JP4522289B2 - Corrosion estimation method - Google Patents

Corrosion estimation method Download PDF

Info

Publication number
JP4522289B2
JP4522289B2 JP2005048839A JP2005048839A JP4522289B2 JP 4522289 B2 JP4522289 B2 JP 4522289B2 JP 2005048839 A JP2005048839 A JP 2005048839A JP 2005048839 A JP2005048839 A JP 2005048839A JP 4522289 B2 JP4522289 B2 JP 4522289B2
Authority
JP
Japan
Prior art keywords
potential difference
corrosion
metal body
current
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005048839A
Other languages
Japanese (ja)
Other versions
JP2006234547A (en
Inventor
泰成 古川
英正 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2005048839A priority Critical patent/JP4522289B2/en
Publication of JP2006234547A publication Critical patent/JP2006234547A/en
Application granted granted Critical
Publication of JP4522289B2 publication Critical patent/JP4522289B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Pipeline Systems (AREA)

Description

本発明は、少なくとも一部が媒質中に配置される長手状金属体の腐食状態(腐食が発生しているか否か及びその程度)を推定する腐食推定方法に関する。   The present invention relates to a corrosion estimation method for estimating a corrosion state (whether or not corrosion has occurred and its degree) of a long metal body at least partially disposed in a medium.

現在、土壌やコンクリートなどの媒質中には水やガスなどのユーティリティを消費者が生活する建物内へ供給するための様々な種類の配管が埋設されている。このような配管は、道路の下などに埋設された本支管(外管)を介して各建物の敷地内へ内管として引き込まれ、ガス使用量を計測するガスメータや水道使用量を計測する水道メータを介して更に建物内に引き込まれている。   Currently, various types of piping for supplying utilities such as water and gas into buildings where consumers live are buried in media such as soil and concrete. Such pipes are drawn into the premises of each building as main pipes via main branches (outer pipes) buried under roads, etc., and gas meters that measure gas usage and water supplies that measure water usage It is further drawn into the building via a meter.

このような、少なくとも一部が土壌中に配置される長手状金属体としての配管の特定部位が、建物を形作っているコンクリート中の鉄筋(導電性部材)と直接又は間接的に電気的に導通することがある。この場合、コンクリートの中はアルカリ性のため、その中の鉄筋は約−200mV(飽和硫酸銅電極基準。以下の電位も同じ基準とする)の電位を示す。他方で、土壌中において塗覆装に欠陥が存在するとき、配管の土壌に接触する部位は約−500mV〜−700mVの電位を示す。従って、配管と鉄筋との間には約300mV〜500mVの電位差を有するマクロセル(電池)が形成され、その直流電位差によって配管に腐食電流が流れることになる。そして、腐食電流の大小に応じた腐食が配管の土壌との接触部位に発生する。   A specific part of the piping as a long metal body, at least a part of which is placed in the soil, is directly or indirectly electrically connected to the reinforcing bars (conductive members) in the concrete forming the building. There are things to do. In this case, since the concrete is alkaline, the reinforcing bar in the concrete shows a potential of about -200 mV (saturated copper sulfate electrode standard. The following potential is also the same standard). On the other hand, when there is a defect in the coating in the soil, the part of the piping that contacts the soil exhibits a potential of about -500 mV to -700 mV. Therefore, a macro cell (battery) having a potential difference of about 300 mV to 500 mV is formed between the pipe and the reinforcing bar, and a corrosion current flows through the pipe due to the DC potential difference. And the corrosion according to the magnitude of a corrosion current generate | occur | produces in the contact part with the soil of piping.

従来、配管の腐食状態を推定する方法として、配管に流れる腐食電流を実際に測定する方法が提案されている。例えば、配管に対してクランプ式直流電流計を装着して、実際に流れている腐食電流を測定するのである(例えば、特許文献1を参照)。   Conventionally, as a method for estimating the corrosion state of a pipe, a method of actually measuring a corrosion current flowing through the pipe has been proposed. For example, a clamp type DC ammeter is attached to the pipe, and the corrosion current actually flowing is measured (see, for example, Patent Document 1).

実公平7−19007号公報No. 7-19007

しかしながら、従来法に基づき長手状金属体である配管に流れる直流の腐食電流を測定しようとした場合、自ずと限界が存在する。即ち、クランプ式直流電流計を用いて直接直流電流を測定しようとすると、地磁気や配管の磁場等の影響に起因して、電流レベルでミリアンペアオーダーの電流が検出できるのみであり、それ以下の電流は測定できない。結果、欠陥部の面積が小さいために配管を流れる腐食電流が小さい場合には、その腐食を検出・推定することができない。   However, when trying to measure the direct current corrosion current flowing through the pipe which is a long metal body based on the conventional method, there is a limit. In other words, direct DC current measurement using a clamp-type DC ammeter can only detect currents in the order of milliamps at current levels due to the effects of geomagnetism and piping magnetic fields. Cannot be measured. As a result, when the corrosion current flowing through the pipe is small because the area of the defective portion is small, the corrosion cannot be detected or estimated.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、例えば、地中に埋設された導電性の配管といった長手状金属体の腐食状態を、腐食電流が小さい場合でも適切に検出するとともに、腐食の程度を推定可能な腐食推定方法を提供する点にある。   The present invention has been made in view of the above-mentioned problems, and its purpose is, for example, to properly corrode a longitudinal metal body such as a conductive pipe buried in the ground even when the corrosion current is small. The object is to provide a corrosion estimation method capable of detecting and estimating the degree of corrosion.

上記目的を達成するための本発明に係る腐食推定方法の特徴構成は、少なくとも一部が第1媒質中に配置される長手状金属体の腐食状態を推定する腐食推定方法であって、
前記長手状金属体と前記第1媒質と同一又は異なる第2媒質中に配置される導電性部材とが接触してマクロセルが形成された状態で、前記長手状金属体の前記第1媒質と接触する部位と前記導電性部材との間に存在する直流電位差に相当する設定電位差を、交流電位差形成手段を用いて前記長手状金属体と前記導電性部材との間に形成する交流電位差形成工程と、
前記交流電位差形成工程によって前記長手状金属体に流れる交流電流を測定する交流電流測定工程とを実行し、
前記交流電流測定工程において測定された交流電流に基づいて、前記長手状金属体に流れる腐食電流を推定する点にある。
The characteristic configuration of the corrosion estimation method according to the present invention for achieving the above object is a corrosion estimation method for estimating a corrosion state of a longitudinal metal body at least partially disposed in a first medium,
Contact with the first medium of the elongated metal body in a state in which a macrocell is formed by contact between the elongated metal body and a conductive member disposed in the same or different second medium as the first medium. An alternating potential difference forming step of forming a set potential difference corresponding to a direct current potential difference existing between the portion and the conductive member between the longitudinal metal body and the conductive member using an alternating potential difference forming means; ,
Performing an alternating current measuring step of measuring an alternating current flowing through the elongated metal body by the alternating potential difference forming step;
The corrosion current flowing in the elongated metal body is estimated based on the alternating current measured in the alternating current measuring step.

上記特徴構成によれば、交流電位差形成工程においては、前記長手状金属体と建物内の導電性部材とが接触することにより、前記長手状金属体の前記第1媒質と接触する部位と建物内の導電性部材との間に存在する直流電位差に相当する設定電位差を、交流電位差形成手段を用いて上記長手状金属体と上記導電性部材との間に形成する。そして、交流電流測定工程において、前記交流電位差形成工程によって前記長手状金属体に流れる交流電流を測定し、前記交流電流測定工程において測定された交流電流に基づいて前記長手状金属体に流れる腐食電流を小さいレベルまで推定することが可能となる。
本願は、今般発明者が新たに見出し、後に詳細に理論的あるいは実験的に検証した技術的新知見により裏打ちされている。
即ち、本願が対象とするような系である、建物内に導入されているユーティリティ配管のような長手状金属体と導電性部材とが所定媒質内に位置され、両者間でその一部部位が電気的に接続され、長手状金属体、導電性部材、媒質を介してマクロセルが形成されている状況にあっては、長手状金属体と媒質との間の接地抵抗が優位に働き、マクロセルによるのと同じ電位を与え、そのとき流れる交流電流から直流の腐食電流を推定することができる。交流電流の測定は値が小さい場合でも容易に行える。
従って、本方法にあっては、従来測定できなかった比較的小さな腐食電流しか流れない状況にあっても、測定が容易な交流電流を測定することで、腐食電流を推定することができ、結果的に腐食状況を推定することができる。
According to the above characteristic configuration, in the AC potential difference forming step, the longitudinal metal body and the conductive member in the building come into contact with each other, so that the site of the longitudinal metal body in contact with the first medium and the building interior A set potential difference corresponding to the DC potential difference existing between the conductive member and the conductive member is formed between the longitudinal metal body and the conductive member using AC potential difference forming means. And in the alternating current measurement step, the alternating current flowing through the longitudinal metal body is measured by the alternating potential difference forming step, and the corrosion current flows through the longitudinal metal body based on the alternating current measured in the alternating current measurement step. Can be estimated to a small level.
The present application is supported by new technical knowledge newly found by the inventor and later verified theoretically or experimentally in detail.
That is, a long metal body such as a utility pipe introduced into a building and a conductive member, which is a system as the subject of the present application, are located in a predetermined medium, and a part of the part is between them. In a situation where a macro cell is formed through electrical connection and a longitudinal metal body, a conductive member, and a medium, the grounding resistance between the longitudinal metal body and the medium works preferentially, depending on the macro cell. The direct current corrosion current can be estimated from the alternating current flowing at that time. AC current can be easily measured even when the value is small.
Therefore, in this method, even in a situation where only a relatively small corrosion current that could not be measured conventionally flows, the corrosion current can be estimated by measuring an alternating current that is easy to measure. The corrosion situation can be estimated.

