JP4527347B2 - Sintered body for thermistor - Google Patents

Sintered body for thermistor Download PDF

Info

Publication number
JP4527347B2
JP4527347B2 JP2002032870A JP2002032870A JP4527347B2 JP 4527347 B2 JP4527347 B2 JP 4527347B2 JP 2002032870 A JP2002032870 A JP 2002032870A JP 2002032870 A JP2002032870 A JP 2002032870A JP 4527347 B2 JP4527347 B2 JP 4527347B2
Authority
JP
Japan
Prior art keywords
sintered body
thermistor
moles
temperature
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002032870A
Other languages
Japanese (ja)
Other versions
JP2003183075A (en
Inventor
義人 溝口
健 光岡
和浩 浦島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2002032870A priority Critical patent/JP4527347B2/en
Publication of JP2003183075A publication Critical patent/JP2003183075A/en
Application granted granted Critical
Publication of JP4527347B2 publication Critical patent/JP4527347B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、サーミスタ用焼結体に関し、更に詳しくは、室温付近から1000℃付近までの広い温度域にわたって、適度な比抵抗値を有し、電気特性の安定性に優れたサーミスタ用焼結体に関する。本発明のサーミスタ用焼結体は、サーミスタ素子等の導電材料として用いられ、燃焼器具や自動車の排気ガス温度測定装置等に利用される。
【0002】
【従来の技術】
従来より、高温において使用することができる導電材料として、Al及びCrを主成分とするコランダム型化合物(特開平7−335409号公報)、MgAl系の組成を有するスピネル型化合物(特開昭49−63995号公報)、LaMnO系、或いはLaCrO系等の組成を有するペロブスカイト型化合物(特開平7−237967号公報)等が知られている。
【0003】
【発明が解決しようとする課題】
ところが、コランダム型化合物では、抵抗−温度特性を制御するため他の元素を添加する必要があり、その添加量が多い場合は熱安定性が低下してしまうことがある。また、スピネル型化合物では、温度勾配定数(B定数)が大きいため、使用可能な温度域が狭い。更に、Laを含むペロブスカイト型化合物では、未反応のLaイオンが大気中の水分と反応してLa(OH)となり、焼結体とした場合に亀裂或いは崩壊を生ずるため使用環境が制限される。また、電気抵抗値が低く、温度センサとして応用した場合に応答性に劣る。
更に、融点の低い導電材料、及び焼成時の未反応生成物を含む導電材料等では、1000℃程度の使用環境下においても材料中の各元素の拡散が進行し、初期の導電特性から変動を生じることがあり、電気特性の安定性に問題がある。
【0004】
本発明は、上記課題を解決するものであり、室温付近から1000℃付近までの広い温度域にわたって、適度な比抵抗値を有し、電気特性の安定性に優れたサーミスタ用焼結体を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明のサーミスタ用焼結体は、Laを除く3A族元素のうちの少なくとも1種の元素(M1)、2A族元素のうちの少なくとも1種の元素(M2)、6A、7A及び8族元素のうちの少なくとも1種の元素(M3)、並びにAlを含有し、且つ一般式[(M1M21±x(M3Al1±y3±δ](但し、aはM1のモル数、bはM2のモル数、cはM3のモル数、及びdはAlのモル数を表す。)で表した場合に、a、b、c及びdが下記の条件を満たし、
上記a、上記b、上記c及び上記dの合計が2であり、
上記M1、M2、M3の組み合わせが、
(1)M1としてのY、M2としてのSr、M3としてのCr及びMn、
(2)M1としてのSm、M2としてのCa、M3としてのCr及びMn、
(3)M1としてのGd、M2としてのCa、M3としてのFe及びMn、
(4)M1としてのGd、M2としてのMg、M3としてのCr及びFe、
のいずれかであり、
結晶構造がペロブスカイト型であることを特徴とする。
0.6≦a≦0.998
0.002≦b≦0.4
0.01≦c≦0.6
0.4≦d≦0.99
1≦d/c≦99
x=0.1
y=0.1
δ=0.15
【0006】
本発明では、上述のように上記a、上記b、上記c及び上記dの合計が2である。
【0007】
本発明では、上述のように結晶構造がペロブスカイト型である。
【0008】
【発明の実施の形態】
以下、本発明について詳しく説明する。
本発明におけるサーミスタ用焼結体における上記M1は、Laを除く3A族元素のうちの1種、又は2種以上の組み合わせを示す。Laを除く3A族元素としては、Y、Sm、Gdである。
上記M2は、2A族元素のうちの1種、又は2種以上の組み合わせを示す。2A族元素としては、Mg、Ca、Srであり、より好ましくはSrである。
上記M3は、6A、7A及び8族元素のうちの1種、又は2種以上の組み合わせを示す。6A、7A及び8族元素としては、Cr、Fe、Mnであり、最も好ましくはCr、Mnである。
【0009】
本発明のサーミスタ用焼結体において、上記M1、M2及びM3の組み合わせは、
(1)M1としてのY、M2としてのSr、M3としてのCr及びMn、
(2)M1としてのSm、M2としてのCa、M3としてのCr及びMn、
(3)M1としてのGd、M2としてのCa、M3としてのFe及びMn、
(4)M1としてのGd、M2としてのMg、M3としてのCr及びFe、
のいずれかである。
【0011】
また、本発明のサーミスタ用焼結体は、一般式[(M1M21±x(M3Al1±y3±δ]で表され、M1のモル数aは、0.6≦a≦0.998(好ましくは0.6≦a≦0.99、より好ましくは0.7≦a≦0.99)を満たす。
M2のモル数bは、0.002≦b≦0.4(好ましくは0.01≦b≦0.4、より好ましくは0.01≦b≦0.3)を満たす。
M3のモル数cは、0.01≦c≦0.6(好ましくは0.02≦c≦0.6、より好ましくは0.05≦c≦0.5)を満たす。
Alのモル数dは、0.4≦d≦0.99(好ましくは0.4≦d≦0.98、より好ましくは0.5≦d≦0.95)を満たす。
これらの範囲内であれば、室温付近から1000℃付近までの広い温度域にわたって、適度な比抵抗値を有し、電気特性の安定性に優れた焼結体とすることができる。a、b、c及びdのうちのいずれか一種でも、本発明の範囲外である場合、高温における安定性が悪く、電気特性が不安定であるため好ましくない。
更に、Alのモル数dをM3のモル数cで除した値(d/c)が、1≦d/c≦99(好ましくは1≦d/c≦49、より好ましくは1≦d/c≦20)を満たす。この範囲とすることで、Cr等の難焼結性物質をM3成分として用いた場合においても、易焼結性のAl成分が十分に存在するため、焼結し易く、十分に緻密化したサーミスタ用焼結体を得ることができる。
また、各モル数の合計(a+b+c+d)は2である。
【0012】
本発明のサーミスタ用焼結体はペロブスカイト型(ABO)の結晶構造を有するものであり、通常、Aサイトが(M1M2)、Bサイトが(M3Al)である(M1M2)(M3Al)Oで示される組成となる(但し、a、b、c及びdは上記条件を満たす。)。この場合、Aサイト及びBサイトそれぞれを占める元素同士のイオン半径が近接しており、元素同士でお互い容易に置換できるものであり、副生成物の生成が少なく、置換された組成が安定に存在する。そのため、広い範囲で連続的に組成比を変えて導電材料の抵抗値やその温度勾配定数(B)を調整することができる。
尚、焼結体を作製する際の焼成条件(酸化、還元等の焼成雰囲気、及び焼成温度など)や、Aサイト及びBサイトにおける元素同士の置換の量比により、酸素の過剰或いは欠損を生じることがある。従って、上記組成における酸素原子と(M1M2)とのモル比、及び酸素原子と(M3Al)とのモル比は、それぞれ正確に3:1となっていなくても、ペロブスガイト型の結晶構造が維持されていればよい。例えば、(M1M21±x(M3Al1±y3±δとした場合、xは0.1(好ましくは0.07程度、より好ましくは0.05程度)である。また、yは0.1(好ましくは0.07程度、より好ましくは0.05程度)である。更に、δは0.15(好ましくは0.07程度、より好ましくは0.03程度)である。また、1±x/1±yが0.8〜1.2(より好ましくは0.85〜1.15、更に好ましくは0.9〜1.1)であることが好ましい。
【0013】
これらのサーミスタ用焼結体の150〜900℃の温度域における比抵抗値は、0.001〜1000kΩ・cm(好ましくは0.001〜800kΩ・cm、より好ましくは0.002〜800kΩ・cm)とすることができる。尚、これは実際に使用可能な温度範囲が、150〜900℃に限定されることを意味するものではない。
また、後記実施例における耐久試験において算出される温度換算値の絶対値を150℃及び900℃で、15以内(好ましくは12以内、より好ましくは10以内)とすることができる。
【0014】
これらのサーミスタ用焼結体の製造において、原料粉末としては、前記M1、M2、M3及びAlの各々の元素を含む化合物の粉末が使用できる。この化合物としては酸化物、炭酸塩、水酸化物、硝酸塩等が挙げられ、特に酸化物、炭酸塩がよく用いられる。
【0015】
また、サーミスタ用焼結体の製造には、焼結助剤粉末を用いることができる。この場合、焼結体の製造時における焼結性を向上させ、強度の高いサーミスタ用焼結体を得ることができる。更に、焼結助剤を使用しない場合に比べて低温で焼成した場合においても、十分な強度を有するサーミスタ用焼結体を得ることができる。
尚、焼結体の製造時に、緻密化が十分に進行する場合は、焼結助剤粉末を用いずに製造することもできる。
【0016】
焼結助剤粉末としては、特に限定されないが、SiO、3Al・2SiO、CaSiO及びSrSiO等の粉末を使用することができる。なかでもSiO粉末を用いることが好ましい。このSiO粉末の平均粒径は、0.05〜0.3μm(より好ましくは0.1〜0.3μm)であることが好ましい。
焼結助剤粉末を用いた場合、粒界に液相を形成し、マトリックスを成して焼結性を向上させ、より低温で焼成することができ、且つ十分な強度を有し、電気特性の安定性に優れたサーミスタ用焼結体とすることができる。
焼結助剤粉末の添加量は、特に限定されないが、焼結助剤粉末としてSiOのみを用いる際は、原料粉末を100質量部とした場合、通常0.3〜3質量部、好ましくは0.5〜3質量部、更に好ましくは0.5〜2.5質量部である。この範囲とすることで、焼成温度を下げることができ、且つ十分な強度を有し、耐熱性に優れる焼結体を得ることができる。また、他の焼結助剤粉末と併用する場合には、焼結助剤粉末の全量の20質量%以上、特に25質量%以上をSiOとすることが好ましい。
【0017】
サーミスタ用焼結体は、例えば、以下のようにして製造することができる。
原料粉末を湿式混合して乾燥することにより原料粉末混合物を調製し、次いで、この混合物を1100〜1450℃(好ましくは1200〜1400℃)で仮焼し、平均粒径0.5〜4μm(好ましくは0.7〜3μm)の仮焼粉末を得る。その後、必要に応じて、仮焼粉末に焼結助剤粉末を配合して湿式混合し、スラリーを調製する。次いで、得られたスラリーを乾燥し、整粒した後、プレス成形等を行い成形体を得る。その後、この成形体を、1450〜1650℃(好ましくは1450〜1600℃)で焼成することにより、サーミスタ用焼結体を製造することができる。
更に、焼成後、1000〜1200℃で100〜500時間のアニールによる安定化処理を行い、抵抗値をより一層安定化させることもできる。
【0018】
【実施例】
(1)サーミスタ用焼結体の製造
実験例1〜19
原料粉末として、Y、SrCO、Cr、MnO、Al(全て、純度99.9%の市販品を用いた。)を用いて、化学式YSrCrc1Mnc2Alにおけるa、b、c1、c2及びdが表1に示すモル数となるように、それぞれ秤量し、これらの原料粉末を湿式混合して乾燥することにより原料粉末混合物を調製した。次いで、この原料粉末混合物を大気雰囲気下、1300℃で5時間仮焼し、平均粒径1〜2μmの仮焼粉末を得た。その後、この仮焼粉末100質量部に対し、平均粒径0.2μmのSiO粉末を1質量部配合し、樹脂ポットと窒化珪素玉石とを用い、エタノールを分散媒として湿式混合した。次いで、得られたスラリーを80℃で2時間乾燥し、250メッシュの篩を通して造粒した後、30MPaの一軸成形方及び150MPaの冷間静水圧プレス(CIP)法により成形し、直径9mm、高さ10mmの円柱状の成形体を得た。その後、この成形体を、大気雰囲気下1550℃で2時間保持して焼成し、サーミスタ用焼結体を得た。
次いで、各焼結体を研磨し、直径6mm、高さ5mmの円柱状とし、その両端面に白金電極をスクリーン印刷法により形成した。更に、大気中1000℃、150時間のアニールを行い、抵抗値の安定化処理を施し、実験例1〜19のサーミスタ用焼結体とした。
【0019】
実験例20及び実験例21
焼結助剤粉末(SiO粉末)を配合しない他は、実験例1〜19と同様にして、化学式YSrCrc1Mnc2Alにおけるa、b、c1、c2及びdが表1に示すモル数となるように各サーミスタ用焼結体を製造した。
【0020】
【表1】

Figure 0004527347
【0021】
実験例22及び実験例23
原料粉末として、Yに代えてSm、SrCOに代えてCaCO(いずれも、純度99.9%の市販品)を用いて、化学式SmCaCrc1Mnc2Alにおけるa、b、c1、c2及びdが表2に示すモル数となるようにした以外は実験例20及び実験例21と同様にして各サーミスタ用焼結体を製造した。
【0022】
【表2】
Figure 0004527347
【0023】
実験例24及び実験例25
原料粉末として、Yに代えてGd、SrCOに代えてCaCO、Crに代えてFe(全て、純度99.9%の市販品)を用いて、化学式GdCaFec1Mnc2Alにおけるa、b、c1、c2及びdが表3に示すモル数となるようにした以外は実験例20及び実験例21と同様にして各サーミスタ用焼結体を製造した。
【0024】
【表3】
Figure 0004527347
【0025】
実験例26及び実験例27
原料粉末として、Yに代えてGd、SrCOに代えてMgO、MnOに代えてFe(全て、純度99.9%の市販品)を用いて、化学式GdMgCrc1Fec2Alにおけるa、b、c1、c2及びdが表4に示すモル数となるようにした以外は実験例20及び実験例21と同様にして各サーミスタ用焼結体を製造した。
【0026】
【表4】
Figure 0004527347
【0027】
実験例28
原料粉末として、更にGa(純度99.9%の市販品)を用いて、化学式YSrCrc1Mnc2Ald1Gad2におけるa、b、c1、c2、d1及びd2が表5に示すモル数となるようにした以外は実験例1〜19と同様にして各サーミスタ用焼結体を製造した。
【0028】
【表5】
Figure 0004527347
【0029】
(2)導電性の評価
(i)比抵抗値の測定及びB定数の算出
上記(1)で得られた実験例1〜28のサーミスタ用焼結体を用いて、大気雰囲気下で、直流四端子法により温度150、300、600及び900℃での抵抗値を測定し、この抵抗値より比抵抗値及びB定数を算出した。尚、これらの数値は各々の温度において焼結体を20分間保持した後の測定値であり、B定数は以下の式に従って算出した値である。この結果をそれぞれ表6(実験例1〜21)及び表7(実験例22〜28)に示す。
B定数:BT1−T2=ln(ρT1/ρT2)/[(1/T1)−(1/T2)]
[但し、T1、T2は別々の測定温度(K)を表し、ρT1、ρT2は各々の温度T1、T2における大気中での比抵抗値(kΩ・cm)である。]
【0030】
(ii)耐久性の評価
実験例1〜28のサーミスタ用焼結体を大気雰囲気下1000℃において150時間保持し、室温まで放冷した際の抵抗値を測定し、耐久前後における比抵抗値より次式に従い変化率(ΔR率)を算出して評価した。この結果をそれぞれ表6(実験例1〜21)及び表7(実験例22〜28)に併記する。
ΔR率(%)=(ρ’−ρ)/ρ×100
[但し、ρは耐久試験前の温度T、大気雰囲気における比抵抗値(kΩ・cm)であり、ρ’は耐久試験後の温度T、大気雰囲気における比抵抗値(kΩ・cm)である。]
更に、次式により比抵抗値の変化率の温度換算値を算出し、表6(実験例1〜21)及び表7(実験例22〜28)に併記した。
温度換算値:BT1−T2×T/[ln(ρ’/ρ)×T+BT1−T2]−T
[但し、T、T1、T2は測定温度(K)を表し、ρは耐久試験前の温度Tにおける大気雰囲気における比抵抗値(kΩ・cm)であり、ρ’は耐久試験後の温度Tにおける大気雰囲気における比抵抗値(kΩ・cm)である。BT1−T2は前記式により求められるB定数である。]
【0031】
【表6】
Figure 0004527347
【0032】
【表7】
Figure 0004527347
【0033】
表6及び表7によれば、本発明におけるAl成分を含まない実験例1では、900℃における比抵抗値が0.000942kΩ・cmと低く、比抵抗値の変化率の温度換算値により評価した耐久性においても、150℃では−27.9℃であり、更に900℃では−62.1℃であり、耐久性が悪く、電気特性が安定していなかった。また、本発明におけるM3成分を含まない実験例4では、変化率の温度換算値が150℃において−4.9℃であったが、900℃では−25.8℃であり、高温において耐久性が悪く、電気特性が安定していなかった。更に、本発明におけるAl成分を含まない実験例7では、変化率の温度換算値が150℃では−11.2℃であったが、900℃では−29.0℃であり、高温において耐久性が悪く、電気特性が安定していなかった。
また、本発明におけるM2成分を含まない実験例17では、変化率の温度換算値が150℃において−2.6℃であったが、900℃では−15.5℃であり、高温において耐久性が悪く、電気特性が安定していなかった。更に、M1のモル数aが0.5、M2のモル数bが0.5と本発明の範囲(0.6≦a≦0.998、0.002≦b≦0.4)を外れる実験例18では、変化率の温度換算値が150℃において−6.4℃であったが、900℃では−26.3℃であり、高温において耐久性が悪く、電気特性が安定していなかった。また、M3のモル数cが0.7、Alのモル数dが0.3と本発明の範囲(0.01≦c≦0.6、0.4≦d≦0.99)を外れる実験例19では、変化率の温度換算値が150℃では−16.6℃であり、更に900℃では−15.7℃であり、耐久性が悪く、電気特性が安定していなかった。
【0034】
これに対して、実験例2、3、5、6、8〜16、及び20〜28では、150、300、600及び900℃の各温度において0.001977〜617.8kΩ・cmと適度な比抵抗値を示しており、比抵抗値の変化率の温度換算値により評価した耐久性においても、150℃では−8.3〜+4.1℃、900℃では−12.2〜+0.9℃であり、優れた耐久性を示しており、且つ広い温度域において安定した電気特性を有していることが分かった。
【0035】
尚、本発明においては、上記の具体的な実施例に示すものに限られず、目的、用途に応じて本発明の範囲内で種々変更した実施例とすることができる。即ち、原料粉末以外にも、焼結性並びにB定数及び耐久性等を損なわない範囲で、Li、Na、K、Cu、Ag、C、Cl及びS等の他の成分、或いは不可避不純物などを含有していてもよい。
【0036】
【発明の効果】
特定の一般式で表される本発明のサーミスタ用焼結体とすることで、より電気特性の安定性に優れたサーミスタ用焼結体とすることができる。
更に、本発明のサーミスタ用焼結体において、特定の元素を、特定の量比で含有することで、より電気特性の安定性に優れたサーミスタ用焼結体とすることができる。
また、本発明のサーミスタ用焼結体の結晶構造がペロブスカイト型なので、より電気特性の安定性に優れたサーミスタ用焼結体とすることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sintered body for thermistor, more particularly, over a wide temperature range of up to around 1000 ° C. from about room temperature, has an appropriate resistivity, a highly stable thermistor sintered body of the electrical characteristics About. The sintered body for the thermistor of the present invention is used as a conductive material such as a thermistor element, and is used for a combustion instrument, an exhaust gas temperature measuring device of an automobile, and the like.
[0002]
[Prior art]
Conventionally, as a conductive material that can be used at a high temperature, a corundum type compound mainly composed of Al 2 O 3 and Cr 2 O 3 (Japanese Patent Laid-Open No. 7-335409) has an MgAl 2 O 4 composition. A spinel type compound (Japanese Patent Laid-Open No. 49-63959), a perovskite type compound having a composition such as LaMnO 3 type or LaCrO 3 type (Japanese Patent Laid-Open No. 7-237967) is known.
[0003]
[Problems to be solved by the invention]
However, in the corundum type compound, it is necessary to add another element in order to control the resistance-temperature characteristics. When the addition amount is large, the thermal stability may be lowered. Further, since the spinel type compound has a large temperature gradient constant (B constant), the usable temperature range is narrow. Furthermore, in the perovskite type compound containing La, unreacted La ions react with moisture in the atmosphere to become La (OH) 3 , and when used as a sintered body, cracks or collapse occurs, so the usage environment is limited. . In addition, the electrical resistance value is low, and when applied as a temperature sensor, the responsiveness is poor.
Furthermore, in conductive materials having a low melting point and conductive materials including unreacted products during firing, the diffusion of each element in the material proceeds even under a use environment of about 1000 ° C., and the initial conductive characteristics vary. May occur, and there is a problem in the stability of electrical characteristics.
[0004]
The present invention solves the above problems and provides a sintered body for a thermistor having an appropriate specific resistance value and excellent electrical property stability over a wide temperature range from about room temperature to about 1000 ° C. The purpose is to do.
[0005]
[Means for Solving the Problems]
The sintered body for the thermistor of the present invention includes at least one element (M1) of Group 3A elements excluding La, at least one element (M2) of Group 2A elements, 6A, 7A, and Group 8 elements. At least one element (M3), and Al, and the general formula [(M1 a M2 b ) 1 ± x (M3 c Al d ) 1 ± y O 3 ± δ ] (where a is The number of moles of M1, b is the number of moles of M2, c is the number of moles of M3, and d is the number of moles of Al.
The sum of the a, the b, the c and the d is 2,
The combination of M1, M2 and M3 is
(1) Y as M1, Sr as M2, Cr and Mn as M3,
(2) Sm as M1, Ca as M2, Cr and Mn as M3,
(3) Gd as M1, Ca as M2, Fe and Mn as M3,
(4) Gd as M1, Mg as M2, Cr and Fe as M3,
Either
The crystal structure is a perovskite type.
0.6 ≦ a ≦ 0.998
0.002 ≦ b ≦ 0.4
0.01 ≦ c ≦ 0.6
0.4 ≦ d ≦ 0.99
1 ≦ d / c ≦ 99
x = 0.1
y = 0.1
δ = 0.15
[0006]
In the present invention, as described above, the sum of the a, the b, the c, and the d is 2.
[0007]
In the present invention, as described above, the crystal structure is a perovskite type.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
Said M1 in the sintered body for the thermistors in this invention shows 1 type in the 3A group elements except La, or the combination of 2 or more types. The 3A group elements excluding La are Y, Sm, and Gd.
Said M2 shows the 1 type of 2A group element, or the combination of 2 or more types. As a 2A group element, it is Mg, Ca, Sr, More preferably, it is Sr.
Said M3 shows 1 type in 6A, 7A, and an 8 group element, or the combination of 2 or more types. The 6A, 7A and Group 8 elements are Cr, Fe and Mn, and most preferably Cr and Mn.
[0009]
In the sintered body for the thermistor of the present invention, the combination of M1, M2 and M3 is as follows:
(1) Y as M1, Sr as M2, Cr and Mn as M3,
(2) Sm as M1, Ca as M2, Cr and Mn as M3,
(3) Gd as M1, Ca as M2, Fe and Mn as M3,
(4) Gd as M1, Mg as M2, Cr and Fe as M3,
One of them.
[0011]
The sintered body for the thermistor of the present invention is represented by the general formula [(M1 a M2 b ) 1 ± x (M3 c Al d ) 1 ± y O 3 ± δ ], and the number of moles a of M1 is 0. .6 ≦ a ≦ 0.998 (preferably 0.6 ≦ a ≦ 0.99, more preferably 0.7 ≦ a ≦ 0.99).
The number of moles b of M2 satisfies 0.002 ≦ b ≦ 0.4 (preferably 0.01 ≦ b ≦ 0.4, more preferably 0.01 ≦ b ≦ 0.3).
The number of moles c of M3 satisfies 0.01 ≦ c ≦ 0.6 (preferably 0.02 ≦ c ≦ 0.6, more preferably 0.05 ≦ c ≦ 0.5).
The number of moles d of Al satisfies 0.4 ≦ d ≦ 0.99 (preferably 0.4 ≦ d ≦ 0.98, more preferably 0.5 ≦ d ≦ 0.95).
Within these ranges, a sintered body having an appropriate specific resistance value and excellent electrical property stability can be obtained over a wide temperature range from around room temperature to around 1000 ° C. If any one of a, b, c and d is outside the scope of the present invention, it is not preferable because stability at high temperature is poor and electric characteristics are unstable.
Further, a value (d / c) obtained by dividing the number of moles d of Al by the number of moles c of M3 is 1 ≦ d / c ≦ 99 (preferably 1 ≦ d / c ≦ 49, more preferably 1 ≦ d / c). ≦ 20) is satisfied. With this range, the thermistor in the case of using a sintering-resistant material such as Cr as M3 components also, since the sinterability of the Al component is present sufficiently easily sintered, the fully densified and A sintered body can be obtained.
Further, the total number of moles (a + b + c + d) is 2.
[0012]
The sintered body for the thermistor of the present invention has a perovskite type (ABO 3 ) crystal structure, and the A site is usually (M1 a M2 b ) and the B site is (M3 c Al d ) (M1 a M2 b ) (M3 c Al d ) O 3 (where a, b, c and d satisfy the above conditions). In this case, the ionic radii of the elements occupying each of the A site and the B site are close to each other, and the elements can be easily replaced with each other, there is little generation of by-products, and the substituted composition exists stably. To do. Therefore, the resistance value of the conductive material and its temperature gradient constant (B) can be adjusted by continuously changing the composition ratio in a wide range.
In addition, excess or deficiency of oxygen occurs depending on firing conditions (firing atmosphere such as oxidation and reduction, firing temperature, etc.) at the time of producing the sintered body, and the substitution ratio of elements at the A site and B site. Sometimes. Therefore, even if the molar ratio between the oxygen atom and (M1 a M2 b ) and the molar ratio between the oxygen atom and (M3 c Al d ) in the above composition is not exactly 3: 1, the perovskite type As long as the crystal structure is maintained. For example, when (M1 a M2 b ) 1 ± x (M3 c Al d ) 1 ± y O 3 ± δ , x is 0.1 (preferably about 0.07, more preferably about 0.05). is there. Moreover, y is 0.1 (preferably about 0.07, more preferably about 0.05). Furthermore, δ is 0.15 (preferably about 0.07, more preferably about 0.03). Further, 1 ± x / 1 ± y is preferably 0.8 to 1.2 (more preferably 0.85 to 1.15, still more preferably 0.9 to 1.1).
[0013]
The specific resistance value in the temperature range of 150 to 900 ° C. of these thermistor sintered bodies is 0.001 to 1000 kΩ · cm (preferably 0.001 to 800 kΩ · cm, more preferably 0.002 to 800 kΩ · cm). It can be. This does not mean that the actually usable temperature range is limited to 150 to 900 ° C.
Moreover, the absolute value of the temperature conversion value calculated in the endurance test in the postscript Examples can be made within 15 (preferably within 12 and more preferably within 10) at 150 ° C. and 900 ° C.
[0014]
In the production of the sintered body for the thermistor , as the raw material powder, a powder of a compound containing each of the elements M1, M2, M3 and Al can be used. Examples of this compound include oxides, carbonates, hydroxides, nitrates and the like, and oxides and carbonates are particularly often used.
[0015]
A sintering aid powder can be used for the production of the thermistor sintered body . In this case, the sinterability at the time of manufacture of a sintered compact can be improved, and the sintered body for thermistors with high intensity | strength can be obtained. Furthermore, a sintered body for the thermistor having sufficient strength can be obtained even when firing at a lower temperature than when no sintering aid is used.
In addition, when densification fully advances at the time of manufacture of a sintered compact, it can also manufacture without using sintering auxiliary agent powder.
[0016]
The sintering aid powder is not particularly limited, it is possible to use a powder such as SiO 2, 3Al 2 O 3 · 2SiO 2, CaSiO 3 and SrSiO 3. Among these, it is preferable to use SiO 2 powder. The average particle diameter of the SiO 2 powder is preferably 0.05 to 0.3 μm (more preferably 0.1 to 0.3 μm).
When the sintering aid powder is used, it forms a liquid phase at the grain boundary, forms a matrix, improves the sinterability, can be fired at a lower temperature, has sufficient strength, and has electrical characteristics. It can be set as the sintered body for the thermistors excellent in stability of.
The addition amount of the sintering aid powder is not particularly limited, but when using only SiO 2 as the sintering aid powder, when the raw material powder is 100 parts by mass, usually 0.3 to 3 parts by mass, preferably It is 0.5-3 mass parts, More preferably, it is 0.5-2.5 mass parts. By setting it as this range, the sintering temperature can be lowered, and a sintered body having sufficient strength and excellent heat resistance can be obtained. Further, when used in combination with other sintering aid powder is more than 20 wt% of the total amount of sintering aid powder, it is particularly preferable to more than 25 wt% and SiO 2.
[0017]
The sintered body for the thermistor can be manufactured as follows, for example.
A raw material powder mixture is prepared by wet mixing and drying the raw material powder, and then the mixture is calcined at 1100 to 1450 ° C. (preferably 1200 to 1400 ° C.) to obtain an average particle size of 0.5 to 4 μm (preferably Of 0.7 to 3 μm) is obtained. Thereafter, if necessary, the sintering aid powder is blended with the calcined powder and wet-mixed to prepare a slurry. Next, the obtained slurry is dried and sized, and then subjected to press molding or the like to obtain a molded body. Then, the sintered body for the thermistor can be manufactured by baking this molded object at 1450-1650 degreeC (preferably 1450-1600 degreeC).
Furthermore, the resistance value can be further stabilized by performing a stabilization treatment by annealing at 1000 to 1200 ° C. for 100 to 500 hours after firing.
[0018]
【Example】
(1) Manufacturing experiment examples 1 to 19 of sintered body for thermistor
Using Y 2 O 3 , SrCO 3 , Cr 2 O 3 , MnO 2 , Al 2 O 3 (all commercially available products with a purity of 99.9%) were used as the raw material powder, and the chemical formula Y a Sr b Cr c1 Mn c2 Al d O 3 so that a, b, c1, c2 and d in the number of moles shown in Table 1 are weighed, and these raw material powders are wet-mixed and dried to obtain a raw material powder mixture. Prepared. Subsequently, this raw material powder mixture was calcined at 1300 ° C. for 5 hours in an air atmosphere to obtain a calcined powder having an average particle diameter of 1 to 2 μm. Thereafter, 1 part by mass of SiO 2 powder having an average particle size of 0.2 μm was blended with 100 parts by mass of the calcined powder, and wet mixed using ethanol as a dispersion medium using a resin pot and silicon nitride cobblestone. Next, the obtained slurry was dried at 80 ° C. for 2 hours, granulated through a 250 mesh sieve, and then molded by a 30 MPa uniaxial molding method and a 150 MPa cold isostatic pressing (CIP) method. A cylindrical molded body having a thickness of 10 mm was obtained. Thereafter, the compact was fired by holding at 1550 ° C. for 2 hours in an air atmosphere to obtain a thermistor sintered body .
Next, each sintered body was polished to form a cylindrical shape having a diameter of 6 mm and a height of 5 mm, and platinum electrodes were formed on both end faces by screen printing. Furthermore, annealing was performed in the atmosphere at 1000 ° C. for 150 hours, and a resistance value stabilization treatment was performed to obtain sintered bodies for thermistors of Experimental Examples 1 to 19.
[0019]
Experimental Example 20 and Experimental Example 21
A, b, c1, c2 and d in the chemical formula Y a Sr b Cr c1 Mn c2 Al d O 3 are the same as in Experimental Examples 1 to 19 except that the sintering aid powder (SiO 2 powder) is not blended. Each sintered body for the thermistor was manufactured so as to have the number of moles shown in Table 1.
[0020]
[Table 1]
Figure 0004527347
[0021]
Experimental Example 22 and Experimental Example 23
As the raw material powder, (both 99.9% pure commercially available) CaCO 3 instead in place of the Y 2 O 3 in the Sm 2 O 3, SrCO 3 using the formula Sm a Ca b Cr c1 Mn c2 Al a in d O 3, b, c1, c2 and d were prepared a manner sintered body for the thermistors similar except that as the number of moles as in experimental example 20 and experiment example 21 shown in Table 2.
[0022]
[Table 2]
Figure 0004527347
[0023]
Experimental Example 24 and Experimental Example 25
As raw material powders, with Y 2 in place of the O 3 in place of Gd 2 O 3, CaCO 3 instead of SrCO 3, Cr 2 O 3 Fe 2 O 3 ( all 99.9% of the commercial product purity) In the same manner as in Experimental Example 20 and Experimental Example 21, except that a, b, c1, c2 and d in the chemical formula Gd a Ca b Fe c1 Mn c2 Al d O 3 are the numbers of moles shown in Table 3. A sintered body for the thermistor was manufactured.
[0024]
[Table 3]
Figure 0004527347
[0025]
Experimental Example 26 and Experimental Example 27
As raw material powder, Gd 2 O 3 instead of Y 2 O 3 , MgO instead of SrCO 3 , Fe 2 O 3 instead of MnO 2 (all commercially available products with a purity of 99.9%), chemical formula Gd a Mg b Cr c1 Fe c2 Al d a of O 3, b, c1, c2 and d Similarly sintered for the thermistors as in experimental example 20 and experiment example 21 except that as the number of moles shown in Table 4 A ligation was produced.
[0026]
[Table 4]
Figure 0004527347
[0027]
Experimental Example 28
Ga 2 O 3 (commercial product with a purity of 99.9%) is further used as a raw material powder, and a, b, c1, c2, d1, and d2 in the chemical formula Y a Sr b Cr c1 Mn c2 Al d1 Ga d2 O 3 are used. Each thermistor sintered body was manufactured in the same manner as in Experimental Examples 1 to 19 except that the number of moles was as shown in Table 5.
[0028]
[Table 5]
Figure 0004527347
[0029]
(2) Conductivity evaluation
(I) Measurement of specific resistance value and calculation of B constant Temperatures of 150 and 300 were measured by a direct current four-terminal method in an air atmosphere using the sintered bodies for thermistors of Experimental Examples 1 to 28 obtained in (1) above. The resistance value at 600 and 900 ° C. was measured, and the specific resistance value and the B constant were calculated from this resistance value. These numerical values are measured values after holding the sintered body for 20 minutes at each temperature, and the B constant is a value calculated according to the following equation. The results are shown in Table 6 (Experimental Examples 1 to 21) and Table 7 (Experimental Examples 22 to 28), respectively.
B constant: B T1−T2 = ln (ρ T1 / ρ T2 ) / [(1 / T1) − (1 / T2)]
[However, T1 and T2 represent different measurement temperatures (K), and ρ T1 and ρ T2 are specific resistance values (kΩ · cm) in the atmosphere at the respective temperatures T1 and T2. ]
[0030]
(Ii) Evaluation of durability The sintered body for the thermistor of Experimental Examples 1 to 28 was held at 1000 ° C. for 150 hours in the air atmosphere, and the resistance value when allowed to cool to room temperature was measured. The change rate (ΔR rate) was calculated and evaluated according to the following formula. The results are shown in Table 6 (Experimental Examples 1 to 21) and Table 7 (Experimental Examples 22 to 28), respectively.
ΔR rate (%) = (ρ T ′ −ρ T ) / ρ T × 100
[However, ρ T is the temperature T before the durability test and the specific resistance value (kΩ · cm) in the air atmosphere, and ρ T ′ is the temperature T after the durability test and the specific resistance value (kΩ · cm) in the air atmosphere. is there. ]
Furthermore, the temperature conversion value of the change rate of the specific resistance value was calculated by the following formula, and it was written in Table 6 (Experimental Examples 1 to 21) and Table 7 (Experimental Examples 22 to 28).
Temperature conversion value: B T1-T2 × T / [ln (ρ T ′ / ρ T ) × T + B T1-T2 ] −T
[However, T, T1, and T2 represent measurement temperatures (K), ρ T is a specific resistance value (kΩ · cm) in an air atmosphere at a temperature T before the durability test, and ρ T ′ is a temperature after the durability test. It is a specific resistance value (kΩ · cm) in an air atmosphere at T. B T1 -T2 is a B constant determined by the above formula. ]
[0031]
[Table 6]
Figure 0004527347
[0032]
[Table 7]
Figure 0004527347
[0033]
According to Table 6 and Table 7, in Experimental Example 1 that does not include an Al component in the present invention, the specific resistance value at 900 ° C. was as low as 0.000942 kΩ · cm, and evaluation was performed based on the temperature-converted value of the rate of change in specific resistance value. In terms of durability, it was −27.9 ° C. at 150 ° C., −62.1 ° C. at 900 ° C., and the durability was poor and the electrical characteristics were not stable. Further, in Experimental Example 4 not including the M3 component in the present invention, the temperature conversion value of the rate of change was −4.9 ° C. at 150 ° C., but −25.8 ° C. at 900 ° C., and durability at a high temperature. The electrical characteristics were not stable. Furthermore, in Experimental Example 7 not including the Al component in the present invention, the temperature conversion value of the rate of change was −11.2 ° C. at 150 ° C., but −29.0 ° C. at 900 ° C., which is durable at high temperatures. The electrical characteristics were not stable.
In Experimental Example 17 that does not include the M2 component in the present invention, the temperature conversion value of the rate of change was −2.6 ° C. at 150 ° C., but −15.5 ° C. at 900 ° C., and durability at high temperatures. The electrical characteristics were not stable. Furthermore, the number of moles a of M1 is 0.5 and the number of moles b of M2 is 0.5, which is outside the range of the present invention (0.6 ≦ a ≦ 0.998, 0.002 ≦ b ≦ 0.4). In Example 18, the temperature conversion value of the rate of change was −6.4 ° C. at 150 ° C., but −26.3 ° C. at 900 ° C., and the durability was poor at high temperatures and the electrical characteristics were not stable. . Further, the number of moles c of M3 is 0.7 and the number of moles d of Al is 0.3, which is outside the range of the present invention (0.01 ≦ c ≦ 0.6, 0.4 ≦ d ≦ 0.99). In Example 19, the temperature conversion value of the rate of change was −16.6 ° C. at 150 ° C., and −15.7 ° C. at 900 ° C., and the durability was poor and the electrical characteristics were not stable.
[0034]
On the other hand, in Experimental Examples 2, 3, 5, 6, 8 to 16, and 20 to 28, an appropriate ratio of 0.001977 to 617.8 kΩ · cm at each temperature of 150, 300, 600, and 900 ° C. The resistance value is shown, and the durability evaluated by the temperature conversion value of the change rate of the specific resistance value is −8.3 to + 4.1 ° C. at 150 ° C., and −12 to + 0.9 ° C. at 900 ° C. Thus, it has been shown that it has excellent durability and has stable electrical characteristics in a wide temperature range.
[0035]
In addition, in this invention, it can restrict to what is shown to said specific Example, It can be set as the Example variously changed within the range of this invention according to the objective and the use. That is, in addition to the raw material powder, other components such as Li, Na, K, Cu, Ag, C, Cl and S, or inevitable impurities, etc., as long as the sinterability and B constant and durability are not impaired. You may contain.
[0036]
【The invention's effect】
With thermistor sintered body of the present invention represented by a specific general formula, it is possible to more electrical properties stability superior thermistor sintered body.
Furthermore, in the thermistor sintered body of the present invention, the specific elements, that contain a specific amount ratio, it is possible to more electrical properties stability superior thermistor sintered body.
Moreover, since the crystal structure of the sintered body for the thermistor of the present invention is a perovskite type, a sintered body for the thermistor having more excellent electrical property stability can be obtained.

Claims (1)

Laを除く3A族元素のうちの少なくとも1種の元素(M1)、2A族元素のうちの少なくとも1種の元素(M2)、6A、7A及び8族元素のうちの少なくとも1種の元素(M3)、並びにAlを含有し、且つ一般式[(M1M21±x(M3Al1±y3±δ](但し、aはM1のモル数、bはM2のモル数、cはM3のモル数、及びdはAlのモル数を表す。)で表した場合に、a、b、c及びdが下記の条件を満たし、
上記a、上記b、上記c及び上記dの合計が2であり、
上記M1、M2、M3の組み合わせが、
(1)M1としてのY、M2としてのSr、M3としてのCr及びMn、
(2)M1としてのSm、M2としてのCa、M3としてのCr及びMn、
(3)M1としてのGd、M2としてのCa、M3としてのFe及びMn、
(4)M1としてのGd、M2としてのMg、M3としてのCr及びFe、
のいずれかであり、
結晶構造がペロブスカイト型であることを特徴とするサーミスタ用焼結体。
0.6≦a≦0.998
0.002≦b≦0.4
0.01≦c≦0.6
0.4≦d≦0.99
1≦d/c≦99
x=0.1
y=0.1
δ=0.15
At least one element (M1) of Group 3A elements excluding La, at least one element (M2) of Group 2A elements, at least one element (M3) of Group 6A, 7A and Group 8 elements ), And Al, and the general formula [(M1 a M2 b ) 1 ± x (M3 c Al d ) 1 ± y O 3 ± δ ] (where a is the number of moles of M1 and b is the mole of M2 The number, c is the number of moles of M3, and d is the number of moles of Al.) A, b, c and d satisfy the following conditions:
The sum of the a, the b, the c and the d is 2,
The combination of M1, M2 and M3 is
(1) Y as M1, Sr as M2, Cr and Mn as M3,
(2) Sm as M1, Ca as M2, Cr and Mn as M3,
(3) Gd as M1, Ca as M2, Fe and Mn as M3,
(4) Gd as M1, Mg as M2, Cr and Fe as M3,
Either
A sintered body for a thermistor characterized in that the crystal structure is a perovskite type.
0.6 ≦ a ≦ 0.998
0.002 ≦ b ≦ 0.4
0.01 ≦ c ≦ 0.6
0.4 ≦ d ≦ 0.99
1 ≦ d / c ≦ 99
x = 0.1
y = 0.1
δ = 0.15
JP2002032870A 2001-10-11 2002-02-08 Sintered body for thermistor Expired - Fee Related JP4527347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002032870A JP4527347B2 (en) 2001-10-11 2002-02-08 Sintered body for thermistor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-314272 2001-10-11
JP2001314272 2001-10-11
JP2002032870A JP4527347B2 (en) 2001-10-11 2002-02-08 Sintered body for thermistor

Publications (2)

Publication Number Publication Date
JP2003183075A JP2003183075A (en) 2003-07-03
JP4527347B2 true JP4527347B2 (en) 2010-08-18

Family

ID=27615344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002032870A Expired - Fee Related JP4527347B2 (en) 2001-10-11 2002-02-08 Sintered body for thermistor

Country Status (1)

Country Link
JP (1) JP4527347B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5053563B2 (en) * 2005-04-11 2012-10-17 日本特殊陶業株式会社 Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element
JP5053564B2 (en) * 2005-04-11 2012-10-17 日本特殊陶業株式会社 Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element
WO2006109792A1 (en) * 2005-04-11 2006-10-19 Ngk Spark Plug Co., Ltd. Sintered electroconductive oxide, thermister element using sintered electroconductive oxide, and temperature sensor using thermister element
JP5059332B2 (en) 2006-02-16 2012-10-24 日本特殊陶業株式会社 THERMISTOR ELEMENT, TEMPERATURE SENSOR USING SAME, AND METHOD FOR PRODUCING THERMISTOR ELEMENT
JP4996196B2 (en) * 2006-10-12 2012-08-08 日本特殊陶業株式会社 THERMISTOR ELEMENT, TEMPERATURE SENSOR USING SAME, AND METHOD FOR PRODUCING THERMISTOR ELEMENT
DE102007012468A1 (en) 2007-03-15 2008-09-18 Epcos Ag Ceramic material and electroceramic component with the ceramic material
JP4990072B2 (en) * 2007-08-30 2012-08-01 株式会社大泉製作所 Thermistor for high temperature
ATE458255T1 (en) * 2007-12-21 2010-03-15 Vishay Resistors Belgium Bvba STABLE THERMISTOR
DE102008046858A1 (en) * 2008-09-12 2010-03-18 Epcos Ag Ceramic material, method for producing a ceramic material, electroceramic component comprising the ceramic material
EP2402297B1 (en) * 2009-02-20 2018-01-03 Ngk Spark Plug Co., Ltd. Electrically conductive oxide sintered compact, thermistor element employing the same, and temperature sensor employing the same
JP5678520B2 (en) 2010-08-26 2015-03-04 Tdk株式会社 Thermistor element
JP2016039276A (en) * 2014-08-08 2016-03-22 日本特殊陶業株式会社 Thermistor element, method of manufacturing thermistor element, and temperature sensor using thermistor sensor
KR101908775B1 (en) 2015-04-06 2018-10-16 니뽄 도쿠슈 도교 가부시키가이샤 Sintered electrically conductive oxide, thermistor element employing the oxide, and temperature sensor employing the thermistor
JP6491074B2 (en) * 2015-04-06 2019-03-27 日本特殊陶業株式会社 Conductive oxide sintered body, thermistor element and temperature sensor using the same
JP2018131347A (en) * 2017-02-14 2018-08-23 日本特殊陶業株式会社 Electroconductive oxide sintered body, and thermister device and temperature sensor using the same
JP7453607B2 (en) 2019-03-29 2024-03-21 株式会社Flosfia Thermistors and their products and systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51108298A (en) * 1975-03-19 1976-09-25 Matsushita Electric Ind Co Ltd KOONDOYO SAAMISUTAJIKI ZAIRYO
JPH06325907A (en) * 1993-05-10 1994-11-25 Ngk Spark Plug Co Ltd Ceramic composition for thermistor
JPH06338402A (en) * 1993-05-28 1994-12-06 Ngk Spark Plug Co Ltd Porcelain compounds for thermistor
JPH07201528A (en) * 1993-11-25 1995-08-04 Ngk Spark Plug Co Ltd Porcelain composition used for thermistor and its manufacture
JPH09196098A (en) * 1996-01-17 1997-07-29 Nitsukatoo:Kk Heat resistant and conductive ceramics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51108298A (en) * 1975-03-19 1976-09-25 Matsushita Electric Ind Co Ltd KOONDOYO SAAMISUTAJIKI ZAIRYO
JPH06325907A (en) * 1993-05-10 1994-11-25 Ngk Spark Plug Co Ltd Ceramic composition for thermistor
JPH06338402A (en) * 1993-05-28 1994-12-06 Ngk Spark Plug Co Ltd Porcelain compounds for thermistor
JPH07201528A (en) * 1993-11-25 1995-08-04 Ngk Spark Plug Co Ltd Porcelain composition used for thermistor and its manufacture
JPH09196098A (en) * 1996-01-17 1997-07-29 Nitsukatoo:Kk Heat resistant and conductive ceramics

Also Published As

Publication number Publication date
JP2003183075A (en) 2003-07-03

Similar Documents

Publication Publication Date Title
JP4527347B2 (en) Sintered body for thermistor
US4110260A (en) Electroconductive composite ceramics
WO2006109792A1 (en) Sintered electroconductive oxide, thermister element using sintered electroconductive oxide, and temperature sensor using thermister element
KR101523354B1 (en) Stable thermistor
US6878304B2 (en) Reduction resistant thermistor, method of production thereof, and temperature sensor
JP3776691B2 (en) Thermistor element
JP3254594B2 (en) Porcelain composition for thermistor and thermistor element
EP1137016A1 (en) Thermistor device
JPH0799102A (en) Porcelain composition for thermistor, and thermistor element
KR20140141639A (en) Sintered oxide compact and circuit board using same
US6663794B2 (en) Reducing-atmosphere-resistant thermistor element, production method thereof and temperature sensor
JP3254595B2 (en) Porcelain composition for thermistor
JP3928244B2 (en) THERMISTOR ELEMENT AND MANUFACTURING METHOD THEREOF
JP3362651B2 (en) Thermistor element and manufacturing method thereof
JP2009173484A (en) Metal oxide sintered compact for thermistor, thermistor element, and method for producing metal oxide sintered compact for thermistor
JP2004221519A (en) Sintered compact for thermistor element and manufacturing method therefor,thermistor element and temperature sensor
JP3331447B2 (en) Method for producing porcelain composition for thermistor
KR100956988B1 (en) A ceramic mixture having negative temperature co-efficient, a thermistor containing the ceramic mixture and a process for preparing thereof
JP6046902B2 (en) Thermistor element and temperature sensor
WO2004046061A1 (en) Sintered compact for thermistor element, process for producing the same, thermistor element and temperature sensor
JP3826494B2 (en) Wide range type thermistor element
WO2013141238A1 (en) Low-temperature thermistor material and method for manufacturing same
JP4153112B2 (en) Conductive sintered body and manufacturing method thereof
JP2001122661A (en) Sintered compact for thermistor and method for manufacturing the same
JP3393261B2 (en) Porcelain composition for thermistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100603

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4527347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees