JP4540807B2 - Polyvinyl alcohol water-soluble film - Google Patents
Polyvinyl alcohol water-soluble film Download PDFInfo
- Publication number
- JP4540807B2 JP4540807B2 JP2000221783A JP2000221783A JP4540807B2 JP 4540807 B2 JP4540807 B2 JP 4540807B2 JP 2000221783 A JP2000221783 A JP 2000221783A JP 2000221783 A JP2000221783 A JP 2000221783A JP 4540807 B2 JP4540807 B2 JP 4540807B2
- Authority
- JP
- Japan
- Prior art keywords
- pva
- mol
- water
- film
- polymerization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は水溶性に優れたポリビニルアルコール(以下、PVAと略記することがある。)系フィルムに関する。
【0002】
【従来の技術】
近年、農薬をはじめとする各種薬品などを単位量づつ水溶性フィルムに密封包装して、使用時にその包装形態のまま水中に投入し、内容物を包装フィルムごと水に溶解または分散して使用する方法が多く用いられてきている。このユニット包装の利点は使用時に危険な薬品に直接触れることなく使用できること、一定量が包装されているために使用時に計量する必要がないこと、薬剤を包装、輸送した容器または袋などの使用後の処理が不要または簡単であることなどである。
従来このようなユニット包装用の水溶性フィルムとしてけん化度88モル%程度の無変性の部分けん化PVAフィルムが用いられていた。これらの水溶性フィルムは、冷水や温水に易溶性であり、機械的強度が優れるなどの性能を有している。しかし、近年、作業性などの点から、水溶性がより速いフィルムが要求されている。しかし、無変性の部分けん化PVAは可塑剤等を添加して処方を工夫してもさらなる水溶性の向上が困難であった。
水溶性向上を目的として、特公平6−27205号公報(特開昭63−168437号公報)には、共重合等でスルホン酸基などを導入した変性PVAを水溶性フィルムとして使用する方法が開示されている。変性基を導入するほど水溶性を向上できるが、一般的にはPVAにコモノマーを共重合するほど生分解性が低下することが知られており、特にイオン基を有するコモノマーの場合に顕著となるため生分解性の点が懸念される。農薬等を包装したフィルムは水中で溶解した後、環境中に残留する恐れがあるため十分な生分解性を有する必要がある。
【0003】
【発明が解決しようとする課題】
かかる状況下、本発明は従来のPVA系樹脂からなる水溶性フィルムが有していた生分解性を維持しながら、溶解性を顕著に向上させたPVA系水溶性フィルムを提供するものである。
【0004】
【課題を解決するための手段】
本発明者らは、上記の課題解決に向けて鋭意検討した結果、1,2−グリコール結合量が2.0モル%以上5モル%以下、けん化度が80〜92モル%のPVA系樹脂100重量部および多価アルコール類である可塑剤10〜50重量部からなることを特徴とするPVA系水溶性フィルムが上記目的を達成することを見い出し、本発明を完成したものである。
【0005】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0006】
本発明に用いられるPVA系樹脂は、ビニルエステル重合体のけん化物である。
本発明で使用するビニルエステルとしてはギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、ラウリン酸ビニル、安息香酸ビニル、ステアリン酸ビニル、ピバリン酸ビニルおよびバーサティック酸ビニル等のビニルエステルが挙げられるが、工業的な生産性の点及び1,2−グリコール結合の生成の容易さの点から酢酸ビニルが好ましい。
【0007】
本発明のビニルエステルには生分解性を向上させる点から炭素数4以下のα−オレフィンを少量共重合することが好ましい。炭素数4以下のα−オレフィンとしては、エチレン、プロピレン、n−ブテン、イソブチレンなどが挙げられるが、得られる重合体フィルムの生分解性向上の点でエチレンが特に好ましい。また、水溶性向上の点からはプロピレンが特に好ましい。共重合したPVA系樹脂中のα−オレフィンの含有量は0.1〜10モル%、好ましくは0.5〜5モル%である。α−オレフィンの含有量が0.1モル%未満の場合には生分解性向上の効果が認められず、逆に10モル%を超える場合には重合度低下のためフィルム強度が低下することから好ましくない。また特にエチレンを共重合した場合には水溶性が低下するため、5モル%以下が好ましい。
【0008】
また、本発明のPVAは本発明の主旨を損なわない範囲で他の単量体単位を含有しても差し支えない。このようなコモノマーとして例えば、アクリル酸及びその塩とアクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸i−プロピル、アクリル酸n−ブチル、アクリル酸i−ブチル、アクリル酸t−ブチル、アクリル酸2−エチルヘキシル、アクリル酸ドデシル、アクリル酸オクタデシル等のアクリル酸エステル類、メタクリル酸およびその塩、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸i−プロピル、メタクリル酸n−ブチル、メタクリル酸i−ブチル、メタクリル酸t−ブチル、メタクリル酸2−エチルヘキシル、メタクリル酸ドデシル、メタクリル酸オクタデシル等のメタクリル酸エステル類、アクリルアミド、N−メチルアクリルアミド、N−エチルアクリルアミド、N,N−ジメチルアクリルアミド、ジアセトンアクリルアミド、アクリルアミドプロパンスルホン酸およびその塩、アクリルアミドプロピルジメチルアミンおよびその塩またはその4級塩、N−メチロールアクリルアミドおよびその誘導体等のアクリルアミド誘導体、メタクリルアミド、N−メチルメタクリルアミド、N−エチルメタクリルアミド、メタクリルアミドプロパンスルホン酸およびその塩、メタクリルアミドプロピルジメチルアミンおよびその塩またはその4級塩、N−メチロールメタクリルアミドおよびその誘導体等のメタクリルアミド誘導体、N−ビニルピロリドン、N−ビニルホルムアミド、N−ビニルアセトアミド等のN−ビニルアミド類、ポリアルキレンオキシドを側鎖に有するアリルエーテル類、メチルビニルエーテル、エチルビニルエーテル、n−プロピルビニルエーテル、i−プロピルビニルエーテル、n−ブチルビニルエーテル、i−ブチルビニルエーテル、t−ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテル等のビニルエーテル類、アクリロニトリル、メタクリロニトリル等のニトリル類、塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン等のハロゲン化ビニル、酢酸アリル、塩化アリル等のアリル化合物、マレイン酸およびその塩またはそのエステル、ビニルトリメトキシシラン等のビニルシリル化合物、酢酸イソプロペニル等がある。生分解性の観点から、変性量は通常5モル%以下である。
【0009】
本発明のポリビニルエステル系重合体の重合法としては溶液重合法、塊状重合法、懸濁重合法、乳化重合法等、従来公知の方法が適用できる。重合触媒としては、重合方法に応じて、アゾ系触媒、過酸化物系触媒、レドックス系触媒等が適宜選ばれる。
【0010】
該重合体のけん化反応は従来公知のアルカリ触媒、あるいは酸触媒での加アルコール分解、加水分解等が適用できる。このうちメタノールを溶剤とするNaOH触媒によるけん化反応が簡便で最も好ましい。
【0011】
本発明のPVAのけん化度は80モル%〜92モル%、好ましくは82〜90モル%、さらに好ましくは85モル%〜90モル%である。PVAのけん化度が80モル%未満の場合には水溶性が低下したり、完全に溶解せず分散状態になる場合があり、好ましくない。また、逆に92モル%を超える場合にも水溶性が低下することから好ましくない。
【0012】
該PVA系重合体の重合度も本発明の水溶性フィルムの性能に影響する。重合度は水溶性フィルムの用途によって適宜選ばれるが、フィルム強度の点から重合度は500以上、好ましくは700以上、さらに好ましくは900以上であり、工業的な生産性の点からは3000以下である。また、水溶性フィルムを袋にして使用した際に要求される耐衝撃性の面からは、重合度1000以上が特に好ましい。
【0013】
本発明のPVAの1,2−グリコール結合量としては、2.0モル%以上、より好ましくは2.2モル%以上、さらに好ましくは2.5モル%以上である。1,2−グリコール結合量はビニルエステルの種類、溶媒、重合温度、ビニレンカーボネートの共重合等の様々な方法で制御することが出来る。簡便な制御法として、本発明では重合温度やビニレンカーボネートの共重合での制御が好ましい。
重合温度で制御する場合にはその重合温度としては80℃以上であり、100℃以上が好ましく、120℃以上がより好ましく、150℃以上がさらに好ましく、180℃以上が特に好ましい。1,2−グリコール結合量の上限について、1,2−グリコール結合量を多くするために重合温度を上げたりビニレンカーボネート等を共重合したりすると重合度低下が起こるため、水溶性フィルムとして使用する場合には5モル%以下であり、4モル%以下がより好ましく、3.5モル%以下がさらに好ましい。
【0014】
本発明のPVAの短鎖分岐量としては、0.03モル%以上、より好ましくは0.05モル%以上である。短鎖分岐はビニルエステルの種類、溶媒、重合温度等の様々な方法で制御することが出来る。簡便な制御法として、本発明では重合温度での制御が好ましい。短鎖分岐量が多いほどPVA系樹脂の結晶性が低下すると予想されるため、水溶性が向上して好ましい水溶性フィルムとなる。その重合温度としては80℃以上であり、100℃以上が好ましく、120℃以上がより好ましく、150℃以上がさらに好ましく、180℃以上が特に好ましい。
【0015】
本発明のPVA系水溶性フィルムは、1,2−グリコール結合量が2.0モル%以上5モル%以下、けん化度が80〜92モル%のPVA系樹脂100重量部および可塑剤10〜50重量部からなることが必須である。
本発明に用いられる該可塑剤としては、PVA系樹脂の相溶性の点から多価アルコール類が使用される。中でも生分解性の点から、グリセリン、トリメチロールプロパン、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、プロピレングリコールが好ましい。また水溶性向上の効果が大きいことから、トリメチロールプロパンが特に好ましい。上記の可塑剤は1種あるいは2種以上を組み合わせて用いることが出来る。本発明の可塑剤量はPVA系樹脂100重量部に対して10〜50重量部、好ましくは12〜40重量部である。可塑剤添加量が10重量部未満では低湿下でのフィルムの柔軟性が不足して、包装に使用した際に破袋の原因となる。また、水溶性も十分ではない。水溶性の点からは可塑剤は多いほど好ましいが、ブリードアウトが起こるため50重量部以下、好ましくは40重量部より少ないことが好ましい。
【0016】
以上のようなPVA系重合体および特定量の可塑剤からなる本発明のPVA系水溶性フィルムの製造方法には特に制限はなく、必要とされるフィルム厚やフィルムの用途、目的により適宜選択されるが、通常溶液からのキャスト製膜法、乾式製膜法(空気中や窒素等不活性気体中への押し出し)、湿式製膜法(該PVA系重合体の貧溶媒中への押し出し)、乾湿式製膜法、ゲル製膜法等によって行われる。このときに使用される溶剤としては、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、エチレングリコール、グリセリン、水、ヘキサフルオロイソプロパノール等が単独または混合して使用される。また、塩化リチウム、塩化カルシウム等の無機塩の水溶液も単独または前記有機溶剤と混合して使用できる。この中で、水、ジメチルスルホキシド、ジメチルスルホキシドと水との混合液、グリセリン、エチレングリコール等が好んで使用される。製膜時のPVA系重合体および可塑剤からなる原液の固形分の濃度は製膜方法によって異なるが、通常1〜60重量%であり、温度は通常室温から250℃の範囲である。延伸または圧延操作は乾熱または湿熱で実施でき、温度は通常室温から270℃の範囲である。また、製膜後に100〜150℃程度の熱処理を加えることによって、溶解速度のコントロールが可能となる。また、ブロッキング防止性や水溶性を改善するために、フィルム表面のマット加工、ブロッキング防止剤の散布やエンボス加工を行うことが好ましい。
【0017】
本発明のPVA系水溶性フィルムは形状および透明性に特に制限はなく、必要に応じて一軸または二軸延伸や圧延処理が施されたものである。
【0018】
本発明のPVA系水溶性フィルムは本発明の趣旨を損なわない範囲において、上記のPVA系重合体や可塑剤以外のものを含有することはなんら差し支えなく、例えばその他の重合体、着色のための染料や顔料、酸化防止剤や紫外線吸収剤等の安定化剤が添加されることもある。
また、本発明の効果を損なわない範囲で1,2−グリコール結合量が2.0モル%より少ないPVA系樹脂と混合して使用しても何等差し支えない。
【0019】
本発明のPVA系水溶性フィルムの水溶性速度としては、フィルムを20℃の撹拌水中に浸漬したときの溶解時間が40秒以下であることが好ましく、より好ましくは35秒以下、さらに好ましくは30秒以下である。フィルムの厚みにより水溶性速度は変化するため、本発明においては目標とする溶解時間に合わせて適宜厚みを調整すればよい。ただし、一般的には水溶性フィルムの場合、耐衝撃性等の問題から厚み40μm以上のフィルムが用いられることが多いため、厚み40μmの際に上記溶解時間であることが好ましい。一般に可塑剤添加量が多いほど水溶性が向上するため、目標とする溶解時間に合わせて適宜可塑剤量を調整することが好ましい。
【0020】
本発明のPVA系水溶性フィルムのヤング率は工程通過性の点から20℃、80%RHの環境下で、0.5kg/mm2以上であることが好ましく、より好ましくは1.0kg/mm2以上、さらに好ましくは1.5kg/mm2以上である。ヤング率が高いほどフィルムの腰が向上し、工程通過性が改善される。ヤング率はフィルムの1,2−グリコール結合量、けん化度、可塑剤量、熱処理条件等によって変化するため、各種の条件を適宜調整する必要がある。理由は不明であるが、1,2−グリコール結合量が多いほど同じ組成のフィルムでもヤング率が高い傾向があるため、本発明のPVA系水溶性フィルムでは工程通過性が良好となる。
【0021】
本発明のPVA系水溶性フィルムの28日後の生分解率は60重量%以上であり、好ましくは70重量%以上、さらに好ましくは80重量%以上である。汚泥の活性のばらつき等により生分解率の誤差が生じるが、本発明のPVA系水溶性フィルムの生分解率の平均値が上記範囲となることが好ましい。本発明の生分解率は、ISO14851に記載の生分解性評価方法に準じて評価を行った場合の生分解率である。その生分解率は分解に伴う二酸化炭素発生量あるいは酸素消費量から求められる。
【0022】
【実施例】
以下に本発明を実施例によりさらに詳細に説明する。なお、実施例中「部」および「%」は、特にことわらない限り「重量部」および「重量%」をそれぞれ意味する。
【0023】
[PVAの分析方法]
PVAの分析方法は特に記載のない限りはJIS−K6726に従った。
本発明のPVAの1,2−グリコール結合、短鎖分岐の含有量は500MHzプロトンNMR(JEOL GX−500)装置による測定から下記のとおり求めた。
(1)PVAの1,2−グリコール結合量はNMRのピークから求めることができる。けん化度99.9モル%以上にけん化後、十分にメタノール洗浄を行い、次いで90℃減圧乾燥を2日間したPVAをDMSO−d6に溶解し、トリフルオロ酢酸を数滴加えた試料を500MHzのプロトンNMR(JEOL GX-500)を用いて80℃で測定した。
ビニルアルコール単位のメチン由来のピークは3.2〜4.0ppm(積分値A)、1,2−グリコール結合の1つのメチン由来のピークは3.25ppm(積分値B)に帰属され、次式で1,2−グリコール結合含有量を算出できる。
1,2−グリコール結合量(モル%)=(B/A)×100
(2)PVAの短鎖分岐量(2モノマーユニットからなる)はNMRのピークから求めることができる。けん化度99.9モル%以上にけん化後、十分にメタノール洗浄を行い、次いで90℃減圧乾燥を2日間したPVAをDMSO−d6に溶解した試料▲1▼を500MHzの1H NMRで、またD2Oに溶解した試料▲2▼を125.65 MHzの13C NMR(JEOL GX-500)を用いて80℃で測定する。
試料▲1▼よりビニルアルコール単位のメチン由来のピークは3.2〜4.0ppm(積分値C)、末端アルコールのメチレン由来のピークは3.52ppm(積分値D)に帰属され、試料▲2▼より全末端アルコールのメチレン由来のピークは60.95〜61.65ppm(積分値E)、短鎖分岐末端アルコールのメチレン由来のピークは60.95〜61.18ppm(積分値F)に帰属され、次式で短鎖分岐含有量を算出できる。
短鎖分岐含有量(モル%)= [(D/2)/C]×(F/E)×100
【0024】
[水溶性フィルムの水溶性の測定方法]
厚さ40μmのフィルムサンプルを40mm×40mmの正方形に切り、これをスライドマウントにはさみ、20℃の撹拌している水中に浸漬し、フィルムが完全に溶解するまでの時間(秒数)を測定し評価した。撹拌は1Lビーカーに1Lの蒸留水を入れ、恒温槽で20℃に保ち、5cmの撹拌子を用いて250rpmで行った。完溶時間は5回測定し、その平均を求めた。
【0025】
[生分解性評価方法]
無機培地液300mlに馴養汚泥(下水処理場より試験開始当日入手した汚泥とポリビニルアルコール水溶液中で1ヶ月間馴養した汚泥を1:1で混合したもの)を30mgとサンプル30mgを加え、クーロメーター(大倉電気OM3001A型)を用い、25℃で28日間培養し、生分解に消費された酸素量を測定することにより生分解率を求めた。
【0026】
実施例1
攪拌機、窒素導入口、開始剤導入口を備えた5L加圧反応槽に酢酸ビニル3000gおよび酒石酸0.090gを仕込み、室温下に窒素ガスによるバブリングをしながら反応槽圧力を2.0MPaまで昇圧して10分間放置した後、放圧するという操作を3回繰り返して系中を窒素置換した。開始剤として2,2'−アゾビス(N-ブチル-2-メチルプロピオンアミド) をメタノールに溶解した濃度0.1g/L溶液を調製し、窒素ガスによるバブリングを行って窒素置換した。次いで重合槽内温を150℃に昇温した。このときの反応槽圧力は0.8MPaであった。次いで、上記の開始剤溶液8.0mlを注入し重合を開始した。重合中は重合温度を150℃に維持し、上記の開始剤溶液を用いて13.6ml/hrで2,2'−アゾビス(N-ブチル-2-メチルプロピオンアミド) を連続添加して重合を実施した。重合中の反応槽圧力は0.8MPaであった。3時間後に冷却して重合を停止した。このときの固形分濃度は25%であった。次いで30℃減圧下にメタノールを時々添加しながら未反応酢酸ビニルモノマーの除去を行い、ポリ酢酸ビニルのメタノール溶液(濃度33%)を得た。得られた該ポリ酢酸ビニル溶液にメタノールを加えて濃度が25%となるように調整したポリ酢酸ビニルのメタノール溶液400g(溶液中のポリ酢酸ビニル100g)に、40℃で2.3g(ポリ酢酸ビニル中の酢酸ビニルユニットに対してモル比(MR)0.005)のアルカリ溶液(NaOHの10%メタノール溶液)を添加してけん化を行った。アルカリ添加後約20分でゲル化したものを粉砕器にて粉砕し、1時間放置してけん化を進行させた後、酢酸メチル1000gを加えて残存するアルカリを中和した。フェノールフタレイン指示薬を用いて中和の終了を確認後、濾別して得られた白色固体のポリビニルアルコール(以下、PVAと略記する。)にメタノール1000gを加えて室温で3時間放置洗浄した。上記洗浄操作を3回繰り返した後、遠心脱液して得られたPVAを乾燥機中70℃で2日間放置して乾燥PVA(PVA−1)を得た。
【0027】
得られたPVA(PVA−1)のけん化度は88モル%であった。
また、重合後未反応酢酸ビニルモノマーを除去して得られたポリ酢酸ビニルのメタノール溶液をアルカリモル比0.5でけん化して、粉砕したものを60℃で5時間放置してけん化を進行させた後、メタノールによるソックスレー洗浄を3日間実施し、次いで80℃で3日間減圧乾燥を行って精製PVAを得た。該PVAの重合度を常法のJIS−K6726に準じて測定したところ1200であった。該精製PVAの1,2−グリコール結合量を500MHzプロトンNMR(JEOL GX−500)装置による測定から前述のとおり求めたところ、2.5モル%であった。
【0028】
得られたPVA100重量部に対して可塑剤としてグリセリン20重量部と水900重量部を加えて90℃で撹拌し、PVA濃度9.8重量%水溶液を作成した。その水溶液を60℃で十分脱泡した後、ポリエステルフィルム上に流延し、90℃で乾燥した。その後、100℃で10分間熱処理を行った。得られたフィルムの厚みは40μmであった。
得られたフィルムを用いて、20℃の水溶性と生分解性の評価を行った。得られた結果は表3に示した。
【0029】
実施例2
重合温度を180℃に変更する以外は実施例1と同様にして重合およびけん化を行った。PVA合成の条件は表1に、得られた樹脂(PVA−2)の分析値は表2に示した。
そして、実施例1と同様な操作を行い、表3に示す組成のフィルムを作成して、水溶性と生分解性の評価を行い、結果を表3に示した。
【0030】
実施例3
撹拌機、窒素導入口、エチレン導入口、開始剤添加口およびディレー溶液添加口を備えた50L加圧反応槽に酢酸ビニル29.4kg、メタノール0.6kgを仕込み、60℃に昇温した後30分間窒素バブリングにより系中を窒素置換した。次いで反応槽圧力が1.8MPaとなるようにエチレンを導入仕込みした。開始剤として2,2’−アゾビス(N−ブチル−2−メチルプロピオンアミド)をメタノールに溶解した濃度0.1g/L溶液を調整し、窒素ガスによるバブリングを行って窒素置換した。上記の重合槽内温を150℃に調整した後、上記の開始剤溶液45mlを注入し重合を開始した。重合中はエチレンを導入して反応槽圧力を1.8MPaに、重合温度を150℃に維持し、上記の開始剤溶液を用いて185ml/hrで2,2’−アゾビス(N−ブチル−2−メチルプロピオンアミド)を連続添加して重合を実施した。3時間後に重合率が25%となったところで冷却して重合を停止した。反応槽を開放して脱エチレンした後、窒素ガスをバブリングして脱エチレンを完全に行った。次いで減圧下に未反応酢酸ビニルモノマーを除去しポリ酢酸ビニルのメタノール溶液とした。得られた該ポリ酢酸ビニル溶液にメタノールを加えて濃度が30%となるように調整したポリ酢酸ビニルのメタノール溶液333g(溶液中のポリ酢酸ビニル100g)に、9.3g(ポリ酢酸ビニル中の酢酸ビニルユニットに対してモル比(MR)0.006)のアルカリ溶液(NaOHの10%メタノール溶液)を添加してけん化を行った。アルカリ添加後約5分で系がゲル化したものを粉砕器にて粉砕し、40℃で1時間放置してけん化を進行させた後、酢酸メチル1000gを加えて残存するアルカリを中和した。フェノールフタレイン指示薬を用いて中和の終了を確認後、濾別して得られた白色固体のPVAにメタノール1000gを加えて室温で3時間放置洗浄した。上記洗浄操作を3回繰り返した後、遠心脱液して得られたPVAを乾燥機中70℃で2日間放置して乾燥PVA(PVA−3)を得た。得られたエチレン変性PVAについて前述の分析を行ったところ、PVA−3の重合度は1150、けん化度は88モル%、エチレン変性量は3モル%であった。得られた樹脂(PVA−3)の分析値は表2に示した。
そして、実施例1と同様な操作を行い、表3に示す組成の厚さ40μmのフィルムを作成して、水溶性と生分解性の評価を行い、結果を表3に示した。
【0031】
実施例4
反応槽内の置換ガスを窒素の代わりにプロピレンを使用し、重合中の条件を表1に示すように変更した以外は実施例3と同様にして重合およびけん化を行った。得られた樹脂(PVA−4)の分析値は表2に示した。ただし、プロピレン変性量はけん化度99.9モル%にけん化した重合物のDSCを測定し、融点を求めた。そして、下記の式を用いて、その融点[Tm(℃)]から変性量[△(モル%)]を求めた。
△=(234.1−Tm)/7.55
そして、実施例1と同様な操作を行い、表3に示す組成の厚さ40μmのフィルムを作成して、水溶性と生分解性の評価を行い、結果を表3に示した。
【0032】
実施例5
重合温度を120℃に変更する以外は実施例1と同様にして重合およびけん化を行った。PVA合成の条件は表1に、得られた樹脂(PVA−5)の分析値は表2に示した。
そして、実施例1と同様な操作を行い、表3に示す組成の厚さ40μmのフィルムを作成して、水溶性と生分解性の評価を行い、結果を表3に示した。
【0033】
実施例6
攪拌機、窒素導入口、開始剤導入口および還流冷却管を備えた5L四つ口セパラブルフラスコに酢酸ビニル2000g、メタノール400g、ビニレンカーボネート78.8gを仕込み、室温下に30分間窒素バブリングしながら系中を窒素置換した。上記の重合槽内温を60℃に調整した後、開始剤としてα,α'−アゾビスイソブチロニトリル0.9gを添加して重合を開始した。重合中は重合温度を60℃に維持し、4時間後に冷却して重合を停止した。この時の固形分濃度は55%であった。次いで30℃減圧下にメタノールを時々添加しながら未反応酢酸ビニルモノマーの除去を行い、ポリ酢酸ビニルのメタノール溶液(濃度33%)を得た。得られた該ポリ酢酸ビニル溶液にメタノールを加えて濃度が25%となるように調整したポリ酢酸ビニルのメタノール溶液400g(溶液中のポリ酢酸ビニル100g)に、40℃で46.4g(ポリ酢酸ビニル中の酢酸ビニルユニットに対してモル比(MR)0.005)のアルカリ溶液(NaOHの10%メタノール溶液)を添加してけん化を行った。アルカリ添加後約1分でゲル化したものを粉砕器にて粉砕し、1時間放置してけん化を進行させた後、酢酸メチル1000gを加えて残存するアルカリを中和した。フェノールフタレイン指示薬を用いて中和の終了を確認後、濾別して得られた白色固体のPVAにメタノール1000gを加えて室温で3時間放置洗浄した。上記洗浄操作を3回繰り返した後、遠心脱液して得られたPVAを乾燥機中70℃で2日間放置して乾燥PVA(PVA−6)を得た。
得られたPVA(PVA−6)のけん化度は88モル%であった。
また、重合後未反応酢酸ビニルモノマーを除去して得られたポリ酢酸ビニルのメタノール溶液をアルカリモル比0.5でけん化した後、粉砕したものを60℃で5時間放置してけん化を進行させた後、メタノールによるソックスレー洗浄を3日間実施し、次いで80℃で3日間減圧乾燥を行って精製PVAを得た。該PVAの重合度を常法のJIS K6726に準じて測定したところ1700であった。該精製PVAの1,2−グリコール結合量を500MHzプロトンNMR(JEOL GX−500)装置による測定から前述のとおり求めたところ、3.0モル%であった。
そして、実施例1と同様な操作を行い、表3に示す組成の厚さ40μmのフィルムを作成して、水溶性と生分解性の評価を行い、結果を表3に示した。
【0034】
比較例1
重合温度60℃で重合した1,2−グリコール結合量1.6モル%、重合度1700,けん化度88モル%のポリビニルアルコール(PVA−7)100重量部に対して水900重量部を加えて90℃で撹拌し、10重量%水溶液を作成した。その水溶液を60℃で十分脱泡した後、ポリエステルフィルム上に流延し、90℃で乾燥した。その後、100℃で10分間熱処理を行った。得られた厚さ40μmのフィルムの水溶性と生分解性を表3に示した。
【0035】
比較例2
重合温度60℃で重合した1,2−グリコール結合量1.6モル%、重合度1700,けん化度88モル%のポリビニルアルコール(PVA−7)100重量部に対して可塑剤としてグリセリン20重量部と水900重量部を加えて90℃で撹拌し、PVA濃度9.8重量%水溶液を作成した。その水溶液を60℃で十分脱泡した後、ポリエステルフィルム上に流延し、90℃で乾燥した。その後、100℃で10分間熱処理を行った。得られた厚さ40μmのフィルムの水溶性と生分解性を表3に示した。
【0036】
比較例3〜7
合成条件を表1のように変更する以外は実施例1と同様にして重合およびけん化を行った。得られた樹脂の分析値は表2に示した。
そして、実施例1と同様な操作を行い、表3に示す組成の厚さ40μmのフィルムを作成して、水溶性と生分解性の評価を行い、結果を表3に示した。
【0037】
比較例8
実施例1で合成したポリビニルアルコール(PVA−1)100重量部に対して可塑剤としてグリセリン70重量部と水900重量部を加えて90℃で撹拌し、PVA濃度9.3重量%水溶液を作成した。その水溶液を60℃で十分脱泡した後、ポリエステルフィルム上に流延し、90℃で乾燥した。その後、100℃で10分間熱処理を行った。得られた厚さ40μmのフィルムは可塑剤のブリードアウトがひどく、ブロッキングしており、実用上は使用不可能なものであった。水溶性と生分解性は表3に示した。
【0038】
比較例9
重合温度60℃で重合したスルホン酸変性量3モル%、1,2−グリコール結合量1.5モル%、重合度1400,けん化度88モル%のポリビニルアルコール(PVA−11)100重量部に対して可塑剤としてグリセリン20重量部と水900重量部を加えて90℃で撹拌し、PVA濃度9.8重量%水溶液を作成した。その水溶液を60℃で十分脱泡した後、ポリエステルフィルム上に流延し、90℃で乾燥した。その後、100℃で10分間熱処理を行った。得られた厚さ40μmのフィルムの水溶性と生分解性は表3に示した。
【0039】
【表1】
【0040】
【表2】
【0041】
【表3】
【0042】
【発明の効果】
上記の実施例により明らかなように、本発明のポリビニルアルコール系水溶性フィルムは生分解性を有しながら、従来のポリビニルアルコール系重合体フィルムに比べ水溶性が極めて良好である。これは、ポリビニルアルコール系重合体として、1,2−グリコール結合量が2.0モル%以上5モル%以下、けん化度が80〜92モル%のポリビニルアルコール系樹脂と特定量の可塑剤からなる水溶性フィルムを用いることによって達成されたものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polyvinyl alcohol (hereinafter sometimes abbreviated as PVA) film excellent in water solubility.
[0002]
[Prior art]
In recent years, various chemicals such as agricultural chemicals are sealed and packaged in water-soluble films in unit quantities, put into water in their packaging form at the time of use, and the contents are dissolved or dispersed in water together with the packaging film. Many methods have been used. The advantages of this unit packaging are that it can be used without direct contact with dangerous chemicals during use, there is no need to weigh because a certain amount is packaged, and after use of containers or bags that have been packed and transported. This processing is unnecessary or simple.
Conventionally, an unmodified partially saponified PVA film having a saponification degree of about 88 mol% has been used as such a water-soluble film for unit packaging. These water-soluble films are easily soluble in cold water and hot water, and have performances such as excellent mechanical strength. However, in recent years, a film having a higher water solubility has been demanded from the viewpoint of workability. However, it was difficult to improve the water solubility of the unmodified partially saponified PVA even if the formulation was devised by adding a plasticizer or the like.
For the purpose of improving water solubility, Japanese Patent Publication No. 6-27205 (Japanese Patent Laid-Open No. 63-168437) discloses a method of using a modified PVA introduced with a sulfonic acid group or the like by copolymerization or the like as a water-soluble film. Has been. It is known that the water solubility can be improved as the modifying group is introduced, but generally it is known that the biodegradability decreases as the comonomer is copolymerized with PVA, and this is particularly remarkable in the case of a comonomer having an ionic group. Therefore, there are concerns about biodegradability. A film in which agricultural chemicals and the like are packaged needs to have sufficient biodegradability because it may remain in the environment after being dissolved in water.
[0003]
[Problems to be solved by the invention]
Under such circumstances, the present invention provides a PVA water-soluble film having significantly improved solubility while maintaining the biodegradability of a water-soluble film made of a conventional PVA resin.
[0004]
[Means for Solving the Problems]
As a result of intensive studies aimed at solving the above problems, the present inventors have found that the amount of 1,2-glycol bonds is 2.0 mol% or more. 5 mol% or less , 100 parts by weight of a PVA-based resin having a saponification degree of 80 to 92 mol%, and Polyhydric alcohols The present invention has been completed by finding that a PVA water-soluble film comprising 10 to 50 parts by weight of a plasticizer achieves the above object.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0006]
The PVA resin used in the present invention is a saponified product of a vinyl ester polymer.
Examples of the vinyl ester used in the present invention include vinyl esters such as vinyl formate, vinyl acetate, vinyl propionate, vinyl valelate, vinyl laurate, vinyl benzoate, vinyl stearate, vinyl pivalate and vinyl versatate. However, vinyl acetate is preferable from the viewpoint of industrial productivity and the ease of formation of 1,2-glycol bonds.
[0007]
The vinyl ester of the present invention is preferably copolymerized in a small amount with an α-olefin having 4 or less carbon atoms from the viewpoint of improving biodegradability. Examples of the α-olefin having 4 or less carbon atoms include ethylene, propylene, n-butene, and isobutylene, and ethylene is particularly preferable from the viewpoint of improving the biodegradability of the polymer film to be obtained. Propylene is particularly preferred from the viewpoint of improving water solubility. The α-olefin content in the copolymerized PVA-based resin is 0.1 to 10 mol%, preferably 0.5 to 5 mol%. When the content of α-olefin is less than 0.1 mol%, the effect of improving biodegradability is not observed. Conversely, when the content exceeds 10 mol%, the film strength decreases due to a decrease in the degree of polymerization. It is not preferable. In particular, when ethylene is copolymerized, the water solubility is lowered, so 5 mol% or less is preferable.
[0008]
The PVA of the present invention may contain other monomer units as long as the gist of the present invention is not impaired. Examples of such comonomers include acrylic acid and salts thereof and methyl acrylate, ethyl acrylate, n-propyl acrylate, i-propyl acrylate, n-butyl acrylate, i-butyl acrylate, and t-butyl acrylate. Acrylates such as 2-ethylhexyl acrylate, dodecyl acrylate, octadecyl acrylate, methacrylic acid and salts thereof, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n methacrylate -Methacrylic acid esters such as butyl, i-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, dodecyl methacrylate, octadecyl methacrylate, acrylamide, N-methylacrylamide, N-ethylacrylamide N, N-dimethylacrylamide, diacetoneacrylamide, acrylamidepropanesulfonic acid and its salt, acrylamidepropyldimethylamine and its salt or quaternary salt thereof, acrylamide derivatives such as N-methylolacrylamide and its derivatives, methacrylamide, N-methyl Methacrylamide derivatives such as methacrylamide, N-ethyl methacrylamide, methacrylamide propane sulfonic acid and salts thereof, methacrylamide propyldimethylamine and salts thereof or quaternary salts thereof, N-methylol methacrylamide and derivatives thereof, and N-vinylpyrrolidone N-vinylamides such as N-vinylformamide and N-vinylacetamide, allyl ethers having a polyalkylene oxide in the side chain, methyl vinyl ether Ter, ethyl vinyl ether, n-propyl vinyl ether, i-propyl vinyl ether, n-butyl vinyl ether, i-butyl vinyl ether, t-butyl vinyl ether, dodecyl vinyl ether, vinyl ethers such as stearyl vinyl ether, nitriles such as acrylonitrile, methacrylonitrile, Vinyl halides such as vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride, allyl compounds such as allyl acetate and allyl chloride, maleic acid and its salts or esters, vinylsilyl compounds such as vinyltrimethoxysilane, isopropenyl acetate Etc. From the viewpoint of biodegradability, the amount of modification is usually 5 mol% or less.
[0009]
As a polymerization method of the polyvinyl ester polymer of the present invention, conventionally known methods such as solution polymerization method, bulk polymerization method, suspension polymerization method, emulsion polymerization method and the like can be applied. As the polymerization catalyst, an azo catalyst, a peroxide catalyst, a redox catalyst or the like is appropriately selected according to the polymerization method.
[0010]
For the saponification reaction of the polymer, alcoholysis or hydrolysis with a conventionally known alkali catalyst or acid catalyst can be applied. Of these, a saponification reaction with a NaOH catalyst using methanol as a solvent is simple and most preferred.
[0011]
The saponification degree of the PVA of the present invention is 80 mol% to 92 mol%, preferably 82 to 90 mol%, more preferably 85 mol% to 90 mol%. When the degree of saponification of PVA is less than 80 mol%, the water solubility may decrease, or the PVA may not be completely dissolved and may be dispersed. On the other hand, when it exceeds 92 mol%, it is not preferable because water solubility is lowered.
[0012]
The degree of polymerization of the PVA polymer also affects the performance of the water-soluble film of the present invention. The degree of polymerization is appropriately selected according to the use of the water-soluble film, but the degree of polymerization is 500 or more, preferably 700 or more, more preferably 900 or more from the viewpoint of film strength, and 3000 or less from the viewpoint of industrial productivity. is there. Further, from the viewpoint of impact resistance required when a water-soluble film is used as a bag, a polymerization degree of 1000 or more is particularly preferable.
[0013]
The 1,2-glycol bond amount of the PVA of the present invention is 2.0 mol% or more, more preferably 2.2 mol% or more, and further preferably 2.5 mol% or more. The amount of 1,2-glycol bond can be controlled by various methods such as vinyl ester type, solvent, polymerization temperature, and copolymerization of vinylene carbonate. As a simple control method, in the present invention, control by polymerization temperature or copolymerization of vinylene carbonate is preferable.
When the polymerization temperature is controlled, the polymerization temperature is 80 ° C. or higher, preferably 100 ° C. or higher, more preferably 120 ° C. or higher, further preferably 150 ° C. or higher, and particularly preferably 180 ° C. or higher. Upper limit of 1,2-glycol bond amount about When the polymerization temperature is increased to increase the amount of 1,2-glycol bond or vinylene carbonate is copolymerized, the degree of polymerization is reduced. And 4 mol% or less is more preferable, and 3.5 mol% or less is more preferable.
[0014]
The short chain branching amount of the PVA of the present invention is 0.03 mol% or more, more preferably 0.05 mol% or more. Short chain branching can be controlled by various methods such as the type of vinyl ester, solvent, and polymerization temperature. As a simple control method, control at the polymerization temperature is preferred in the present invention. Since the crystallinity of the PVA resin is expected to decrease as the amount of short chain branching increases, the water solubility is improved and a preferable water soluble film is obtained. The polymerization temperature is 80 ° C. or higher, preferably 100 ° C. or higher, more preferably 120 ° C. or higher, further preferably 150 ° C. or higher, and particularly preferably 180 ° C. or higher.
[0015]
The PVA water-soluble film of the present invention has a 1,2-glycol bond amount of 2.0 mol% or more. 5 mol% or less It is essential that the saponification degree is composed of 100 parts by weight of a PVA resin having a saponification degree of 80 to 92 mol% and 10 to 50 parts by weight of a plasticizer.
Examples of the plasticizer used in the present invention include polyhydric alcohols from the viewpoint of the compatibility of the PVA resin. used . Among these, glycerin, trimethylolpropane, diethylene glycol, triethylene glycol, dipropylene glycol, and propylene glycol are preferable from the viewpoint of biodegradability. In addition, trimethylolpropane is particularly preferable because of its great effect of improving water solubility. The above plasticizer Is One type or a combination of two or more types can be used. The amount of the plasticizer of the present invention is 10 to 50 parts by weight, preferably 12 to 40 parts by weight, based on 100 parts by weight of the PVA resin. If the amount of the plasticizer added is less than 10 parts by weight, the flexibility of the film under low humidity is insufficient, which causes bag breakage when used for packaging. Also, the water solubility is not sufficient. From the viewpoint of water solubility, the more plasticizer is preferred, but since bleeding out occurs, it is preferably 50 parts by weight or less, preferably less than 40 parts by weight.
[0016]
There is no particular limitation on the method for producing the PVA-based water-soluble film of the present invention comprising the above-mentioned PVA-based polymer and a specific amount of plasticizer, and it is appropriately selected depending on the required film thickness, film application, and purpose. However, a cast film formation method from a normal solution, a dry film formation method (extrusion into an inert gas such as air or nitrogen), a wet film formation method (extrusion into the poor solvent of the PVA polymer), It is performed by a dry / wet film forming method, a gel film forming method, or the like. As the solvent used at this time, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, ethylene glycol, glycerin, water, hexafluoroisopropanol or the like is used alone or in combination. Also, an aqueous solution of an inorganic salt such as lithium chloride or calcium chloride can be used alone or mixed with the organic solvent. Of these, water, dimethyl sulfoxide, a mixed solution of dimethyl sulfoxide and water, glycerin, ethylene glycol and the like are preferably used. The concentration of the solid content of the stock solution composed of the PVA polymer and the plasticizer during film formation varies depending on the film forming method, but is usually 1 to 60% by weight, and the temperature is usually in the range of room temperature to 250 ° C. The stretching or rolling operation can be performed with dry heat or wet heat, and the temperature is usually in the range of room temperature to 270 ° C. Moreover, the dissolution rate can be controlled by applying a heat treatment of about 100 to 150 ° C. after the film formation. Moreover, in order to improve blocking prevention property and water solubility, it is preferable to perform mat processing of the film surface, spraying of an antiblocking agent, and embossing.
[0017]
The PVA water-soluble film of the present invention is not particularly limited in shape and transparency, and is uniaxially or biaxially stretched or rolled as necessary.
[0018]
In the range which does not impair the meaning of this invention, the PVA-type water-soluble film of this invention may contain things other than said PVA-type polymer and a plasticizer, for example, for another polymer and coloring Stabilizers such as dyes, pigments, antioxidants and UV absorbers may be added.
Moreover, there is no problem even if it is used by mixing with a PVA-based resin having a 1,2-glycol bond amount less than 2.0 mol% within a range not impairing the effects of the present invention.
[0019]
The water solubility rate of the PVA water-soluble film of the present invention is preferably 40 seconds or less, more preferably 35 seconds or less, and even more preferably 30 when the film is immersed in stirring water at 20 ° C. Less than a second. Since the water-soluble speed varies depending on the thickness of the film, the thickness may be appropriately adjusted according to the target dissolution time in the present invention. However, in general, in the case of a water-soluble film, a film having a thickness of 40 μm or more is often used because of problems such as impact resistance. Therefore, the dissolution time is preferable when the thickness is 40 μm. In general, the greater the amount of plasticizer added, the better the water solubility. Therefore, it is preferable to appropriately adjust the amount of plasticizer according to the target dissolution time.
[0020]
The Young's modulus of the PVA water-soluble film of the present invention is 0.5 kg / mm in an environment of 20 ° C. and 80% RH from the viewpoint of process passability. 2 Or more, more preferably 1.0 kg / mm 2 Or more, more preferably 1.5 kg / mm 2 That's it. The higher the Young's modulus, the higher the stiffness of the film and the better the process passability. Since the Young's modulus varies depending on the amount of 1,2-glycol bonds, the degree of saponification, the amount of plasticizer, the heat treatment conditions, etc. of the film, it is necessary to appropriately adjust various conditions. The reason is unknown, but since the Young's modulus tends to be higher even with a film having the same composition as the amount of 1,2-glycol bonds increases, the PVA-based water-soluble film of the present invention has good process passability.
[0021]
The biodegradation rate after 28 days of the PVA-based water-soluble film of the present invention is 60% by weight or more, preferably 70% by weight or more, and more preferably 80% by weight or more. Although an error in the biodegradation rate occurs due to variation in sludge activity, the average value of the biodegradation rate of the PVA water-soluble film of the present invention is preferably in the above range. The biodegradation rate of the present invention is a biodegradation rate when evaluation is performed according to the biodegradability evaluation method described in ISO14885. The biodegradation rate can be obtained from the amount of carbon dioxide generated or oxygen consumed during decomposition.
[0022]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. In the examples, “parts” and “%” mean “parts by weight” and “% by weight” unless otherwise specified.
[0023]
[Analysis method of PVA]
The analysis method of PVA followed JIS-K6726 unless otherwise specified.
The content of 1,2-glycol bond and short chain branching of the PVA of the present invention was determined from the measurement with a 500 MHz proton NMR (JEOL GX-500) apparatus as follows.
(1) The amount of 1,2-glycol bonds in PVA can be determined from the NMR peak. After saponification to a degree of saponification of 99.9 mol% or more, the sample was thoroughly washed with methanol, then PVA that had been dried at 90 ° C. under reduced pressure for 2 days was dissolved in DMSO-d6, and a sample containing a few drops of trifluoroacetic acid was added to a 500 MHz proton. It measured at 80 degreeC using NMR (JEOL GX-500).
The peak derived from methine of the vinyl alcohol unit is attributed to 3.2 to 4.0 ppm (integrated value A), and the peak derived from one methine of the 1,2-glycol bond is attributed to 3.25 ppm (integrated value B). The 1,2-glycol bond content can be calculated.
1,2-glycol bond amount (mol%) = (B / A) × 100
(2) The amount of short chain branching of PVA (consisting of 2 monomer units) can be determined from the NMR peak. After saponification to a degree of saponification of 99.9 mol% or more, the sample was thoroughly washed with methanol and then dried at 90 ° C. under reduced pressure for 2 days. Sample (1) dissolved in DMSO-d6 was subjected to 500 MHz 1H NMR and D 2 Sample (2) dissolved in O is measured at 80 ° C. using 13C NMR (JEOL GX-500) of 125.65 MHz.
From sample (1), the methine-derived peak of the vinyl alcohol unit is attributed to 3.2 to 4.0 ppm (integrated value C), and the peak derived from the methylene of the terminal alcohol is attributed to 3.52 ppm (integrated value D). From ▼, the methylene-derived peak of all terminal alcohols is attributed to 60.95 to 61.65 ppm (integral value E), and the methylene-derived peak of short-chain branched terminal alcohols is attributed to 60.95 to 61.18 ppm (integrated value F). The short chain branching content can be calculated by the following formula.
Short chain branching content (mol%) = [(D / 2) / C] × (F / E) × 100
[0024]
[Method for measuring water solubility of water-soluble film]
A 40 μm-thick film sample is cut into a 40 mm × 40 mm square, sandwiched between slide mounts, immersed in 20 ° C. stirring water, and the time (seconds) until the film is completely dissolved is measured. evaluated. Stirring was performed at 250 rpm using a 5 cm stir bar with 1 L distilled water in a 1 L beaker, maintained at 20 ° C. in a thermostatic bath. The complete dissolution time was measured 5 times and the average was obtained.
[0025]
[Biodegradability evaluation method]
Add 30 mg of acclimatized sludge (mixed in a 1: 1 ratio of sludge obtained from the sewage treatment plant on the day of the start of the test and sludge acclimated for 1 month in an aqueous polyvinyl alcohol solution) to a 300 ml inorganic medium solution, and add a coulometer ( Okura Electric OM3001A type) was cultured at 25 ° C. for 28 days, and the amount of oxygen consumed for biodegradation was measured to determine the biodegradation rate.
[0026]
Example 1
A 5 L pressure reactor equipped with a stirrer, nitrogen inlet, and initiator inlet was charged with 3000 g vinyl acetate and 0.090 g tartaric acid, and the reactor pressure was increased to 2.0 MPa while bubbling with nitrogen gas at room temperature. The system was allowed to stand for 10 minutes, and then the operation of releasing the pressure was repeated three times to purge the system with nitrogen. A 0.1 g / L solution having a concentration of 2,2′-azobis (N-butyl-2-methylpropionamide) dissolved in methanol as an initiator was prepared, and nitrogen substitution was performed to perform bubbling with nitrogen gas. Next, the temperature inside the polymerization tank was raised to 150 ° C. The reaction vessel pressure at this time was 0.8 MPa. Next, 8.0 ml of the above initiator solution was injected to initiate polymerization. During the polymerization, the polymerization temperature was maintained at 150 ° C., and 2,2′-azobis (N-butyl-2-methylpropionamide) was continuously added at 13.6 ml / hr using the above initiator solution. Carried out. The reactor pressure during the polymerization was 0.8 MPa. After 3 hours, the polymerization was stopped by cooling. The solid concentration at this time was 25%. Subsequently, unreacted vinyl acetate monomer was removed while adding methanol occasionally under reduced pressure at 30 ° C. to obtain a methanol solution of polyvinyl acetate (concentration: 33%). To 400 g of a polyvinyl acetate methanol solution (100 g of polyvinyl acetate in the solution) adjusted to a concentration of 25% by adding methanol to the obtained polyvinyl acetate solution, 2.3 g (polyacetic acid at 40 ° C.). Saponification was performed by adding an alkaline solution (NaOH in 10% methanol) having a molar ratio (MR) of 0.005 to the vinyl acetate unit in vinyl. After about 20 minutes after the addition of alkali, the gelled material was pulverized by a pulverizer and allowed to stand for 1 hour to allow saponification to proceed, and then 1000 g of methyl acetate was added to neutralize the remaining alkali. After confirming the end of neutralization using a phenolphthalein indicator, 1000 g of methanol was added to white solid polyvinyl alcohol (hereinafter abbreviated as PVA) obtained by filtration, and the mixture was left to wash at room temperature for 3 hours. After the above washing operation was repeated three times, the PVA obtained by centrifugal drainage was left in a dryer at 70 ° C. for 2 days to obtain dry PVA (PVA-1).
[0027]
The degree of saponification of the obtained PVA (PVA-1) was 88 mol%.
In addition, a methanol solution of polyvinyl acetate obtained by removing unreacted vinyl acetate monomer after polymerization was saponified at an alkali molar ratio of 0.5, and the pulverized product was allowed to stand at 60 ° C. for 5 hours to promote saponification. After that, Soxhlet washing with methanol was carried out for 3 days, followed by drying under reduced pressure at 80 ° C. for 3 days to obtain purified PVA. It was 1200 when the polymerization degree of this PVA was measured according to JIS-K6726 of the conventional method. When the amount of 1,2-glycol bonds in the purified PVA was determined as described above from measurement with a 500 MHz proton NMR (JEOL GX-500) apparatus, it was 2.5 mol%.
[0028]
As a plasticizer, 20 parts by weight of glycerin and 900 parts by weight of water were added to 100 parts by weight of the obtained PVA, followed by stirring at 90 ° C. to prepare an aqueous solution with a PVA concentration of 9.8% by weight. The aqueous solution was sufficiently degassed at 60 ° C., then cast on a polyester film, and dried at 90 ° C. Thereafter, heat treatment was performed at 100 ° C. for 10 minutes. The thickness of the obtained film was 40 μm.
Using the obtained film, water solubility at 20 ° C. and biodegradability were evaluated. The results obtained are shown in Table 3.
[0029]
Example 2
Polymerization and saponification were carried out in the same manner as in Example 1 except that the polymerization temperature was changed to 180 ° C. The conditions for PVA synthesis are shown in Table 1, and the analytical value of the obtained resin (PVA-2) is shown in Table 2.
And operation similar to Example 1 was performed, the film of the composition shown in Table 3 was created, water solubility and biodegradability were evaluated, and the result was shown in Table 3.
[0030]
Example 3
A 50 L pressure reactor equipped with a stirrer, nitrogen inlet, ethylene inlet, initiator addition port and delay solution addition port was charged with 29.4 kg of vinyl acetate and 0.6 kg of methanol. The system was purged with nitrogen by nitrogen bubbling for 1 minute. Next, ethylene was introduced and charged so that the reactor pressure was 1.8 MPa. A 0.1 g / L solution having a concentration of 2,2′-azobis (N-butyl-2-methylpropionamide) dissolved in methanol as an initiator was prepared, and was purged with nitrogen by bubbling with nitrogen gas. After adjusting the polymerization tank internal temperature to 150 ° C., 45 ml of the initiator solution was injected to initiate polymerization. During the polymerization, ethylene was introduced to maintain the reactor pressure at 1.8 MPa and the polymerization temperature at 150 ° C., and using the above initiator solution, 2,2′-azobis (N-butyl-2) at 185 ml / hr. -Methylpropionamide) was added continuously to carry out the polymerization. After 3 hours, when the polymerization rate reached 25%, the polymerization was stopped by cooling. After the reaction vessel was opened to remove ethylene, nitrogen gas was bubbled to completely remove ethylene. Next, unreacted vinyl acetate monomer was removed under reduced pressure to obtain a methanol solution of polyvinyl acetate. To 333 g of a polyvinyl acetate methanol solution (100 g of polyvinyl acetate in the solution) adjusted to have a concentration of 30% by adding methanol to the obtained polyvinyl acetate solution, 9.3 g (in polyvinyl acetate) Saponification was performed by adding an alkaline solution (NaOH in 10% methanol) having a molar ratio (MR) of 0.006 to the vinyl acetate unit. About 5 minutes after the addition of the alkali, the gelled system was pulverized with a pulverizer and allowed to stand at 40 ° C. for 1 hour to allow saponification to proceed, and then 1000 g of methyl acetate was added to neutralize the remaining alkali. After confirming the end of neutralization using a phenolphthalein indicator, 1000 g of methanol was added to the white solid PVA obtained by filtration, and the mixture was left to wash at room temperature for 3 hours. After the above washing operation was repeated three times, the PVA obtained by centrifugal drainage was left in a dryer at 70 ° C. for 2 days to obtain dry PVA (PVA-3). When the above-described analysis was performed on the obtained ethylene-modified PVA, the polymerization degree of PVA-3 was 1150, the saponification degree was 88 mol%, and the ethylene modification amount was 3 mol%. The analytical values of the obtained resin (PVA-3) are shown in Table 2.
And operation similar to Example 1 was performed, the film of thickness 40 micrometers of the composition shown in Table 3 was created, water solubility and biodegradability were evaluated, and the result was shown in Table 3.
[0031]
Example 4
Polymerization and saponification were carried out in the same manner as in Example 3 except that propylene was used instead of nitrogen in the reaction vessel and the polymerization conditions were changed as shown in Table 1. The analytical value of the obtained resin (PVA-4) is shown in Table 2. However, the amount of propylene modification was determined by measuring the DSC of the polymer saponified to a saponification degree of 99.9 mol% to determine the melting point. Then, the amount of modification [Δ (mol%)] was determined from the melting point [Tm (° C.)] using the following formula.
Δ = (234.1-Tm) /7.55
And operation similar to Example 1 was performed, the film of thickness 40 micrometers of the composition shown in Table 3 was created, water solubility and biodegradability were evaluated, and the result was shown in Table 3.
[0032]
Example 5
Polymerization and saponification were carried out in the same manner as in Example 1 except that the polymerization temperature was changed to 120 ° C. The conditions for PVA synthesis are shown in Table 1, and the analytical value of the obtained resin (PVA-5) is shown in Table 2.
And operation similar to Example 1 was performed, the film of thickness 40 micrometers of the composition shown in Table 3 was created, water solubility and biodegradability were evaluated, and the result was shown in Table 3.
[0033]
Example 6
A 5 L four-necked separable flask equipped with a stirrer, nitrogen inlet, initiator inlet, and reflux condenser was charged with 2000 g of vinyl acetate, 400 g of methanol, and 78.8 g of vinylene carbonate, and the system was bubbled with nitrogen for 30 minutes at room temperature. The inside was replaced with nitrogen. After adjusting the polymerization tank internal temperature to 60 ° C., 0.9 g of α, α′-azobisisobutyronitrile was added as an initiator to initiate polymerization. During the polymerization, the polymerization temperature was maintained at 60 ° C., and after 4 hours, the polymerization was stopped by cooling. The solid concentration at this time was 55%. Subsequently, unreacted vinyl acetate monomer was removed while adding methanol occasionally under reduced pressure at 30 ° C. to obtain a methanol solution of polyvinyl acetate (concentration: 33%). 46.4 g (polyacetic acid) at 40 ° C. was added to 400 g of a polyvinyl acetate methanol solution adjusted to a concentration of 25% by adding methanol to the obtained polyvinyl acetate solution (100 g of polyvinyl acetate in the solution). Saponification was performed by adding an alkaline solution (NaOH in 10% methanol) having a molar ratio (MR) of 0.005 to the vinyl acetate unit in vinyl. After about 1 minute after addition of the alkali, the gelled product was pulverized with a pulverizer and allowed to stand for 1 hour to allow saponification to proceed, and then 1000 g of methyl acetate was added to neutralize the remaining alkali. After confirming the end of neutralization using a phenolphthalein indicator, 1000 g of methanol was added to the white solid PVA obtained by filtration, and the mixture was left to wash at room temperature for 3 hours. After the above washing operation was repeated three times, the PVA obtained by centrifugal drainage was left in a dryer at 70 ° C. for 2 days to obtain dry PVA (PVA-6).
The degree of saponification of the obtained PVA (PVA-6) was 88 mol%.
Further, after saponification of a methanol solution of polyvinyl acetate obtained by removing unreacted vinyl acetate monomer after polymerization at an alkali molar ratio of 0.5, the pulverized product was allowed to stand at 60 ° C. for 5 hours to promote saponification. After that, Soxhlet washing with methanol was carried out for 3 days, followed by drying under reduced pressure at 80 ° C. for 3 days to obtain purified PVA. When the degree of polymerization of the PVA was measured according to a conventional method JIS K6726, it was 1700. The amount of 1,2-glycol bonds in the purified PVA was determined from measurement with a 500 MHz proton NMR (JEOL GX-500) apparatus as described above, and was found to be 3.0 mol%.
And operation similar to Example 1 was performed, the film of thickness 40 micrometers of the composition shown in Table 3 was created, water solubility and biodegradability were evaluated, and the result was shown in Table 3.
[0034]
Comparative Example 1
900 parts by weight of water was added to 100 parts by weight of polyvinyl alcohol (PVA-7) having a 1,2-glycol bond amount of 1.6 mol%, a polymerization degree of 1700, and a saponification degree of 88 mol%, polymerized at a polymerization temperature of 60 ° C. The mixture was stirred at 90 ° C. to prepare a 10% by weight aqueous solution. The aqueous solution was sufficiently degassed at 60 ° C., then cast on a polyester film, and dried at 90 ° C. Thereafter, heat treatment was performed at 100 ° C. for 10 minutes. Table 3 shows the water solubility and biodegradability of the obtained film having a thickness of 40 μm.
[0035]
Comparative Example 2
20 parts by weight of glycerin as a plasticizer with respect to 100 parts by weight of polyvinyl alcohol (PVA-7) having a 1,2-glycol bond content of 1.6 mol%, a polymerization degree of 1700, and a saponification degree of 88 mol%, polymerized at a polymerization temperature of 60 ° C. And 900 parts by weight of water were added and stirred at 90 ° C. to prepare an aqueous solution with a PVA concentration of 9.8% by weight. The aqueous solution was sufficiently degassed at 60 ° C., then cast on a polyester film, and dried at 90 ° C. Thereafter, heat treatment was performed at 100 ° C. for 10 minutes. Table 3 shows the water solubility and biodegradability of the obtained film having a thickness of 40 μm.
[0036]
Comparative Examples 3-7
Polymerization and saponification were carried out in the same manner as in Example 1 except that the synthesis conditions were changed as shown in Table 1. The analytical values of the obtained resin are shown in Table 2.
And operation similar to Example 1 was performed, the film of thickness 40 micrometers of the composition shown in Table 3 was created, water solubility and biodegradability were evaluated, and the result was shown in Table 3.
[0037]
Comparative Example 8
70 parts by weight of glycerin and 900 parts by weight of water as plasticizers were added to 100 parts by weight of the polyvinyl alcohol (PVA-1) synthesized in Example 1 and stirred at 90 ° C. to prepare an aqueous solution with a PVA concentration of 9.3% by weight. did. The aqueous solution was sufficiently degassed at 60 ° C., then cast on a polyester film, and dried at 90 ° C. Thereafter, heat treatment was performed at 100 ° C. for 10 minutes. The obtained film having a thickness of 40 μm had a severe plasticizer bleed-out and was blocked, and could not be used practically. Water solubility and biodegradability are shown in Table 3.
[0038]
Comparative Example 9
With respect to 100 parts by weight of polyvinyl alcohol (PVA-11) having a sulfonic acid modification amount of 3 mol%, a 1,2-glycol bond amount of 1.5 mol%, a polymerization degree of 1400, and a saponification degree of 88 mol%, polymerized at a polymerization temperature of 60 ° C. As a plasticizer, 20 parts by weight of glycerin and 900 parts by weight of water were added and stirred at 90 ° C. to prepare an aqueous solution with a PVA concentration of 9.8% by weight. The aqueous solution was sufficiently degassed at 60 ° C., then cast on a polyester film, and dried at 90 ° C. Thereafter, heat treatment was performed at 100 ° C. for 10 minutes. The water solubility and biodegradability of the obtained film having a thickness of 40 μm are shown in Table 3.
[0039]
[Table 1]
[0040]
[Table 2]
[0041]
[Table 3]
[0042]
【The invention's effect】
As is apparent from the above examples, the water-soluble polyvinyl alcohol-based film of the present invention has extremely good water-solubility compared to conventional polyvinyl alcohol-based polymer films while having biodegradability. This is a polyvinyl alcohol polymer, the 1,2-glycol bond amount is 2.0 mol% or more 5 mol% or less This is achieved by using a water-soluble film comprising a polyvinyl alcohol resin having a saponification degree of 80 to 92 mol% and a specific amount of plasticizer.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000221783A JP4540807B2 (en) | 2000-07-24 | 2000-07-24 | Polyvinyl alcohol water-soluble film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000221783A JP4540807B2 (en) | 2000-07-24 | 2000-07-24 | Polyvinyl alcohol water-soluble film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002037967A JP2002037967A (en) | 2002-02-06 |
JP4540807B2 true JP4540807B2 (en) | 2010-09-08 |
Family
ID=18716129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000221783A Expired - Lifetime JP4540807B2 (en) | 2000-07-24 | 2000-07-24 | Polyvinyl alcohol water-soluble film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4540807B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115521563B (en) * | 2021-06-25 | 2024-05-03 | 中国石油化工股份有限公司 | Thermoplastic low-alcoholysis-degree ternary polyvinyl alcohol film with medium-temperature water solubility and preparation method and application thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0368604A (en) * | 1989-08-07 | 1991-03-25 | Kuraray Co Ltd | New polyvinyl alcohol polymer and preparation thereof |
JPH06248150A (en) * | 1993-02-16 | 1994-09-06 | Air Prod And Chem Inc | Extrudable polyvinyl alcohol composition containing modified starch |
JPH08269500A (en) * | 1995-04-03 | 1996-10-15 | Kobayashi Pharmaceut Co Ltd | Detergent for toilet bowl |
JPH09272775A (en) * | 1996-04-05 | 1997-10-21 | Kuraray Co Ltd | Water-soluble film |
JPH09316270A (en) * | 1996-06-03 | 1997-12-09 | Kuraray Co Ltd | Water-soluble film for packaging medicine |
JPH11279210A (en) * | 1998-03-25 | 1999-10-12 | Unitika Chemical Kk | Production of polyvinyl alcohol excellent in stability of viscosity at low temperature |
JP2000017130A (en) * | 1998-07-06 | 2000-01-18 | Showa Marutsutsu Co Ltd | Thermofusible polyvinyl alcohol-based resin composition |
-
2000
- 2000-07-24 JP JP2000221783A patent/JP4540807B2/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0368604A (en) * | 1989-08-07 | 1991-03-25 | Kuraray Co Ltd | New polyvinyl alcohol polymer and preparation thereof |
JPH06248150A (en) * | 1993-02-16 | 1994-09-06 | Air Prod And Chem Inc | Extrudable polyvinyl alcohol composition containing modified starch |
JPH08269500A (en) * | 1995-04-03 | 1996-10-15 | Kobayashi Pharmaceut Co Ltd | Detergent for toilet bowl |
JPH09272775A (en) * | 1996-04-05 | 1997-10-21 | Kuraray Co Ltd | Water-soluble film |
JPH09316270A (en) * | 1996-06-03 | 1997-12-09 | Kuraray Co Ltd | Water-soluble film for packaging medicine |
JPH11279210A (en) * | 1998-03-25 | 1999-10-12 | Unitika Chemical Kk | Production of polyvinyl alcohol excellent in stability of viscosity at low temperature |
JP2000017130A (en) * | 1998-07-06 | 2000-01-18 | Showa Marutsutsu Co Ltd | Thermofusible polyvinyl alcohol-based resin composition |
Also Published As
Publication number | Publication date |
---|---|
JP2002037967A (en) | 2002-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100428525B1 (en) | Water-soluble resin composition and water-soluble film | |
JP6093491B2 (en) | Modified polyvinyl alcohol, resin composition and film | |
CN106715493B (en) | Modified polyvinyl alcohol and water-soluble film | |
EP1251147B1 (en) | Water-soluble film and package using the same | |
EP3521327B1 (en) | Modified vinyl alcohol polymer powder having reduced methanol content and production method therefor, and water-soluble film and packaging material | |
JP6093490B2 (en) | Resin composition and film | |
JP3913601B2 (en) | Water-soluble film | |
JP5122040B2 (en) | Polyvinyl alcohol-based water-soluble film and method for producing the same | |
JP4540809B2 (en) | Water-soluble resin composition and water-soluble film | |
JP2003104435A (en) | Water-soluble film for packaging chlorine-containing compound | |
JP4570742B2 (en) | Water-soluble film | |
JP4540807B2 (en) | Polyvinyl alcohol water-soluble film | |
JP4832687B2 (en) | Water-soluble film for packaging acidic substances | |
JP4675531B2 (en) | Water-soluble film for packaging alkaline substances | |
JP4573934B2 (en) | Alkaline material packaging film | |
JPH03124734A (en) | Water-soluble film | |
JPH08188624A (en) | Polyvinyl alcohol film | |
CN114426623B (en) | Modified polyvinyl alcohol and preparation method thereof | |
JP4818553B2 (en) | Vinyl alcohol polymer composition | |
JP2002121349A (en) | Hot-melt polyvinyl alcohol resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070221 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091009 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100420 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100426 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100601 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100623 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4540807 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130702 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140702 Year of fee payment: 4 |
|
EXPY | Cancellation because of completion of term |