JP4537312B2 - Hot air jet type heating device and heating furnace - Google Patents

Hot air jet type heating device and heating furnace Download PDF

Info

Publication number
JP4537312B2
JP4537312B2 JP2005358288A JP2005358288A JP4537312B2 JP 4537312 B2 JP4537312 B2 JP 4537312B2 JP 2005358288 A JP2005358288 A JP 2005358288A JP 2005358288 A JP2005358288 A JP 2005358288A JP 4537312 B2 JP4537312 B2 JP 4537312B2
Authority
JP
Japan
Prior art keywords
hot air
heated
recovery
temperature
air injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2005358288A
Other languages
Japanese (ja)
Other versions
JP2006153440A (en
Inventor
雅彦 古野
浩司 斉藤
文弘 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Original Assignee
Tamura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corp filed Critical Tamura Corp
Priority to JP2005358288A priority Critical patent/JP4537312B2/en
Publication of JP2006153440A publication Critical patent/JP2006153440A/en
Application granted granted Critical
Publication of JP4537312B2 publication Critical patent/JP4537312B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Tunnel Furnaces (AREA)
  • Furnace Details (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

本発明は、被加熱物を熱風で加熱する熱風噴射型加熱装置および加熱炉に関する。   The present invention relates to a hot air jet type heating apparatus and a heating furnace for heating an object to be heated with hot air.

従来、電子部品のプリント配線板への実装には、錫鉛共晶合金を主として一般に鉛を含有した錫基軟質はんだ合金が使用されてきた。従来の鉛を含んだ錫基軟質はんだ合金の液相線温度は錫鉛共晶はんだで183℃であり、リフローソルダリングでの最高温度は230℃前後であり、融点に比べ約50℃程高い作業温度であった。   Conventionally, tin-based soft solder alloys mainly containing a tin-lead eutectic alloy and generally containing lead have been used for mounting electronic components on printed wiring boards. The liquidus temperature of a conventional tin-based soft solder alloy containing lead is 183 ° C for tin-lead eutectic solder, and the maximum temperature for reflow soldering is around 230 ° C, which is about 50 ° C higher than the melting point. The working temperature.

溶融はんだの温度は、はんだの濡れ広がりや、プリント配線板上の銅ランドへの接合に影響すること、さらにはプリント配線板上に実装される部品間の熱容量の著しい差からリフロー炉内の基板上のはんだ付け部位の温度差が大きく開くこと等から、部品の耐熱温度以内で、できるだけ融点より高い作業温度でのはんだ付けが行われてきた。   The temperature of the molten solder affects the wetting and spreading of the solder, the bonding to the copper land on the printed wiring board, and the substrate in the reflow furnace due to the significant difference in the heat capacity between the components mounted on the printed wiring board. Since the temperature difference of the upper soldering part is greatly widened, soldering has been performed at an operating temperature higher than the melting point as much as possible within the heat resistance temperature of the parts.

しかし、近年の全地球的環境問題への対応から、有害とされるはんだ中に含まれる鉛の削除、すなわち鉛フリーはんだへの代替が急がれている。鉛フリーはんだの場合、様々な合金組成が提唱されてきたが、その液相線温度(融点)は概ね220℃程度と従来の錫鉛共晶はんだのそれと比べ約40℃も高く、さらに鉛が含まれないことから鉛フリーはんだの濡れ性は悪い。   However, in response to recent global environmental problems, there is an urgent need to eliminate lead contained in harmful solder, that is, to replace it with lead-free solder. In the case of lead-free solder, various alloy compositions have been proposed, but its liquidus temperature (melting point) is about 220 ° C, about 40 ° C higher than that of conventional tin-lead eutectic solder, and lead Since it is not included, the wettability of lead-free solder is poor.

一方、部品の耐熱性の観点からリフローソルダリングにおける最高作業温度は240℃以下に抑える必要がある。はんだ付け作業温度がこのように制約された下で良好なはんだ付けをするには、熱容量の異なる電子部品が搭載されたプリント配線板内でのリフロー時の部品間でのはんだ付け部分の温度ばらつきを抑える必要がある。   On the other hand, the maximum working temperature in reflow soldering must be kept below 240 ° C from the viewpoint of heat resistance of the parts. In order to achieve good soldering under such a limited soldering temperature, the temperature variation of the soldered parts between components during reflow in a printed circuit board with electronic components with different heat capacities It is necessary to suppress.

リフローソルダリング時にプリント配線板上の電子部品端子部の温度ばらつきを少なくするには、いかに均一に加熱するかがポイントになる。均一加熱で最初に考えられるものは、均一にプリント配線板および電子部品に熱風を噴き付ける送風装置である(例えば、特許文献1参照)。
特開平11−204932号公報(第1頁、図1)
In order to reduce the temperature variation of the electronic component terminal part on the printed wiring board during reflow soldering, the point is how to heat uniformly. The first thing that can be considered for uniform heating is a blower that uniformly blows hot air onto a printed wiring board and electronic components (see, for example, Patent Document 1).
Japanese Patent Application Laid-Open No. 11-204932 (first page, FIG. 1)

電子部品が搭載されたプリント配線板の均一加熱のために、熱風の均一噴出しによる均一吹付けは重要な必要条件ではあるが、目標を達成するに足る十分条件ではない。これは以下の理由による。   In order to uniformly heat a printed wiring board on which electronic components are mounted, uniform spraying by hot air blowing is an important requirement, but it is not a sufficient condition to achieve the target. This is due to the following reason.

まず、リフロー炉内において、十分に加熱された熱風を均等に電子部品を搭載したプリント配線板に向けて噴射する。噴射された熱風はプリント配線板上にて低温にある電子部品の端子部やプリント配線板との間で熱交換し、電子部品およびプリント配線板を加熱する。   First, in a reflow furnace, hot air that is sufficiently heated is sprayed evenly toward a printed wiring board on which electronic components are mounted. The jetted hot air exchanges heat with the terminal part of the electronic component or the printed wiring board at a low temperature on the printed wiring board to heat the electronic component and the printed wiring board.

ここで問題となるのが、プリント配線板上に搭載されている部品の熱容量が著しく異なることである。同じ熱量を供給しても温度の上昇の仕方に相違が出てくる。これは非常に大きな問題で、多くの熱量を電子部品やプリント配線板に供給するには、プリント配線板またはその上に搭載されている電子部品の温度と大きな温度差をもった熱風を供給することが簡便な方法である。   The problem here is that the heat capacities of the components mounted on the printed wiring board are significantly different. Even if the same amount of heat is supplied, there is a difference in the way the temperature rises. This is a very big problem. To supply a large amount of heat to an electronic component or printed wiring board, supply hot air with a large temperature difference from the temperature of the printed wiring board or the electronic component mounted on it. Is a simple method.

しかし、電子部品やプリント配線板の熱容量の差のために一部の熱容量の小さな部品、例えばミニモールドトランジスタや小型のアルミ電解コンデンサは温度が上昇し易く、耐熱温度以上になる場合が懸念される。したがって、不用意に温度差をつけることもできない。   However, due to differences in the heat capacities of electronic components and printed wiring boards, some parts with small heat capacities, such as mini-mold transistors and small aluminum electrolytic capacitors, can easily rise in temperature, and there are concerns that they may exceed the heat-resistant temperature. . Therefore, it is impossible to make a temperature difference carelessly.

すなわち、均一に熱風を吹付けるだけでは問題を解決することはできない。ここで重要なことは、限られた温度の熱風でいかに電子部品やプリント配線板の温度を上昇させるかであり、これは熱風と電子部品端子またはプリント配線板との熱伝達率を向上させることにある。   That is, the problem cannot be solved only by blowing hot air uniformly. What is important here is how to raise the temperature of electronic components and printed wiring boards with hot air of limited temperature, which improves the heat transfer coefficient between hot air and electronic component terminals or printed wiring boards. It is in.

熱風を吹付けて加熱する場合、被加熱物との温度差の他に前述した熱伝達率が問題となる。熱伝達率はその単位から、単位面積当りある温度の媒体が与えるエネルギーの大きさと解釈される。すなわち、ある温度の熱風がどれだけ効率良く電子部品或いはプリント配線板にエネルギーを供給できるかである。   When heating by blowing hot air, the above-described heat transfer coefficient becomes a problem in addition to the temperature difference from the object to be heated. From the unit, the heat transfer coefficient is interpreted as the amount of energy given by a medium at a certain temperature per unit area. That is, how efficiently hot air at a certain temperature can supply energy to an electronic component or printed wiring board.

リフロー炉内ではプリント配線板に対して上下から熱風が吹付けられるが、吹付けられた熱風は、例えばプリント配線板表面に衝突した際に熱交換を行いプリント配線板を加熱した後に、今度は冷えた熱風としてプリント配線板に沿って流れる。このプリント配線板上を沿って流れる冷えた熱風は、上から噴射された熱風から見た場合に熱交換の障害となる。   In the reflow furnace, hot air is blown from the top and bottom against the printed wiring board, but the blown hot air exchanges heat when it hits the surface of the printed wiring board, for example, and then heats the printed wiring board. It flows along the printed wiring board as cold hot air. The cooled hot air flowing along the printed wiring board becomes an obstacle to heat exchange when viewed from the hot air jetted from above.

すなわち、熱風の温度とプリント配線板または電子部品の温度との間に中間の温度域があり、温度境界層と言える領域がプリント配線板の表面に沿って形成されることになる。プリント配線板への熱供給を効率良く行うためには、この温度境界層を極力薄くする必要があり、そのためには熱風の流れを制御する必要がある。   That is, there is an intermediate temperature range between the temperature of the hot air and the temperature of the printed wiring board or electronic component, and a region that can be called a temperature boundary layer is formed along the surface of the printed wiring board. In order to efficiently supply heat to the printed wiring board, it is necessary to make this temperature boundary layer as thin as possible, and for that purpose, it is necessary to control the flow of hot air.

本発明は、このような点に鑑みなされたもので、熱風の流れを制御して温度境界層を極力薄くし、被加熱物への熱供給を効率良く行うことで、加熱される被加熱物の温度ばらつきを解消する熱風噴射型加熱装置および加熱炉を提供することを目的とするものである。   The present invention has been made in view of such points, and by controlling the flow of hot air to make the temperature boundary layer as thin as possible and efficiently supplying heat to the object to be heated, the object to be heated is heated. It is an object of the present invention to provide a hot air jet type heating device and a heating furnace that eliminate the temperature variation.

本発明は、インペラの下側に吸込口を有するとともに周囲に給気室を有する送風機と、この送風機の吸込口の下側に配置された吸気室と、この吸気室の周囲に配置された複数の給気通路と、吸気室の下側に配置され送風機の給気室に複数の給気通路を介し連通された加圧室と、送風機の給気室から加圧室に吐出された直後の熱風の圧力や流量の偏りを矯正する整流機構と、この整流機構の下側に配置された取付基板部を有するとともにこの取付基板部に被加熱物に対し熱風を噴出する突起形の複数の熱風噴射ノズルが設けられた熱風噴射ユニットと、取付基板部より被加熱物側に配置され複数の熱風噴射ノズルを被加熱物側に突出させた回収板を有するとともにこの回収板に被加熱物に当って方向転換した熱風を強制的に回収する複数の回収口部を設けた回収ユニットと、取付基板部と回収板との間に設けられ吸気室に連通された熱風回収用の回収通路と、冷えた熱風を加熱する熱交換器とを具備し、熱風噴射ユニットの熱風噴射ノズルは、被加熱物に向って漸次内孔が狭められた熱風噴射型加熱装置である。 The present invention includes a blower having a suction port on the lower side of the impeller and an air supply chamber in the periphery, an intake chamber disposed on the lower side of the suction port of the blower, and a plurality of disposed disposed around the intake chamber. An air supply passage, a pressurization chamber disposed below the intake chamber and communicated with the air supply chamber of the blower through a plurality of air supply passages, and immediately after being discharged from the air supply chamber of the blower to the pressurization chamber A plurality of protrusion-shaped hot air having a rectifying mechanism that corrects the bias of the hot air pressure and flow rate, and a mounting board portion disposed below the rectifying mechanism, and that blows hot air toward an object to be heated on the mounting board portion There is a hot air injection unit provided with an injection nozzle, and a recovery plate that is arranged closer to the heated object than the mounting substrate and projects a plurality of hot air injection nozzles toward the heated object. Multiple recovery forcibly recovering hot air A recovery unit provided with a portion, a recovery passage for recovering hot air provided between the mounting substrate portion and the recovery plate and communicating with the intake chamber, and a heat exchanger for heating the cooled hot air, The hot air injection nozzle of the unit is a hot air injection type heating device in which the inner hole is gradually narrowed toward the object to be heated.

本発明は、炉体と、炉体内で被加熱物を搬送する搬送手段と、搬送手段に沿って炉体内に複数配設され被加熱物を加熱する前記の熱風噴射型加熱装置と、搬送手段の延長部分に対向して炉体の被加熱物搬出側に配置された被加熱物冷却用の冷却装置とを具備した加熱炉である。   The present invention relates to a furnace body, a transport means for transporting an object to be heated in the furnace body, a plurality of the hot-air jet type heating devices arranged in the furnace body along the transport means for heating the object to be heated, and a transport means. And a cooling device for cooling an object to be heated, which is disposed on the unloading side of the object to be heated facing the extended portion of the furnace body.

本発明によれば、送風機の下側に吸気室を介して配置された加圧室に、送風機により複数の給気通路を介し熱風を供給送風機の給気室から加圧室に吐出された直後の熱風の圧力や流量の偏りを整流機構により矯正するので、全ての熱風噴射ノズルに均等の温度および風速の熱風を供給でき、被加熱物を均一に加熱できる。 According to the present invention, hot air is supplied to the pressurization chamber disposed below the blower via the intake chamber via the plurality of supply passages, and discharged from the supply chamber of the blower to the pressurization chamber. Since the straightening of the hot air pressure and flow rate immediately after correction is corrected by the rectifying mechanism, the hot air having the same temperature and speed can be supplied to all the hot air injection nozzles, and the object to be heated can be heated uniformly.

本発明によれば、炉体内の搬送手段に沿って、相互に隣接する熱風循環系からの熱影響を抑えることができる閉ループ系の熱風噴射型加熱装置を複数配設することで、かつ、これらの熱風噴射型加熱装置は、被加熱物を加熱して温度低下した熱風を、広範囲にわたって確保された回収口部より全域にわたって強制回収し、被加熱物加熱用の熱風の流れを妨げないので、被加熱物上の温度境界層を薄くして、精度の高い温度で被加熱物を均一に加熱することで、被加熱物の温度ばらつきの少ない優れた温度プロファイルが得られる。   According to the present invention, by arranging a plurality of closed-loop hot air injection heating devices that can suppress the influence of heat from hot air circulation systems adjacent to each other along the conveying means in the furnace body, and these The hot air jet type heating device forcibly collects hot air whose temperature has been lowered by heating the object to be heated over the entire area from the recovery port secured over a wide range, and does not hinder the flow of hot air for heating the object to be heated. By thinning the temperature boundary layer on the object to be heated and uniformly heating the object to be heated at a highly accurate temperature, an excellent temperature profile with little temperature variation of the object to be heated can be obtained.

先ず、本発明の前提技術を図1および図2を参照しながら説明する。   First, the prerequisite technology of the present invention will be described with reference to FIG. 1 and FIG.

図1は、プリント配線板上に表面実装用電子部品が搭載された被加熱物Wに対し熱風Hを噴出する複数の噴出口部1と、被加熱物Wに当って方向転換した冷えた熱風hを強制的に回収するファンなどの回収手段2とを具備した熱風噴射装置を示す。   FIG. 1 shows a plurality of jet ports 1 for jetting hot air H to an object to be heated W on which surface-mounting electronic components are mounted on a printed wiring board, and cold hot air that has changed its direction upon hitting the object to be heated W The hot-air injection apparatus provided with the collection means 2 such as a fan for forcibly collecting h is shown.

この熱風噴射装置は、部分的に見た場合には被加熱物Wに対して均一に熱風を吹付ける構造にはなっていないが、各個の噴出口部1から噴射される熱風Hの温度と風速は均一であり、炉内を移動する被加熱物Wの表面には、最終的には一様に熱風Hが吹付けられる。任意の開口面積を持つ噴出口部1は任意のピッチで搬送方向および搬送方向に対し直角の炉体幅方向に複数個配設されており、そこから噴射された熱風Hは噴出口部1の直下周囲の被加熱物Wに偏って当る。   Although this hot air injection device is not configured to blow hot air uniformly against the object to be heated W when partially viewed, the temperature of the hot air H injected from each of the outlets 1 The wind speed is uniform, and the hot air H is finally sprayed uniformly on the surface of the object W to be heated moving in the furnace. A plurality of jet outlets 1 having an arbitrary opening area are arranged at an arbitrary pitch in the transport direction and in the furnace width direction perpendicular to the transport direction. It is biased to the object to be heated W immediately below.

このとき、図1に示されるように、特に障害物が無い限り、被加熱物Wに当った熱風Hは熱交換後、被加熱物Wに沿って衝突点を中心に外周に向って流れるが、隣接する他の噴出口部1から噴射された熱風Hの同様な被加熱物Wに沿った流れと、両噴出口部1,1の中間部位に相当する被加熱物W上で衝突し、これらの熱交換後の冷えた熱風hは、上方向に流れを変え、回収手段2の吸引力により強制的に回収される。   At this time, as shown in FIG. 1, unless there is an obstruction, the hot air H hitting the object to be heated W flows toward the outer periphery around the collision point along the object to be heated W after heat exchange. , The flow along the similar heated object W of the hot air H jetted from the other adjacent nozzle part 1 collides with the heated object W corresponding to the intermediate part between the two nozzle parts 1, 1; The cooled hot air h after the heat exchange changes its flow upward and is forcibly recovered by the suction force of the recovery means 2.

このため、熱交換を終えた被加熱物Wに沿って流れる冷えた熱風hと、噴出口部1から被加熱物Wに向って流入してくる加熱用の熱風Hとの干渉が少なくてすみ、冷えた熱風hを被加熱物Wの表面に滞留させずに効率良く除去できる。   For this reason, there is little interference between the cooled hot air h flowing along the heated object W after the heat exchange and the heated hot air H flowing from the ejection port 1 toward the heated object W. The cooled hot air h can be efficiently removed without staying on the surface of the article W to be heated.

これにより、被加熱物Wの表面に沿った中間温度層である温度境界層を薄くすることができるとともに、温度低下する前の新鮮な熱風Hを被加熱物Wに効率良く供給できるため、被加熱物Wの表面での熱交換率が高く、すなわち高い熱伝達率を得ることができ、精度の高い温度で被加熱物Wを均一に加熱でき、加熱される被加熱物Wの温度ばらつきを解消できる。   As a result, the temperature boundary layer, which is an intermediate temperature layer along the surface of the object to be heated W, can be thinned, and fresh hot air H before the temperature is lowered can be efficiently supplied to the object to be heated W. The heat exchange rate on the surface of the heated object W is high, that is, a high heat transfer coefficient can be obtained, the heated object W can be uniformly heated at a high precision temperature, and the temperature variation of the heated object W is heated. Can be resolved.

なお、回収手段2は、噴出口部1,1間にファンを象徴的に図示したが、熱風回収経路なども含むものであり、要するに、熱交換を終えた冷えた熱風hを被加熱物Wの表面に滞留させないように強制的に回収できるものであれば、側方へ吸引するようにしても良い。   In addition, although the collection | recovery means 2 showed symbolically the fan between the jet nozzle parts 1 and 1, it also includes a hot-air collection | recovery path | route etc., In short, the cold hot air h which finished heat exchange is to be heated W As long as it can be forcibly collected so as not to stay on the surface, the air may be sucked to the side.

図2には、図1に示された熱風噴射装置をより具体化した熱風噴射装置が示されており、取付基板部としての平板部23に、被加熱物Wに対し熱風Hを噴出する突起形の複数の噴出口部としての熱風噴射ノズル24が設けられ、さらに、平板部23の下側に回収板25が平行に設けられ、この回収板25に、被加熱物Wに当って方向転換した熱風hを強制回収するための複数の回収口部26が、各熱風噴射ノズル24の間で穿設されている。平板部23と回収板25との間には、被加熱物加熱後の比較的低温の熱風hを吸引回収する回収通路32が形成され、この回収通路32は、送風機、ヒータなどの熱風循環系を経て熱風噴射ノズル24に連通されている。   FIG. 2 shows a hot air spraying device that is a more specific example of the hot air spraying device shown in FIG. 1, and a projection that jets hot air H to the object to be heated W on a flat plate portion 23 as a mounting substrate portion. A hot air spray nozzle 24 is provided as a plurality of jet outlets, and a recovery plate 25 is provided in parallel under the flat plate portion 23. The recovery plate 25 contacts the object to be heated W and changes its direction. A plurality of recovery port portions 26 for forcibly recovering the hot air h thus formed are formed between the hot air injection nozzles 24. Between the flat plate portion 23 and the recovery plate 25, a recovery passage 32 for sucking and collecting a relatively low temperature hot air h after heating the object to be heated is formed. The recovery passage 32 is a hot air circulation system such as a blower or a heater. And communicated with the hot air injection nozzle 24.

要するに、被加熱物Wに対し熱風Hを噴出する複数の熱風噴射ノズル24と、これらの熱風噴射ノズル24の間に設けられ被加熱物Wに当って方向転換した冷えた熱風hを強制的に回収する複数の回収口部26とを具備した熱風噴射装置である。   In short, a plurality of hot air jet nozzles 24 for jetting hot air H to the object to be heated W, and the cold hot air h that is provided between these hot air jet nozzles 24 and changes the direction of the object to be heated W are forced. This is a hot air jetting device provided with a plurality of recovery ports 26 for recovery.

そして、被加熱物Wに衝突した後に逆方向に流れる冷えた熱風hを回収口部26で強制的に回収することにより、厚い温度境界層の形成の要因ともなりうる被加熱物W上に滞留する冷えた熱風hを被加熱物W上から取り除くことで、高い熱伝達率を得ることができる。   Then, the cold hot air h flowing in the reverse direction after colliding with the heated object W is forcibly recovered at the recovery port 26, so that it stays on the heated object W, which may cause a thick temperature boundary layer. A high heat transfer coefficient can be obtained by removing the cooled hot air h from the top of the article to be heated W.

すなわち、熱風噴射ノズル24は、回収口部26が設けられた面より突起状に突設された熱風噴射装置であり、この突起状の熱風噴射ノズル24により加熱用の熱風Hに方向性を与えることで、この加熱用の熱風Hと、回収口部26で強制回収される温度低下した熱風hとを明確に区別して、互いの干渉を効果的に防止できる。   That is, the hot air injection nozzle 24 is a hot air injection device that protrudes in a protruding shape from the surface on which the recovery port portion 26 is provided, and directs the hot air H for heating by the protruding hot air injection nozzle 24. As a result, the hot air H for heating and the hot air h whose temperature has been forcibly recovered at the recovery port portion 26 can be clearly distinguished, and mutual interference can be effectively prevented.

これにより、温度低下した熱風hを効率良く被加熱物Wから取除くことができ、被加熱物Wの表面に沿った温度境界層を薄くすることができるとともに、温度低下する前の新鮮な熱風Hを被加熱物Wに効率良く供給できるため、被加熱物Wの表面での熱交換率を高め、すなわち高い熱伝達率を得ることができ、精度の高い温度で被加熱物Wを均一に加熱でき、被加熱物Wの温度ばらつきを解消できる。   Thereby, the hot air h whose temperature has decreased can be efficiently removed from the object to be heated W, the temperature boundary layer along the surface of the object to be heated W can be thinned, and fresh hot air before the temperature decreases Since H can be efficiently supplied to the object to be heated W, the heat exchange rate on the surface of the object to be heated W can be increased, that is, a high heat transfer rate can be obtained, and the object to be heated W can be evenly distributed at a highly accurate temperature. It can be heated, and the temperature variation of the article to be heated W can be eliminated.

次に、本発明の関連技術を図3乃至図5を参照しながら説明する。   Next, a related technique of the present invention will be described with reference to FIGS.

図3は、プリント配線板上に表面実装用電子部品が搭載された被加熱物Wを、はんだペーストを溶融凝固させて電気的かつ機械的に接合するリフローソルダリング用の熱風噴射装置11および熱風噴射型加熱装置12を示す。   FIG. 3 shows a hot air jetting device 11 and hot air for reflow soldering in which an object to be heated W on which a surface mounting electronic component is mounted on a printed wiring board is electrically and mechanically joined by melting and solidifying a solder paste. An injection type heating apparatus 12 is shown.

この図3において、熱風噴射型加熱装置12は、熱風発生器本体13の内部に、比較的低温の熱風を加熱して高温の熱風にするための熱交換器14が配置されている。この熱交換器14は、熱風流路15内に複数のヒータエレメント16が、被加熱物搬送方向に水平に配設されたものである。   In FIG. 3, in the hot air jet type heating device 12, a heat exchanger 14 for heating a relatively low temperature hot air to a high temperature hot air is disposed inside the hot air generator body 13. In the heat exchanger 14, a plurality of heater elements 16 are horizontally disposed in the hot air flow path 15 in the direction of the object to be heated.

この熱交換器14の下流側に、熱風を熱風流路15の全域に均す整流機構17が配置されている。この整流機構17は、例えば多数の小孔が均等間隔で穿設されたパンチング板などが熱風流路15中に配設されたものである。   On the downstream side of the heat exchanger 14, a rectifying mechanism 17 for leveling the hot air over the entire hot air flow path 15 is disposed. In this rectifying mechanism 17, for example, a punching plate having a large number of small holes formed at equal intervals is disposed in the hot air flow path 15.

さらに、熱交換器14および整流機構17の下流側に、被加熱物Wに対して熱風を噴射する熱風噴射装置11が設けられている。   Further, on the downstream side of the heat exchanger 14 and the rectifying mechanism 17, a hot air injection device 11 that injects hot air to the article to be heated W is provided.

この熱風噴射装置11は、熱風発生器本体13の底部に一体的に装着された熱風噴射ユニット21と、この熱風噴射ユニット21に沿って設けられた回収ユニット22とを備えている。   The hot air injection device 11 includes a hot air injection unit 21 that is integrally attached to the bottom of the hot air generator main body 13, and a recovery unit 22 that is provided along the hot air injection unit 21.

熱風噴射ユニット21は、取付基板部としての平板部23に、被加熱物Wに対し熱風Hを噴出する突起形の噴出口部としての熱風噴射ノズル24が複数設けられたものである。   The hot air injection unit 21 is provided with a plurality of hot air injection nozzles 24 as projecting jet outlets for jetting hot air H to the article to be heated W on a flat plate part 23 as an attachment substrate part.

すなわち、熱風噴射ユニット21の平板部23および熱風噴射ノズル24は、アルミニウム、亜鉛またはマグネシウムなどを材料とするダイカスト法を含む鋳造法、または絞り加工法により一体に成形されている。   That is, the flat plate portion 23 and the hot air injection nozzle 24 of the hot air injection unit 21 are integrally formed by a casting method including a die casting method using aluminum, zinc, magnesium, or the like as a material, or a drawing method.

鋳造法または絞り加工法で熱風噴射ユニット21の平板部23および熱風噴射ノズル24を成形することで、平板部23に複数の熱風噴射ノズル24を容易に成形でき、また、アルミニウムダイカスト法などの鋳造法により成形された平板部23および熱風噴射ノズル24は、熱伝導率が良いとともにヒートマスが大きいため、これらの加熱温度の偏りを防止できるとともに温度変化を抑制でき、各熱風噴射ノズル24から均一で安定した温度の熱風Hが得られる。   By forming the flat plate portion 23 and the hot air injection nozzle 24 of the hot air injection unit 21 by a casting method or a drawing method, a plurality of hot air injection nozzles 24 can be easily formed on the flat plate portion 23, and casting such as an aluminum die casting method can be performed. Since the flat plate portion 23 and the hot air injection nozzle 24 formed by the method have a high thermal conductivity and a large heat mass, it is possible to prevent the deviation of the heating temperature and to suppress the temperature change. Hot air H having a stable temperature is obtained.

回収ユニット22は、熱風噴射ユニット21の平板部23の下側に平行に設けられた回収板25に、被加熱物Wに当って方向転換した熱風hを強制回収するための複数の回収口部26を、各熱風噴射ノズル24の間で穿設したものである。   The recovery unit 22 has a plurality of recovery ports for forcibly recovering the hot air h that has changed its direction against the heated object W on the recovery plate 25 provided in parallel to the lower side of the flat plate portion 23 of the hot air jet unit 21 26 is formed between the hot air injection nozzles 24.

熱風噴射ノズル24および回収口部26の穴形状は、円形、長円形、または被加熱物搬送方向と直角に交差する方向に細長く設けられた幅の狭いスリット状でも良いが、いずれの場合も、熱風噴射ノズル24は、被加熱物Wを加熱して温度低下した熱風hを回収する回収口部26より被加熱物W側へ突出した形状にすることが望ましい。   The hole shape of the hot air injection nozzle 24 and the recovery port portion 26 may be a circular shape, an oval shape, or a narrow slit shape that is elongated in a direction perpendicular to the heated object conveyance direction. It is desirable that the hot air injection nozzle 24 has a shape protruding from the recovery port portion 26 for recovering the hot air h whose temperature has been lowered by heating the object to be heated W toward the object to be heated W.

これらの回収口部26は、熱風発生器本体13の下部および周側部を覆うように設けられた回収板25の底部に穿孔された穴であるのに対し、熱風噴射ノズル24は、平板部23から回収板25を貫通して、回収口部26が設けられた面より突起状に突設されたものである。   These recovery ports 26 are holes drilled in the bottom of the recovery plate 25 provided so as to cover the lower portion and the peripheral side portion of the hot air generator body 13, whereas the hot air injection nozzle 24 is a flat plate portion. From 23, the recovery plate 25 is penetrated, and is projected from the surface on which the recovery port portion 26 is provided.

複数の熱風噴射ノズル24の少なくとも1つには、ヒータ温度を調節するための熱電対などの温度センサ27が、熱風Hの流通を妨げないように挿入されている。   A temperature sensor 27 such as a thermocouple for adjusting the heater temperature is inserted into at least one of the plurality of hot air injection nozzles 24 so as not to disturb the flow of the hot air H.

熱風噴射装置11の熱風噴射ノズル24から噴出され回収口部26に回収された被加熱物加熱後の熱風hは、吸給気機構31により吸引され、熱交換器14に供給される。   The heated hot air h heated by the heated object jetted from the hot air jet nozzle 24 of the hot air jet device 11 and collected in the collection port 26 is sucked by the suction air mechanism 31 and supplied to the heat exchanger 14.

この吸給気機構31は、熱風噴射ユニット21の平板部23と回収板25との間に、被加熱物加熱後の比較的低温の熱風hを吸引回収する回収通路32が形成され、この回収通路32に、熱風発生器本体13の周側部と回収板25の周側部との間に形成された回収通路33が連通され、この回収通路33に、熱風発生器本体13の上部に区画形成された吸気室34が連通され、この吸気室34の中央部上側に、シロッコファンなどの送風機35の吸込口36が開口されている。   In the intake air mechanism 31, a recovery passage 32 is formed between the flat plate portion 23 and the recovery plate 25 of the hot air injection unit 21 to suck and recover a relatively low temperature hot air h after heating the object to be heated. A recovery passage 33 formed between the peripheral side portion of the hot air generator body 13 and the peripheral side portion of the recovery plate 25 is communicated with the passage 32. The recovery passage 33 is partitioned into an upper portion of the hot air generator main body 13. The formed intake chamber 34 is communicated, and a suction port 36 of a blower 35 such as a sirocco fan is opened above the central portion of the intake chamber 34.

この送風機35は、ケーシング37の内部に設けられたインペラ38が回転軸39により回転自在に軸支され、その回転軸39にケーシング37の外部に設置されたモータ41が接続されたものである。インペラ38の周囲に設けられた給気室42は、複数の給気通路43を経て熱風発生器本体13内に連通されている。   In the blower 35, an impeller 38 provided inside a casing 37 is rotatably supported by a rotating shaft 39, and a motor 41 installed outside the casing 37 is connected to the rotating shaft 39. An air supply chamber 42 provided around the impeller 38 is communicated with the hot air generator body 13 through a plurality of air supply passages 43.

図4に示されるように、複数の熱風噴射ノズル24および複数の回収口部26は、碁盤目状および千鳥状のいずれか一方の状態に配設されている。   As shown in FIG. 4, the plurality of hot air injection nozzles 24 and the plurality of recovery ports 26 are arranged in either a grid pattern or a staggered pattern.

すなわち、図4(A)は、複数の熱風噴射ノズル24を熱風噴射ユニット21の平板部23の全面に碁盤目状に配設するとともに、これらの熱風噴射ノズル24の中間に複数の回収口部26を同様に碁盤目状に配設したものである。   That is, FIG. 4A shows a plurality of hot air injection nozzles 24 arranged in a grid pattern on the entire surface of the flat plate portion 23 of the hot air injection unit 21 and a plurality of recovery port portions between these hot air injection nozzles 24. 26 is similarly arranged in a grid pattern.

また、図4(B)は、複数の熱風噴射ノズル24を熱風噴射ユニット21の平板部23の全面に千鳥状に配設するとともに、これらの熱風噴射ノズル24の中間に複数の回収口部26を同様に千鳥状に配設したものである。   4B, a plurality of hot air injection nozzles 24 are arranged in a staggered manner on the entire surface of the flat plate portion 23 of the hot air injection unit 21, and a plurality of recovery port portions 26 are provided between these hot air injection nozzles 24. Are similarly arranged in a zigzag pattern.

このように、熱風噴射ノズル24を、熱風噴射ユニット21の平板部23の全面にわたって碁盤目状または千鳥状に配設することで、平板部23の全面にわたって複数の熱風噴射ノズル24を均等間隔で配置でき、被加熱物Wに対する熱風Hの噴出を均等にできる。   In this way, by arranging the hot air injection nozzles 24 in a grid pattern or a zigzag pattern over the entire surface of the flat plate portion 23 of the hot air injection unit 21, a plurality of hot air injection nozzles 24 are evenly spaced over the entire surface of the flat plate portion 23. It can arrange | position and can eject the hot air H with respect to the to-be-heated material W equally.

図5は、前記熱風噴射装置11および熱風噴射型加熱装置12を用いた加熱炉51を示し、炉体52の内部を通して被加熱物Wを搬送する1対の無端状の搬送チェン53と、これらの搬送チェン53を回行駆動するスプロケット54などにより被加熱物Wの搬送手段55が配設され、この搬送手段55に沿って炉体52内に、プリヒート用の複数の熱風噴射型加熱装置12a,12b,12cと、リフロー用の複数の熱風噴射型加熱装置12が配設されている。   FIG. 5 shows a heating furnace 51 using the hot-air injection device 11 and the hot-air injection type heating device 12, and a pair of endless transfer chains 53 for transferring an object to be heated W through the inside of the furnace body 52, and these A conveying means 55 for the object to be heated W is provided by a sprocket 54 for rotating the conveying chain 53, and a plurality of hot-air jet type heating devices 12a for preheating are provided in the furnace body 52 along the conveying means 55. , 12b, 12c and a plurality of hot-air jet type heating devices 12 for reflow.

次に、図3乃至図5に示された熱風噴射装置11および熱風噴射型加熱装置12の作用効果を説明する。なお、図3において、塗りつぶされた矢印は、熱交換器14により加熱された高温の熱風Hの流れを示し、中抜きの矢印は、被加熱物Wとの熱交換を終えて温度低下した熱風hを示す。   Next, the effect of the hot air injection device 11 and the hot air injection type heating device 12 shown in FIGS. 3 to 5 will be described. In FIG. 3, solid arrows indicate the flow of high-temperature hot air H heated by the heat exchanger 14, and hollow arrows indicate hot air whose temperature has decreased after the heat exchange with the article W to be heated. h.

送風機35のインペラ38から給気室42に吐出された低温熱風は、給気通路43を経て熱風発生器本体13内に供給され、熱交換器14のヒータエレメント16により加熱されて温度上昇し、整流機構17により熱風の風量および風圧が熱風流路15の全断面にわたって均一化され、熱風噴射装置11の各熱風噴射ノズル24より高温の熱風Hが均等に噴射され、搬送手段55により搬送されるプリント配線板および基板搭載電子部品などの被加熱物Wを高温の熱風Hで加熱する。   The low temperature hot air discharged from the impeller 38 of the blower 35 to the air supply chamber 42 is supplied into the hot air generator body 13 through the air supply passage 43 and heated by the heater element 16 of the heat exchanger 14 to rise in temperature, The flow rate and pressure of the hot air are made uniform over the entire cross section of the hot air flow path 15 by the rectifying mechanism 17, and hot hot air H at a high temperature is evenly injected from each hot air injection nozzle 24 of the hot air injection device 11 and is transferred by the transfer means 55. A heated object W such as a printed wiring board and a board-mounted electronic component is heated with hot hot air H.

この熱風噴射ノズル24から被加熱物Wに向けて噴出された熱風Hは、プリント配線板自体または基板搭載電子部品と衝突して熱交換し、これらの基板または電子部品を加熱すると、温度低下して冷えた熱風hとなり、基板の上面に沿って流れるが、隣接した熱風噴射ノズル24から噴出した加熱用の熱風と衝突すると、図6(A)に示されるように上向きに流れを変える。   The hot air H ejected from the hot air jet nozzle 24 toward the object to be heated W collides with the printed wiring board itself or the board-mounted electronic component to exchange heat, and when these board or electronic component is heated, the temperature decreases. The hot air becomes cold and flows along the upper surface of the substrate. However, when it collides with the hot air for heating ejected from the adjacent hot air jet nozzle 24, the flow is changed upward as shown in FIG.

この熱交換の終わった上向きの熱風hの一部は、このままでは、図6(B)に示されるように近傍を被加熱物Wに向って下向きに流れる熱風Hに巻込まれる形で合流し、再び被加熱物Wに向けて移動し、熱風Hの温度低下を起こしながら被加熱物Wに達するので、全体として加熱効率が落ちる結果となるが、実際は図6(A)に示されるように回収ユニット22が設けられているため、被加熱物Wとの熱交換を終えて冷えた熱風hが上向きに流れたときに、その冷えた熱風hを回収ユニット22の回収口部26より吸給気機構31の吸込力により強制的に回収する。   As shown in FIG. 6B, a part of the upward hot air h after the heat exchange is merged in the form of being wound around the hot air H flowing downward toward the heated object W as shown in FIG. It moves toward the object to be heated W again and reaches the object to be heated W while causing the temperature of the hot air H to decrease. As a result, the heating efficiency is lowered as a whole, but the actual recovery is performed as shown in FIG. Since the unit 22 is provided, when the hot air h cooled after the heat exchange with the article to be heated W flows upward, the cooled hot air h is sucked from the recovery port portion 26 of the recovery unit 22 It is forcibly recovered by the suction force of the mechanism 31.

これにより、冷えた熱風hは、熱風噴射ノズル24から噴出される熱風Hと干渉することなく、回収口部26から回収通路32,33および吸気室34を経て、送風機35の吸込口36よりインペラ38に吸込まれ、さらに、このインペラ38より給気室42に吐出される。   Thus, the cooled hot air h does not interfere with the hot air H ejected from the hot air jet nozzle 24, passes through the recovery passages 32 and 33 and the intake chamber 34 from the recovery port portion 26, and from the suction port 36 of the blower 35 to the impeller. Then, the air is sucked into 38 and further discharged from the impeller 38 into the air supply chamber 42.

このように、熱交換器14と、整流機構17と、熱風噴射装置11と、吸給気機構31とにより、閉ループ系の自立型熱風循環装置を構成でき、被加熱物Wを加熱して温度低下した熱風hを、吸給気機構31の吸引力を利用して回収口部26より強制回収することで、効率良く被加熱物Wから取除くことができ、これにより、熱交換器14で加熱されて熱風噴射ノズル24から噴出された加熱用の熱風Hと、被加熱物Wを加熱して温度低下した熱風hとの干渉を抑えて、平面的に均一で時間的に安定した精度の高い温度の熱風Hにより、被加熱物Wを均一に加熱できるので、加熱される被加熱物Wの温度ばらつきを解消できる。   As described above, the heat exchanger 14, the rectifying mechanism 17, the hot air injection device 11, and the intake air mechanism 31 can constitute a closed-loop self-supporting hot air circulation device that heats the article W to be heated and The reduced hot air h can be efficiently removed from the object to be heated W by forcibly recovering it from the recovery port portion 26 using the suction force of the intake air mechanism 31. It is possible to suppress the interference between the heated hot air H heated and ejected from the hot air jet nozzle 24 and the hot air h that has been heated to lower the temperature of the article W to be heated, and has a flat, uniform and temporally stable accuracy. Since the heated object W can be uniformly heated by the high temperature hot air H, the temperature variation of the heated object W to be heated can be eliminated.

また、突起状の熱風噴射ノズル24は、加熱用の熱風Hに方向性を与えることで、この加熱用の熱風Hと回収口部26で強制回収される温度低下した熱風hとを明確に区別して、互いの干渉を効果的に防止できる。   Further, the projecting hot air jet nozzle 24 gives a directivity to the hot air H for heating, thereby clearly distinguishing the hot air H for heating and the hot air h whose temperature has been forcibly recovered by the recovery port portion 26 from being lowered. Separately, mutual interference can be effectively prevented.

次に、回収ユニット22の必要性およびその作用効果を詳しく説明する。   Next, the necessity of the recovery unit 22 and the function and effect thereof will be described in detail.

被加熱物Wのプリント配線板自体および基板上の電子部品を均一加熱するためには、一定温度に加熱した熱風Hを一様に被加熱物Wに供給するだけでは不十分であり、基板または電子部品を加熱して熱交換を終えた後の冷えた熱風hと、次いで基板または電子部品を加熱するための熱風Hとの干渉を抑制できない。   In order to uniformly heat the printed wiring board itself of the object to be heated W and the electronic components on the substrate, it is not sufficient to uniformly supply the hot air H heated to a constant temperature to the object to be heated W. Interference between the cooled hot air h after heating the electronic component and finishing the heat exchange and the hot air H for heating the substrate or the electronic component cannot be suppressed.

その結果、全体的には加熱効率が低下し、プリント配線板全体の均一加熱はできず、所望の基板内温度分布を満足できない。   As a result, the overall heating efficiency is lowered, the entire printed wiring board cannot be uniformly heated, and the desired temperature distribution in the substrate cannot be satisfied.

これを解決するためには、プリント配線板を加熱して温度低下した熱風hを、いかに加熱用の熱風Hとの干渉を抑えながら、速やかにプリント配線板の表面から排除するかがポイントとなる。   In order to solve this, the point is how to quickly remove the hot air h, which has been lowered in temperature by heating the printed wiring board, from the surface of the printed wiring board while suppressing interference with the hot air H for heating. .

そのためには、隣接する各熱風噴射ノズル24の中間に、熱交換を終えて冷えた熱風hを基板上に滞留させないために速やかに基板上から排除するための回収ユニット22を設ける。   For this purpose, a recovery unit 22 is provided in the middle of each adjacent hot air jet nozzle 24 to quickly remove hot air h that has been heat-exchanged and cooled after it has been exchanged from the substrate.

この回収ユニット22の回収口部26は、任意の熱風噴射ノズル24と、これに隣接する全ての熱風噴射ノズル24との中間位置に設けることが望ましい。   The recovery port portion 26 of the recovery unit 22 is desirably provided at an intermediate position between an arbitrary hot air injection nozzle 24 and all the hot air injection nozzles 24 adjacent thereto.

熱風噴射ノズル24からプリント配線板に向けて噴出された熱風Hは、被加熱物W上でプリント配線板自体または基板搭載電子部品と衝突して、これらと熱交換し、基板もしくは電子部品を加熱する。一方、被加熱物Wに衝突した後、冷えた熱風hは基板の上面に沿って流れるが、隣接する熱風噴射ノズル24から噴出した熱風Hと衝突すると、上向きに流れを変える。   The hot air H ejected from the hot air jet nozzle 24 toward the printed wiring board collides with the printed wiring board itself or the board-mounted electronic component on the object to be heated W, exchanges heat therewith, and heats the board or the electronic component. To do. On the other hand, after colliding with the object to be heated W, the cooled hot air h flows along the upper surface of the substrate, but when it collides with the hot air H ejected from the adjacent hot air jet nozzle 24, the flow changes upward.

この熱交換の終わった熱風hの一部は、このままでは近傍を基板に向って流れる高温の熱風Hに巻込まれる形で再びプリント配線板に向けて移動し、その熱風Hの温度低下を起こしながら基板に達し、この場合は、全体として加熱効率が落ちる結果となるが、熱交換を終えて冷えた熱風hが上向きに流れた際に、その先に回収口部26があり、この回収口部26に冷えた熱風hが吸引されるので、この冷えた熱風hは加熱用の熱風Hと干渉することなく回収口部26から系外に排出される。   A part of the hot air h after the heat exchange is moved toward the printed wiring board again while being wound around the high-temperature hot air H flowing in the vicinity toward the substrate, and the temperature of the hot air H is lowered. In this case, the heating efficiency is lowered as a whole. In this case, when the hot air h cooled after the heat exchange flows upward, there is a recovery port portion 26, and this recovery port portion Since the cold hot air h is sucked into 26, the cold hot air h is discharged out of the system from the recovery port part 26 without interfering with the hot air H for heating.

このようにすることで、熱風噴射ノズル24から噴出された熱風Hは、プリント配線板および基板上の電子部品と熱交換を終えて冷えた熱風hの干渉をさほど受けることがないので、温度降下を防止できるとともに、各熱風噴射ノズル24ごとに安定した状態でプリント配線板上の電子部品や基板自体を均一に加熱でき、これらの電子部品や基板自体の温度のばらつきを抑えることが可能となる。   By doing so, the hot air H ejected from the hot air jet nozzle 24 does not receive much interference from the hot air h that has been cooled after the heat exchange with the printed circuit board and the electronic components on the board. In addition, it is possible to uniformly heat the electronic components on the printed wiring board and the board itself in a stable state for each hot air jet nozzle 24, and to suppress variations in temperature of these electronic parts and the board itself. .

そして、図5に示されるように、炉体52内に、回収ユニット22を備えた熱風噴射装置11を有する熱風噴射型加熱装置12を、搬送手段55に沿って配設することで、次のように、被加熱物Wの温度測定箇所による温度ばらつきの少ない優れた温度プロファイルが得られる。   Then, as shown in FIG. 5, by arranging the hot air injection type heating device 12 having the hot air injection device 11 having the recovery unit 22 in the furnace body 52 along the conveying means 55, the following Thus, the outstanding temperature profile with few temperature dispersion | variation by the temperature measurement location of the to-be-heated material W is obtained.

本発明の関連技術によるプリント配線板の加熱能力を比較するために、図6(A)のように回収ユニット22を設けた熱風噴射装置11を、また図6(B)のように回収ユニット22を設けない場合の熱風噴射装置11aを示す。そして、図7に、各々における加熱能力の相違を示す基板上の温度プロファイル測定例を示す。   In order to compare the heating capability of the printed wiring board according to the related art of the present invention, the hot air injection device 11 provided with the recovery unit 22 as shown in FIG. 6A and the recovery unit 22 as shown in FIG. The hot-air injection apparatus 11a when not providing is shown. FIG. 7 shows an example of temperature profile measurement on the substrate that shows the difference in heating capability between the two.

本実施例で用いた熱風噴射装置11は、噴出穴形状が円形で回収ユニット22の下面より20mmの突起高さを有する熱風噴射ノズル24を、熱風噴射ユニット21の平板部23に千鳥状に配置し、隣接する全ての熱風噴射ノズル24の中間位置で回収板25に、被加熱物加熱後の温度低下した熱風hを回収するための回収口部26を設けた回収ユニット22を用いた。   In the hot air injection device 11 used in the present embodiment, hot air injection nozzles 24 having a circular injection hole shape and a projection height of 20 mm from the lower surface of the recovery unit 22 are arranged in a staggered manner on the flat plate portion 23 of the hot air injection unit 21. Then, the recovery unit 22 provided with the recovery port portion 26 for recovering the hot air h whose temperature was lowered after heating the heated object was used in the recovery plate 25 at an intermediate position between all the adjacent hot air injection nozzles 24.

被加熱物Wは、寸法250mm×300mmのプリント配線板のみであり、測定を簡単にするために電子部品は搭載せずに、搬送チェン53による搬送にてリフロー用の加熱炉51内に送込み、プリヒート用の熱風噴射型加熱装置12a,12b,12cで予加熱した後に、図6(B)に示されるように熱風噴射ユニット21のみを設けたリフローゾーンと、図6(A)に示されるように熱風噴射ユニット21および回収ユニット22を設けたリフローゾーンとにて、熱風噴射ノズル24から噴射した熱風Hにてプリント配線板を加熱し、このプリント配線板のリフロー面に取付けたK熱電対45で基板面の温度を測定し、図7に示される温度プロファイルの測定結果が得られた。   The object to be heated W is only a printed wiring board having a size of 250 mm × 300 mm. In order to simplify the measurement, an electronic component is not mounted, and is fed into the reflow heating furnace 51 by conveyance by the conveyance chain 53. FIG. 6 (A) shows a reflow zone in which only the hot air injection unit 21 is provided after preheating with hot air injection type heating devices 12a, 12b, 12c for preheating, as shown in FIG. 6 (B). In this way, the printed wiring board is heated by the hot air H injected from the hot air injection nozzle 24 in the reflow zone in which the hot air injection unit 21 and the recovery unit 22 are provided, and the K thermocouple attached to the reflow surface of the printed wiring board The temperature of the substrate surface was measured at 45, and the measurement result of the temperature profile shown in FIG. 7 was obtained.

測定後、これらの温度プロファイルから昇温時の温度勾配(この温度勾配を、「昇温レイト」という)およびピ−ク温度を比較し、本発明に関連する技術の有効性を評価した。ここで、熱風噴射ノズル24とプリント配線板の間隔は同一にした。   After the measurement, the temperature gradient during temperature rise (this temperature gradient is referred to as “temperature rise rate”) and the peak temperature were compared from these temperature profiles, and the effectiveness of the technique related to the present invention was evaluated. Here, the distance between the hot air injection nozzle 24 and the printed wiring board was the same.

図7にグラフで示された昇温レイト、最高到達温度および基板内温度ばらつきの比較結果を、次の表1に示す。   Table 1 below shows a comparison result of the temperature rise rate, the maximum temperature reached, and the temperature variation in the substrate shown in the graph of FIG.

Figure 0004537312
Figure 0004537312

この表1に示す結果から判るように、加熱用の各熱風噴射ノズル24の間に回収口部26を設けることにより、基板は高い温度まで一様に加熱され、著しい効果が得られることが判る。   As can be seen from the results shown in Table 1, it can be seen that by providing the recovery port portion 26 between each hot air jet nozzle 24 for heating, the substrate is uniformly heated to a high temperature and a remarkable effect is obtained. .

このことから、リフロー時の基板搭載部品間の温度ばらつきも解消でき、部品耐熱温度以下での使用可能温度範囲が狭い鉛フリーはんだ合金でも、良好な電気的かつ機械的接合を得ることができる熱風噴射装置11、熱風噴射型加熱装置12および加熱炉51を提供できる。   This eliminates temperature variations between board-mounted components during reflow, and hot air that can provide good electrical and mechanical bonding even with lead-free solder alloys that have a narrow usable temperature range below the component heat resistance temperature The injection device 11, the hot air injection type heating device 12, and the heating furnace 51 can be provided.

なお、図示された熱風噴射型加熱装置12は、搬送手段55の上側に配置されているが、この熱風噴射型加熱装置12は、搬送手段55の下側に配置しても良いし、上側および下側の両側に配置しても良い。   Although the illustrated hot air injection type heating device 12 is disposed on the upper side of the conveying means 55, the hot air injection type heating device 12 may be disposed on the lower side of the conveying means 55. It may be arranged on both sides of the lower side.

さらに、実施例では、噴出口部としての熱風噴射ノズル24の突起高さを20mmとしたが、この突起高さは、0〜20mmの範囲内で設定すると良い。熱風噴射ノズル24の突起高さを0mmとした場合は、回収口部26が設けられた面をフラットにすることができ、この面の清掃などのメンテナンスが容易になり、また被加熱物Wが熱風噴射ノズル24と干渉するおそれがなく、さらに熱風噴射型加熱装置12が搬送手段55の下側に配置された場合は搬送手段55から脱落した被加熱物Wの回収が容易になる。   Furthermore, in the embodiment, the projection height of the hot air injection nozzle 24 as the ejection port portion is set to 20 mm, but this projection height may be set within the range of 0 to 20 mm. When the projection height of the hot air jet nozzle 24 is set to 0 mm, the surface provided with the recovery port portion 26 can be made flat, maintenance such as cleaning of this surface becomes easy, and the object to be heated W There is no possibility of interfering with the hot air injection nozzle 24, and when the hot air injection type heating device 12 is disposed on the lower side of the conveying means 55, it becomes easy to collect the article to be heated W that has fallen off the conveying means 55.

このように、被加熱物Wと熱交換を終えて冷えた熱風hを、被加熱物Wの表面から吸給気機構31の吸引力を利用して回収口部26より効率良く強制回収し、熱交換器14で加熱されて熱風噴射ノズル24から噴出された加熱用の熱風Hと、被加熱物Wを加熱して冷えた熱風hとの干渉を抑えて、被加熱物W上の温度境界層を薄くでき、精度の高い温度で被加熱物Wを均一に加熱でき、被加熱物Wの温度ばらつきを解消できる。   In this way, hot air h that has been cooled after heat exchange with the object to be heated W is efficiently and forcibly recovered from the recovery port 26 using the suction force of the intake air mechanism 31 from the surface of the object to be heated W, The temperature boundary on the object to be heated W by suppressing the interference between the hot air H for heating heated by the heat exchanger 14 and ejected from the hot air jet nozzle 24 and the hot air h that has been cooled by heating the object W to be heated. The layer can be thinned, and the object to be heated W can be uniformly heated at a high accuracy temperature, and temperature variations of the object to be heated W can be eliminated.

次に、本発明の前提となる実施の形態を図8または図9を参照しながら説明する。なお、図3乃至図5に示された関連技術と同様の部分には、同一符号を付して、その説明を省略する場合もある。   Next, an embodiment as a premise of the present invention will be described with reference to FIG. 8 or FIG. In addition, the same code | symbol is attached | subjected to the part similar to the related technology shown by FIG. 3 thru | or FIG. 5, and the description may be abbreviate | omitted.

図8は、プリント配線板上に表面実装用電子部品が搭載された被加熱物Wを、ソルダーペーストを溶融凝固させて、電気的かつ機械的に接合するリフローソルダリング用の熱風噴射装置11,11uおよび熱風噴射型加熱装置12,12uを示す。   FIG. 8 shows a reflow soldering hot air jetting device 11 for electrically and mechanically joining a heated object W on which a surface mounting electronic component is mounted on a printed wiring board by melting and solidifying a solder paste. 11u and hot air injection type heating devices 12 and 12u are shown.

この図8において、被加熱物Wの搬送面に対して上下に配設された熱風噴射装置11,11uは、取付基板部としての平板部23,23uに、被加熱物Wに対し熱風Hを噴出する複数の突起形状の噴出口部としての熱風噴射ノズル24,24uが設けらている。   In FIG. 8, hot air injection devices 11 and 11 u disposed above and below the conveyance surface of the object to be heated W send hot air H to the object to be heated W on the flat plate parts 23 and 23 u as the mounting substrate parts. Hot air injection nozzles 24 and 24u are provided as a plurality of protrusion-shaped jet outlets to be jetted.

上下の熱風噴射ノズル24,24uは、被加熱物Wの搬送面に対して面対象な位置から、上下どちらか一方の熱風噴射ノズル24または24uを基準に、他方の熱風噴射ノズル24uまたは24を、被加熱物搬送方向およびこの搬送方向に対し直角の炉体幅方向の各方向に、ノズル取付ピッチより小ピッチの距離(望ましくはノズル取付ピッチの1/2ピッチ)にシフトした位置に配設されている。   The upper and lower hot-air spray nozzles 24 and 24u are arranged so that the other hot-air spray nozzle 24u or 24 is located on the basis of either the upper or lower hot-air spray nozzle 24 or 24u from the surface target position with respect to the conveyance surface of the object W to be heated. In each direction of the object to be heated and in the furnace width direction perpendicular to the conveying direction, the nozzle is disposed at a position shifted by a distance smaller than the nozzle mounting pitch (preferably 1/2 pitch of the nozzle mounting pitch). Has been.

ここで、熱風噴射装置11の平板部23,23uと複数の熱風噴射ノズル24,24uは、別体形成されたものを一体化しても良いが、アルミニウム、亜鉛またはマグネシウム等を材料とするダイキャスト法を含む鋳造法、または絞り加工法などの一体成形法により一体に成形することができる。   Here, the flat plate portions 23 and 23u of the hot air injection device 11 and the plurality of hot air injection nozzles 24 and 24u may be integrally formed, but die casting made of aluminum, zinc, magnesium, or the like as a material. It can be integrally formed by a casting method including a method, or an integral forming method such as a drawing method.

このような鋳造法や絞り加工法などの一体成形法は、高い熱伝達率を得るための熱風の流れを制御する上で、機構上必要な、精度の高いノズル群を、容易に形成することができる。   Such integral molding methods such as casting and drawing methods can easily form high-precision nozzle groups necessary for the mechanism to control the flow of hot air to obtain a high heat transfer coefficient. Can do.

言い換えれば、鋳造法または絞り加工法により、熱風噴射装置11,11uの平板部23,23uと、複数の熱風噴射ノズル24,24uとを形成することで、複数の熱風噴射ノズル24,24uを平板部23,23u上に精度良く、かつ容易に形成できるため、ノズル間隙を流れる冷えた熱風hの流れの制御が容易となる。   In other words, by forming the flat plate portions 23 and 23u of the hot air injection devices 11 and 11u and the plurality of hot air injection nozzles 24 and 24u by a casting method or a drawing method, the plurality of hot air injection nozzles 24 and 24u are formed into flat plates. Since it can be accurately and easily formed on the portions 23 and 23u, it is easy to control the flow of the cold hot air h flowing through the nozzle gap.

さらに、鋳造法にて一体形成された熱風噴射ノズル24,24uと平板部23,23uは、熱伝導率が良く、ヒートマスも大きいため、これらの加熱温度の偏りを防止できるとともに温度変動を抑制できることから、各熱風噴射ノズル24,24uから均一で安定した温度の熱風Hの噴射が可能となる。その上に、構造上からは、複数の回収口部26,26uを有した回収板25,25uの取り付けも容易となる。   Furthermore, since the hot air injection nozzles 24, 24u and the flat plate portions 23, 23u integrally formed by a casting method have good thermal conductivity and large heat mass, it is possible to prevent these heating temperature deviations and to suppress temperature fluctuations. Therefore, it is possible to inject the hot air H at a uniform and stable temperature from the hot air injection nozzles 24, 24u. In addition, it is easy to attach the recovery plates 25 and 25u having the plurality of recovery port portions 26 and 26u in terms of structure.

図8に示す熱風噴射装置11には、熱風噴射ノズル24,24uの間に配設された多数の回収口部26,26uを有する回収板25,25uが、熱風噴射ノズル24,24uの先端より平板部23,23u寄りに設けられている。そして、この回収板25,25uと、平板部23,23uとにより、冷えた熱風hの回収通路32,32uを形成している。   In the hot air injection device 11 shown in FIG. 8, the recovery plates 25 and 25u having a large number of recovery ports 26 and 26u disposed between the hot air injection nozzles 24 and 24u are provided from the tips of the hot air injection nozzles 24 and 24u. It is provided near the flat plate portions 23 and 23u. The recovery plates 25 and 25u and the flat plate portions 23 and 23u form recovery passages 32 and 32u for the cooled hot air h.

熱風噴射ノズル24,24uは、回収板25,25uより突起状に突設されたものであり、突起状の熱風噴射ノズル24,24uにより加熱用の熱風Hに方向性を与えることで、この加熱用の熱風Hと、回収板25,25uの回収口部26,26uで強制回収される温度低下した熱風hとを明確に区別して、互いの干渉を効果的に防止できる。   The hot air spray nozzles 24, 24u are projected from the recovery plates 25, 25u, and this heating is performed by giving direction to the hot air H for heating by the projecting hot air spray nozzles 24, 24u. It is possible to clearly distinguish the hot air H for use and the hot air h having a reduced temperature that is forcibly recovered by the recovery ports 26 and 26u of the recovery plates 25 and 25u, thereby effectively preventing mutual interference.

上下の熱風噴射装置11の各熱風噴射ノズル24,24uは、図8に示すように上部の熱風噴射ノズル24と搬送面を介して対向する下部位置に、回収板25uに設けられた回収口部26uが設置されているとともに、下部の熱風噴射ノズル24uと搬送面を介して対向する上部位置に、回収板25に設けられた回収口部26が設置されている配置構造となっている。   As shown in FIG. 8, each of the hot air spray nozzles 24 and 24u of the upper and lower hot air spray devices 11 has a recovery port portion provided in the recovery plate 25u at a lower position facing the upper hot air spray nozzle 24 through the conveying surface. 26u is installed, and the recovery port portion 26 provided in the recovery plate 25 is installed at the upper position facing the lower hot air jet nozzle 24u via the transport surface.

このため、被加熱物Wが無い場合は、上部の熱風噴射ノズル24から噴出した熱風Hは直接対向する回収板25uの回収口部26uに回収され、搬送面上近傍での流れの乱れを起こさないとともに、下部の熱風噴射ノズル24uから噴出した熱風Hは直接対向する回収板25の回収口部26に回収され、搬送面上近傍での流れの乱れを起こさない。   For this reason, when there is no object to be heated W, the hot air H ejected from the upper hot air jet nozzle 24 is collected in the recovery port portion 26u of the recovery plate 25u facing directly, and the flow is disturbed in the vicinity on the transport surface. In addition, the hot air H ejected from the lower hot air jet nozzle 24u is collected in the recovery port portion 26 of the recovery plate 25 that directly faces, and does not disturb the flow in the vicinity of the conveying surface.

すなわち、搬送面の上側および下側の熱風噴射ノズル24,24uから噴出された熱風Hが、相互に干渉することなく反対側の回収口部26u,26に回収されるため、搬送面に対し常に新鮮な加熱用の熱風Hを供給できるエアカーテン作用が得られ、搬送面での熱風流れの乱れによる温度低下を防止できる。   That is, the hot air H ejected from the hot air jet nozzles 24, 24u on the upper and lower sides of the transport surface is collected in the recovery ports 26u, 26 on the opposite side without interfering with each other, and therefore always on the transport surface. An air curtain function capable of supplying fresh hot air H for heating is obtained, and a temperature drop due to disturbance of the hot air flow on the conveying surface can be prevented.

また、上部の熱風噴射ノズル24から噴出した熱風Hが被加熱物Wに衝突した後、熱交換を終えて冷えた熱風hは、回収板25に配設された回収口部26に強制的に吸引され、被加熱物Wの表面から速やかに排除されるとともに、下部の熱風噴射ノズル24uから噴出した熱風Hが被加熱物Wに衝突した後、熱交換を終え冷えた熱風hは、回収板25uに配設された回収口部26uに強制的に吸引され、被加熱物Wの表面から速やかに排除される。   Further, after the hot air H ejected from the upper hot air jet nozzle 24 collides with the object to be heated W, the hot air h that has been cooled after finishing the heat exchange is forcibly applied to the recovery port portion 26 provided in the recovery plate 25. The hot air h which is sucked and quickly removed from the surface of the heated object W and the hot air H ejected from the lower hot air jet nozzle 24u collides with the heated object W. It is forcibly sucked into the recovery port portion 26u disposed in 25u and quickly removed from the surface of the article to be heated W.

熱風噴射ノズル24,24uの噴出口形状は、円形、長円形、長方形型スリット形状など特に形状は問わない。噴出する熱風Hの風速と被加熱物Wを加熱するに足る熱量から開口面積を決め形状を決めることができる。   The shape of the hot air spray nozzles 24, 24u may be any shape such as a circular shape, an oval shape, or a rectangular slit shape. The shape can be determined by determining the opening area from the wind speed of the hot air H to be ejected and the amount of heat sufficient to heat the article to be heated W.

熱風噴射ノズル24,24uの噴出口形状が長円形状などの場合は、ノズルの長手方向は被加熱物搬送方向に対して90度から30度程度の範囲で斜めに配設することも可能である。   When the hot air jet nozzles 24, 24u have an elliptical shape, the nozzle longitudinal direction can be arranged obliquely in the range of 90 to 30 degrees with respect to the heated object conveyance direction. is there.

いずれにしても、熱風噴射ノズル24,24uは、平板部23,23uからノズル形状に突出されたものであり、ノズル形状とすることで、噴出する熱風Hに指向性を与え、熱風の広がりに伴う温度境界層の影響を小さく抑え、より高い熱伝達率を得ることができる。   In any case, the hot air injection nozzles 24, 24u are projected from the flat plate portions 23, 23u into a nozzle shape. By making the nozzle shape, the hot air H to be ejected is given directivity and the hot air spreads. The influence of the accompanying temperature boundary layer can be kept small, and a higher heat transfer coefficient can be obtained.

また、複数設けられている熱風噴射ノズル24,24uの少なくとも一つには、熱風温度をモニタする温度センサ27が熱風の流れを極力妨げないように配置されており、温調器を介して熱風hを加熱するヒータエレメント16の出力制御を行っている。   In addition, a temperature sensor 27 for monitoring the hot air temperature is disposed in at least one of the plurality of hot air injection nozzles 24, 24u so as not to obstruct the flow of the hot air as much as possible. Output control of the heater element 16 for heating h is performed.

さらに、図8に示された前提となる実施の形態では、回収板25,25uに対して別体の熱風噴射ノズル24,24uの先端を、搬送面側に突出しているが、回収板25,25uに突出状のノズル先端部と回収口部26,26uとを一体形成し、これらの回収板25,25uのノズル先端部を、平板部23,23uから突設されたノズル本体部と連続的に重ねることにより、図8に示された熱風噴射装置11,11uと結果的に同じ構造をとることもできる。   Further, in the premise embodiment shown in FIG. 8, the tips of the hot air injection nozzles 24, 24u, which are separate from the recovery plates 25, 25u, protrude toward the conveying surface side. A protruding nozzle tip and a recovery port 26, 26u are integrally formed on 25u, and the nozzle tips of these recovery plates 25, 25u are continuously connected to the nozzle body protruding from the flat plates 23, 23u. As a result, the same structure as that of the hot-air injection devices 11 and 11u shown in FIG. 8 can be obtained.

また、熱風噴射ノズル24,24uの取付基板部としての平板部23,23uと回収板25,25uとの間に形成される熱風hの回収通路32,32uの高さは少なくとも5mm以上50mm以下が熱風回収の性能保持と精度を保った上での製作の容易さの観点から望ましい。   The height of the recovery passages 32, 32u for the hot air h formed between the flat plate portions 23, 23u as the mounting substrate portions of the hot air injection nozzles 24, 24u and the recovery plates 25, 25u is at least 5 mm to 50 mm. It is desirable from the viewpoint of maintaining the performance of hot air recovery and ease of manufacturing while maintaining accuracy.

図8に示された例では、平板部23,23uは、中央部が搬送面側へ膨出するような勾配を有するが、これにより、平板部23,23uと回収板25,25uとの間に形成された熱風hの回収通路32,32uは、これらの回収通路32,32uの出口から遠い場所(すなわち中央部)より回収通路32,32uの出口側に向って通路間隙を漸次拡大したものであり、出口側へ漸次拡大する回収通路32,32uの通路間隙により、出口側ほど増加する熱風回収流量に対処できるようにする。   In the example shown in FIG. 8, the flat plate portions 23 and 23 u have a gradient such that the central portion bulges toward the transport surface side, so that the flat plate portions 23 and 23 u and the recovery plates 25 and 25 u are separated from each other. The recovery passages 32 and 32u for the hot air h formed in the above are those in which the passage gap is gradually enlarged from the location far from the exit of the recovery passages 32 and 32u (that is, the central portion) toward the exit side of the recovery passages 32 and 32u. The passage clearance between the recovery passages 32 and 32u that gradually expands toward the outlet side makes it possible to cope with the hot air recovery flow rate that increases toward the outlet side.

熱交換を終えて冷えた熱風hは、回収口部26,26uに回収通路32,32uを経て連通された、熱風噴射ユニット21の四方端部に配置された回収通路33に吸込まれるが、この回収通路33は、送風機35の吸込側であり、この回収通路33中に熱交換器14が配置されている。   The hot air h that has been cooled after the heat exchange is sucked into the recovery passageway 33 that is communicated with the recovery port portions 26 and 26u via the recovery passageways 32 and 32u and that is disposed at the four ends of the hot air jet unit 21, The collection passage 33 is on the suction side of the blower 35, and the heat exchanger 14 is disposed in the collection passage 33.

すなわち、図8において、送風機35は、ケーシング37の内部に設けられたインペラ38が回転軸39により回転自在に軸支され、その回転軸39にケーシング37の外部に設置されたモータ41が接続されたものであるが、熱交換器14は、この送風機35の吸込側(負圧側)に連結された回収通路33内に、複数のヒータエレメント16を配設して形成されている。   That is, in FIG. 8, the blower 35 has an impeller 38 provided inside a casing 37 rotatably supported by a rotating shaft 39, and a motor 41 installed outside the casing 37 is connected to the rotating shaft 39. However, the heat exchanger 14 is formed by disposing a plurality of heater elements 16 in a recovery passage 33 connected to the suction side (negative pressure side) of the blower 35.

そして、被加熱物Wとの熱交換で冷えた熱風hは、回収板25,25uに配設されている回収口部26,26uから回収通路32,32uを経て回収通路33に吸込まれ、この回収通路33内に設けられた熱交換器14のヒータエレメント16にて加熱された後、送風機35の吸込口36に吸引される。   The hot air h cooled by heat exchange with the object to be heated W is sucked into the recovery passage 33 from the recovery ports 26 and 26u provided in the recovery plates 25 and 25u through the recovery passages 32 and 32u. After being heated by the heater element 16 of the heat exchanger 14 provided in the recovery passageway 33, it is sucked into the suction port 36 of the blower 35.

このとき、送風機35の吸込側に位置する熱交換器14のヒータエレメント16により冷えた熱風hを加熱するので、加熱された熱風Hは、送風機35に吸込まれてミキシングされる。このため、送風機35の高速回転するインペラ38から外周部に設けられた給気室42に吐出された熱風Hに温度むらがなく、均一な温度の熱風を供給できる。   At this time, since the cooled hot air h is heated by the heater element 16 of the heat exchanger 14 located on the suction side of the blower 35, the heated hot air H is sucked into the blower 35 and mixed. For this reason, there is no temperature unevenness in the hot air H discharged from the impeller 38 rotating at high speed of the blower 35 to the air supply chamber 42 provided in the outer peripheral portion, and hot air having a uniform temperature can be supplied.

この給気室42は複数の給気通路43を介して加圧室44に連通されている。この加圧室44には整流機構17が設けられている。この整流機構17は、送風機35と各個の熱風噴射ノズル24との間に配置されているので、送風機35の給気室42から加圧室44に吐出された直後の熱風Hに圧力や流量の偏りがあっても、それらを整流機構17により矯正して、各個の熱風噴射ノズル24より同一速度の熱風を噴出させることができる。   The air supply chamber 42 communicates with the pressurization chamber 44 through a plurality of air supply passages 43. The pressurizing chamber 44 is provided with a rectifying mechanism 17. Since this rectifying mechanism 17 is disposed between the blower 35 and each hot air jet nozzle 24, the hot air H immediately after being discharged from the air supply chamber 42 of the blower 35 to the pressurizing chamber 44 has a pressure and a flow rate. Even if there is a bias, they can be corrected by the rectifying mechanism 17 and hot air at the same speed can be ejected from each hot air jet nozzle 24.

この整流機構17で整流された熱風Hは、熱風噴射装置11の熱風噴射ノズル24,24uから搬送面上の被加熱物W(電子部品を搭載したプリント配線板)に向って噴出される。   The hot air H rectified by the rectifying mechanism 17 is jetted from the hot air jet nozzles 24, 24u of the hot air jet device 11 toward the heated object W (printed wiring board on which electronic components are mounted) on the transport surface.

図9は、上下の熱風噴射型加熱装置12の熱風噴射ノズル24,24uおよび回収板25,25uに設けられた回収口部26,26uの配置の相関を見た図である。   FIG. 9 is a diagram showing a correlation between the arrangement of the hot air jet nozzles 24 and 24u and the recovery port portions 26 and 26u provided in the recovery plates 25 and 25u of the upper and lower hot air jet type heating devices 12. FIG.

便宜上、搬送面の上側に設けられた上部の熱風噴射型加熱装置12は、その各個の熱風噴射ノズル24が各々千鳥状に配設され、また、回収板25の各個の回収口部26は、熱風噴射ノズル24の間に配設されている。   For convenience, the upper hot air jet type heating device 12 provided on the upper side of the transport surface is provided with its respective hot air jet nozzles 24 arranged in a staggered manner, and each of the recovery ports 26 of the recovery plate 25 includes: It is disposed between the hot air jet nozzles 24.

一方、搬送面に対して対称な位置に有る下部の熱風噴射型加熱装置12uの熱風噴射ノズル24uは、対する上部の回収板25の回収口部26に対応する位置に配設され、また、下部の熱風噴射型加熱装置12uの回収板25uの回収口部26uは、対する上部の熱風噴射ノズル24に対応する位置に配設されている。   On the other hand, the hot air injection nozzle 24u of the lower hot air injection type heating device 12u that is symmetric with respect to the conveying surface is disposed at a position corresponding to the recovery port portion 26 of the upper recovery plate 25, and the lower portion The recovery port portion 26u of the recovery plate 25u of the hot air injection type heating device 12u is disposed at a position corresponding to the upper hot air injection nozzle 24.

また、図8および図9に示されるように、複数の回収口部26,26uは、回収通路32,32uの出口から遠い場所(すなわち回収板25,25uの中央部)に配置されたものより回収通路32,32uの出口側に配置されたものほど小さな開口面積を有するものであり、回収通路32,32uの出口側ほど回収口部26,26uの開口面積を絞ることにより、熱風吸引力が作用しやすい出口側から回収される熱風流量と、そうでない場所から回収される熱風流量とを等しくすることができ、場所による熱風回収流量のばらつきを防止できる。   Further, as shown in FIGS. 8 and 9, the plurality of recovery port portions 26 and 26u are arranged at locations far from the outlets of the recovery passageways 32 and 32u (that is, the central portions of the recovery plates 25 and 25u). The one arranged on the outlet side of the collection passages 32 and 32u has a smaller opening area. By narrowing the opening area of the collection port portion 26 and 26u on the outlet side of the collection passages 32 and 32u, the hot air suction force is reduced. The flow rate of hot air collected from the outlet side where it is likely to act can be made equal to the flow rate of hot air collected from a place that is not so, and variations in the flow rate of hot air collected from place can be prevented.

下部の熱風噴射型加熱装置12uの他の部分は、上部の熱風噴射型加熱装置12と同様の構造であるため、その説明を省略する。   The other parts of the lower hot-air jet type heating device 12u have the same structure as the upper hot-air jet type heating device 12, and the description thereof will be omitted.

次に、図8および図9に示された前提となる実施の形態の作用効果を説明する。   Next, the operation and effect of the premise embodiment shown in FIGS. 8 and 9 will be described.

上下の熱風噴射型加熱装置12,12uのそれぞれにおいて、熱交換器14により加熱され送風機35により加圧室44に供給された熱風Hは、整流機構17により加圧室全体に均等に整流され、全ての熱風噴射ノズル24,24uに均等の温度および風速の熱風Hが供給される。   In each of the upper and lower hot-air jet type heating devices 12 and 12u, the hot air H heated by the heat exchanger 14 and supplied to the pressurizing chamber 44 by the blower 35 is evenly rectified in the entire pressurizing chamber by the rectifying mechanism 17. Hot air H having an equal temperature and wind speed is supplied to all the hot air injection nozzles 24, 24u.

各熱風噴射ノズル24,24uの先端に被加熱物Wが無い場合は、上部の熱風噴射ノズル24から噴出した熱風Hは直接対向する下部の回収板25uの回収口部26uに回収され、下部の熱風噴射ノズル24uから噴出した熱風Hは直接対向する上部の回収板25の回収口部26に回収され、上部から噴出された熱風と下部から噴出された熱風とが、搬送手段55の搬送チェン間スペースを経てスムーズに入れ替わる。   When there is no object to be heated W at the tips of the hot air jet nozzles 24, 24u, the hot air H ejected from the upper hot air jet nozzle 24 is collected in the recovery port portion 26u of the lower recovery plate 25u directly facing, The hot air H ejected from the hot air jet nozzle 24u is collected in the recovery port portion 26 of the upper recovery plate 25 facing directly, and the hot air ejected from the upper part and the hot air ejected from the lower part are conveyed between the transport chains of the transport means 55. It will change smoothly through space.

このため、搬送面の上側および下側の熱風噴射ノズル24,24uから噴出された熱風Hが、相互に干渉することなく反対側の回収口部26u,26に回収され、被加熱物Wの搬送面に対し常に新鮮な加熱用の熱風Hが供給されるので、搬送面での熱風流れの乱れによる温度低下が生じない。   For this reason, the hot air H ejected from the hot air jet nozzles 24, 24u on the upper and lower sides of the transport surface is collected in the recovery ports 26u, 26 on the opposite side without interfering with each other, and the heated object W is transported. Since the hot air H for heating is always supplied to the surface, the temperature does not decrease due to the disturbance of the hot air flow on the transport surface.

一方、各熱風噴射ノズル24,24uの先端に被加熱物Wが位置する場合は、上下の熱風噴射ノズル24,24uから噴出した熱風Hが被加熱物Wの表面に吹付けられる。   On the other hand, when the object to be heated W is located at the tip of each hot air jet nozzle 24, 24u, the hot air H ejected from the upper and lower hot air jet nozzles 24, 24u is blown onto the surface of the object to be heated W.

その際、これらの熱風噴射ノズル24,24uは、被加熱物Wと平行の2次元的に分散配置され、被加熱物Wが各熱風噴射ノズル24,24uに沿って搬送されるので、各熱風噴射ノズル24,24uが、部分的に見た場合には被加熱物Wに対して均一に熱風Hを吹付ける構造になっていなくても、各個の熱風噴射ノズル24,24uから噴射される熱風Hの温度と風速が均一であるから、搬送される被加熱物Wの表面には、最終的には一様に熱風Hが吹付けられる。   At that time, these hot air injection nozzles 24, 24u are two-dimensionally distributed in parallel with the object to be heated W, and the object to be heated W is conveyed along the hot air injection nozzles 24, 24u. When the spray nozzles 24 and 24u are partially viewed, the hot air sprayed from the individual hot air spray nozzles 24 and 24u even if the spray nozzles 24 and 24u are not configured to blow the hot air H uniformly against the article W to be heated. Since the temperature and the wind speed of H are uniform, finally, the hot air H is blown uniformly onto the surface of the heated object W to be conveyed.

被加熱物搬送方向および幅方向に分散配置された複数の熱風噴射ノズル24,24uから噴射された熱風Hは、熱風噴射ノズル24,24uの延長上に位置する被加熱物Wの表面に集中的に衝突し、被加熱物Wに衝突した熱風Hは、熱交換後、衝突点を中心に被加熱物Wの表面に沿って外周に向って流れるが、隣接する熱風噴射ノズル24,24uからの同様な被加熱物Wに沿った流れと、熱風噴射ノズル24,24uの中間部位に相当する被加熱物W上で衝突した後、回収口部26,26uによる強制回収作用により被加熱物Wから離反する方向に流れを変える。   Hot air H injected from a plurality of hot air injection nozzles 24, 24u dispersedly arranged in the direction of conveying the object and in the width direction is concentrated on the surface of the object W to be heated located on the extension of the hot air injection nozzles 24, 24u. After the heat exchange, the hot air H that collides with the heated object W flows toward the outer periphery along the surface of the heated object W around the collision point, but from the adjacent hot air injection nozzles 24, 24u. A similar flow along the object to be heated W collides with the object to be heated W corresponding to the intermediate portion of the hot air jet nozzles 24 and 24u, and then from the object to be heated W by the forced recovery action by the recovery ports 26 and 26u. Change the flow in the direction of separation.

このため、熱交換を終えた被加熱物Wに沿って流れる冷えた熱風hと、被加熱物Wに向って流入してくる加熱用の熱風Hとの干渉が少なくてすみ、被加熱物Wに沿って流れる冷えた熱風hを効率良く除去でき、被加熱物Wの表面に沿った温度境界層を薄くできる。   For this reason, there is less interference between the cooled hot air h flowing along the heated object W after the heat exchange and the heated hot air H flowing in toward the heated object W, and the heated object W It is possible to efficiently remove the cold hot air h that flows along the surface of the object W, and to thin the temperature boundary layer along the surface of the article W to be heated.

これにより、温度低下する前の新鮮な熱風Hが被加熱物Wに効率良く供給されるため、被加熱物Wの表面での熱交換率が高く、すなわち高い熱伝達率を得ることができる。   Thereby, since the fresh hot air H before temperature fall is efficiently supplied to the to-be-heated object W, the heat exchange rate in the surface of the to-be-heated object W is high, ie, a high heat transfer rate can be obtained.

冷えた熱風hは回収通路32,32uにより回収するが、この熱風回収用の回収通路32,32uは、回収口部26,26uが設けられた回収板25,25uと、熱風噴射ノズル24,24uの平板部23,23uとの間に設けられているので、冷えた熱風hの回収経路を広範囲にわたって確保でき、被加熱物Wに衝突した後に逆方向に流れる冷えた熱風hを全域にわたって強制的に回収することにより、厚い温度境界層の形成の要因ともなりうる、被加熱物W上に滞留する冷えた熱風hを被加熱物W上から効率良く取除くことができ、高い熱伝達率を得ることができる。   The cooled hot air h is recovered by the recovery passages 32 and 32u. The recovery passages 32 and 32u for recovering the hot air are the recovery plates 25 and 25u provided with the recovery ports 26 and 26u and the hot air injection nozzles 24 and 24u. Is provided between the flat plate portions 23 and 23u of the steel plate, a recovery path for the cooled hot air h can be secured over a wide range, and the cold hot air h flowing in the reverse direction after colliding with the object to be heated W is forced over the entire area. It is possible to efficiently remove the cooled hot air h staying on the heated object W from the heated object W, which can cause the formation of a thick temperature boundary layer. Obtainable.

このようにして、上下の熱風噴射型加熱装置12,12uは、被加熱物Wに熱風Hを供給する熱風噴射装置11,11uと、これらの熱風噴射装置11,11uの回収口部26,26uから被加熱物加熱後の冷えた熱風hを強制的に吸引するとともに熱交換器14により加熱された熱風Hを熱風噴射ノズル24,24uに循環させる吸給気機構31とにより、被加熱物Wがあるときは上下分離型の閉ループ系の熱風循環装置を構成するとともに、被加熱物Wが無いときは上下一体型の閉ループ系の熱風循環装置を構成するので、このような熱風噴射型加熱装置12,12uを次に示すように炉内に複数組設置した場合は、隣接する系からの影響を抑えることができる。   In this way, the upper and lower hot-air jet type heating devices 12 and 12u include the hot-air jet devices 11 and 11u that supply the hot air H to the article to be heated W, and the recovery ports 26 and 26u of these hot-air jet devices 11 and 11u. The object to be heated W is forcibly sucked in the hot air h after heating the object to be heated and the intake air mechanism 31 for circulating the hot air H heated by the heat exchanger 14 to the hot air injection nozzles 24 and 24u. When there is an upper and lower separation type closed loop hot air circulation device, and when there is no object to be heated W, an upper and lower integrated closed loop hot air circulation device is constituted. When multiple sets of 12 and 12u are installed in the furnace as shown below, the influence from adjacent systems can be suppressed.

次に、図10は、前記熱風噴射装置11,11uおよび熱風噴射型加熱装置12,12uを用いた加熱炉51を示す。   Next, FIG. 10 shows a heating furnace 51 using the hot air injection devices 11 and 11u and the hot air injection heating devices 12 and 12u.

この加熱炉51は、炉体52の内部を通して被加熱物Wを搬送する1対の無端状の搬送チェン53と、これらの搬送チェン53を回行駆動するスプロケット54などにより被加熱物Wの搬送手段55が配設され、この搬送手段55に沿って、炉体52内の上部に、プリヒート用の複数の熱風噴射型加熱装置12a,12b,12cと、リフロー用の複数の熱風噴射型加熱装置12,12が配設され、また、搬送手段55に沿って、炉体52内の下部に、プリヒート用の複数の熱風噴射型加熱装置12ua,12ub,12ucと、リフロー用の複数の熱風噴射型加熱装置12u,12uが配設されている。   The heating furnace 51 conveys the article to be heated W by a pair of endless conveyance chains 53 that convey the article to be heated W through the inside of the furnace body 52 and a sprocket 54 that drives the conveyance chains 53 to rotate. A means 55 is disposed, and along the conveying means 55, a plurality of hot air jet type heating devices 12a, 12b, 12c for preheating and a plurality of hot air jet type heating devices for reflow are provided in the upper part of the furnace body 52. 12 and 12 are disposed, and a plurality of hot air injection heating devices 12ua, 12ub, 12uc for preheating and a plurality of hot air injection types for reflow are provided in the lower part of the furnace body 52 along the conveying means 55. Heating devices 12u and 12u are provided.

このように、炉体52内の搬送手段55に沿って、相互に隣接する熱風循環系からの熱影響を抑えることができる閉ループ系の熱風噴射型加熱装置12a,12b,12c,12,12および熱風噴射型加熱装置12ua,12ub,12uc,12u,12uを複数配設することで、かつ、これらの熱風噴射型加熱装置は、被加熱物Wを加熱して温度低下した熱風hを回収口部26,26uより強制回収し、被加熱物加熱用の熱風Hの流れを妨げないので、被加熱物W上の温度境界層を薄くして、精度の高い温度で被加熱物Wを均一に加熱することで、被加熱物Wの温度ばらつきの少ない優れた温度プロファイルが得られる。   Thus, along the conveying means 55 in the furnace body 52, closed loop hot air injection heating devices 12a, 12b, 12c, 12, 12 and 12 that can suppress the thermal influence from the hot air circulation systems adjacent to each other and By arranging a plurality of hot air injection type heating devices 12ua, 12ub, 12uc, 12u, 12u, these hot air injection type heating devices recover the hot air h whose temperature has been lowered by heating the article W to be heated. Forcibly recovered from 26 and 26u and does not interfere with the flow of hot air H for heating the object to be heated, so the temperature boundary layer on the object to be heated W is thinned and the object to be heated W is heated uniformly at a high temperature. By doing so, an excellent temperature profile with little temperature variation of the article to be heated W can be obtained.

搬送手段55は、炉体52の被加熱物搬出側に延長して設けられ、この搬送手段55の延長部分に対向して炉体52の被加熱物搬出側に被加熱物冷却用の上下の冷却装置56,56uが配置されている。   The conveying means 55 is provided to extend to the heated object carrying side of the furnace body 52, and is opposed to the extended part of the conveying means 55 on the heated object carrying side of the furnace body 52 so as to Cooling devices 56 and 56u are arranged.

搬送手段55の搬送チェン53は、これらの熱風噴射型加熱装置および冷却装置に沿って配設されたガイドレール57により案内されるが、このガイドレール57は、熱風噴射型加熱装置12a,12b,12c,12,12および熱風噴射型加熱装置12ua,12ub,12uc,12u,12uにより加熱される加熱部レール57aと、冷却装置56,56uにより冷却される冷却部レール57bと、加熱部レール57aと冷却部レール57bとの間に介在された断熱部58とを具備したものである。   The transport chain 53 of the transport means 55 is guided by a guide rail 57 disposed along these hot air jet type heating devices and cooling devices. The guide rail 57 is connected to the hot air jet type heating devices 12a, 12b, 12c, 12, 12 and hot air injection type heating device 12ua, 12ub, 12uc, 12u, 12u, heating unit rail 57a heated by cooling device 56, 56u, cooling unit rail 57b, heating unit rail 57a And a heat insulating part 58 interposed between the cooling part rails 57b.

このように、加熱部レール57aと冷却部レール57bとの間に断熱部58を介在させたので、これらのガイドレール57を介して熱風噴射型加熱装置12a,12b,12c,12,12および熱風噴射型加熱装置12ua,12ub,12uc,12u,12uと、冷却装置56,56uとが相互に熱的に干渉し合うおそれを防止でき、加熱効率を低下させたり、冷却効率を低下させるおそれを防止できる。   As described above, since the heat insulating portion 58 is interposed between the heating portion rail 57a and the cooling portion rail 57b, the hot air injection type heating devices 12a, 12b, 12c, 12, 12 and the hot air are passed through these guide rails 57. Can prevent the jet type heating devices 12ua, 12ub, 12uc, 12u, 12u and the cooling devices 56, 56u from interfering with each other thermally, preventing the possibility of lowering the heating efficiency or lowering the cooling efficiency it can.

次に、熱風噴射ノズルおよび回収板の最良の実施の形態を図11を参照しながら説明する。   Next, the best embodiment of the hot air spray nozzle and the recovery plate will be described with reference to FIG.

図11に示されるように被加熱物に向って漸次内孔が狭められた複数の熱風噴射ノズル24と、その熱風噴射ノズル24の間から冷えた熱風hを吸込む回収板25とを備えた熱風噴射装置11において、回収板25が各個の回収口部26Aにて回収通路32側へ膨出するように山形に成形され、その頂上部に被加熱物加熱後の冷えた熱風hを吸込む吸込穴28が開口され、これにより、回収板25は、各個の回収口部26Aにて被加熱物Wと対向する側が凹状に形成されたものである。   As shown in FIG. 11, hot air including a plurality of hot air spray nozzles 24 whose inner holes are gradually narrowed toward the object to be heated, and a recovery plate 25 that sucks the cool hot air h from between the hot air spray nozzles 24. In the injection device 11, the recovery plate 25 is formed in a mountain shape so as to bulge toward the recovery passage 32 at each recovery port portion 26 </ b> A, and a suction hole for sucking the cold hot air h after heating the object to be heated at the top As a result, the recovery plate 25 is formed in a concave shape on the side facing the article to be heated W in each recovery port portion 26A.

そして、この凹状の回収口部26Aにより被加熱物加熱後の冷えた熱風hを回収する場合は、平坦な板に吸込穴28を設けた平坦な回収口部26と比較して回収効率が良くなり、全体的な加熱能力を向上できる。   And, when recovering the cooled hot air h after heating the object to be heated by the concave recovery port portion 26A, the recovery efficiency is better than the flat recovery port portion 26 provided with the suction hole 28 in the flat plate. Thus, the overall heating capacity can be improved.

これは、凹状の回収口部26Aにより被加熱物加熱後の冷えた熱風hをスムーズに回収するため、回収板25の被加熱物W側で生じやすい渦流がなくなり、渦流がある場合は被加熱物Wの表面上の温度境界層が厚くなり、この温度境界層が障壁となって熱風噴射ノズル24から噴射された熱風Hの被加熱物Wに対する熱伝達効率が悪くなるが、上記のように渦流がなくなったことで、被加熱物Wの表面上の温度境界層が薄くなり、熱風噴射ノズル24から噴射された熱風Hの熱伝達効率が良くなるためである。   This is because the hot air h that has been cooled after the heated object is smoothly recovered by the concave recovery port portion 26A, so that there is no eddy current that tends to occur on the heated object W side of the recovery plate 25. The temperature boundary layer on the surface of the object W becomes thick, and this temperature boundary layer becomes a barrier, and the heat transfer efficiency of the hot air H injected from the hot air injection nozzle 24 to the heated object W is deteriorated. This is because the temperature boundary layer on the surface of the object to be heated W is thinned by eliminating the eddy current, and the heat transfer efficiency of the hot air H injected from the hot air injection nozzle 24 is improved.

実験によれば、平坦な回収口部26の場合に対して、この凹状の回収口部26Aの場合は、熱伝達係数が、5〜10%程度改善された。   According to the experiment, the heat transfer coefficient is improved by about 5 to 10% in the case of the concave recovery port portion 26A compared to the case of the flat recovery port portion 26.

以上のように、各関連技術および実施の形態における熱風噴射装置11は、被加熱物Wに対し熱風Hを噴出する複数の熱風噴射ノズル24と、これらの熱風噴射ノズル24の間に設けられ被加熱物Wに当って方向転換した熱風hを強制的に回収する複数の回収口部26とを具備しているので、被加熱物Wを加熱して温度低下した熱風hを、熱風噴射ノズル24の間に設けられた回収口部26から強制回収することで、熱風噴射ノズル24から噴出された加熱用の熱風Hと、回収口部26に強制的に回収される温度低下した熱風hとの干渉を抑えて、温度低下した熱風hを効率良く被加熱物Wから取除くことができ、被加熱物Wの表面に沿った温度境界層を薄くすることができるとともに、温度低下する前の新鮮な熱風Hを被加熱物Wに効率良く供給できるため、被加熱物Wの表面での熱交換率を高め、すなわち高い熱伝達率を得ることができ、精度の高い温度で被加熱物Wを均一に加熱でき、加熱される被加熱物Wの温度ばらつきを解消できる。特に、複数の熱風噴射ノズル24の間に設けられた複数の回収口部26が加熱後の冷えた熱風hを整然と回収するので、被加熱物Wを加熱する前後の熱風の流れを、より一様な熱風流れに形成でき、加熱用の熱風Hと冷えた熱風hとの干渉をなくして、高い熱伝達率を得ることができる。   As described above, the hot air injection device 11 in each related technology and embodiment is provided with a plurality of hot air injection nozzles 24 for injecting the hot air H to the object W to be heated, and the hot air injection nozzles 24 provided between these hot air injection nozzles 24. Since there are a plurality of recovery ports 26 for forcibly recovering the hot air h that has changed its direction when it hits the heated object W, the hot air h that has been heated to reduce the temperature thereof is heated by the hot air injection nozzle 24. By the forced recovery from the recovery port portion 26 provided between the hot air H for heating ejected from the hot air injection nozzle 24 and the hot air h having a lowered temperature that is forcibly recovered by the recovery port portion 26 The hot air h whose temperature has been reduced can be efficiently removed from the object to be heated W while suppressing interference, and the temperature boundary layer along the surface of the object to be heated W can be made thin, and fresh before the temperature decreases. Hot air H can be efficiently supplied to the object to be heated W. The heat exchange rate on the surface of the heated object W can be increased, that is, a high heat transfer coefficient can be obtained, the heated object W can be uniformly heated at a high precision temperature, and the temperature variation of the heated heated object W can be reduced. Can be resolved. In particular, since the plurality of recovery ports 26 provided between the plurality of hot air injection nozzles 24 recovers the cooled hot air h after heating in an orderly manner, the flow of hot air before and after heating the article W to be heated is more uniform. It can be formed in such a hot air flow, and interference between the hot air H for heating and the cold hot air h can be eliminated, and a high heat transfer rate can be obtained.

なお、本発明に係る熱風噴射装置11,11u、熱風噴射型加熱装置12,12uおよび加熱炉51は、プリント配線板上に熱硬化性樹脂により電子部品を接着する際に用いられる硬化炉にも、適用可能である。   Note that the hot air injection devices 11 and 11u, the hot air injection type heating devices 12 and 12u, and the heating furnace 51 according to the present invention are also used as a curing furnace used when an electronic component is bonded to a printed wiring board with a thermosetting resin. Applicable.

本発明の前提となる熱風噴射装置の分割された個別の噴出口部から出た熱風の流れを示す説明図である。It is explanatory drawing which shows the flow of the hot air which came out from the separate jet nozzle part of the hot air injection apparatus used as the premise of this invention. 同上噴出口部から出た熱風を回収口部で回収する場合の熱風の流れを示す説明図である。It is explanatory drawing which shows the flow of a hot air in the case of collect | recovering the hot air which came out from the jet nozzle part same as the above in the collection port part. 本発明に係わる熱風噴射装置および熱風噴射型加熱装置の関連技術を示す断面図である。It is sectional drawing which shows the related technique of the hot air injection apparatus and hot air injection type heating apparatus concerning this invention. (A)は、同上熱風噴射装置および熱風噴射型加熱装置の噴出口部および回収口部の一配置例を示す底面図、(B)は、それらの他の配置例を示す底面図である。(A) is a bottom view showing one arrangement example of the jet outlet part and the recovery port part of the hot air jet apparatus and the hot air jet type heating apparatus, and (B) is a bottom view showing another arrangement example thereof. 同上熱風噴射型加熱装置を用いた加熱炉の関連技術を示す断面図である。It is sectional drawing which shows the related technique of the heating furnace using a hot air injection type heating apparatus same as the above. (A)は、回収口部を設けた熱風噴射装置の断面図、(B)は、回収口部を設けない熱風噴射装置の断面図である。(A) is sectional drawing of the hot air injection apparatus which provided the collection port part, (B) is sectional drawing of the hot air injection apparatus which does not provide a collection port part. 図6(A)に示された回収口部を設けた熱風噴射装置と、図6(B)に示された回収口部を設けない熱風噴射装置とで、プリント配線板上の温度プロファイル測定例を比較して示す特性図である。Example of measuring temperature profile on printed circuit board with hot air jetting device provided with recovery port part shown in FIG. 6 (A) and hot air jetting device with no recovery port part shown in FIG. 6 (B) It is a characteristic view which compares and shows. 本発明に係わる熱風噴射型加熱装置の前提となる実施の形態を示す断面図である。It is sectional drawing which shows embodiment which becomes a premise of the hot air injection type heating apparatus concerning this invention. 同上熱風噴射型加熱装置の被加熱物搬送面の上下に設けられた噴出口部および回収口部の配置例を示す配置図である。It is an arrangement | positioning figure which shows the example of arrangement | positioning of the ejection part provided in the upper and lower sides of the to-be-heated material conveyance surface of a hot air injection type heating apparatus same as the above, and a collection | recovery port part. 同上熱風噴射型加熱装置を用いた加熱炉の断面図である。It is sectional drawing of the heating furnace using a hot air injection type heating apparatus same as the above. 同上熱風噴射型加熱装置の熱風噴射ノズルおよび回収板の最良の実施の形態を示す断面図である。It is sectional drawing which shows the best embodiment of a hot air injection nozzle and a collection | recovery board of a hot air injection type heating apparatus same as the above.

W 被加熱物
12 熱風噴射型加熱装置
14 熱交換器
17 整流機構
21 熱風噴射ユニット
22 回収ユニット
23 取付基板部としての平板部
24 熱風噴射ノズル
25 回収板
26,26A 回収口部
27 温度センサ
32,33 回収通路
34 吸気室
35 送風機
36 吸込口
38 インペラ
42 給気室
43 給気通路
44 加圧室
52 炉体
55 搬送手段
56 冷却装置
W Object to be heated
12 Hot air jet type heating device
14 Heat exchanger
17 Rectification mechanism
21 Hot air injection unit
22 Recovery unit
23 Flat plate as mounting board
24 Hot air injection nozzle
25 Collection plate
26, 26A Collection port
27 Temperature sensor
32, 33 Collection passage
34 Air intake chamber
35 Blower
36 Suction port
38 impeller
42 Air supply room
43 Air supply passage
44 Pressurization chamber
52 Furnace
55 Transport means
56 Cooling device

Claims (4)

インペラの下側に吸込口を有するとともに周囲に給気室を有する送風機と、
この送風機の吸込口の下側に配置された吸気室と、
この吸気室の周囲に配置された複数の給気通路と、
吸気室の下側に配置され送風機の給気室に複数の給気通路を介し連通された加圧室と、
送風機の給気室から加圧室に吐出された直後の熱風の圧力や流量の偏りを矯正する整流機構と、
この整流機構の下側に配置された取付基板部を有するとともにこの取付基板部に被加熱物に対し熱風を噴出する突起形の複数の熱風噴射ノズルが設けられた熱風噴射ユニットと、
取付基板部より被加熱物側に配置され複数の熱風噴射ノズルを被加熱物側に突出させた回収板を有するとともにこの回収板に被加熱物に当って方向転換した熱風を強制的に回収する複数の回収口部を設けた回収ユニットと、
取付基板部と回収板との間に設けられ吸気室に連通された熱風回収用の回収通路と、
冷えた熱風を加熱する熱交換器とを具備し、
熱風噴射ユニットの熱風噴射ノズルは、被加熱物に向って漸次内孔が狭められた
ことを特徴とする熱風噴射型加熱装置。
A blower having a suction port on the lower side of the impeller and having an air supply chamber around the periphery ;
An intake chamber disposed below the intake port of the blower,
A plurality of air supply passages arranged around the intake chamber;
A pressurizing chamber disposed below the intake chamber and communicated with the air supply chamber of the blower via a plurality of air supply passages;
A rectifying mechanism that corrects the bias of hot air pressure and flow rate immediately after being discharged from the air supply chamber of the blower to the pressurization chamber ;
A hot air jet unit having a mounting board portion disposed on the lower side of the rectifying mechanism and provided with a plurality of protruding hot air jet nozzles that jet hot air to the object to be heated on the mounting board portion ;
A recovery plate is disposed on the heated object side from the mounting substrate and has a plurality of hot-air spray nozzles protruding toward the heated object side, and the recovery plate forcibly recovers the hot air that has changed its direction upon contact with the heated object. A recovery unit having a plurality of recovery ports;
A collecting passage for collecting hot air provided between the mounting substrate portion and the collecting plate and communicating with the intake chamber;
A heat exchanger for heating cold hot air,
The hot air injection type heating device, wherein the hot air injection nozzle of the hot air injection unit is gradually narrowed toward the object to be heated.
吸気室に連通された回収通路は、取付基板部と回収板との間から熱風噴射ユニットの四方端部に配置され、
熱交換器は、四方端部に配置された回収通路のいずれかに設けられた
ことを特徴とする請求項1記載の熱風噴射型加熱装置。
The collection passage communicated with the intake chamber is arranged at the four-way end portion of the hot air injection unit from between the mounting substrate portion and the collection plate,
The hot-air jet type heating device according to claim 1, wherein the heat exchanger is provided in any of the recovery passages arranged at the four ends.
熱風噴射ノズルのいずれかに設けられ熱風温度をモニタして熱交換器を制御する温度センサ
を具備したことを特徴とする請求項1または2記載の熱風噴射型加熱装置。
The hot air jet type heating device according to claim 1 or 2, further comprising a temperature sensor that is provided in any of the hot air jet nozzles and controls the heat exchanger by monitoring the hot air temperature.
炉体と、
炉体内で被加熱物を搬送する搬送手段と、
搬送手段に沿って炉体内に複数配設され被加熱物を加熱する請求項1乃至3のいずれか記載の熱風噴射型加熱装置と、
搬送手段の延長部分に対向して炉体の被加熱物搬出側に配置された被加熱物冷却用の冷却装置と
を具備したことを特徴とする加熱炉。
A furnace body;
Conveying means for conveying an object to be heated in the furnace;
The hot-air jet type heating device according to any one of claims 1 to 3, wherein a plurality of heaters disposed in the furnace body along the conveying means are heated.
A heating furnace comprising: a cooling device for cooling an object to be heated disposed on an unloading side of the object to be heated facing the extended portion of the conveying means.
JP2005358288A 2001-02-23 2005-12-12 Hot air jet type heating device and heating furnace Expired - Lifetime JP4537312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005358288A JP4537312B2 (en) 2001-02-23 2005-12-12 Hot air jet type heating device and heating furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001049202 2001-02-23
JP2005358288A JP4537312B2 (en) 2001-02-23 2005-12-12 Hot air jet type heating device and heating furnace

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002046465A Division JP3799278B2 (en) 2001-02-23 2002-02-22 Hot air injection device, hot air injection type heating device and heating furnace

Publications (2)

Publication Number Publication Date
JP2006153440A JP2006153440A (en) 2006-06-15
JP4537312B2 true JP4537312B2 (en) 2010-09-01

Family

ID=36631948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005358288A Expired - Lifetime JP4537312B2 (en) 2001-02-23 2005-12-12 Hot air jet type heating device and heating furnace

Country Status (1)

Country Link
JP (1) JP4537312B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112047137A (en) * 2020-08-14 2020-12-08 肇庆三乐集成房屋制造有限公司 Calcium silicate board transportation method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4473814B2 (en) * 2001-02-23 2010-06-02 株式会社タムラ製作所 heating furnace
DE102009037299A1 (en) * 2009-08-14 2011-08-04 Leybold Optics GmbH, 63755 Device and treatment chamber for the thermal treatment of substrates
JP5323277B1 (en) * 2013-03-22 2013-10-23 株式会社 伊藤園 Coffee beverage, method for producing the same, and method for reducing miscellaneous taste of coffee beverage
JP2018073902A (en) * 2016-10-26 2018-05-10 株式会社タムラ製作所 Reflow device
CN107234314B (en) * 2017-06-28 2023-09-15 鞍山中电科技有限公司 Electronic component array type hot air welding device and application method thereof
JP6854436B1 (en) 2020-09-08 2021-04-07 千住金属工業株式会社 Soldering equipment
MX2023002975A (en) * 2020-10-22 2023-04-10 Senju Metal Industry Co Soldering device.
KR102311497B1 (en) * 2021-08-19 2021-10-08 바론코리아 주식회사 The conveyor welding system of sprocket method

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63278668A (en) * 1987-05-11 1988-11-16 Eiteitsuku Tekutoron Kk Reflow soldering device
JPH02303674A (en) * 1989-05-16 1990-12-17 Matsushita Electric Ind Co Ltd Method and device for heating
JPH036890A (en) * 1989-06-05 1991-01-14 Matsushita Electric Ind Co Ltd Heating and device therefor
JPH038565A (en) * 1989-06-06 1991-01-16 Matsushita Electric Ind Co Ltd Reflow device
JPH03106261U (en) * 1990-02-20 1991-11-01
JPH0621645A (en) * 1992-07-02 1994-01-28 Osaka Asahi Kagaku Kk Reflow furnace having stable low-oxygen inactive gas atmosphere
JPH06114548A (en) * 1992-10-06 1994-04-26 Tamura Seisakusho Co Ltd Reflow soldering device
JPH06177532A (en) * 1993-08-06 1994-06-24 Tamura Seisakusho Co Ltd Reflow device
JPH0927679A (en) * 1995-07-10 1997-01-28 Denon Kiki Kk Bga-type component mounting method and soldering component mounting device
JPH09232746A (en) * 1996-02-27 1997-09-05 Omron Corp Soldering apparatus and method
JPH10200254A (en) * 1997-01-07 1998-07-31 Matsushita Electric Ind Co Ltd Hot air heater and heating method
JPH10284831A (en) * 1997-04-02 1998-10-23 Nihon Dennetsu Keiki Co Ltd Hot air blowing plate for reflow soldering device
JPH11204932A (en) * 1998-01-19 1999-07-30 Atec Tectron Kk Air blower device for reflow soldering machine
JPH11251737A (en) * 1998-02-27 1999-09-17 Matsushita Electric Ind Co Ltd Reflow heating device
JP2000188467A (en) * 1998-10-13 2000-07-04 Matsushita Electric Ind Co Ltd Apparatus and method for heating
JP2001144426A (en) * 1999-11-12 2001-05-25 Nihon Dennetsu Keiki Co Ltd Reflow-soldering device
JP2001144427A (en) * 1999-11-12 2001-05-25 Nihon Dennetsu Keiki Co Ltd Reflow-soldering device
JP2001196736A (en) * 2000-01-12 2001-07-19 Sony Corp Reflow system
JP2001326455A (en) * 2000-05-15 2001-11-22 Matsushita Electric Ind Co Ltd Method and device for reflow
JP2002134905A (en) * 2000-08-14 2002-05-10 Yokota Technica:Kk Reflow soldering device
JP2002198624A (en) * 2000-12-27 2002-07-12 Kyocera Corp Circuit board
JP2003332725A (en) * 2002-05-14 2003-11-21 Matsushita Electric Ind Co Ltd Reflow heating method and device
JP2006162247A (en) * 2001-02-23 2006-06-22 Tamura Seisakusho Co Ltd Heating furnace
JP3799278B2 (en) * 2001-02-23 2006-07-19 株式会社タムラ製作所 Hot air injection device, hot air injection type heating device and heating furnace

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2546689B2 (en) * 1987-09-26 1996-10-23 エイティックテクトロン 株式会社 Reflow soldering method and device

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63278668A (en) * 1987-05-11 1988-11-16 Eiteitsuku Tekutoron Kk Reflow soldering device
JP2682138B2 (en) * 1989-05-16 1997-11-26 松下電器産業株式会社 Heating method and apparatus
JPH02303674A (en) * 1989-05-16 1990-12-17 Matsushita Electric Ind Co Ltd Method and device for heating
JPH036890A (en) * 1989-06-05 1991-01-14 Matsushita Electric Ind Co Ltd Heating and device therefor
JP2782789B2 (en) * 1989-06-05 1998-08-06 松下電器産業株式会社 Heating method and device in reflow device
JPH038565A (en) * 1989-06-06 1991-01-16 Matsushita Electric Ind Co Ltd Reflow device
JPH03106261U (en) * 1990-02-20 1991-11-01
JPH0756118Y2 (en) * 1990-02-20 1995-12-25 日本アントム工業株式会社 Main heating zone structure in reflow soldering equipment
JPH0621645A (en) * 1992-07-02 1994-01-28 Osaka Asahi Kagaku Kk Reflow furnace having stable low-oxygen inactive gas atmosphere
JPH06114548A (en) * 1992-10-06 1994-04-26 Tamura Seisakusho Co Ltd Reflow soldering device
JPH06177532A (en) * 1993-08-06 1994-06-24 Tamura Seisakusho Co Ltd Reflow device
JPH0927679A (en) * 1995-07-10 1997-01-28 Denon Kiki Kk Bga-type component mounting method and soldering component mounting device
JPH09232746A (en) * 1996-02-27 1997-09-05 Omron Corp Soldering apparatus and method
JPH10200254A (en) * 1997-01-07 1998-07-31 Matsushita Electric Ind Co Ltd Hot air heater and heating method
JPH10284831A (en) * 1997-04-02 1998-10-23 Nihon Dennetsu Keiki Co Ltd Hot air blowing plate for reflow soldering device
JPH11204932A (en) * 1998-01-19 1999-07-30 Atec Tectron Kk Air blower device for reflow soldering machine
JPH11251737A (en) * 1998-02-27 1999-09-17 Matsushita Electric Ind Co Ltd Reflow heating device
JP2000188467A (en) * 1998-10-13 2000-07-04 Matsushita Electric Ind Co Ltd Apparatus and method for heating
JP2001144426A (en) * 1999-11-12 2001-05-25 Nihon Dennetsu Keiki Co Ltd Reflow-soldering device
JP2001144427A (en) * 1999-11-12 2001-05-25 Nihon Dennetsu Keiki Co Ltd Reflow-soldering device
JP2001196736A (en) * 2000-01-12 2001-07-19 Sony Corp Reflow system
JP2001326455A (en) * 2000-05-15 2001-11-22 Matsushita Electric Ind Co Ltd Method and device for reflow
JP2002134905A (en) * 2000-08-14 2002-05-10 Yokota Technica:Kk Reflow soldering device
JP2002198624A (en) * 2000-12-27 2002-07-12 Kyocera Corp Circuit board
JP2006162247A (en) * 2001-02-23 2006-06-22 Tamura Seisakusho Co Ltd Heating furnace
JP3799278B2 (en) * 2001-02-23 2006-07-19 株式会社タムラ製作所 Hot air injection device, hot air injection type heating device and heating furnace
JP2003332725A (en) * 2002-05-14 2003-11-21 Matsushita Electric Ind Co Ltd Reflow heating method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112047137A (en) * 2020-08-14 2020-12-08 肇庆三乐集成房屋制造有限公司 Calcium silicate board transportation method

Also Published As

Publication number Publication date
JP2006153440A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
JP3799278B2 (en) Hot air injection device, hot air injection type heating device and heating furnace
JP4473814B2 (en) heating furnace
TWI389617B (en) Reflow oven
JP4537312B2 (en) Hot air jet type heating device and heating furnace
KR101346962B1 (en) Nozzle for heating device, heating device, and nozzle for cooling device
EP2585245B1 (en) Compression box for reflow oven heating and related method
EP1106294B1 (en) Soldering machine
JP3515058B2 (en) Reflow soldering equipment
JP3877477B2 (en) Reflow soldering equipment
US4361967A (en) Device for cooling freshly-soldered circuit boards
JPWO2007023604A1 (en) Reflow furnace
KR100270764B1 (en) A method for reflow welding and an apparatus utilizing the method
JP2001144427A (en) Reflow-soldering device
JP4887858B2 (en) Reflow furnace
CN104582306B (en) Nozzle and soft soldering apparatus
JP2000077843A (en) Hot air heating equipment
JP6194807B2 (en) Hume recovery device
JP6687495B2 (en) Component mounting line
JP4092258B2 (en) Reflow furnace and temperature control method for reflow furnace
JP2003340569A (en) Reflow furnace
JP4401859B2 (en) Reflow furnace
CN221185029U (en) Scaling powder transferring jig
JP2008080404A (en) Reflow furnace
KR100685656B1 (en) A nozzle for reflow soldering apparatus
KR20060026721A (en) Flux gas collecting apparatus in the reflow solder machine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100317

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100617

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4537312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term