詳細は別途詳述するが、このような処理が可能となる理由の概略は以下の通りである。上記第1媒質と接触する長手状金属体と導電性部材とが導通しているとき、長手状金属体の第1媒質と接触する部位と導電性部材との間のマクロセルによる直流電位差によって長手状金属体に流れる直流の腐食電流は、上記マクロセルによる直流電位差と、長手状金属体と第1媒質との間の接地抵抗との商でおおむね導出可能である。一方、長手状金属体の第1媒質と接触する部位と導電性部材との間に交流電位差を形成すると、長手状金属体に流れる交流電流は、上記交流電位差と、長手状金属体と第1媒質との間の接地抵抗との商で導出可能である。
このように、長手状金属体における上記腐食電流及び上記交流電流は共に、長手状金属体と第1媒質との間の接地抵抗を反映したものである。従って、長手状金属体の第1媒質と接触する部位と導電性部材との間に存在する直流電位差(マクロセル)によって長手状金属体に流れる直流の腐食電流の測定に代えて、上記直流電位差と同じ大きさの交流電位差を長手状金属体の第1媒質と接触する部位と導電性部材との間に形成したときに長手状金属体に流れる交流電流の測定を行うことにおおむね代替できる。従って、マクロセルが形成されている場合に長手状金属体に流れる直流の腐食電流は、長手状金属体の第1媒質と接触する部位と導電性部材との間に上記交流電位差が存在する場合に流れる交流電流に基づいて推定できる。
また、この場合、交流電流を測定すればよいため、長手状金属体を流れる腐食電流を知るために、地磁気等の影響を受けてミリアンペアオーダー以下の電流測定が困難な従来のクランプ式直流電流計を使用しなくてもよい。その結果、例えば、ミリアンペアオーダー以下の小さい腐食電流が長手状金属体に流れている場合であっても、本発明の腐食推定方法によって腐食電流を推定でき、長手状金属体の腐食の程度を推定可能である。
Details will be described in detail separately, but the outline of the reason why such processing is possible is as follows. When the longitudinal metal body in contact with the first medium and the conductive member are conductive, the longitudinal metal body is elongated by a DC potential difference caused by the macrocell between the portion of the longitudinal metal body in contact with the first medium and the conductive member. The direct-current corrosion current flowing through the metal body can be generally derived by the quotient of the direct-current potential difference caused by the macro cell and the ground resistance between the longitudinal metal body and the first medium. On the other hand, when an AC potential difference is formed between the portion of the longitudinal metal body that is in contact with the first medium and the conductive member, the AC current that flows through the longitudinal metal body is equal to the AC potential difference, the longitudinal metal body, and the first metal body. It can be derived by the quotient of the ground resistance with the medium.
Thus, both the corrosion current and the alternating current in the longitudinal metal body reflect the ground resistance between the longitudinal metal body and the first medium. Therefore, instead of measuring the direct current corrosion current flowing in the longitudinal metal body by the direct current potential difference (macrocell) existing between the portion of the longitudinal metal body in contact with the first medium and the conductive member, It can be generally replaced by measuring the alternating current flowing in the longitudinal metal body when an alternating potential difference of the same magnitude is formed between the portion of the longitudinal metal body in contact with the first medium and the conductive member. Therefore, when the macrocell is formed, the direct current corrosion current flowing in the longitudinal metal body is such that the AC potential difference exists between the portion of the longitudinal metal body that contacts the first medium and the conductive member. It can be estimated based on the flowing alternating current.
In this case, since it is only necessary to measure the alternating current, in order to know the corrosion current flowing through the elongated metal body, a conventional clamp type DC ammeter that is difficult to measure a current below milliampere due to the influence of geomagnetism or the like. May not be used. As a result, for example, even when a small corrosion current of the order of milliamperes or less flows through the longitudinal metal body, the corrosion current can be estimated by the corrosion estimation method of the present invention, and the degree of corrosion of the longitudinal metal body is estimated. Is possible.

本発明に係る腐食推定方法の特徴構成は、前記長手状金属体の前記第1媒質と接触する部位と前記導電性部材との間に存在する直流電位差を測定し、前記直流電位差を前記設定電位差として設定する設定電位差決定工程を含む点にある。   The characteristic configuration of the corrosion estimation method according to the present invention is to measure a DC potential difference existing between a portion of the elongated metal body that contacts the first medium and the conductive member, and to determine the DC potential difference as the set potential difference. The set potential difference determining step is set as follows.

上記特徴構成を実施する場合、先ず、上記長手状金属体とそれに接触する建物内の導電性部材との間に存在する直流電位差を実際に測定する。この直流電位差を、上記説明した設定電位差として与え、交流電流を測定して長手状金属体において実際に発生している腐食電流を正確に推定することが可能となる。   When the above characteristic configuration is implemented, first, a direct current potential difference existing between the longitudinal metal body and a conductive member in a building that contacts the longitudinal metal body is actually measured. This direct current potential difference is given as the set potential difference described above, and the alternating current is measured to accurately estimate the corrosion current actually generated in the elongated metal body.

本発明に係る腐食推定方法の別の特徴構成は、前記長手状金属体の前記第1媒質と接触する部位と前記導電性部材との間に存在すると推定した推定直流電位差を前記設定電位差として設定する設定電位差決定工程を含む点にある。   Another characteristic configuration of the corrosion estimation method according to the present invention is to set an estimated DC potential difference estimated to exist between a portion of the elongated metal body that contacts the first medium and the conductive member as the set potential difference. The set potential difference determining step includes the step of.

上記特徴構成を実施する場合、腐食電流の推定を行っている長手状金属体と同様の環境下で埋設されている他の長手状金属体において実際に測定された直流電位差を上記推定直流電位差としたり、長手状金属体が土壌などの第1媒質中に埋設されている状態などに基づいて経験的に推定される直流電位差を推定直流電位差とする。そして、このようにして得られる推定直流電位差を、先に説明した設定電位差として与え、長手状金属体において実際に発生している腐食電流を推定する。結果、推定直流電位差を使用して、特定の状況にある長手状金属体の腐食状態を推定できる。   When implementing the above characteristic configuration, the estimated DC potential difference is the DC potential difference actually measured in another longitudinal metal body embedded in the same environment as the longitudinal metal body on which the corrosion current is estimated. In addition, a DC potential difference that is empirically estimated based on a state in which the elongated metal body is embedded in a first medium such as soil is used as an estimated DC potential difference. Then, the estimated DC potential difference obtained in this way is given as the set potential difference described above, and the corrosion current actually generated in the longitudinal metal body is estimated. As a result, the estimated DC potential difference can be used to estimate the corrosion state of the elongated metal body in a specific situation.

本発明に係る腐食推定方法の特徴構成は、前記交流電流測定工程に先立って、前記長手状金属体と前記導電性部材との導通状態を判定する導通状態判定工程を含む点にある。   The characteristic configuration of the corrosion estimation method according to the present invention is that it includes a conduction state determination step of determining a conduction state between the longitudinal metal body and the conductive member prior to the alternating current measurement step.

この工程を実行することにより、長手状金属体と導電性部材との間における接触状態、即ち、問題となるマクロセルの形成の可能性を確認できる。   By executing this step, it is possible to confirm the contact state between the elongated metal body and the conductive member, that is, the possibility of forming a macro cell in question.

以下に図面を参照して本発明に係る腐食推定方法について説明する。
〔腐食の推定対象〕
以下の実施形態では、長手状金属体として、少なくとも土壌1中では絶縁性の塗覆装が施された導電性配管2(エルボ2a、配管2b、配管2c)を例示する。図1には、導電性配管(エルボ2a、配管2b、配管2c)が、コンクリート3と鉄筋4とで構成された地上の建物内から地下の土壌1中に渡って配設された状態を示している。
この系にあっては、導電性配管2が長手状金属体に相当し、鉄筋4が導電性部材に相当し、土壌1が本発明の「第1媒質」に相当し、コンクリート3が本発明の「第2媒質」に相当し、さらにコンクリート3内の鉄筋4が導電性部材に相当する。
The corrosion estimation method according to the present invention will be described below with reference to the drawings.
[Corrosion target]
In the following embodiment, the conductive metal pipe 2 (elbow 2a, pipe 2b, pipe 2c) to which an insulating coating is applied at least in the soil 1 is illustrated as the longitudinal metal body. FIG. 1 shows a state in which conductive pipes (elbow 2 a, pipe 2 b, pipe 2 c) are arranged from a ground building composed of concrete 3 and reinforcing bars 4 to underground soil 1. ing.
In this system, the conductive pipe 2 corresponds to a long metal body, the reinforcing bar 4 corresponds to a conductive member, the soil 1 corresponds to the “first medium” of the present invention, and the concrete 3 corresponds to the present invention. The rebar 4 in the concrete 3 corresponds to a conductive member.

〔マクロセル〕
導電性配管2は、領域Aにおいて建物のコンクリート3内に設けられている鉄筋4と電気的に導通することがある。この場合、鉄筋4の電位は約−200mV(飽和硫酸銅電極基準。以下の電位も同じ基準とする)である。また、例えば絶縁性の塗覆装が施されたエルボ2aに腐食部となり得る塗覆装欠陥(図中に「×」印で示す)が発生することもあり、その場合、エルボ2aの金属部分のみが露出して土壌1と接触することになる。そして、塗覆装欠陥が発生することによって土壌1と接触する部位のエルボ2aには、土壌1の環境に応じて約−500mV〜約−700mVの電位が生じる。その結果、導電性配管2の土壌1と接触する塗覆装欠陥部分と、建物のコンクリート3内の鉄筋4との間には、約300mV〜約500mVの直流電位差を有するマクロセル(電池)が形成され、導電性配管2には図1中に一点鎖線で示すような直流の腐食電流が流れることになる。そして、その腐食電流は、鉄筋4から導電性配管2を経て土壌1に流れ出し、コンクリート3を介して鉄筋4に流れ込むことで、腐食が進行する。本願は、この直流の腐食電流を精密に推定しようとするものである。
[Macro cell]
The conductive pipe 2 may be electrically connected to the reinforcing bar 4 provided in the concrete 3 of the building in the region A. In this case, the potential of the reinforcing bar 4 is about -200 mV (saturated copper sulfate electrode standard. The following potential is also the same standard). In addition, for example, a coating defect (indicated by “x” in the drawing) that may become a corroded portion may occur in the elbow 2a that is provided with an insulating coating. In this case, the metal portion of the elbow 2a Only exposed and comes into contact with the soil 1. And the potential of about -500 mV-about -700 mV arises in the elbow 2a of the site | part which contacts the soil 1 by the occurrence of a coating defect according to the environment of the soil 1. As a result, a macro cell (battery) having a direct current potential difference of about 300 mV to about 500 mV is formed between the coating defect portion in contact with the soil 1 of the conductive pipe 2 and the reinforcing bar 4 in the concrete 3 of the building. Thus, a direct current corrosion current as shown by a one-dot chain line in FIG. The corrosion current flows out from the reinforcing bar 4 to the soil 1 through the conductive pipe 2 and flows into the reinforcing bar 4 through the concrete 3, whereby the corrosion progresses. The present application is intended to accurately estimate the direct current corrosion current.

〔腐食推定方法〕
本発明に係る腐食推定方法を図1〜図3に基づいて説明する。
図1は、導電性配管2に流れる直流の腐食電流を推定するときの腐食推定システムの構成である。図2は、本願において腐食推定を行う場合に、その前段階で必要となる直流電位差を測定する測定システムの構成である。図3は、本願で問題となるマクロセル腐食が起こっている可能性を確認するため、腐食推定を行う前に予備的に実行する、導電性配管2と鉄筋4との導通状態を判定する確認システムの構成である。
[Corrosion estimation method]
The corrosion estimation method according to the present invention will be described with reference to FIGS.
FIG. 1 shows the configuration of a corrosion estimation system for estimating a direct current corrosion current flowing in the conductive pipe 2. FIG. 2 shows a configuration of a measurement system that measures a DC potential difference required in the previous stage when performing corrosion estimation in the present application. FIG. 3 shows a confirmation system for determining a conduction state between the conductive pipe 2 and the reinforcing bar 4 before performing the corrosion estimation in order to confirm the possibility of the macro cell corrosion that is a problem in the present application. It is the composition.

〔腐食推定システム〕
図1に示す腐食推定システムの構成では、交流電位差形成手段12が、導電性配管2の土壌1と接触する塗覆装欠陥部分と鉄筋4との間に存在する直流電位差に相当する設定電位差を、導電性配管2と鉄筋4との間に形成し(交流電位差形成工程)、電流測定手段11が、上記交流電位差形成手段12によって形成された交流電位差によって導電性配管2に流れる交流電流を測定し(交流電流測定工程)、情報処理装置10が、電流測定手段11において測定される交流電流に基づいて導電性配管2に流れる腐食電流を推定する。
[Corrosion estimation system]
In the configuration of the corrosion estimation system shown in FIG. 1, the AC potential difference forming unit 12 generates a set potential difference corresponding to a DC potential difference existing between the coating defect portion in contact with the soil 1 of the conductive pipe 2 and the reinforcing bar 4. , Formed between the conductive pipe 2 and the reinforcing bar 4 (AC potential difference forming step), the current measuring means 11 measures the AC current flowing through the conductive pipe 2 by the AC potential difference formed by the AC potential difference forming means 12. Then, the information processing apparatus 10 estimates the corrosion current flowing through the conductive pipe 2 based on the alternating current measured by the current measuring means 11.

図1に示す交流電位差形成手段12は、電圧計12aと交流電源12bと磁界形成手段12cとを備える。そして、交流電源12bによって駆動される磁界形成手段12cによって配管2cを取り囲む磁界が形成されると、配管2cに交流電流を流す交流電位差が形成される。その交流電位差は電圧計12aを用いて測定できる。つまり、交流電位差形成手段12は、交流電源12bの出力を調節することで、導電性配管2の土壌1と接触する塗覆装欠陥部分と鉄筋4との間に所定の交流電位差を形成する交流電位差形成工程を実行する。   The AC potential difference forming means 12 shown in FIG. 1 includes a voltmeter 12a, an AC power source 12b, and a magnetic field forming means 12c. When a magnetic field surrounding the pipe 2c is formed by the magnetic field forming unit 12c driven by the AC power source 12b, an AC potential difference for flowing an AC current through the pipe 2c is formed. The AC potential difference can be measured using a voltmeter 12a. That is, the AC potential difference forming means 12 adjusts the output of the AC power supply 12b, thereby forming a predetermined AC potential difference between the coating defect portion in contact with the soil 1 of the conductive pipe 2 and the reinforcing bar 4. A potential difference forming step is executed.

図1に示す電流測定手段11は、電流計11aとクランプ部11bとを備えるクランプ式の交流電流計である。配管2cに交流電流が流れているとき、その交流電流によって誘起される磁界によってクランプ部11bには電流が誘導される。その電流は交流電流計11aを用いて測定できる。つまり、電流測定手段11は、交流電位差形成手段12が交流電位差を形成することで導電性配管2を流れる交流電流を測定する交流電流測定工程を実行する。
従って、この腐食推定システムでは、予め判明している直流電位差に基づいて交流を発生させ、その状態で発生する交流電流を得ることができる。
The current measuring means 11 shown in FIG. 1 is a clamp-type AC ammeter including an ammeter 11a and a clamp part 11b. When an alternating current flows through the pipe 2c, a current is induced in the clamp portion 11b by a magnetic field induced by the alternating current. The current can be measured using an AC ammeter 11a. That is, the current measuring unit 11 executes an AC current measuring process in which the AC potential difference forming unit 12 measures the AC current flowing through the conductive pipe 2 by forming an AC potential difference.
Therefore, in this corrosion estimation system, an alternating current can be generated based on a previously known DC potential difference and an alternating current generated in that state can be obtained.

図1に示す情報処理装置10は、一般的なコンピュータ又は他の演算処理装置を用いて実現可能である。そして、情報処理装置10は、上述した交流電流測定工程において電流測定手段11によって測定される交流電流に基づいて配管2cに流れる腐食電流を推定する。
この情報処理装置10には、発明者により新たに作成された相関関係指標が格納されている。この指標は、図4に示すような図表であってもよいし、一定の相関式に基づくものであってもよいし、さらに数表の形態をとってもよい。
図4において、横軸は電流測定手段11によって測定される交流電流(実測値)であり、縦軸はマクロセルが形成されているときに配管2cに流れる直流の腐食電流(模擬試験での実測値)である。情報処理装置10は、図4の実線で示すように上記交流電流と上記直流の腐食電流とに一定の強い相関関係があることを利用して、測定された交流電流に基づいて配管2cに流れる腐食電流を推定する。例えば、同図に矢印で示すように電流測定手段11によって測定された交流電流が10μAであったとき、腐食電流は約7μAであると推定できる。
The information processing apparatus 10 illustrated in FIG. 1 can be realized using a general computer or another arithmetic processing apparatus. And the information processing apparatus 10 estimates the corrosion current which flows into the piping 2c based on the alternating current measured by the current measurement means 11 in the alternating current measurement process mentioned above.
The information processing apparatus 10 stores a correlation index newly created by the inventor. The index may be a chart as shown in FIG. 4, may be based on a certain correlation equation, or may take the form of a numerical table.
In FIG. 4, the horizontal axis is the alternating current (actual value) measured by the current measuring means 11, and the vertical axis is the direct current corrosion current (actually measured value in the simulation test) flowing through the pipe 2c when the macro cell is formed. ). The information processing apparatus 10 flows into the pipe 2c based on the measured alternating current by utilizing the fact that the alternating current and the direct current corrosion current have a certain strong correlation as shown by the solid line in FIG. Estimate the corrosion current. For example, when the alternating current measured by the current measuring means 11 is 10 μA as indicated by an arrow in the figure, it can be estimated that the corrosion current is about 7 μA.

以上が、本願に係る腐食推定方法の核を成す、直流電位差に相当する交流電位差を付与し、その状態で計測される交流電流量に基づいて腐食電流を推定する推定方法を実行する腐食推定システムの概要であるが、以下、作業手順に従って、本願に係る腐食推定を説明する。
この作業手順は、例えば、
1 長手状金属体とで導電性部材との導通状態の判定(導通状態判定工程)、
2 直流電位差の測定(設定電位差決定工程)、
3 腐食推定システムを使用した腐食推定(交流電位差形成工程・交流電流測定工程)の順に進める。
以下、この順に説明する。
The above is the core of the corrosion estimation method according to the present application. The corrosion estimation system executes an estimation method that gives an AC potential difference corresponding to a DC potential difference and estimates a corrosion current based on an AC current amount measured in that state. Although it is the outline, hereinafter, the corrosion estimation according to the present application will be described according to the work procedure.
This work procedure is, for example,
1 Judgment of conduction state with conductive member with longitudinal metal body (conduction state judgment step),
2 DC potential difference measurement (set potential difference determination process),
3. Proceed in the order of corrosion estimation using the corrosion estimation system (AC potential difference formation process / AC current measurement process).
Hereinafter, it demonstrates in this order.

1 長手状金属体と導電性部材との導通状態の判定(導通状態判定工程)
この判定工程では、図3に示す確認システムで導通の確認を行う。
図3に示す確認システムの抵抗測定手段18は、導電性配管2に電気的に接続される接点19と土壌1に挿入された対極20との間に交流電圧を印加する交流電源18aと、導電性配管2に流れる電流を測定する電流計18bと、土壌1に挿入された基準電極21と上記接点19との間に存在する電位差を測定する電圧計18cとを備える。さらに、接点19より鉄筋4側の位置で内部を流れる電流を測定する電流測定手段16を備える。そして、情報処理装置110は、抵抗測定手段18によって測定される導電性配管2と基準電極21との間に存在する電位差とその電位差によって流れる電流とに基づいて、導電性配管2と鉄筋4との導通を判定する。この判定手法は、この確認システムに備えられる電流測定手段16あるいは抵抗測定手段18の測定値に従ったものとできる。
1 Judgment of conduction state between longitudinal metal body and conductive member (conduction state judgment step)
In this determination step, continuity is confirmed by the confirmation system shown in FIG.
The resistance measuring means 18 of the confirmation system shown in FIG. 3 includes an AC power source 18a that applies an AC voltage between a contact 19 electrically connected to the conductive pipe 2 and a counter electrode 20 inserted in the soil 1, and a conductive An ampere meter 18b for measuring the current flowing through the conductive pipe 2, and a voltmeter 18c for measuring a potential difference existing between the reference electrode 21 inserted in the soil 1 and the contact point 19. Furthermore, a current measuring means 16 for measuring the current flowing inside at a position closer to the reinforcing bar 4 than the contact 19 is provided. Then, the information processing apparatus 110 determines whether the conductive pipe 2 and the reinforcing bar 4 are based on the potential difference existing between the conductive pipe 2 and the reference electrode 21 measured by the resistance measuring unit 18 and the current flowing through the potential difference. The continuity of is determined. This determination method can be based on the measurement value of the current measurement means 16 or the resistance measurement means 18 provided in the confirmation system.

電流測定手段16を使用する場合
この例の場合、電流測定手段16を用いて測定される、接点19から鉄筋4との導通部位Aに至る導電性配管2に流れている電流に基づいて、導電性配管2と鉄筋4との導通を判定する。図3に示すように、電流測定手段16は、配管2cの周囲に配置されたクランプ部16b及び電流計16aを備えたクランプ式の交流電流計である。その判定は、例えば具体的には、上記接点19と上記対極20との間に交流電圧が印加されている状態で、抵抗測定手段18に設けられている電圧計18cに基づいて図3にXで示す回路を流れる抵抗を求める。そして、電流計16aの測定結果に基づいて導出された回路Xの抵抗が小さい(例えば10Ω未満)とき、導電性配管2と鉄筋4とは導通していると判定できる。高い場合は、導通していないと判定できる。
この測定方法は、導電性配管2と土壌1との絶縁状態の有無に関らず適用できる。
In the case of using the current measuring means 16 In this example, the electric current is measured based on the current flowing through the conductive pipe 2 from the contact point 19 to the conduction part A, which is measured using the current measuring means 16. The continuity between the conductive pipe 2 and the reinforcing bar 4 is determined. As shown in FIG. 3, the current measuring means 16 is a clamp-type AC ammeter provided with a clamp portion 16b and an ammeter 16a arranged around the pipe 2c. For example, the determination is based on a voltmeter 18c provided in the resistance measuring means 18 in a state where an AC voltage is applied between the contact 19 and the counter electrode 20, as shown in FIG. The resistance flowing through the circuit indicated by is obtained. And when resistance of the circuit X derived | led-out based on the measurement result of the ammeter 16a is small (for example, less than 10 ohms), it can determine with the electroconductive piping 2 and the reinforcing bar 4 being electrically connected. If it is high, it can be determined that the continuity is not established.
This measurement method can be applied regardless of the presence or absence of the insulation state between the conductive pipe 2 and the soil 1.

抵抗測定手段18を使用できる場合
導電性配管2の土壌1中の部分に絶縁継手などが含まれていて、導電性配管2と土壌1との接地抵抗が大きい状態が確保されていると確認できる場合は、抵抗測定手段18に備えられる電流計18b、電圧計18cの結果に基づいて、図3に示す回路Yを流れる電流は充分に小さいと考えられるため、回路Xにおける抵抗から導電性配管2と鉄筋4との導通状態を判定できる。即ち、抵抗測定手段18によって導出された回路Xの抵抗が小さければ(例えば100Ω未満であれば)、導電性配管2と鉄筋4とは導通していると判定し、他方で、回路Xの抵抗が大きければ(例えば100Ω以上であれば)、導電性配管2と鉄筋4とは導通していないと判定する。
このようにして、導電性配管2と鉄筋4とが導通しているか否かによってマクロセル腐食が問題となる状況にあるか否かの判定を行える。そして、導通があると判定して場合のみ、以下の作業に移る。
When the resistance measuring means 18 can be used, it can be confirmed that the portion of the conductive pipe 2 in the soil 1 includes an insulating joint and the like, and the ground resistance between the conductive pipe 2 and the soil 1 is secured. In this case, since the current flowing through the circuit Y shown in FIG. 3 is considered to be sufficiently small based on the results of the ammeter 18b and the voltmeter 18c provided in the resistance measuring means 18, the conductive pipe 2 is reduced from the resistance in the circuit X. And the rebar 4 can be determined. That is, if the resistance of the circuit X derived by the resistance measuring means 18 is small (for example, less than 100Ω), it is determined that the conductive pipe 2 and the reinforcing bar 4 are conductive, and on the other hand, the resistance of the circuit X Is larger (for example, 100Ω or more), it is determined that the conductive pipe 2 and the reinforcing bar 4 are not electrically connected.
In this way, it is possible to determine whether or not the macro cell corrosion is a problem depending on whether or not the conductive pipe 2 and the reinforcing bar 4 are electrically connected. Only when it is determined that there is continuity, the following work is performed.

2 直流電位差の測定(設定電位差決定工程)
図1に示す腐食推定システムに設けられる交流電位差形成手段12により配管2に形成する交流電位差としては、本願の推定方法を使用する場合には、図2に示す測定システムにより測定された直流電位差を用いる。
図2に示す測定システムでは、情報処理装置100が、電圧計13により、導電性配管2と電気的に接続された接点14と、土壌1に挿入された電極15(配管と同一の金属材料で構成し、塗覆装欠陥に相当)との間に存在する直流電位差を測定する。
2 DC potential difference measurement (set potential difference determination process)
As the AC potential difference formed in the pipe 2 by the AC potential difference forming means 12 provided in the corrosion estimation system shown in FIG. 1, when using the estimation method of the present application, the DC potential difference measured by the measurement system shown in FIG. Use.
In the measurement system shown in FIG. 2, the information processing apparatus 100 includes a contact 14 electrically connected to the conductive pipe 2 and an electrode 15 inserted into the soil 1 (with the same metal material as the pipe) by a voltmeter 13. And a DC potential difference existing between and corresponding to coating defects) is measured.

3 腐食推定システムを使用した腐食推定(交流電位差形成工程・交流電流測定工程)
以上の工程を経て、本願に係る腐食推定システムが、上記手法により測定された直流電位差を使用する。即ち、図1に示す腐食推定システムにおいて、情報処理装置10が、測定された直流電位差を設定電位差として設定する。この場合、交流電位差形成手段12に備えられる電圧計12aの計測結果に基づいて交流電源12bの出力を調整することで、電圧計13によって測定される直流電位差に相当する交流電位差を付与することが可能となる。
そして、この所定の交流電位差が形成されている状態において電流測定手段11は、交流電流値を測定し、先に説明した図4に示す相関関係指標に基づいて、情報処理装置10がこの交流電流値から腐食電流値を求める。結果、腐食電流を定量的に求めることができる。
3 Corrosion estimation using the corrosion estimation system (AC potential difference formation process / AC current measurement process)
Through the above steps, the corrosion estimation system according to the present application uses the DC potential difference measured by the above method. That is, in the corrosion estimation system shown in FIG. 1, the information processing apparatus 10 sets the measured DC potential difference as the set potential difference. In this case, an AC potential difference corresponding to the DC potential difference measured by the voltmeter 13 can be applied by adjusting the output of the AC power source 12 b based on the measurement result of the voltmeter 12 a provided in the AC potential difference forming unit 12. It becomes possible.
Then, in a state where the predetermined AC potential difference is formed, the current measuring means 11 measures the AC current value, and the information processing apparatus 10 determines the AC current based on the correlation index shown in FIG. 4 described above. The corrosion current value is obtained from the value. As a result, the corrosion current can be obtained quantitatively.

更に、情報処理装置10は、推定した腐食電流に基づいて導電性配管2の腐食質量速度を導出し、導電性配管2の塗覆装欠陥部分の腐食の進行度合いを推定することが可能である。
例えば、推定した腐食電流が100μAであり、導電性配管2の材質が鉄であるとき、腐食電流によって導電性配管2から土壌1へと溶出(腐食)する鉄に関する腐食質量速度は、0.9g/年となる。但し、導電性配管2から土壌1へ鉄イオンが溶出するときのアノード反応は下記の化学反応式とする。
Furthermore, the information processing apparatus 10 can derive the corrosion mass rate of the conductive pipe 2 based on the estimated corrosion current, and can estimate the degree of corrosion of the coating defect portion of the conductive pipe 2. .
For example, when the estimated corrosion current is 100 μA and the material of the conductive pipe 2 is iron, the corrosion mass rate for iron eluted (corroded) from the conductive pipe 2 to the soil 1 by the corrosion current is 0.9 g. / Year. However, the anode reaction when iron ions are eluted from the conductive pipe 2 to the soil 1 is the following chemical reaction formula.

[式1]
Fe→Fe2++2e
[Formula 1]
Fe → Fe 2+ + 2e

以上は、本願に係る腐食推定方法に関する説明であるが、情報処理装置内で使用し、本願推定方法の妥当性について検証する。
この妥当性の検証に関しては、発明者らは理論的な検証を試みるとともに、現場試験でも検証を行った。
理論的検証
図5(a)に示す回路は、塗覆装欠陥を有する導電性配管2と、コンクリート3に接触する鉄筋4とが導通することで、導電性配管2の塗覆装欠陥部分と土壌1とコンクリート3と鉄筋4とを経て導電性配管2へと至る電流経路が形成され、且つ、導電性配管2の土壌1と接触する塗覆装欠陥部分と鉄筋4との間に直流電位差:Vが存在しているときの直流の等価回路図である。
この直流電流の電流経路には、直流電流が流れるときに導電性配管2の塗覆装欠陥部分と土壌1との間で起こる、導電性配管2が腐食して金属イオンが土壌中に流れ出すときのアノード反応抵抗:R、導電性配管2の塗覆装欠陥部分と土壌1との間の電気2重層容量:C、及び、導電性配管2の塗覆装欠陥部分と土壌1との間の接地抵抗:RS2と、鉄筋4とコンクリート3との間で起こる、酸素の還元反応であるカソード反応抵抗:R、鉄筋4とコンクリート3との間の電気2重層容量:C、及び、鉄筋4とコンクリート3との間の接地抵抗:RS4とが存在する。この回路に流れる電流が直流電流であることを考慮すると、この直流電流にとっての電気抵抗となるのは、アノード反応抵抗:R、接地抵抗:RS2、接地抵抗:RS4、及び、カソード反応抵抗:Rであると見なすことができる。
The above is a description of the corrosion estimation method according to the present application, but it is used in the information processing apparatus to verify the validity of the present application estimation method.
Regarding verification of the validity, the inventors tried theoretical verification and also performed verification in field tests.
Theoretical verification In the circuit shown in FIG. 5A, the conductive pipe 2 having a coating defect and the reinforcing bar 4 in contact with the concrete 3 are electrically connected to each other. A current path is formed from the soil 1, the concrete 3, and the reinforcing bar 4 to the conductive pipe 2, and a direct current potential difference between the coating defect part and the reinforcing bar 4 that contacts the soil 1 of the conductive pipe 2. : DC equivalent circuit diagram when V is present.
In the current path of the direct current, when the direct current flows, when the conductive pipe 2 corrodes and the metal ions flow out into the soil, which occurs between the coating defective portion of the conductive pipe 2 and the soil 1. The anode reaction resistance of R 2 , the electric double layer capacity between the coating defect portion of the conductive pipe 2 and the soil 1: C 2 , and the coating defect portion of the conductive pipe 2 and the soil 1 Between the ground resistance: R S2 and the cathode reaction resistance which is a reduction reaction of oxygen occurring between the reinforcing bar 4 and the concrete 3: R 4 , Electric double layer capacity between the reinforcing bar 4 and the concrete 3: C 4 , And there exists ground resistance: R S4 between the reinforcing bar 4 and the concrete 3. Considering that the current flowing in this circuit is a direct current, the electrical resistance for this direct current is the anode reaction resistance: R 2 , ground resistance: R S2 , ground resistance: R S4 , and cathode reaction Resistance: R 4 can be considered.

また、例えば、導電性配管2が鉄(Fe)であり、鉄筋4がカソードとして働くとき、それぞれで発生するアノード反応及びカソード反応は、以下の化学式のようになる。   Further, for example, when the conductive pipe 2 is iron (Fe) and the reinforcing bar 4 functions as a cathode, the anodic reaction and the cathodic reaction that are generated respectively are represented by the following chemical formulas.

[式2]
アノード反応:Fe→Fe2++2e
カソード反応:1/2O+HO+2e→2OH
[Formula 2]
Anode reaction: Fe → Fe 2+ + 2e
Cathode reaction: 1 / 2O 2 + H 2 O + 2e → 2OH

但し、導電性配管2にはFe原子が大量に存在するため上記アノード反応は起こり易く、上記アノード反応抵抗:Rは非常に小さいと見なせる。同様に、鉄筋4は表面積が非常に大きく電流密度が非常に小さいため、上記カソード反応抵抗:Rは非常に小さい。更に、鉄筋4とコンクリート3とは大面積で接触しているので、鉄筋4とコンクリート3との間の接地抵抗:RS4も非常に小さい。
従って、図5(a)に示す等価回路図において流れる直流電流:Iは、直流電位差:Vに対する導電性配管2の塗覆装欠陥部分と土壌1との間の接地抵抗:RS2の商:V/RS2でおおむね導出できる。
However, since the conductive pipe 2 contains a large amount of Fe atoms, the anode reaction is likely to occur, and the anode reaction resistance R 2 can be regarded as very small. Similarly, since the reinforcing bar 4 has a very large surface area and a very small current density, the cathode reaction resistance R 4 is very small. Furthermore, since the reinforcing bar 4 and the concrete 3 are in contact with each other in a large area, the grounding resistance R S4 between the reinforcing bar 4 and the concrete 3 is also very small.
Therefore, the direct current I flowing in the equivalent circuit diagram shown in FIG. 5A is the quotient of the ground resistance R S2 between the coating defect portion of the conductive pipe 2 and the soil 1 with respect to the DC potential difference V. V / R S2 can generally be derived.

図5(b)に示すのは、塗覆装欠陥を有する導電性配管2と鉄筋4とが導通することで、導電性配管2の塗覆装欠陥部分と土壌1と鉄筋4と導電性配管2とを流れる電流経路が形成され、且つ、導電性配管2の土壌1と接触する塗覆装欠陥部分と鉄筋4との間に交流電位差:vが存在しているときの交流の等価回路である。
この交流電流の電流経路にも図5(a)に示したのと同様に、上記アノード反応抵抗:R、上記電気2重層容量:C、及び、上記接地抵抗:RS2と、上記カソード反応抵抗:R、上記電気2重層容量:C、及び、上記接地抵抗:RS4とが存在するのだが、この回路に流れるのが交流電流であることを考慮すると、この交流電流の周波数が大きくなると上記電気2重層容量C及びCにおけるインピーダンスがほぼ零となる。また、鉄筋4とコンクリート3とは大面積で接触しているので、接地抵抗:RS4は非常に小さい。その結果、交流電流にとっての電気抵抗となるのは、接地抵抗:RS2であると見なすことができる。
従って、図5(b)に示す等価回路において流れる交流電流:iは、交流電位差:vに対する導電性配管2の塗覆装欠陥部分と土壌との間の接地抵抗:RS2の商:v/RS2で導出できる。
FIG. 5B shows that the conductive pipe 2 having a coating defect and the reinforcing bar 4 are electrically connected to each other, so that the coating defective part, the soil 1, the reinforcing bar 4 and the conductive pipe of the conductive pipe 2 are connected. 2 and an equivalent circuit of an alternating current when an alternating potential difference: v exists between the coating defect portion and the reinforcing bar 4 in contact with the soil 1 of the conductive pipe 2. is there.
Similarly to the current path of the alternating current shown in FIG. 5A, the anode reaction resistance: R 2 , the electric double layer capacity: C 2 , the ground resistance: R S2, and the cathode Although there is a reaction resistance: R 4 , the electric double layer capacitance: C 4 , and the ground resistance: R S4 , the frequency of this alternating current is considered considering that the alternating current flows through this circuit. Increases, the impedance in the electric double layer capacitors C 2 and C 4 becomes almost zero. Further, since the reinforcing bars 4 and the concrete 3 are in contact with each other over a large area, the ground resistance: R S4 is very small. As a result, it can be considered that the electric resistance for the alternating current is the ground resistance: R S2 .
Therefore, the alternating current i flowing in the equivalent circuit shown in FIG. 5B is the ground resistance between the coating defect portion of the conductive pipe 2 and the soil with respect to the alternating potential difference: v: the quotient of R S2 : v / R S2 can be derived.

以上のように、図5(b)に示す等価回路において流れる交流電流:iは、図5(a)に示す等価回路において流れる直流電流:Iと同様に、導電性配管2の塗覆装欠陥部分と土壌1との間の接地抵抗:RS2を反映したものであると言える。従って、導電性配管2の土壌1と接触する塗覆装欠陥部分と鉄筋4との間に存在する直流電位差(マクロセル)によって導電性配管2に流れる直流の腐食電流の測定に代えて、上記直流電位差と同じ大きさの交流電位差を導電性配管2の土壌1と接触する塗覆装欠陥部分と鉄筋4との間に形成したときに導電性配管2に流れる交流電流の測定を行うことに理論上は問題ない。 As described above, the AC current i flowing in the equivalent circuit shown in FIG. 5B is equal to the DC current I flowing in the equivalent circuit shown in FIG. It can be said that this reflects the ground resistance between the portion and the soil 1: R S2 . Therefore, instead of measuring the direct current corrosion current flowing through the conductive pipe 2 due to the direct current potential difference (macrocell) existing between the coating 4 and the reinforcing defect 4 in contact with the soil 1 of the conductive pipe 2, the direct current Theoretically, the alternating current flowing in the conductive pipe 2 is measured when an AC potential difference of the same magnitude as that of the potential difference is formed between the reinforcing bar 4 and the coating defect portion in contact with the soil 1 of the conductive pipe 2. Above is no problem.

実証試験による検証
この試験では、表面積が10mm〜13750mmの塗覆装欠陥を意図的に作成した導電性配管2を模擬した試験片24、及び、実際の埋設中に腐食が発生した導電性配管片を試験片24として土壌中に埋設して用いた。そして、同じ試験片24について、図6、図7に示すシステムを用い、直流電流及び交流電流の両方を測定し、同一の試験片24それぞれについて測定された直流電流と交流電流との関係を図4上にプロットした。
The verification by verification tests this test, the test piece 24 surface area simulating a 10 mm 2 ~13750Mm 2 coating-covering conductive pipe 2 defects created intentionally, and the actual conductive corrosion occurs during embedded A pipe piece was used as a test piece 24 embedded in soil. Then, both the direct current and the alternating current are measured for the same test piece 24 using the systems shown in FIGS. 6 and 7, and the relationship between the direct current and the alternating current measured for each of the same test pieces 24 is illustrated. Plotted on 4.

図6に示すシステムは、土壌1中に試験片24を埋設し、試験片24と配管2cとを電気的に導通させる導電性ワイヤ22を設ける。この状態で、その導電性ワイヤ22に流れる直流電流(導電性配管2に発生するマクロセルによって流れる腐食電流に相当する)を電流計23で計測することで、各々の試験片24における直流電流を測定した。
一方、用意した夫々の試験片24について、図7に示すシステムのように、試験片24と配管2cとを導電性ワイヤ22で接続した状態で、図1に示した交流電位差形成手段12及び電流測定手段11と同様の構成の交流電位差形成手段27及び電流計測手段26を用いて、試験片24の塗覆装欠陥部分と土壌1とが接触する部位と鉄筋4との間に存在する直流電位差(これは先に図2で示した測定システムで予め測定しておく)に相当する設定電位差を形成して、導電性ワイヤ22に流れる交流電流を測定した。
上記したように各試験片24について得られた結果を図4上にプロットすると、直流電流と本願手法に従って測定される交流電流との間には強い相関が認められ、本願手法に従った交流電流値の測定により、腐食電流である直流電流を良好に推定できることが判る。
The system shown in FIG. 6 embeds a test piece 24 in the soil 1 and provides a conductive wire 22 that electrically connects the test piece 24 and the pipe 2c. In this state, the direct current flowing in the conductive wire 22 (corresponding to the corrosion current flowing through the macrocell generated in the conductive pipe 2) is measured by the ammeter 23, whereby the direct current in each test piece 24 is measured. did.
On the other hand, for each of the prepared test pieces 24, the AC potential difference forming means 12 and the current shown in FIG. 1 are connected in a state where the test piece 24 and the pipe 2c are connected by the conductive wire 22 as in the system shown in FIG. Using the AC potential difference forming unit 27 and the current measuring unit 26 having the same configuration as that of the measuring unit 11, the DC potential difference existing between the portion where the coating defect portion of the test piece 24 contacts the soil 1 and the reinforcing bar 4. A set potential difference corresponding to (this is previously measured by the measurement system shown in FIG. 2 in advance) was formed, and the alternating current flowing through the conductive wire 22 was measured.
When the results obtained for each test piece 24 as described above are plotted on FIG. 4, a strong correlation is recognized between the direct current and the alternating current measured according to the method of the present application, and the alternating current according to the method of the present application is observed. It can be seen that the direct current, which is a corrosion current, can be estimated well by measuring the value.

従って、例えば、図4の実線に示した相関関係に基づいて推定する腐食電流には信頼性があると言える。また、腐食電流をマイクロアンペアのオーダーで精度良く推定可能となっている。尚、縦軸に示す直流の腐食電流(直流電流)の方が横軸に示す交流電流よりも僅かに小さくなっているのは、直流の腐食電流の場合は、電流経路の途中に存在する、完全に零ではない導電性配管2の塗覆装欠陥部分でのアノード反応抵抗:R、及び、鉄筋4でのカソード反応抵抗:Rが、導電性配管2の塗覆装欠陥部分と土壌1との間の接地抵抗:RS2(厳密には、RS2+RS4)に足し合わされているためであると考えられる。 Therefore, for example, it can be said that the corrosion current estimated based on the correlation shown by the solid line in FIG. 4 is reliable. In addition, the corrosion current can be accurately estimated on the order of microamperes. The direct current corrosion current (DC current) shown on the vertical axis is slightly smaller than the alternating current shown on the horizontal axis. The anode reaction resistance at the coating defect portion of the conductive pipe 2 which is not completely zero: R 2 and the cathode reaction resistance at the reinforcing bar 4 : R 4 are the coating defect portion of the conductive pipe 2 and the soil. It is considered that this is because it is added to the grounding resistance between 1 and R S2 (strictly, R S2 + R S4 ).

<別実施形態>
<1>
上記実施形態において、上記交流電位差形成工程及び上記交流電流測定工程を含む一連の腐食推定方法と、上記設定電位差決定工程と、上記導通状態判定工程との実行順序について特に述べていないが、上記導通状態判定工程、上記設定電位差決定工程、上記腐食推定方法の記載順で実行することが好ましい。また、上記導通状態判定工程と上記設定電位差決定工程との実行順序は逆であってもよい。また更に、上記導通状態判定工程は、上記交流電流測定工程に先立って行われればよい。
<Another embodiment>
<1>
In the above embodiment, the execution sequence of the series of corrosion estimation methods including the AC potential difference forming step and the AC current measuring step, the set potential difference determining step, and the conduction state determining step is not particularly described. It is preferable to execute in order of description of the state determination step, the set potential difference determination step, and the corrosion estimation method. The execution order of the conduction state determination step and the set potential difference determination step may be reversed. Furthermore, the conduction state determination step may be performed prior to the alternating current measurement step.

<2>
上記実施形態及び上記別実施形態において、導通状態判定工程を実行する場合について説明したが、導電性配管2と鉄筋4とが導通していることが既知である場合には、図3に示した導通状態判定工程は実施しなくてもよい。
<2>
In the said embodiment and said another embodiment, although the case where a conduction | electrical_connection state determination process is performed was demonstrated, when it was known that the electroconductive piping 2 and the reinforcing bar 4 are conducting, it showed in FIG. The conduction state determination step may not be performed.

<3>
上記実施形態において、図2を参照して説明した設定電位差決定工程において、導電性配管2の塗覆装欠陥部分と土壌1とが接触する部位と鉄筋4との間に存在するマクロセルによる直流電位差を実際に測定する場合について説明したが、マクロセルによる直流電位差を実際に測定せず、推定によって決定してもよい。
例えば、腐食電流の測定対象としている導電性配管2と同様の環境下で埋設されている他の導電性配管において既に実際に測定された直流電位差を推定直流電位差として用いることや、導電性配管2が土壌中に埋設されている状態などに基づいて経験的に推定される推定直流電位差などによって、マクロセルによる直流電位差を推定してもよい。また、複数の上記推定直流電位差を平均化するなどの統計処理を行ってもよい。
<3>
In the above-described embodiment, in the set potential difference determining step described with reference to FIG. 2, the direct current potential difference due to the macrocell existing between the portion where the coating defect portion of the conductive pipe 2 and the soil 1 are in contact with the reinforcing bar 4. However, the DC potential difference caused by the macro cell may be determined by estimation without actually measuring.
For example, a direct current potential difference that has already been actually measured in another conductive pipe embedded in the same environment as the conductive pipe 2 that is the object of measurement of the corrosion current is used as the estimated direct current potential difference, or the conductive pipe 2 The DC potential difference due to the macro cell may be estimated based on the estimated DC potential difference that is empirically estimated based on the state where the cell is embedded in the soil. Further, statistical processing such as averaging a plurality of the estimated DC potential differences may be performed.

<4>
上記実施形態において、長手状金属体としての導電性配管2のエルボ2aに塗覆装欠陥が存在する場合について説明したが、導電性配管2を構成する他の部分において塗覆装欠陥が存在しても本発明の腐食推定方法を適用可能である。また、長手状金属体としては、上述したような塗覆装が施されていない鋼管であってもよい。
<4>
In the said embodiment, although the case where the coating defect existed in the elbow 2a of the electroconductive piping 2 as a longitudinal metal body was demonstrated, the coating defect exists in the other part which comprises the electroconductive piping 2. FIG. However, the corrosion estimation method of the present invention can be applied. Further, the longitudinal metal body may be a steel pipe that is not coated as described above.

<5>
上記実施形態において、導電性配管2と鉄筋4とが導通しているか否かの導通状態を判定するために、導電性配管2と土壌1又は鉄筋4との間の抵抗を調べる形態について説明したが、抵抗以外にもその相当量として、模擬欠陥と鉄筋4との間の電位差、鉄筋4から模擬欠陥に流れる電流などを調べることで、導電性配管2と鉄筋4とが導通しているか否かの導通状態を判定してもよい。
<5>
In the said embodiment, in order to determine the conduction | electrical_connection state whether the electroconductive piping 2 and the reinforcing bar 4 are conducting, the form which investigates the resistance between the electroconductive piping 2 and the soil 1 or the reinforcing bar 4 was demonstrated. However, whether or not the conductive pipe 2 and the reinforcing bar 4 are electrically connected by examining the potential difference between the simulated defect and the reinforcing bar 4 and the current flowing from the reinforcing bar 4 to the simulated defect as a considerable amount in addition to the resistance. Such a conduction state may be determined.

<6>
上記実施形態では、第1媒質として土壌1を例示し、第2媒質としてコンクリート4を例示したが、土壌若しくはコンクリート以外の他の媒質中に長手状金属体及び導電性部材が設けられている場合にも本発明を適用できる。また、上記実施形態では、第1媒質(土壌1)と第2媒質(コンクリート3)とが異なる材料である場合について説明したが、長手状金属体と導電性部材とにおいてマクロセルが形成される状態であれば、第1媒質と第2媒質とが同じ材料であってもよい。
<6>
In the above embodiment, the soil 1 is exemplified as the first medium and the concrete 4 is exemplified as the second medium. However, when the long metal body and the conductive member are provided in the soil or another medium other than the concrete. The present invention can also be applied to. Moreover, although the said embodiment demonstrated the case where a 1st medium (soil 1) and a 2nd medium (concrete 3) were different materials, the state by which a macrocell is formed in an elongate metal body and an electroconductive member. If so, the first medium and the second medium may be the same material.

本発明に係る腐食推定方法は、土壌中、コンクリート中、水中などの媒質中に埋設されているガス管、水道管、建材などの長手状金属体の腐食状態を推定するために利用することができ、更には、推定された腐食状態に基づいて、それらの長手状金属体の交換時期を知るために利用することができる。   The corrosion estimation method according to the present invention can be used to estimate the corrosion state of a long metal body such as a gas pipe, a water pipe, or a building material embedded in a medium such as soil, concrete, or water. Furthermore, based on the estimated corrosion state, it can be used to know the replacement time of those elongated metal bodies.

腐食推定方法を行うときの腐食推定システム構成図Corrosion estimation system configuration diagram when performing the corrosion estimation method 腐食推定方法を行うときの測定システム構成図Measurement system configuration diagram when performing the corrosion estimation method 腐食推定方法を行うときの確認システム構成図Confirmation system configuration diagram when performing the corrosion estimation method 交流電流(実測値)と腐食電流(推定値)の相関関係を示す図Diagram showing the correlation between AC current (actual value) and corrosion current (estimated value) 導電性配管と建物内の鉄筋とが導通しているときの等価回路図Equivalent circuit diagram when the conductive piping is connected to the reinforcing bar in the building 直流電流である腐食電流の測定を行うためのシステム構成図System configuration diagram for measuring corrosion current, which is direct current 本願方法に従った交流電流の測定を行うためのシステム構成図System configuration diagram for measuring AC current according to the method of this application

符号の説明Explanation of symbols

1 土壌(第1媒質)
2 導電性配管(長手状金属体)
3 コンクリート(第2媒質)
4 鉄筋(導電性部材)
12 交流電位差形成手段
1 soil (first medium)
2 Conductive piping (longitudinal metal body)
3 Concrete (second medium)
4 Rebar (conductive member)
12 AC potential difference forming means

Claims (4)

少なくとも一部が第1媒質中に配置される長手状金属体の腐食状態を推定する腐食推定方法であって、
前記長手状金属体と前記第1媒質と同一又は異なる第2媒質中に配置される導電性部材とが接触してマクロセルが形成された状態で、前記長手状金属体の前記第1媒質と接触する部位と前記導電性部材との間に存在する直流電位差に相当する設定電位差を、交流電位差形成手段を用いて前記長手状金属体と前記導電性部材との間に形成する交流電位差形成工程と、
前記交流電位差形成工程によって前記長手状金属体に流れる交流電流を測定する交流電流測定工程とを実行し、
前記交流電流測定工程において測定された交流電流に基づいて、前記長手状金属体に流れる腐食電流を推定する腐食推定方法。
A corrosion estimation method for estimating a corrosion state of a longitudinal metal body at least partially disposed in a first medium,
Contact with the first medium of the elongated metal body in a state in which a macrocell is formed by contact between the elongated metal body and a conductive member disposed in the same or different second medium as the first medium. An alternating potential difference forming step of forming a set potential difference corresponding to a direct current potential difference existing between the portion and the conductive member between the longitudinal metal body and the conductive member using an alternating potential difference forming means; ,
Performing an alternating current measuring step of measuring an alternating current flowing through the elongated metal body by the alternating potential difference forming step;
The corrosion estimation method which estimates the corrosion current which flows into the said elongate metal body based on the alternating current measured in the said alternating current measurement process.
前記長手状金属体の前記第1媒質と接触する部位と前記導電性部材との間に存在する直流電位差を測定し、測定された前記直流電位差を前記設定電位差として設定する設定電位差決定工程を含む請求項1記載の腐食推定方法。   A set potential difference determining step of measuring a DC potential difference existing between a portion of the elongated metal body that contacts the first medium and the conductive member, and setting the measured DC potential difference as the set potential difference The corrosion estimation method according to claim 1. 前記長手状金属体の前記第1媒質と接触する部位と前記導電性部材との間に存在すると推定した推定直流電位差を、前記設定電位差として設定する設定電位差決定工程を含む請求項1記載の腐食推定方法。   The corrosion according to claim 1, further comprising a set potential difference determining step of setting an estimated DC potential difference estimated to exist between a portion of the elongated metal body that contacts the first medium and the conductive member as the set potential difference. Estimation method. 前記交流電流測定工程に先立って、
前記長手状金属体と前記導電性部材との導通状態を判定する導通状態判定工程を含む請求項1〜3の何れか一項に記載の腐食推定方法。
Prior to the alternating current measurement step,
The corrosion estimation method as described in any one of Claims 1-3 including the conduction | electrical_connection state determination process which determines the conduction | electrical_connection state of the said elongate metal body and the said electroconductive member.
JP2005048839A 2005-02-24 2005-02-24 Corrosion estimation method Expired - Fee Related JP4522289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005048839A JP4522289B2 (en) 2005-02-24 2005-02-24 Corrosion estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005048839A JP4522289B2 (en) 2005-02-24 2005-02-24 Corrosion estimation method

Publications (2)

Publication Number Publication Date
JP2006234547A JP2006234547A (en) 2006-09-07
JP4522289B2 true JP4522289B2 (en) 2010-08-11

Family

ID=37042366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005048839A Expired - Fee Related JP4522289B2 (en) 2005-02-24 2005-02-24 Corrosion estimation method

Country Status (1)

Country Link
JP (1) JP4522289B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4827703B2 (en) * 2006-11-28 2011-11-30 新日鉄エンジニアリング株式会社 Method for reducing electromagnetic induction voltage in buried pipeline and apparatus for reducing electromagnetic induction voltage in buried pipeline
CN105954181A (en) * 2016-05-23 2016-09-21 北京科技大学 Corrosion experiment box simulating condensing environment and using method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60195460A (en) * 1984-03-19 1985-10-03 Tokyo Gas Co Ltd Insulating state deciding device of pipe
JPS63149549A (en) * 1986-12-12 1988-06-22 Tokyo Gas Co Ltd Method for diagnosing corrosion of reinforcing bar or piping in concrete
JPH05203600A (en) * 1992-01-28 1993-08-10 Toho Gas Co Ltd Calculation of impedance index and measuring method for degree of pipe corrosion by use of the index
JPH07209238A (en) * 1994-01-25 1995-08-11 Koatsu Gas Hoan Kyokai Method and apparatus of c/s macrocell corrosion measurement for metal pipe
JP2000019156A (en) * 1998-06-30 2000-01-21 Nkk Corp Paint film damage detection method of buried coated steel pipe
JP2004198410A (en) * 2002-12-02 2004-07-15 Osaka Gas Co Ltd Method for inspecting defect in coated pipe, and method for diagnosing corrosion

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60195460A (en) * 1984-03-19 1985-10-03 Tokyo Gas Co Ltd Insulating state deciding device of pipe
JPS63149549A (en) * 1986-12-12 1988-06-22 Tokyo Gas Co Ltd Method for diagnosing corrosion of reinforcing bar or piping in concrete
JPH05203600A (en) * 1992-01-28 1993-08-10 Toho Gas Co Ltd Calculation of impedance index and measuring method for degree of pipe corrosion by use of the index
JPH07209238A (en) * 1994-01-25 1995-08-11 Koatsu Gas Hoan Kyokai Method and apparatus of c/s macrocell corrosion measurement for metal pipe
JP2000019156A (en) * 1998-06-30 2000-01-21 Nkk Corp Paint film damage detection method of buried coated steel pipe
JP2004198410A (en) * 2002-12-02 2004-07-15 Osaka Gas Co Ltd Method for inspecting defect in coated pipe, and method for diagnosing corrosion

Also Published As

Publication number Publication date
JP2006234547A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
JP6770046B2 (en) Cathode anticorrosion monitoring probe
US10001436B2 (en) In-situ measurement of corrosion in buried pipelines using vertically measured pipe-to-soil potential
US5469048A (en) Cathodic protection measurement apparatus
CN112430817B (en) Split type device and method for buried metal pipeline corrosion parameter test probe
KR101680798B1 (en) System of impressed current cathodic protection for realtime monitoring corrosion of coldest place pipeline, and method for the same
JP4857136B2 (en) Abnormally low ground contact point detection method and detection system for buried metal pipeline
Kajiyama et al. Effect of induced alternating current voltage on cathodically protected pipelines paralleling electric power transmission lines
JP2018205124A (en) Device and method for measuring corrosion rate
JP4522289B2 (en) Corrosion estimation method
JP2010127851A (en) Apparatus and method for measuring earth resistivity for use in power distribution using three electrodes
JP2004198410A (en) Method for inspecting defect in coated pipe, and method for diagnosing corrosion
Wang et al. An array of multielectrodes for locating, visualizing, and quantifying stray current corrosion
JP4614804B2 (en) Corrosion location estimation method
JP5718850B2 (en) Cathodic protection system and cathodic protection method for metal structures
JP4599203B2 (en) Embedded pipe corrosion diagnosis system and buried pipe corrosion diagnosis method
Hu et al. A novel method to measure the actual corrosion resistance/rate of steel reinforcement during impressed-current accelerated corrosion test
JP2010175401A (en) Method for measuring and evaluating soundness of plastic coating on embedded metal pipeline
JP7489047B2 (en) Equipment for detecting corrosion in rebars in concrete
Jankowski Monitoring methods of cathodic protection of pipelines
JP3076186B2 (en) Method for measuring surface area of galvanic anode
Gregoor et al. Detection and assessment of AC corrosion
JP2005274508A (en) External magnetic coil unit and pipe corrosion state diagnostic method using it
Nielsen Considerations on measurements and measurement techniques under AC interference conditions
Robbins A Novel Approach to Assessing Stray Current Interference Without Potential Interruption
Das Remote monitoring and intelligent controls of cathodic protection system of gas transmission pipelines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100525

R150 Certificate of patent or registration of utility model

Ref document number: 4522289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees