JP4525890B2 - Swivel type micro bubble generator - Google Patents

Swivel type micro bubble generator Download PDF

Info

Publication number
JP4525890B2
JP4525890B2 JP2002263430A JP2002263430A JP4525890B2 JP 4525890 B2 JP4525890 B2 JP 4525890B2 JP 2002263430 A JP2002263430 A JP 2002263430A JP 2002263430 A JP2002263430 A JP 2002263430A JP 4525890 B2 JP4525890 B2 JP 4525890B2
Authority
JP
Japan
Prior art keywords
gas
space
liquid
swirling
conical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002263430A
Other languages
Japanese (ja)
Other versions
JP2003205228A (en
Inventor
博文 大成
Original Assignee
博文 大成
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from NZ336632A external-priority patent/NZ336632A/en
Priority claimed from AU38010/99A external-priority patent/AU770174B2/en
Application filed by 博文 大成 filed Critical 博文 大成
Priority to JP2002263430A priority Critical patent/JP4525890B2/en
Publication of JP2003205228A publication Critical patent/JP2003205228A/en
Application granted granted Critical
Publication of JP4525890B2 publication Critical patent/JP4525890B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Accessories For Mixers (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Percussion Or Vibration Massage (AREA)
  • Devices For Medical Bathing And Washing (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、空気、酸素ガス等の気体を水道水、河川水、その他液体等に効率的に溶解して、例えば水質を浄化し、水環境を蘇生するための微細気泡発生装置の技術分野に属する。
【0002】
【従来の技術】
従来のエアレーション、例えば水生生物成育装置に設置された微細気泡発生装置によるエアレーションのほとんどは、成育槽内に設置された管状や板状の微細気泡発生装置細孔から空気を成育用水中に加圧して噴き出すことによって気泡を細分化する方式であるか、又は回転羽根や気泡噴流などにより、せん断力が形成された成育用水流内に空気を入れて、それを細分化するかあるいは加圧された水の急減圧によって水中に溶解していた空気を気化させて気泡を発生させる方式である。そして、それらの機能を有する微細気泡発生装置によるエアレーションでは、基本的には空気の送給量やそれぞれの微細気泡発生装置の設備個数等によって必要な調節が行われているが、空気、炭酸ガス等の気体を水中に高効率で溶解させ、さらには水の循環を促進する必要がある。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の微細気泡発生装置によるエアレーション方式は、例えば噴き出しによる散気方式では、そこにいかに微細な細孔を設けても、気泡が細孔から加圧状態で噴出されて体積膨張し、またその際の気泡の表面張力によって、結果的に数mm程度の径を有する大きな気泡が発生してしまい、それよりも小さな気泡を発生させることが困難であり、そして、その長時間運転に伴って発生する目詰まりと動力費の増大の問題が存在した。また、回転羽根や気泡噴流などにより、せん断力が形成された水流内に、空気を入れてそれを細分化する方式では、キャビテーションを発生させるのに高速の回転数が要求され、その動力費の問題やキャビテーション発生に伴って急激に進行する羽根の腐食や振動問題があり、さらに、微細気泡の生成率が少ないという問題もあった。そしてまた、その他の回転羽根や突起に気液二相流が衝突する方式においては、例えば湖沼、魚類水槽内等においては魚類や水生小生物が破壊されてしまい、水生生物の成育に必要な環境の形成、維持に支障を来した。さらに、加圧方式では、装置が大型でかつ高価、さらには運転費も多額を必要としていた。そして、上記いずれの従来技術によっても、例えば直径20μm以下といった微細気泡を工業規模で発生させることは不可能であった。
【0004】
【課題を解決するための手段】
本発明者は鋭意研究の結果、下記構成の発明によって、直径20μm以下の微細気泡を工業規模で発生させることを可能とした。本発明の要点は、図1に本発明装置の原理説明図を示すごとく、まず装置容器内に円錐形のスペース100を設け、また同スペースの内壁円周面の一部にその接線方向に加圧液体導入口を開設し、また前記円錐形のスペース底部300の中央部に気体導入孔80を開設し、さらに前記円錐形スペースの頂部付近には旋回気液導出口101を設けて微細気泡発生装置を構成する。そこで、前記装置本体を又は少なくとも旋回気液導出口101を液体中に埋設させ、前記加圧液体導入口から円錐形スペース100内に加圧液体を圧送することにより、その内部に旋回流が生成し、円錐管軸上に負圧部分が形成される。この負圧によって、前記気体導入孔80から気体が吸い込まれ、圧力が最も低い管軸上を気体が通過することによって、細い旋回気体空洞部が形成される。この円錐形スペース100では旋回流が入り口(加圧液体導入口、すなわち加圧液体導入管50の出口)から出口(旋回気液導出口)101へ向かって形成され、スペース100の断面縮小にしたがって、旋回気液導出口101に向かうほど、旋回流速と出口に向かう流速とが同時に増加する。また、この旋回に伴って、液体と気体の比重差から、液体には遠心力、気体には向心力が同時に働き、そのために液体部と気体部の分離が可能となり、気体が糸状で出口101まで続き、そこから噴出されるが、その噴出と同時に周囲の静液(水)によって、その旋回が急激に弱められ、その前後で、急激な旋回速度差が発生する。この旋回速度差の発生によって、糸状の気体空洞部が連続的に安定して切断され、その結果として大量の微細気泡、例えば直径10〜20μmの微細気泡が同出口101付近で発生し、器外の液体中へ放出されるのである。
【0005】
すなわち、本発明の構成は以下の通りである。
(1)円錐形のスペースを有する容器本体と、同スペースの内壁円周面の、一部とそれと離れた別の他部に接線方向に開設された各々の加圧液体導入口と、前記円錐形のスペース底部に開設された気体導入孔と、前記円錐形スペースの頂部に開設された旋回気液導出口とから構成されてなることを特徴とする旋回式微細気泡発生装置。
(2)円錐形のスペースを有する容器本体と、同スペースの内壁円周面の、一部とそれと離れた別の他部に接線方向に開設された各々の加圧液体導入口と、前記円錐形のスペース底部に開設された気体導入孔と、前記円錐形スペースの頂部に開設された旋回気液導出口とから構成され、旋回気液導出口の口径(d1)と円錐形のスペース底部の口径(d2)と旋回気液導出口から円錐形のスペース底部までの距離(L)の相関関係が、d2/d1=10〜15、でかつL=1.5d2〜2.0d2であることを特徴とする旋回式微細気泡発生装置。
(3)旋回気液導出口の直前部にバッフルを配設してなることを特徴とする上記(1)又は2のいずれか1項に記載の旋回式微細気泡発生装置。
【0006】
【発明の実施の形態】
本発明の実施の形態を、以下に図面に基づいて説明する。本発明では、図1に本発明装置の原理説明図を示すごとく、まず装置容器内に円錐形のスペース100を設け、また同スペースの内壁円周面の一部にその接線方向に加圧液体導入口(加圧液体導入管50の出口)を開設し、また前記円錐形のスペース底部300の中央部に気体導入孔80を開設し、さらに前記円錐形スペースの頂部付近には旋回気液導出口101を設けて微細気泡発生装置を構成する。そこで、前記装置本体を又は少なくとも旋回気液導出口101を液体中に埋設させ、前記加圧液体導入口から円錐形スペース100内に加圧液体を圧送することにより、その内部に旋回流が生成し、円錐管軸上に負圧部分が形成される。この負圧によって、前記気体導入孔80から気体が吸い込まれ、圧力が最も低い管軸上を気体が通過することによって、細い旋回気体空洞部が形成される。この円錐形スペース100では旋回流が入り口(加圧液体導入口、すなわち加圧液体導入管50の出口)から出口(旋回気液導出口)101へ向かって形成され、スペース100の断面縮小にしたがって、旋回気液導出口101に向かうほど、旋回流速と出口に向かう流速とが同時に増加する。また、この旋回に伴って、液体と気体の比重差から、液体には遠心力、気体には向心力が同時に働き、そのために液体部と気体部の分離が可能となり、気体が糸状で出口101まで続き、そこから噴出されるが、その噴出と同時に周囲の静液体(例えば水)によって、その旋回が急激に弱められ、その前後で、急激な旋回速度差が発生する。この旋回速度差の発生によって、糸状の気体空洞部が連続的に安定して切断され、その結果として大量の微細気泡、例えば直径10〜20μmの微細気泡が同出口101付近で発生し、器外へ液体中へ放出されるのである。
【0007】
図1は、本発明装置の原理的説明図であり、(a)図は側面図、(b)図は(a)図のA−A視断面図である。本発明装置の構成は、装置の本体容器内に円錐形のスペース100を設け、また同スペースの内壁円周面の一部にその接線方向に加圧液体導入口(加圧液体導入管50の出口)を開設し、そして前記円錐形のスペース底部300の中央部に気体導入孔80を開設し、さらに前記円錐形スペースの頂部付近には旋回気液導出口101を設けてある。なお、通常、本発明装置本体又は少なくとも旋回気液導出口101は液体中に埋没して設置される。本発明は装置本体は、液体中に埋没して設置される場合と、水槽に外接して設置される場合がある。本発明においては、通常、液体としては水が、気体としては空気が採用されるが、液体としてはその他トルエン、アセトン、アルコール等の溶剤、石油、ガソリン等の燃料、食用油脂,バター、アイスクリーム、ビール等の食品・飲料、ドリンク剤等の薬品、浴水等の健康用品、湖沼水、浄化槽汚染水等の環境水等が採用でき、気体としてはその他水素、アルゴン、ラドン等の不活性気体、酸素、オゾン等の酸化剤、炭酸ガス、塩化水素、亜硫酸ガス、酸化窒素、硫化水素ガス等の酸性ガス、アンモニア等アルカリ性ガス等が採用できる。また、図において、Paは円錐スペース内の旋回液体部内の圧力、Pbは旋回気体部内の圧力、Pcは気体導入部付近の旋回気体部内の圧力、Pdは出口付近の旋回気体部内の圧力、Peは出口部旋回液体部内の圧力である。
【0008】
そこで、前記加圧液体導入口から円錐形スペース100内へ、加圧液体を接線方向に圧送することにより、旋回流が入り口から旋回気液導出口101に向かって形成され、断面積縮小にしたがって、出口101に向かうほど、旋回流速と出口に向かう流速とが同時に増加する。また、この旋回に伴って、液体と気体の比重差から、液体には遠心力が、気体には向心力が同時に働き、そのために液体部と気体部の分離が可能となり、負圧気体が糸状で出口101まで連続して出ることとなる。すると、前記気体導入孔80から気体が自動的に吸い込まれ(自吸)、気体は旋回気液流中に細い旋回空洞部となって取り込まれる。こうして、中心部の糸状の細い気体旋回空洞部とその周辺の液体旋回流体が出口101から噴出されるが、その噴出と同時に周囲の静液体によって、その旋回が急激に弱められ、その前後で、急激な旋回速度差が発生する。この旋回速度差の発生によって、旋回流中心部の糸状の気体空洞部が連続的に安定して切断され、その結果として大量の微小気泡、例えば直径10〜20μmの微細気泡が同出口101付近で発生する。
【0009】
図1において、旋回気液導出口101の口径d、円錐形スペース底部300の口径d、気体導入孔80の孔径d、旋回気液導出口101〜円錐形スペース底部300間の距離Lの好ましい相関関係式は、d/d≒10〜15,L≒1.5〜2.0×dであり、機種の違いによる数値範囲は以下の通りである。
【0010】
【表1】

Figure 0004525890
【0011】
なお、中型の場合、例えばポンプはモータ2kw,吐出量200リットル/分,揚程40mのものであり、これを使用して、大量に微細気泡を発生させることができ、5m容積の水槽の水面全体に約1cmの厚さの微細泡が運転中堆積した。この装置は容積2000m以上の池の水質浄化に適用できた。また、小型の場合、例えばポンプはモータ30w程度,吐出量20リットル/分のものであり、これを使用して容積1〜30m程度の水槽内で使用できた。なお、海水に適用した場合は、微細気泡(マイクロバブル)が非常に発生し易いので更に使用条件を拡大することが可能である。図は、図1の本発明の中型装置を水中に埋没させ、気体として空気を採用して微細気泡を発生させた結果の、気泡の直径とそれらの発生頻度分布を示したグラフ図である。なお、気体導入管80からの空気吸込量を調節して行った場合の結果も示した。図中、空気の吸込量を0cm/sとした場合でも、直径10〜20μmの気泡が発生しているのは、水中に溶存していた空気が分離して発生したものと推測される。よって本発明装置は溶存気体の脱気装置としても使用できるものである。
【0012】
こうして、本発明装置を液体中に設置し、例えば揚水ポンプを介して加圧液体導入管50を経て、加圧液体導入口から円錐形スペース100内に加圧液体(例えば圧力水)を供給し、かつ外部から気体導入管(例えば空気管)を気体導入口80に接続しておくだけで、液体(例えば水)中において直径10〜25μm程度の微細気泡を容易に発生・供給することができる。なお、前記スペースは、必ずしも円錐形状のものでなくてもよく、直径が徐々に大きくなる(あるいは小さくなる)円筒形状のもの、例えば図3に示すごとき徳利形状又はワインボトル形状のものであってもよい。また、気泡の発生状況は、気体導入管80の先端に接続した気体流量調節用の弁(図示せず)の調節で制御でき、所望する最適の微細気泡の発生を簡単に制御することができる。さらに直径10〜20μmより大きい気泡も、この調節によって簡単に生成させることができる。発生気泡径の制御は、数百μm程度の大きさの微細気泡を、10〜20μmのマイクロバブルを極端に減らさない状態で発生させることが可能である。
【0013】
また、図2は、加圧液体導入管50、50’をスペースの底部300側付近と旋回気液導出口101の手前に設け(すなわち、内壁円周面の異なる曲率の内壁円周上に間隔を置いて接線方向に複数個設け)たもので、左側の加圧液体導入口(すなわち加圧液体導入管50’の出口)からの液体導入圧力を右側の加圧液体導入口(すなわち加圧液体導入管50の出口)からの導入圧力よりも大幅に大きくして液体を供給することにより、左側の液体の旋回数を大いに高め、その結果より一層微細な気泡生成を促進しようとするもものである。こうして、両加圧液体導入口からの圧力水の圧力を調整することにより、任意の粒径の気泡を生成することができる。なお、200はバッフル板(邪魔板)であり、微細気泡の生成及び拡散を促進するのに役立つ。
【0014】
また本発明装置の構成材料は、プラスチック、金属、ガラス等であってよく、各構成部品を接着や螺着等により一体化することが好ましい。本発明装置により発生される微細気泡の用途分野としては、以下のようなものが挙げられる。
(1)ダム湖、湖沼、池、河川、海等の水域の水質浄化と生息生物育成による自然環境浄化維持。
(2)ビオトープ等の人工自然水域における浄化と蛍や水草等の生物育成。
(3)工業的用途
製鉄の製鋼における高温拡散化、ステンレス板及びステンレス線の酸洗浄の促進超純水製造工場における有機物除去、オゾンの微細気泡化による汚染水中の有機物除去、溶存酸素量増加、殺菌、合成樹脂発泡体、例えばウレタン発泡体製造、各種廃液処理、エチレンオキサイドによる殺菌・滅菌装置におけるエチレンオキサイドの水への混合促進、消泡剤のエマルジョン化、活性汚泥処理法における汚染水へのエアレーション。
(4)農業分野
水耕栽培に使用する酸素及び溶存酸素量の向上・収穫率向上。
(5)漁業分野
鰻の養殖、イカ水槽生命維持、ブリの養殖、藻場の人工生成、魚介類の育成、赤潮発生防止。
(6)医療分野
浴槽水に適用して微細泡風呂を構成、血流促進、浴槽水の保温。
【0015】
【発明の効果】
本発明の旋回式微細気泡発生装置によれば、微細気泡を工業規模で容易に生成することができ、かつ比較的小型で簡単な装置構造のための製作が容易であり、池、湖沼、ダム、河川等の水質浄化、微生物による汚水処理、魚類、水棲動物等の養殖等に有効に貢献するところ大である。
【図面の簡単な説明】
【図1】本発明の原理的説明図兼他の実施例装置説明図である。
【図2】本発明の他の改善された実施例装置の説明図である。
【図3】本発明のさらに他の実施例装置の説明図である。
【図4】本発明の中型装置を水中に埋没させ、気体として空気を採用して微細気泡を発生させた結果の、気泡の直径とそれらの発生頻度分布を示したグラフ図である。
【符号の説明】
50、50’ 加圧液体導入管
80 気体導入孔
100 円錐形のスペース
101 旋回気液導出口
200 バッフル
300 円錐形スペース底部
Pa 円錐スペース内の旋回液体部内の圧力
Pb 旋回気体部内の圧力
Pc 気体導入部付近の旋回気体部内の圧力
Pd 出口付近の旋回気体部内の圧力
Pe 出口部旋回液体部内の圧力
旋回気液導出口101の口径
円錐形スペース底部300の口径
気体導入孔80の孔径
L 旋回気液導出口101〜円錐形スペース底部300間の距離[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technical field of a fine bubble generator for efficiently dissolving a gas such as air or oxygen gas in tap water, river water, or other liquids, for example, purifying water quality and reviving a water environment. Belongs.
[0002]
[Prior art]
Most of the conventional aeration, for example, aeration using a microbubble generator installed in an aquatic organism growth device, pressurizes air into the growth water from the pores of a tubular or plate-like microbubble generator installed in the growth tank. The air bubbles are subdivided by blowing them out, or air is put into the growth water flow in which shearing force is formed by rotating blades or bubble jets, etc., and the air is subdivided or pressurized. This is a method of generating bubbles by evaporating air dissolved in water by rapid decompression of water. In aeration using a fine bubble generator having these functions, basically, necessary adjustments are made according to the amount of air supplied, the number of facilities of each fine bubble generator, etc. It is necessary to dissolve a gas such as water with high efficiency in water and further promote the circulation of water.
[0003]
[Problems to be solved by the invention]
However, the conventional aeration method using a fine bubble generator is, for example, an air diffusion method using a jet, and no matter how fine pores are provided, bubbles are ejected from the pores in a pressurized state and volume-expanded. Due to the surface tension of the bubbles at that time, as a result, large bubbles having a diameter of several millimeters are generated, and it is difficult to generate bubbles smaller than that, and with the operation for a long time. There were problems of clogging occurring and increasing power costs. In addition, in a method in which air is put into a water flow in which shear force is formed by rotating blades or bubble jets, etc., and the air is subdivided, a high rotational speed is required to generate cavitation, and the power cost is reduced. There are problems such as blade corrosion and vibration that rapidly progress with the occurrence of problems and cavitation, and there is also a problem that the generation rate of fine bubbles is small. In addition, in the method in which the gas-liquid two-phase flow collides with other rotating blades and protrusions, for example, in a lake, a fish tank, etc., fish and aquatic small organisms are destroyed, and the environment necessary for the growth of aquatic organisms. This hindered the formation and maintenance of Further, in the pressurization method, the apparatus is large and expensive, and the operation cost is also large. And by any of the above prior arts, it has been impossible to generate fine bubbles having a diameter of, for example, 20 μm or less on an industrial scale.
[0004]
[Means for Solving the Problems]
As a result of earnest research, the inventor has made it possible to generate fine bubbles having a diameter of 20 μm or less on an industrial scale by the invention having the following constitution. The essential point of the present invention is that, as shown in FIG. 1 showing the principle of the apparatus of the present invention, a conical space 100 is first provided in the apparatus container, and a part of the inner wall circumferential surface of the space is added in the tangential direction. A pressurized liquid inlet is opened, a gas inlet hole 80 is opened at the center of the conical space bottom 300, and a swirling gas-liquid outlet 101 is provided near the top of the conical space to generate fine bubbles. Configure the device. Therefore, the apparatus main body, or so at least turning the gas-liquid outlet 101 is embedded in a liquid, by pumping the pressurized liquid inlet or al conical space pressurized liquid within 100, it is swirling flow therein And a negative pressure portion is formed on the conical tube axis. This negative pressure, the gas from the gas introduction hole 80 is sucked, the lowest pipe on axis pressure gas by passing, narrow turning the gas cavity is formed. This in conical space 100 swirl flow inlet (pressurized liquid inlet, i.e. pressurized liquid outlet of the inlet pipe 50) or al outlet (swirling gas-liquid outlet) is formed toward the 101, the cross-sectional reduction of the space 100 Therefore, the swirl flow velocity and the flow velocity toward the outlet increase simultaneously toward the swirl gas-liquid outlet 101. In addition, due to this swirling, due to the difference in specific gravity between the liquid and gas, centrifugal force acts on the liquid and centripetal force acts on the gas at the same time. Then, it is ejected from there. At the same time as the ejection, the turning is suddenly weakened by the surrounding still liquid (water), and a sudden turning speed difference occurs before and after that. As a result of this difference in swirling speed, the thread-like gas cavity is continuously and stably cut. As a result, a large amount of fine bubbles, for example, fine bubbles having a diameter of 10 to 20 μm are generated in the vicinity of the outlet 101. Is released into the liquid.
[0005]
That is, the configuration of the present invention is as follows.
(1) A container body having a conical space, each pressurized liquid inlet opening tangentially to a part of the circumferential surface of the inner wall of the space and another part apart from the inner wall, and the cone A swirl type fine bubble generating apparatus comprising a gas introduction hole opened at the bottom of a space and a swirl gas-liquid outlet opening opened at the top of the conical space.
(2) A container main body having a conical space, each pressurized liquid inlet port opened in a tangential direction to a part of the inner wall circumferential surface of the space and another part apart from the inner wall, and the cone A gas introduction hole opened at the bottom of the shape space and a swirling gas-liquid outlet opening established at the top of the conical space, and the diameter (d 1 ) of the turning gas-liquid outlet and the conical space bottom correlation of the diameter distance from (d 2) and the orbiting gas-liquid outlet port to the space conical bottom (L) is, d 2 / d 1 = 10~15 , in and L = 1.5d 2 ~2. A swirling fine bubble generating device characterized by being 0d 2 .
(3) The swirling fine bubble generating device according to any one of (1) or 2, wherein a baffle is disposed immediately before the swirling gas-liquid outlet .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. In the present invention, as shown in FIG. 1 illustrating the principle of the apparatus of the present invention, first, a conical space 100 is provided in the apparatus container, and a pressurized liquid is tangentially disposed on a part of the inner wall circumferential surface of the space. An introduction port (exit of the pressurized liquid introduction pipe 50) is opened, a gas introduction hole 80 is opened at the center of the conical space bottom 300, and swirling gas-liquid introduction is performed near the top of the conical space. An outlet 101 is provided to constitute a fine bubble generator. Therefore, the apparatus main body, or so at least turning the gas-liquid outlet 101 is embedded in a liquid, by pumping the pressurized liquid inlet or al conical space pressurized liquid within 100, it is swirling flow therein And a negative pressure portion is formed on the conical tube axis. This negative pressure, the gas from the gas introduction hole 80 is sucked, the lowest pipe on axis pressure gas by passing, narrow turning the gas cavity is formed. In this conical space 100, a swirling flow is formed from the inlet (pressurized liquid inlet , that is, the outlet of the pressurized liquid inlet tube 50 ) toward the outlet (swirled gas / liquid outlet) 101, and as the cross section of the space 100 is reduced. The swirl flow velocity and the flow velocity toward the outlet increase simultaneously toward the swirl gas-liquid outlet 101. In addition, due to this swirling, due to the difference in specific gravity between the liquid and gas, centrifugal force acts on the liquid and centripetal force acts on the gas at the same time. Then, it is ejected from there. At the same time as the ejection, the turning is suddenly weakened by the surrounding static liquid (for example, water), and a sudden turning speed difference is generated before and after that. As a result of this difference in swirling speed, the thread-like gas cavity is continuously and stably cut. As a result, a large amount of fine bubbles, for example, fine bubbles having a diameter of 10 to 20 μm are generated in the vicinity of the outlet 101. It is released into the liquid.
[0007]
1A and 1B are explanatory views of the principle of the device of the present invention, in which FIG. 1A is a side view and FIG. The apparatus of the present invention has a conical space 100 provided in the main body container of the apparatus, and a pressurized liquid inlet (pressurized liquid introducing pipe 50 of the pressurized liquid introducing pipe 50 is formed in a part of the inner wall circumferential surface of the space in the tangential direction thereof . opened outlet), and the gas introduction hole 80 opened in the central portion of the conical space bottom 300, further wherein the near the top of the conical space is provided with a turning vapor-liquid outlet 101. Normally, the main body of the present invention or at least the swirling gas / liquid outlet 101 is buried in the liquid. In the present invention, the apparatus main body may be installed by being buried in a liquid, or may be installed by circumscribing a water tank. In the present invention, water is usually used as the liquid, and air is used as the gas. However, as the liquid, other solvents such as toluene, acetone and alcohol, fuels such as petroleum and gasoline, edible fats and oils, butter and ice cream , Food and beverages such as beer, chemicals such as drinks, health supplies such as bath water, environmental water such as lake water, septic tank contaminated water, etc., and other inert gases such as hydrogen, argon, radon, etc. Further, oxidizing agents such as oxygen and ozone, carbon dioxide, hydrogen chloride, sulfurous acid, acidic gases such as nitrogen oxide and hydrogen sulfide, alkaline gases such as ammonia, and the like can be employed. In the figure, Pa is the pressure in the swirling liquid part in the conical space, Pb is the pressure in the swirling gas part, Pc is the pressure in the swirling gas part near the gas introduction part, Pd is the pressure in the swirling gas part near the outlet, Pe Is the pressure in the outlet swirling liquid part.
[0008]
Therefore, the to pressurized liquid inlet or al conical space 100, by pumping pressurized liquid tangentially swirling flow is formed toward the enters port or al turning the gas-liquid outlet 101, the cross-sectional area According to the reduction, the turning flow velocity and the flow velocity toward the outlet increase simultaneously toward the outlet 101. In addition, due to this swirling, due to the difference in specific gravity between the liquid and gas, centrifugal force acts on the liquid and centripetal force acts on the gas at the same time. It will come out to the exit 101 continuously. Then, the gas introduction hole 80 gas is sucked automatically from (self-priming), the gas taken in a narrow swirling cavity during swirling gas-liquid flow. In this way, the thread-like thin gas swirling cavity at the center and the surrounding liquid swirling fluid are ejected from the outlet 101, but at the same time as the ejection, the swirl is suddenly weakened by the surrounding static liquid, before and after, A sudden turning speed difference occurs. Due to the generation of the swirling speed difference, the thread-like gas cavity at the center of the swirling flow is continuously and stably cut. As a result, a large amount of micro bubbles, for example, micro bubbles having a diameter of 10 to 20 μm are formed in the vicinity of the outlet 101. appear.
[0009]
In Figure 1, the distance between the pivot diameter d 1 of the gas-liquid outlet 101, the diameter d 2 of the conical space bottom 300, hole diameter d 3 of the gas inlet holes 80, swivel gas-liquid outlet 101 to the conical space bottom 300 L The preferable correlation formula is d 2 / d 1 ≈10 to 15, L≈1.5 to 2.0 × d 2 , and the numerical ranges depending on the model are as follows.
[0010]
[Table 1]
Figure 0004525890
[0011]
In the case of the medium size, for example, the pump has a motor of 2 kW, a discharge rate of 200 liters / minute, and a lifting height of 40 m. By using this, a large amount of fine bubbles can be generated, and the surface of a 5 m 3 volume water tank A total of about 1 cm thick fine bubbles were deposited during operation. This device was applicable to water purification of a pond having a capacity of 2000 m 3 or more. In the case of a small size, for example, the pump has a motor of about 30 w and a discharge amount of 20 liters / minute, and can be used in a water tank having a volume of about 1 to 30 m 3 . When applied to seawater, microbubbles are very likely to be generated, so that the use conditions can be further expanded. FIG. 4 is a graph showing the bubble diameters and the frequency distribution of the bubbles as a result of submerging the medium-sized device of the present invention of FIG. 1 in water and using air as the gas to generate fine bubbles. . In addition, the result at the time of performing by adjusting the air suction amount from the gas introduction pipe | tube 80 was also shown. In the figure, even when the air suction amount is set to 0 cm 3 / s, the generation of bubbles having a diameter of 10 to 20 μm is assumed to be caused by separation of the air dissolved in water. Therefore, this invention apparatus can be used also as a deaeration apparatus of dissolved gas.
[0012]
Thus, the present invention were installed in the liquid supply, for example through a pressurized liquid inlet pipe 50 through the water pumps, the pressurized liquid in the pressurized liquid inlet or al conical space 100 (e.g., pressure water) In addition, by simply connecting a gas introduction pipe (for example, an air pipe) from the outside to the gas introduction port 80, fine bubbles having a diameter of about 10 to 25 μm can be easily generated and supplied in the liquid (for example, water). it can. The space does not necessarily have to be a conical shape, but has a cylindrical shape whose diameter gradually increases (or decreases), such as a bottle shape or a wine bottle shape as shown in FIG. Also good. In addition, the generation state of bubbles can be controlled by adjusting a gas flow rate adjusting valve (not shown) connected to the tip of the gas introduction pipe 80, and the generation of desired optimum fine bubbles can be easily controlled. . Furthermore, bubbles larger than 10 to 20 μm in diameter can be easily generated by this adjustment. Control of the generated bubble diameter can generate fine bubbles having a size of about several hundreds of μm in a state in which 10 to 20 μm microbubbles are not extremely reduced.
[0013]
FIG. 2 also shows that the pressurized liquid introduction pipes 50 and 50 ′ are provided near the bottom 300 side of the space and in front of the swirling gas-liquid outlet 101 (that is, spaced on the inner wall circumference having different curvatures on the inner wall circumferential surface). A plurality of tangential directions are provided, and the liquid introduction pressure from the left pressurized liquid introduction port (ie, the outlet of the pressurized liquid introduction tube 50 ′) is changed to the right pressurized liquid introduction port (ie, pressurization). By supplying the liquid with a pressure significantly higher than the pressure introduced from the outlet of the liquid introduction pipe 50) , the number of swirling of the liquid on the left side is greatly increased, and as a result, the generation of finer bubbles is promoted. It is. Thus, by adjusting the pressure of pressurized water in both pressurized liquid inlet or al can generate bubbles in any particle size. Reference numeral 200 denotes a baffle plate (baffle plate), which is useful for promoting the generation and diffusion of fine bubbles.
[0014]
The constituent material of the device of the present invention may be plastic, metal, glass or the like, and it is preferable to integrate the constituent parts by bonding or screwing. Examples of the application fields of the fine bubbles generated by the apparatus of the present invention include the following.
(1) Maintaining the natural environment by purifying the water quality of dam lakes, lakes, ponds, rivers, seas, etc. and breeding habitats.
(2) Purification in artificial natural waters such as biotopes and breeding of organisms such as fireflies and aquatic plants.
(3) Industrial application High-temperature diffusion in steel making, promotion of acid cleaning of stainless steel plates and wires, removal of organic substances in ultrapure water production factories, removal of organic substances in contaminated water due to microbubbles of ozone, increase in dissolved oxygen, Sterilization, synthetic resin foams such as urethane foam production, various waste liquid treatment, ethylene oxide sterilization and sterilization equipment promotes mixing of ethylene oxide into water, defoaming agent emulsification, contaminated water in activated sludge treatment method Aeration.
(4) Agricultural field Improve the amount of oxygen and dissolved oxygen used for hydroponics and increase the harvest rate.
(5) Fishery field Carp culture, squid aquarium life maintenance, yellowtail culture, artificial production of seaweed beds, seafood cultivation, red tide prevention.
(6) Medical field Applying to bath water to form a fine bubble bath, promoting blood flow, keeping bath water warm.
[0015]
【The invention's effect】
According to the swirling microbubble generator of the present invention, microbubbles can be easily generated on an industrial scale, and can be easily manufactured for a relatively small and simple device structure, such as a pond, a lake, a dam. It contributes effectively to water purification of rivers, sewage treatment with microorganisms, fish and aquaculture of aquatic animals, etc.
[Brief description of the drawings]
FIG. 1 is an explanatory view of the principle of the present invention and an explanatory view of an apparatus according to another embodiment.
FIG. 2 is an illustration of another improved embodiment apparatus of the present invention.
FIG. 3 is an explanatory diagram of an apparatus according to still another embodiment of the present invention.
FIG. 4 is a graph showing the bubble diameters and the frequency distribution of the bubbles as a result of generating fine bubbles by immersing the medium-sized device of the present invention in water and adopting air as a gas .
[Explanation of symbols]
50, 50 'Pressurized liquid introduction pipe 80 Gas introduction hole 100 Conical space 101 Swirling gas liquid outlet 200 Baffle 300 Conical space bottom Pa Pressure in swirling liquid portion in conical space Pb Pressure in swirling gas portion Pc Gas introduction Pressure in the swirling gas section near the outlet Pd Pressure in the swirling gas section near the outlet Pe Pressure in the swirling liquid section in the outlet section d 1 Diameter of the swirling gas-liquid outlet 101 d 2 Diameter of the conical space bottom 300 d 3 Gas introduction hole 80 Hole diameter L Distance between the swirling gas-liquid outlet 101 to the conical space bottom 300

Claims (3)

円錐形のスペースを有する容器本体と、同スペースの内壁円周面の、一部とそれと軸線方向へ離れた別の他部に接線方向に開設された各々の加圧液体導入口と、前記円錐形のスペース底部に開設された気体導入孔と、前記円錐形スペースの頂部に開設された旋回気液導出口とから構成されてなることを特徴とする旋回式微細気泡発生装置。A container main body having a conical space; and each pressurized liquid inlet port tangentially opened in a part of the inner wall circumferential surface of the space and another part axially separated therefrom; and the cone A swirl type fine bubble generating apparatus comprising a gas introduction hole opened at the bottom of a space and a swirl gas-liquid outlet opening opened at the top of the conical space. 円錐形のスペースを有する容器本体と、同スペースの内壁円周面の、一部とそれと軸線方向へ離れた別の他部に接線方向に開設された各々の加圧液体導入口と、前記円錐形のスペース底部に開設された気体導入孔と、前記円錐形スペースの頂部に開設された旋回気液導出口とから構成され、旋回気液導出口の口径(d1)と円錐形のスペース底部の口径(d2)と旋回気液導出口から円錐形のスペース底部までの距離(L)の相関関係が、d2/d1=10〜15、でかつL=1.5d2〜2.0d2であることを特徴とする旋回式微細気泡発生装置。A container main body having a conical space; and each pressurized liquid inlet port tangentially opened in a part of the inner wall circumferential surface of the space and another part axially separated therefrom; and the cone A gas introduction hole opened at the bottom of the shape space and a swirling gas-liquid outlet opening established at the top of the conical space, and the diameter (d 1 ) of the turning gas-liquid outlet and the conical space bottom correlation of the diameter distance from (d 2) and the orbiting gas-liquid outlet port to the space conical bottom (L) is, d 2 / d 1 = 10~15 , in and L = 1.5d 2 ~2. A swirling fine bubble generating device characterized by being 0d 2 . 旋回気液導出口の直前部にバッフルを配設してなることを特徴とする請求項1又は2のいずれか1項に記載の旋回式微細気泡発生装置。 The swirl type fine bubble generator according to claim 1, wherein a baffle is disposed immediately before the swirl gas-liquid outlet .
JP2002263430A 1997-12-30 2002-09-09 Swivel type micro bubble generator Expired - Lifetime JP4525890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002263430A JP4525890B2 (en) 1997-12-30 2002-09-09 Swivel type micro bubble generator

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP37046597 1997-12-30
JP9-370465 1997-12-30
NZ336632A NZ336632A (en) 1997-12-30 1999-07-07 micro-bubble generating apparatus with a conical shaped vessel
SG9903311A SG93836A1 (en) 1997-12-30 1999-07-07 Swirling type micro-bubble generating system
AU38010/99A AU770174B2 (en) 1999-07-07 1999-07-07 Swirling type micro-bubble generating system
BR9904494-3A BR9904494A (en) 1997-12-30 1999-07-07 Vortex-type micro-bubble generation system
JP2002263430A JP4525890B2 (en) 1997-12-30 2002-09-09 Swivel type micro bubble generator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP37849698A Division JP3397154B2 (en) 1997-12-30 1998-12-30 Revolving microbubble generator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010052354A Division JP2010155243A (en) 1997-12-30 2010-03-09 Swirling type fine-bubble generating system

Publications (2)

Publication Number Publication Date
JP2003205228A JP2003205228A (en) 2003-07-22
JP4525890B2 true JP4525890B2 (en) 2010-08-18

Family

ID=28458029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002263430A Expired - Lifetime JP4525890B2 (en) 1997-12-30 2002-09-09 Swivel type micro bubble generator

Country Status (1)

Country Link
JP (1) JP4525890B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2484229A1 (en) 2011-02-07 2012-08-08 Project Japan Inc. Liquid seasoning, beverages, method of seasoning food, and seasoned food
WO2013125310A1 (en) 2012-02-21 2013-08-29 三菱電機株式会社 Bath hot water supply device
CN110479127A (en) * 2019-07-18 2019-11-22 中国矿业大学 A kind of micro-nano bubble generating device and the method for generating micro-nano bubble

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4725707B2 (en) * 2004-09-27 2011-07-13 株式会社 ナノプラネット研究所 Swivel type fine bubble generator and bubble generation method
JP4807968B2 (en) * 2004-09-28 2011-11-02 株式会社 多自然テクノワークス Foot bath equipment
JP5048335B2 (en) * 2004-09-28 2012-10-17 株式会社 多自然テクノワークス Fine bubble generator
JP4807967B2 (en) * 2004-10-26 2011-11-02 株式会社 多自然テクノワークス Bathing equipment
DE602005015362D1 (en) 2005-01-13 2009-08-20 Univ Tsukuba Nat Univ Corp DEVICE AND METHOD FOR PRODUCING MICROBUBBLES
JP2007111616A (en) * 2005-10-19 2007-05-10 Sharp Corp Fine air-bubble generating device
JP4490904B2 (en) * 2005-11-22 2010-06-30 シャープ株式会社 Water treatment equipment
JP4767753B2 (en) * 2006-05-15 2011-09-07 東邦瓦斯株式会社 Fine bubble generator and hot water supply device for bath
JP4993672B2 (en) * 2006-07-19 2012-08-08 学校法人光産業創成大学院大学 Algae cultivation apparatus and algae cultivation method
JP4250650B2 (en) 2006-09-28 2009-04-08 シャープ株式会社 Micro-nano bubble bathtub water preparation method and micro-nano bubble bathtub
JP4889452B2 (en) * 2006-11-13 2012-03-07 水道機工株式会社 Powder mixing method and powder mixer
JP5133556B2 (en) * 2006-12-07 2013-01-30 株式会社横田製作所 Microbubble generator
JP5291302B2 (en) * 2007-04-26 2013-09-18 株式会社御池鐵工所 Method for producing water containing fine product
CN101678288A (en) 2007-05-22 2010-03-24 株式会社东芝 Device and method for producing micro gas bubbles
JP5170409B2 (en) * 2008-04-03 2013-03-27 国立大学法人 筑波大学 Swirl type microbubble generator
JP5600670B2 (en) 2009-02-17 2014-10-01 株式会社日本触媒 Polyacrylic acid water-absorbing resin powder and method for producing the same
JP6077733B2 (en) * 2009-08-28 2017-02-08 株式会社 ナノプラネット研究所 Method for producing ammonia and ammonium compounds
JP2011115674A (en) * 2009-11-30 2011-06-16 Miike Iron Works Co Ltd Micronization mixer
SG181879A1 (en) 2009-12-24 2012-07-30 Nippon Catalytic Chem Ind Water-absorbable polyacrylic acid resin powder, and process for production thereof
JP5785158B2 (en) * 2010-04-28 2015-09-24 株式会社 多自然テクノワークス Microbubble generator
KR101168330B1 (en) 2010-06-17 2012-07-24 강정우 Device for making ozonic nano buble with applying pressure
JP4652478B1 (en) 2010-07-07 2011-03-16 大巧技研有限会社 Micro bubble generator
JP2012250176A (en) * 2011-06-03 2012-12-20 Kri Inc Nozzle for generating micro air bubbles
JP5423774B2 (en) * 2011-11-25 2014-02-19 三菱電機株式会社 Bath water heater
JP5578688B2 (en) * 2012-07-17 2014-08-27 株式会社御池鐵工所 Production equipment for water containing fines
JP5611387B2 (en) * 2013-02-08 2014-10-22 株式会社御池鐵工所 Refinement mixing equipment
JP5692259B2 (en) * 2013-03-05 2015-04-01 三菱電機株式会社 Gas-liquid mixing device and bath water heater
JP5660510B2 (en) * 2013-05-29 2015-01-28 株式会社アースリンク Micro-nano bubble generation method, micro-nano bubble generator, and micro-nano bubble generator
JP2015188751A (en) * 2014-03-27 2015-11-02 株式会社ハナダ Carbonated spring water production device
JP5892208B2 (en) * 2014-07-30 2016-03-23 三菱電機株式会社 Microbubble generator
CN110563131B (en) * 2019-08-29 2024-06-14 浙江聚源环保科技有限公司 MBR membrane aerator, MBR membrane aeration device and MBR membrane sewage treatment equipment
CN114467833B (en) * 2021-12-24 2023-06-23 丹东日牵物流装备有限公司 Logistics box for transporting aquatic products

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS486211B1 (en) * 1969-07-12 1973-02-23
JPS5128865U (en) * 1974-08-27 1976-03-02
JPS5182451A (en) * 1974-12-27 1976-07-20 Mitsubishi Precision Co Ltd Ryutaibunsanhoho
JPS5924199U (en) * 1982-08-01 1984-02-15 株式会社富士電機総合研究所 air diffuser
JPH04126542A (en) * 1990-09-17 1992-04-27 Nomura Denshi Kogyo Kk Bubbler
JP2003181259A (en) * 1997-12-30 2003-07-02 Hirobumi Onari Swirling type fine bubble formation method and apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS486211B1 (en) * 1969-07-12 1973-02-23
JPS5128865U (en) * 1974-08-27 1976-03-02
JPS5182451A (en) * 1974-12-27 1976-07-20 Mitsubishi Precision Co Ltd Ryutaibunsanhoho
JPS5924199U (en) * 1982-08-01 1984-02-15 株式会社富士電機総合研究所 air diffuser
JPH04126542A (en) * 1990-09-17 1992-04-27 Nomura Denshi Kogyo Kk Bubbler
JP2003181259A (en) * 1997-12-30 2003-07-02 Hirobumi Onari Swirling type fine bubble formation method and apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2484229A1 (en) 2011-02-07 2012-08-08 Project Japan Inc. Liquid seasoning, beverages, method of seasoning food, and seasoned food
WO2013125310A1 (en) 2012-02-21 2013-08-29 三菱電機株式会社 Bath hot water supply device
CN110479127A (en) * 2019-07-18 2019-11-22 中国矿业大学 A kind of micro-nano bubble generating device and the method for generating micro-nano bubble

Also Published As

Publication number Publication date
JP2003205228A (en) 2003-07-22

Similar Documents

Publication Publication Date Title
JP4525890B2 (en) Swivel type micro bubble generator
JP4420161B2 (en) Method and apparatus for generating swirling fine bubbles
JP4725707B2 (en) Swivel type fine bubble generator and bubble generation method
JP3397154B2 (en) Revolving microbubble generator
US6382601B1 (en) Swirling fine-bubble generator
JP2010155243A (en) Swirling type fine-bubble generating system
KR100843970B1 (en) Apparatus of generating microbubble
JP4869922B2 (en) Fine bubble generator
EP1313548B1 (en) Apparatus and method for oxygenating wastewater
US5770062A (en) Device for aiding the solubilization of gases in liquids
JP2003145190A (en) Aerator
EP2492004A1 (en) Micro-bubble generator and micro-bubble generation device
US9243653B2 (en) Vortex generator with vortex chamber
WO2001097958A9 (en) Fine air bubble generator and fine air bubble generating device with the generator
JP3765759B2 (en) Microbubble generator
JP2002059186A (en) Water-jet type fine bubble generator
EP1670574B1 (en) Method and apparatus for mixing of two fluids
JP4124956B2 (en) Fine bubble supply method and fine bubble supply device
JPH11333491A (en) Microbubble jet water purifying apparatus
JP2003181259A (en) Swirling type fine bubble formation method and apparatus
AU770174B2 (en) Swirling type micro-bubble generating system
JP3235142B2 (en) Closed natural waters purification system
WO2002002216A1 (en) Method and device for feeding fine bubbles
JPH09314190A (en) Closed water area sewage cleaning device and process therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100309

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100525

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term