOを0〜15%、ZrO2を0〜15%、Nb2O5を0〜35%、BaOを0〜35%、SrOを0%以上1%未満、CaOを0%以上8%未満、MgOを0%以上13%未満(ただし、BaOとSrOとCaOとMgOの合計含有量が0〜40%)、Gd2O3を0〜20%、Y2O3を0%以上2%未満、Ta2O5を0〜18%、WO3を0%以上0.5%未満、Na2OとK2OとLi2Oの合計含有量が0%以上1.5%未満、GeO2を0〜10%、Bi2O3を0〜20%、Yb2O3を0〜10%、Al2O3を0〜10%、Sb2O3を0%以上2%未満、SnO2を0〜1%含むことを特徴とする光学ガラス。
(Optical glass 5)
B 2 O 3 and 2-45%, a SiO 2 0 to 30% (although, B 2 O 3 content> SiO 2 content), La 2 O 3 10 to 50% of TiO 2 0 to 30% the ZnO 0 to 15% of ZrO 2 0~15%, Nb 2 O 5 0 to 35% of BaO 0-35%, 1% or more and less than 0% SrO, CaO, 0% or more and less than 8% MgO is 0% or more and less than 13% (however, the total content of BaO, SrO, CaO and MgO is 0 to 40%), Gd 2 O 3 is 0 to 20%, and Y 2 O 3 is 0% or more and 2%. Less than 0%, Ta 2 O 5 from 0 to 18%, WO 3 from 0% to less than 0.5%, the total content of Na 2 O, K 2 O and Li 2 O from 0% to less than 1.5%, GeO 2 0-10% of Bi 2 O 3 0 to 20% of Yb 2 O 3 0-10%, the Al 2 O 3 0-10%, Sb 2 O Less than 2% 0% or more, optical glass characterized in that it comprises a SnO 2 0 to 1%.
(光学ガラス6)
上記光学ガラス5において、B2O3を3〜24%、SiO2を0〜18%(ただし、B2O3の含有量/SiO2の含有量の重量比が1.1以上か、又はSiO2を含有しない)、La2O3を18〜47%、TiO2を0〜26%、ZnOを0〜12%、ZrO2を0〜10%、Nb2O5を0〜30%、BaOを0〜32%、Gd2O3を0〜10%、Yb2O3を0〜4%含む光学ガラス。
(Optical glass 6)
In the optical glass 5, B 2 O 3 is 3 to 24% and SiO 2 is 0 to 18% (however, the weight ratio of the content of B 2 O 3 / the content of SiO 2 is 1.1 or more, or SiO 2 is not contained), La 2 O 3 is 18 to 47%, TiO 2 is 0 to 26%, ZnO is 0 to 12%, ZrO 2 is 0 to 10%, Nb 2 O 5 is 0 to 30%, Optical glass containing 0 to 32% BaO, 0 to 10% Gd 2 O 3 and 0 to 4% Yb 2 O 3 .
(光学ガラス7)
上記光学ガラス5又は光学ガラス6において、ZnOを1〜5%含む光学ガラス。
(Optical glass 7)
Optical glass containing 1 to 5% of ZnO in the optical glass 5 or the optical glass 6.
(光学ガラス8)
光学ガラス1〜光学ガラス7のいずれかの光学ガラスにおいて、B2O3、SiO2、La2O3、ZnO、ZrO2、Nb2O5、TiO2、BaO、CaO、SrO、Gd2O3、Y2O3、Ta2O5、WO3、Na2O、K2O、Li2O、GeO2、Yb2O3、Sb2O3、SnO2の合計含有量が99%以上、より好ましくは100%の光学ガラス。
(Optical glass 8)
In the optical glass of any one of the optical glasses 1 to 7, B 2 O 3 , SiO 2 , La 2 O 3 , ZnO, ZrO 2 , Nb 2 O 5 , TiO 2 , BaO, CaO, SrO, Gd 2 O 3 , Y 2 O 3 , Ta 2 O 5 , WO 3 , Na 2 O, K 2 O, Li 2 O, GeO 2 , Yb 2 O 3 , Sb 2 O 3 , SnO 2 total content is 99% or more , More preferably 100% optical glass.
(光学ガラス9)
上記光学ガラス8において、B2O3、SiO2、La2O3、ZnO、ZrO2、Nb2O5、TiO2、BaO、Sb2O3の合計含有量が99%以上、より好ましくは100%の光学ガラス。
(Optical glass 9)
In the optical glass 8, the total content of B 2 O 3 , SiO 2 , La 2 O 3 , ZnO, ZrO 2 , Nb 2 O 5 , TiO 2 , BaO, Sb 2 O 3 is 99% or more, more preferably 100% optical glass.
(光学ガラス10)
上記光学ガラス9において、B2O3、SiO2、La2O3、ZnO、ZrO2、Nb2O5、TiO2、BaOのいずれの成分も含有している光学ガラス。
(Optical glass 10)
In the optical glass 9, the optical glass containing any component of B 2 O 3 , SiO 2 , La 2 O 3 , ZnO, ZrO 2 , Nb 2 O 5 , TiO 2 , and BaO.
(光学ガラス11)
光学ガラス1〜11のいずれかの光学ガラスにおいて、TiO2を含む光学ガラス。ここにNb2O5含有量/TiO2含有量は0〜7が好ましく、0〜6がより好ましい。このようにすることで、着色のより少ないガラスが得られる。
(Optical glass 11)
In any of the optical glass of the optical glass 1 to 11, an optical glass containing TiO 2. Here, the Nb 2 O 5 content / TiO 2 content is preferably 0 to 7, and more preferably 0 to 6. By doing in this way, glass with less coloring can be obtained.
上記透過率特性を備えることにより、可視光領域中の短波長領域の透過率が高いので、良好なカラーバランスを有する撮像光学系を構成することが容易にできる。特に、固体撮像素子用の撮像光学系を構成する光学素子、例えばレンズの材料に好適である。 By providing the above transmittance characteristics, the transmittance in the short wavelength region in the visible light region is high, so that it is possible to easily construct an imaging optical system having a good color balance. In particular, it is suitable for the material of an optical element, such as a lens, constituting an imaging optical system for a solid-state imaging element.
次に、本発明の光学ガラスの液相温度について説明する。本発明の光学ガラスにおいて好ましい液相温度は、1250℃以下、より好ましくは1200℃以下である。ガラスの安定性からは、液相温度が認められないものが好ましいが、上記諸特性をガラスに付与する上から、液相温度が900〜1200℃がさらに好ましい。 Next, the liquidus temperature of the optical glass of the present invention will be described. In the optical glass of the present invention, a preferable liquidus temperature is 1250 ° C. or lower, more preferably 1200 ° C. or lower. In view of the stability of the glass, those having no liquidus temperature are preferred, but the liquidus temperature is more preferably 900 to 1200 ° C. from the viewpoint of imparting the above properties to the glass.
次に、本発明のプレス成形用ガラスゴブとその製造方法について説明する。 プレス成形用ガラスゴブは、加熱、軟化してプレス成形に供するためのガラス成形体であり、プレス成形用プリフォームなどとも呼ばれることがあり、目的とするプレス成形品によって、重量、形状が適宜決められる。本発明のプレス成形用ガラスゴブは、上記光学ガラスからなるものであり、したがって、プレス成形用ガラスゴブの諸特性は、本発明の光学ガラスの諸特性を反映したものとなる。 Next, the glass gob for press molding of the present invention and the manufacturing method thereof will be described. A glass gob for press molding is a glass molded body for heating and softening to be used for press molding, and is sometimes called a press molding preform, and the weight and shape are appropriately determined depending on the target press molded product. . The glass gob for press molding of the present invention is made of the above optical glass. Therefore, the various properties of the glass gob for press molding reflect the various properties of the optical glass of the present invention.
上記プレス成形用ガラスゴブの製造方法においては、溶融ガラスを成形して光学ガラスからなるプレス成形用ガラスゴブを作製する。まず、本発明の光学ガラスが得られるようにガラス原料を調合し、溶解、清澄、均質化し、未溶解物や気泡、異物を含まない均質な溶融ガラスを作る。次に白金合金製などの流出パイプから溶融ガラスを流出する。上記流出にあたり、ガラスが失透しないよう流出パイプの温度等の条件に配慮する。流出する溶融ガラスを受け型もしくは鋳型に鋳込み所定の形状に成形する。以下に前記成形に好適な方法を例示する。 In the method for producing a glass gob for press molding, a glass gob for press molding made of optical glass is produced by molding molten glass. First, a glass raw material is prepared so as to obtain the optical glass of the present invention, and melted, clarified, and homogenized to make a homogeneous molten glass that does not contain undissolved materials, bubbles, and foreign matters. Next, the molten glass flows out from an outflow pipe made of platinum alloy or the like. Consider the conditions such as the temperature of the outflow pipe so that the glass does not devitrify during the outflow. The molten glass flowing out is cast into a receiving mold or mold and formed into a predetermined shape. The method suitable for the said shaping | molding is illustrated below.
まず、第1の成形方法は、流出パイプの下方に複数の受け型を順次、搬入し、所定重量の溶融ガラス塊を受け型で受け、ガラス塊を成形しながら冷却する方法である。この方法では、流出する溶融ガラス流の先端部を受け型で支持し、所望の重量の溶融ガラス塊が分離できるタイミングで受け型を急降下する。そうすると、溶融ガラスの受け型への供給が追いつかず、溶融ガラス流が途中で分離し、受け型で所定重量の溶融ガラス塊を受け取ることができる。このようにすることにより、溶融ガラス流を切断刃で切断した際に生じる切断痕を残さずにガラスの成形を行うことができる。この第1の成形法によれば、プレス成形用ガラスゴブ1個分の重量、あるいは前記重量よりも若干重いガラス塊を成形することができる。 First, the first forming method is a method in which a plurality of receiving molds are sequentially carried under the outflow pipe, a molten glass lump having a predetermined weight is received by the mold, and cooled while forming the glass lump. In this method, the tip of the flowing molten glass flow is supported by the receiving mold, and the receiving mold is rapidly lowered at a timing at which a molten glass lump having a desired weight can be separated. If it does so, supply to the receiving mold of molten glass cannot catch up, a molten glass flow will separate on the way, and a molten glass lump of predetermined weight can be received with a receiving mold. By doing in this way, glass shaping | molding can be performed, without leaving the cutting trace which arises when a molten glass flow is cut | disconnected with a cutting blade. According to this first molding method, a glass lump that is slightly heavier than the weight of one press-molding glass gob or slightly above the weight can be formed.
プレス成形用ガラスゴブ1個分の重量のガラス塊を成形した場合は、このガラス塊をプレス成形用ガラスゴブとして使用することができる。この場合、ガラス塊は、割れない程度のスピードで冷却することが好ましい。 When a glass lump having a weight equivalent to one press-molding glass gob is formed, this glass lump can be used as a press-molding glass gob. In this case, the glass lump is preferably cooled at a speed that does not break.
プレス成形用ガラスゴブ1個分の重量よりも重いガラス塊を成形する場合は、ガラス塊をアニール処理して歪を低減してから、機械加工を施してプレス成形用ガラスゴブ1個分の重量に仕上げ、プレス成形用ガラスゴブとする。この方法によれば、予めガラス塊を成形しておき、需要に応じて機械加工によって重量調整を行えば、様々なサイズの光学素子の成形に供することが可能なプレス成形用ガラスゴブを提供することができる。なお、上記機械加工としてバレル研磨が好ましい。
また、上記プレス成形用ガラスゴブを精密プレス成形に供する場合には、ガラス塊に機
械加工を施さないで作製したプレス成形用ガラスゴブが好適である。
When molding a glass lump that is heavier than the weight of one glass gob for press molding, the glass lump is annealed to reduce distortion, and then machined to finish the weight for one glass gob for press molding. The glass gob for press molding is used. According to this method, it is possible to provide a glass gob for press molding that can be used for molding optical elements of various sizes by previously forming a glass lump and adjusting the weight by machining according to demand. Can do. In addition, barrel polishing is preferable as the machining.
Further, when the press-molding glass gob is used for precision press-molding, a press-molding glass gob produced without machining the glass lump is suitable.
次に、第2の成形方法は、ほぼ水平な底面とその底面を挟んで平行に対向する一対の側壁を備えた鋳型に溶融ガラスを一定のスピードで鋳込むものである。鋳込まれた溶融ガラスは鋳型内に均一な厚みで広がり、前記一対の側壁の間隔で定まる幅のガラス板に成形される。成形されたガラス板は、均一な厚みと幅の板が得られるように溶融ガラスの供給スピードに応じて、鋳型の開口部から水平方向に引き出される。このようにして得られたガラス板をアニール処理し、歪を低減してから、所要のサイズに切断する。このようにして得られるガラス片はカットピースと呼ばれるが、カットピースには必要に応じて面取りを行ったり、プレス成形用ガラスゴブの重量に合わせるための機械加工を行う。なお、カットピースの面取り加工や重量調整のための機械加工にはバレル研磨が好ましい。 Next, in the second forming method, molten glass is cast at a constant speed into a mold having a substantially horizontal bottom surface and a pair of side walls opposed in parallel across the bottom surface. The cast molten glass spreads in the mold with a uniform thickness and is formed into a glass plate having a width determined by the distance between the pair of side walls. The formed glass plate is pulled out in the horizontal direction from the opening of the mold in accordance with the molten glass supply speed so as to obtain a plate having a uniform thickness and width. The glass plate thus obtained is annealed to reduce strain and then cut into a required size. The glass piece obtained in this way is called a cut piece, but the cut piece is chamfered as necessary or machined to match the weight of the glass gob for press molding. In addition, barrel polishing is preferable for machining for chamfering the cut piece and adjusting the weight.
このようにして、所定重量の本発明の光学ガラスからなるプレス成形用ガラスゴブを得ることができる。なお、プレス成形用ガラスゴブには、必要に応じてプレス成形時の離型を容易にするための離型膜を形成したり、粉末状の離型剤を塗布してもよいが、粉末状の離型剤を使用すると離型剤がガラスに転写されるため、精密プレス成形には好ましくない。 In this manner, a glass gob for press molding made of the optical glass of the present invention having a predetermined weight can be obtained. Note that the glass gob for press molding may be formed with a release film for facilitating release during press molding, or may be coated with a powder release agent, if necessary. If a release agent is used, the release agent is transferred to glass, which is not preferable for precision press molding.
次に、本発明の光学素子について説明する。本発明の光学素子は、前述の本発明の光学ガラスから構成されている。したがって、該光学ガラスが備える諸特性を本発明の光学素子は備えている。その代表的なものは、屈折率(nd)が1.8〜2.1、アッベ数(νd)が20〜40であるが、可視域の短波長側において高い透過率を示すという特性も共通する。上記光学ガラスからなる光学素子のうちの好ましいものについては、λ70、λ5が上記範囲にあり、高い可視透過率を示し、着色が認められないものである。このような光学素子によれば、デジタルカメラやビデオカメラ、モバイル機器に組込まれたカメラなど固体撮像素子を使用するカメラの光学系に好適な光学素子を提供することができる。 Next, the optical element of the present invention will be described. The optical element of the present invention is composed of the optical glass of the present invention described above. Therefore, the optical element of the present invention has various characteristics that the optical glass has. The typical ones have a refractive index (nd) of 1.8 to 2.1 and an Abbe number (νd) of 20 to 40, but they share the same characteristic of high transmittance on the short wavelength side in the visible range. To do. Of the optical elements made of the optical glass, λ 70 and λ 5 are in the above ranges, exhibit high visible transmittance, and no coloring is observed. According to such an optical element, it is possible to provide an optical element suitable for an optical system of a camera using a solid-state imaging element such as a digital camera, a video camera, or a camera incorporated in a mobile device.
本発明の光学素子としては、球面レンズ、非球面レンズ、マイクロレンズ、レンズアレイなどのレンズ各種、プリズム、回折格子などを例示できる。なお、本発明の光学素子には必要に応じて、反射防止膜、部分反射膜、高反射膜などの光学薄膜を形成してもよい。 Examples of the optical element of the present invention include various kinds of lenses such as a spherical lens, an aspherical lens, a microlens, and a lens array, a prism, and a diffraction grating. In addition, you may form optical thin films, such as an antireflection film, a partial reflection film, and a high reflection film, in the optical element of this invention as needed.
次に、本発明の光学素子の製造方法について説明する。本発明の光学素子の製造方法は、上記プレス成形用ガラスゴブ又は上記製造方法により作製されたプレス成形用ガラスゴブを加熱、軟化し、プレス成形型を用いてプレス成形することにより、光学素子を製造する。 Next, the manufacturing method of the optical element of this invention is demonstrated. The method for producing an optical element of the present invention produces an optical element by heating and softening the press-molding glass gob or the press-molding glass gob produced by the above-described production method, and press-molding using a press mold. .
光学素子は、光を屈折したり、透過したり、回折したり、反射したりする光学的な機能を備える光学機能面を有する。この光学機能面をどのような方法により形成するかにより、プレス成形法は次の2つの方法に大別することができる。 The optical element has an optical functional surface having an optical function of refracting, transmitting, diffracting, and reflecting light. Depending on how the optical functional surface is formed, the press molding method can be roughly divided into the following two methods.
第1の方法は、目的とする光学素子の形状に近似し、光学素子よりも大きなプレス成形品をプレス成形する方法である。成形されたプレス成形品には研削や研磨加工が施され、光学機能面を含む光学素子の表面が機械加工により形成される。プレス成形後に機械加工を施すので、加工時のガラスの破損を防止する観点から、プレス成形品にはアニール処理を行って歪を低減することが好ましい。この方法によれば、プレス成形は大気中で行うことが可能であり、上記粉末状の離型剤の使用も可能である。 The first method is a method of press-molding a press-molded product that approximates the shape of the target optical element and is larger than the optical element. The formed press-molded product is subjected to grinding and polishing, and the surface of the optical element including the optical functional surface is formed by machining. Since mechanical processing is performed after press molding, it is preferable to reduce the strain by subjecting the press molded product to an annealing treatment from the viewpoint of preventing breakage of the glass during processing. According to this method, the press molding can be performed in the atmosphere, and the powdery mold release agent can also be used.
第2の方法は、精密プレス成形と呼ばれるもので、プレス成形型の成形面を目的とする光学素子の形状を反転した形状に精密に加工し、必要に応じて離型膜を形成するとともに、プレス成形によって、加熱、軟化されたプレス成形用ガラスゴブに上記成形面の形状を
精密に転写する。この方法によれば、光学機能面が研削、研磨せずにプレス成形によって形成できる。ただし、プレス成形は窒素ガス雰囲気のような非酸化性ガス雰囲気下で行うことになる。
The second method is called precision press molding, and is precisely processed into a shape obtained by inverting the shape of the target optical element on the molding surface of the press mold, and if necessary, forming a release film, The shape of the molding surface is precisely transferred to a glass gob for press molding that has been heated and softened by press molding. According to this method, the optical functional surface can be formed by press molding without grinding or polishing. However, press molding is performed in a non-oxidizing gas atmosphere such as a nitrogen gas atmosphere.
この第2の方法では、プレス成形品の機械加工は必須ではないから、歪の光学的な影響が出ない範囲であれば、歪が残留していてもよく、プレス成形品のアニール処理を省略することもできる。さらに光学素子を製造する方法としては、溶融状態のガラスをプレス成形型に供給して光学素子に近似する形状のプレス成形品を作り、それに研削、研磨加工を施すことによって、光学素子に仕上げる方法もある。 In this second method, since the machining of the press-formed product is not essential, the strain may remain as long as the optical effect of the strain does not occur, and the annealing treatment of the press-formed product is omitted. You can also Furthermore, as a method of manufacturing an optical element, a molten glass is supplied to a press mold to form a press-molded product having a shape similar to the optical element, and then it is ground and polished to finish the optical element. There is also.
なお、光学素子の屈折率(nd)、アッベ数(νd)は、光学素子の製造過程における熱的な履歴により僅かながら変化するので、精密に定められた光学恒数を有する光学素子を作製する場合には、上記屈折率(nd)、アッベ数(νd)の変化を考慮してガラスの組成や製造過程における熱履歴を調整すればよい。
このようにして、所望の光学恒数と優れた透過率を備え、固体撮像素子などを搭載する機器の光学部品として特に好適な光学素子を提供することができる。
Since the refractive index (nd) and Abbe number (νd) of the optical element slightly change due to the thermal history in the optical element manufacturing process, an optical element having a precisely defined optical constant is produced. In this case, the glass composition and the thermal history in the manufacturing process may be adjusted in consideration of the changes in the refractive index (nd) and Abbe number (νd).
In this way, it is possible to provide an optical element that has a desired optical constant and excellent transmittance and that is particularly suitable as an optical component of a device on which a solid-state imaging device or the like is mounted.
次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
実施例1〜11
表1および表2に示す組成の各ガラス100gが得られるように調合された原料バッチを白金製坩堝に入れ、1300℃に設定された炉内で溶融し、攪拌、清澄後、鉄製枠に流し込み、ガラス転移温度(Tg)付近の温度で2時間保持後、徐冷して光学ガラスを得た。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
Examples 1-11
A raw material batch prepared so as to obtain 100 g of each glass having the composition shown in Table 1 and Table 2 is put in a platinum crucible, melted in a furnace set at 1300 ° C., stirred, clarified, and poured into an iron frame. The glass was kept at a temperature near the glass transition temperature (Tg) for 2 hours and then slowly cooled to obtain an optical glass.
各光学ガラスについて、屈折率(nd)、アッベ数(νd)、液相温度(LT)およびλ5、λ70を以下のようにして測定した。その結果を表1および表2に示す。
(1)屈折率(nd)、アッベ数(νd)
1時間当たり、30℃の降温速度で冷却して得られた光学ガラスについて測定した。
(2)液相温度(LT)
複数個の白金製坩堝を用意し、各坩堝に50cm3のガラスを入れて蓋をし、10℃刻みに温度が設定されている炉内に入れて、設定温度が異なる条件下に2時間保持し、冷却後、ガラス内部を100倍の顕微鏡で観察し、結晶の有無から決定した。
(3)λ5、λ70
10mm厚の研磨サンプルについて分光透過率を測定し、透過率5%の波長(nm)をλ5として求め、透過率70%の波長(nm)をλ70として求めた。
About each optical glass, refractive index (nd), Abbe number ((nu) d), liquidus temperature (LT), (lambda) 5 , (lambda) 70 was measured as follows. The results are shown in Tables 1 and 2.
(1) Refractive index (nd), Abbe number (νd)
It measured about the optical glass obtained by cooling at the temperature fall rate of 30 degreeC per hour.
(2) Liquidus temperature (LT)
Prepare several platinum crucibles, put 50cm 3 glass into each crucible, put the lid in a furnace set in 10 ° C increments, and hold for 2 hours under different temperature settings Then, after cooling, the inside of the glass was observed with a 100 × microscope and determined from the presence or absence of crystals.
(3) λ 5 , λ 70
For polishing a sample of 10mm thickness was measured spectral transmittance, determined transmission rate of 5% of the wavelength (nm) of a lambda 5, transmittance of 70% of the wavelength (nm) of obtained as lambda 70.
実施例12
実施例1〜11の各ガラスが得られる清澄、均質化された溶融ガラスを溶解し、一側壁が開口した鋳型に白金製パイプから一定流量で流し込み、一定の厚みと幅を有するガラス板に成形しつつ、鋳型の開口部から成形されたガラス板を引き出した。引き出されたガラス板を、アニール炉内でアニール処理し、歪を低減し、均質かつ無色、異物を含まない上記実施例1〜11の光学ガラスからなるガラス板を得た。
次に、この各ガラス板を賽の目状に切断し、同一寸法を有する複数個のカットピースを得た。さらに、複数個のカットピースをバレル研磨して、目的重量に合わせ、プレス成形用ガラスゴブとした。
上記の方法とは別に、上記溶融ガラスを一定速度で白金製ノズルから流出し、このノズルの下に多数の受け型を次々と移送して所定重量の溶融ガラス塊を次々と受け、これら溶融ガラス塊を球状又は球を扁平化した形状に成形し、アニール処理してからバレル研磨し
て目的重量に合わせ、プレス成形用ガラスゴブとしてもよい。
Example 12
The clarified and homogenized molten glass from which each glass of Examples 1 to 11 is obtained is melted and poured into a mold with one side wall opened from a platinum pipe at a constant flow rate, and formed into a glass plate having a constant thickness and width. However, the molded glass plate was pulled out from the opening of the mold. The drawn glass plate was annealed in an annealing furnace to reduce strain and obtain a glass plate made of the optical glass of Examples 1 to 11 that was homogeneous, colorless, and contained no foreign matter.
Next, each glass plate was cut into a square shape to obtain a plurality of cut pieces having the same dimensions. Further, a plurality of cut pieces were barrel-polished to match the target weight to obtain a glass gob for press molding.
Separately from the above method, the molten glass flows out of the platinum nozzle at a constant speed, and a number of receiving molds are successively transferred under the nozzle to receive a predetermined weight of molten glass lump one after another. The lump may be formed into a spherical shape or a flattened shape, annealed and then barrel-polished to match the target weight, and may be a glass gob for press molding.
実施例13
実施例12で得られた各ガラスゴブの全面に、粉末状の離型剤を塗布し、ヒーターで加熱、軟化してから上型及び下型を備えたプレス成形型内に投入し、プレス成形型で加圧してレンズ形状の各レンズブランクをプレス成形した。
続いて各レンズブランクをアニール処理して歪を取り除くとともに、所望の屈折率及びアッベ数に調整する。冷却した各レンズブランクに研削、研磨加工を施して、レンズを作製した。なお、上記一連の工程は、大気中で行った。
得られた各レンズは、透過率特性が優れており、実施例1〜11の光学ガラスが備えている諸特性が各レンズにも備わっていた。なお、このレンズには、必要に応じて、反射防止膜を設けることができる。
このようなレンズにより、良好な撮像光学系を構成することができる。
Example 13
A powder mold release agent was applied to the entire surface of each glass gob obtained in Example 12, heated and softened with a heater, and then charged into a press mold having an upper mold and a lower mold. Each lens blank in the shape of a lens was press-molded by pressurizing with.
Subsequently, each lens blank is annealed to remove distortion and adjust to a desired refractive index and Abbe number. Each cooled lens blank was ground and polished to produce a lens. The series of steps was performed in the atmosphere.
Each of the obtained lenses was excellent in transmittance characteristics, and the various characteristics included in the optical glasses of Examples 1 to 11 were also provided in each lens. This lens can be provided with an antireflection film as required.
With such a lens, a good imaging optical system can be configured.
本発明の光学ガラスは、屈折率が高く、かつ着色が低減されているため、撮像素子にCCDを用いたデジタルカメラ等の撮像装置に好適に用いることができる。 Since the optical glass of the present invention has a high refractive index and reduced coloring, it can be suitably used for an imaging apparatus such as a digital camera using a CCD as an imaging element.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006161263A JP4562041B2 (en) | 2002-12-27 | 2006-06-09 | Optical glass, glass gob for press molding, and optical element |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002381147 | 2002-12-27 | ||
JP2003397211 | 2003-11-27 | ||
JP2006161263A JP4562041B2 (en) | 2002-12-27 | 2006-06-09 | Optical glass, glass gob for press molding, and optical element |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003424673A Division JP4286652B2 (en) | 2002-12-27 | 2003-12-22 | Optical glass, glass gob for press molding, and optical element |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010112780A Division JP5926479B2 (en) | 2002-12-27 | 2010-05-17 | Optical glass, glass gob for press molding, and optical element |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006248897A JP2006248897A (en) | 2006-09-21 |
JP4562041B2 true JP4562041B2 (en) | 2010-10-13 |
Family
ID=37089767
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006161263A Expired - Lifetime JP4562041B2 (en) | 2002-12-27 | 2006-06-09 | Optical glass, glass gob for press molding, and optical element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4562041B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11319243B2 (en) | 2018-01-17 | 2022-05-03 | Corning Incorporated | High refractive index optical borate glass |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7897532B2 (en) | 2007-04-24 | 2011-03-01 | Panasonic Corproation | Optical glass composition, preform and optical element |
JP5594807B2 (en) | 2007-09-25 | 2014-09-24 | 株式会社オハラ | Optical glass |
US7897533B2 (en) | 2007-12-19 | 2011-03-01 | Panasonic Corporation | Optical glass composition, preform and optical element |
JP5138401B2 (en) | 2008-01-30 | 2013-02-06 | Hoya株式会社 | Optical glass, glass gob for press molding, optical element, manufacturing method thereof, and manufacturing method of optical element blank |
JP2009203155A (en) | 2008-01-31 | 2009-09-10 | Ohara Inc | Optical glass |
JP4948569B2 (en) | 2008-06-27 | 2012-06-06 | Hoya株式会社 | Optical glass |
JP5180758B2 (en) | 2008-09-30 | 2013-04-10 | Hoya株式会社 | Optical glass, glass gob for press molding, optical element, manufacturing method thereof, and manufacturing method of optical element blank |
US8247336B2 (en) | 2008-11-05 | 2012-08-21 | Panasonic Corporation | Optical glass composition, preform and optical element |
JP5727149B2 (en) * | 2009-04-13 | 2015-06-03 | Hoya株式会社 | Optical glass, glass material for press molding, optical element blank, optical element manufacturing method, and optical glass coloring suppression method |
US8835336B2 (en) | 2009-11-26 | 2014-09-16 | Konica Minolta Advanced Layers, Inc. | Optical glass and optical element |
JP2011246337A (en) * | 2010-04-30 | 2011-12-08 | Ohara Inc | Optical glass, optical element and method for manufacturing molded glass article |
TWI594966B (en) * | 2010-10-08 | 2017-08-11 | Ohara Kk | Optical glass, preform and optical element |
US11976004B2 (en) | 2020-09-10 | 2024-05-07 | Corning Incorporated | Silicoborate and borosilicate glasses having high refractive index and high transmittance to blue light |
US11802073B2 (en) | 2020-09-10 | 2023-10-31 | Corning Incorporated | Silicoborate and borosilicate glasses with high refractive index and low density |
US11999651B2 (en) | 2020-09-10 | 2024-06-04 | Corning Incorporated | Silicoborate and borosilicate glasses having high refractive index and low density |
CN115286236A (en) * | 2022-07-25 | 2022-11-04 | 河北光兴半导体技术有限公司 | Glass composition, optical glass, and preparation method and application thereof |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55116641A (en) * | 1979-02-28 | 1980-09-08 | Minolta Camera Co Ltd | Optical glass |
JPS55121925A (en) * | 1979-03-14 | 1980-09-19 | Ohara Inc | Optical glass |
JPS56100151A (en) * | 1980-01-08 | 1981-08-11 | Fuji Photo Film Co Ltd | Tantalum oxide-free optical glass of high refraction |
JPS56160340A (en) * | 1980-05-09 | 1981-12-10 | Ohara Inc | Optical glass |
JPS56169150A (en) * | 1980-05-30 | 1981-12-25 | Ohara Inc | Optical glass |
JPS5756344A (en) * | 1980-09-18 | 1982-04-03 | Ohara Inc | Optical glass |
JPS5869739A (en) * | 1981-09-25 | 1983-04-26 | シヨツト・グラスヴエルケ | High reflective constant tho2-free optical glass having 1.86-1.94 reflective constant and more than 30 abbe's number |
JPS60131845A (en) * | 1983-12-01 | 1985-07-13 | シヨツト、グラスヴエルケ | Optical glass having refractive index of more than 1.90, abbe's number of more than 25 and high chemical stability |
JPS61197443A (en) * | 1985-02-22 | 1986-09-01 | Hoya Corp | Optical glass |
JPH09278480A (en) * | 1996-02-13 | 1997-10-28 | Ohara Inc | High refractive index optical glass |
JP2000128570A (en) * | 1998-10-21 | 2000-05-09 | Minolta Co Ltd | Optical glass |
JP2000159537A (en) * | 1998-11-20 | 2000-06-13 | Minolta Co Ltd | Optical glass |
-
2006
- 2006-06-09 JP JP2006161263A patent/JP4562041B2/en not_active Expired - Lifetime
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55116641A (en) * | 1979-02-28 | 1980-09-08 | Minolta Camera Co Ltd | Optical glass |
JPS55121925A (en) * | 1979-03-14 | 1980-09-19 | Ohara Inc | Optical glass |
JPS56100151A (en) * | 1980-01-08 | 1981-08-11 | Fuji Photo Film Co Ltd | Tantalum oxide-free optical glass of high refraction |
JPS56160340A (en) * | 1980-05-09 | 1981-12-10 | Ohara Inc | Optical glass |
JPS56169150A (en) * | 1980-05-30 | 1981-12-25 | Ohara Inc | Optical glass |
JPS5756344A (en) * | 1980-09-18 | 1982-04-03 | Ohara Inc | Optical glass |
JPS5869739A (en) * | 1981-09-25 | 1983-04-26 | シヨツト・グラスヴエルケ | High reflective constant tho2-free optical glass having 1.86-1.94 reflective constant and more than 30 abbe's number |
JPS60131845A (en) * | 1983-12-01 | 1985-07-13 | シヨツト、グラスヴエルケ | Optical glass having refractive index of more than 1.90, abbe's number of more than 25 and high chemical stability |
JPS61197443A (en) * | 1985-02-22 | 1986-09-01 | Hoya Corp | Optical glass |
JPH09278480A (en) * | 1996-02-13 | 1997-10-28 | Ohara Inc | High refractive index optical glass |
JP2000128570A (en) * | 1998-10-21 | 2000-05-09 | Minolta Co Ltd | Optical glass |
JP2000159537A (en) * | 1998-11-20 | 2000-06-13 | Minolta Co Ltd | Optical glass |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11319243B2 (en) | 2018-01-17 | 2022-05-03 | Corning Incorporated | High refractive index optical borate glass |
Also Published As
Publication number | Publication date |
---|---|
JP2006248897A (en) | 2006-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4286652B2 (en) | Optical glass, glass gob for press molding, and optical element | |
JP4562041B2 (en) | Optical glass, glass gob for press molding, and optical element | |
JP5926479B2 (en) | Optical glass, glass gob for press molding, and optical element | |
JP4322217B2 (en) | Optical glass, glass gob for press molding, optical component, method for manufacturing glass molded body, and method for manufacturing optical component | |
JP6382256B2 (en) | Optical glass and use thereof | |
EP1433757B1 (en) | Optical glass, press-molding glass gob and optical element | |
CN110128004B (en) | Optical glass and application thereof | |
US8110514B2 (en) | Optical glass | |
US8424344B2 (en) | Optical glass | |
JP5836471B2 (en) | Optical glass | |
JP4305816B2 (en) | Optical glass, glass molding for press molding, and optical element | |
JP6738243B2 (en) | Glass, glass material for press molding, optical element blank and optical element | |
JP2010248057A (en) | Optical glass, glass raw material for press molding, optical element blank, optical element and method for manufacturing them | |
JP5856509B2 (en) | Optical glass, glass material for press molding, optical element and method for producing the same | |
JP2009167076A (en) | Optical glass composition, preform and optical element | |
JP6943995B2 (en) | Optical glass and its use | |
JP6362717B2 (en) | Optical glass and use thereof | |
JP6656310B2 (en) | Optical glass and its use | |
JP2016013969A (en) | Optical glass, glass gob for press molding, optical element and production method thereof, and method of producing optical element blank |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100216 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20100413 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20100416 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100517 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100721 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100721 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130806 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4562041 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |