JP4517225B2 - Pressure sensitive conductive elastomer - Google Patents

Pressure sensitive conductive elastomer Download PDF

Info

Publication number
JP4517225B2
JP4517225B2 JP2004175124A JP2004175124A JP4517225B2 JP 4517225 B2 JP4517225 B2 JP 4517225B2 JP 2004175124 A JP2004175124 A JP 2004175124A JP 2004175124 A JP2004175124 A JP 2004175124A JP 4517225 B2 JP4517225 B2 JP 4517225B2
Authority
JP
Japan
Prior art keywords
conductive elastomer
conductive
resistance value
pressure
electrical resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004175124A
Other languages
Japanese (ja)
Other versions
JP2005350614A (en
Inventor
▲晧▼一 新原
徹 関野
弘 西田
喜幸 浜橋
宏太郎 河原
亘史 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inaba Rubber Co Ltd
Original Assignee
Inaba Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inaba Rubber Co Ltd filed Critical Inaba Rubber Co Ltd
Priority to JP2004175124A priority Critical patent/JP4517225B2/en
Publication of JP2005350614A publication Critical patent/JP2005350614A/en
Application granted granted Critical
Publication of JP4517225B2 publication Critical patent/JP4517225B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、無加圧・無変形状態では高い電気抵抗値を示し、圧縮変形時の荷重の増加に従って電気抵抗値が減少して導電性を示す感圧導電性エラストマーに関するものである。   The present invention relates to a pressure-sensitive conductive elastomer that exhibits a high electric resistance value in a non-pressurized / non-deformed state and exhibits conductivity by decreasing the electric resistance value as the load during compression deformation increases.

従来の感圧導電性エラストマーとしては、非導電性エラストマー中に、球状の導電性カーボンブラック粒子又は導電性カーボンブラックの造粒物と、シリコーンゴム粒子と、γ−アルミナ(Al2O3)粒子とを配合したものが知られている(例えば、特許文献1及び特許文献2参照。)。
特公平6−054603号公報(第1−5頁) 特公平7−007607号公報(第1−7頁)
Conventional pressure-sensitive conductive elastomers include spherical conductive carbon black particles or granules of conductive carbon black, silicone rubber particles, and γ-alumina (Al 2 O 3 ) particles in a non-conductive elastomer. (For example, refer to Patent Document 1 and Patent Document 2).
Japanese Examined Patent Publication No. 6-054603 (page 1-5) Japanese Patent Publication No. 7-007607 (pages 1-7)

しかしながら、球状の導電性カーボンブラック粒子を配合したものでは、見かけ上の硬度が高く、圧縮変形時の電気抵抗値変化が小さいので、感圧導電性センサとしての感度が悪いという問題点がある。   However, the blend of spherical conductive carbon black particles has a problem that the apparent hardness is high and the change in electric resistance value during compression deformation is small, so that the sensitivity as a pressure-sensitive conductive sensor is poor.

一方、導電性カーボンブラックの造粒物を配合したものでは、圧縮変形時の電気抵抗値変化は大きいものの、造粒物が破損し易いので、耐久性や安定性に欠けるという問題点がある。   On the other hand, in the case of blending a granulated product of conductive carbon black, although the change in electric resistance value during compression deformation is large, the granulated product is easily damaged, so that there is a problem that durability and stability are lacking.

更に、これらの感圧導電性エラストマーでは、引き裂き強度が低いと共に、繰り返しの圧縮変形に対する電気抵抗値変化の再現性(信頼性)が良くないという問題点がある。   Furthermore, these pressure-sensitive conductive elastomers have problems in that the tear strength is low and the reproducibility (reliability) of the change in electric resistance value due to repeated compression deformation is not good.

本発明は、以上のような事情や問題点に鑑みてなされたものであり、機械的強度が高く、繰り返しの圧縮変形に対する電気抵抗値変化の再現性が良好な感圧導電性エラストマーを提供することを目的とする。   The present invention has been made in view of the above-described circumstances and problems, and provides a pressure-sensitive conductive elastomer having high mechanical strength and good reproducibility of change in electric resistance value due to repeated compression deformation. For the purpose.

上記目的を達成するための請求項1の発明は、無加圧・無変形状態では高い電気抵抗値を示し、圧縮変形時の荷重の増加に従って電気抵抗が減少して導電性を示す感圧導電性エラストマーであって、非導電性エラストマー中に、10〜40wt%の配合割合で板状、針状(ウィスカー状)、又は繊維状の導電性フィラーと、2〜20wt%の配合割合で有機化合物をインターカレートした層状無機化合物粒子であり粒径が5〜100nmのセラミック粒子とを分散させたものである。 In order to achieve the above object, the invention according to claim 1 is a pressure-sensitive conductive material which exhibits a high electric resistance value in a non-pressurized / non-deformed state, and exhibits conductivity by decreasing the electric resistance as the load during compression deformation increases. A non-conductive elastomer in a proportion of 10 to 40 wt% of a plate, needle (whisker) or fibrous conductive filler, and an organic compound of a proportion of 2 to 20 wt% Are intercalated layered inorganic compound particles in which ceramic particles having a particle size of 5 to 100 nm are dispersed.

請求項の発明においては、前記層状無機化合物粒子は、有機化合物及び硬化前の非導電性エラストマーをインターカレートした層状無機化合物粒子である。 In the invention of claim 2, the layered inorganic compound particles are layered inorganic compound particles obtained by intercalating an organic compound and a non-conductive elastomer before curing.

請求項の発明においては、前記導電性フィラーの体積抵抗率は106Ω/cm以下である。 In the invention of claim 3, the conductive filler has a volume resistivity of 10 6 Ω / cm or less.

請求項の発明においては、前記導電性フィラーは、その面方向又は長さ方向を、シート状に形成された非導電性エラストマーの面方向に対して略平行に配向させたものである。 According to a fourth aspect of the present invention, the conductive filler has its surface direction or length direction oriented substantially parallel to the surface direction of the non-conductive elastomer formed in a sheet shape.

請求項1の発明によれば、械的強度が高いと共に、繰り返しの圧縮変形に対する電気抵抗値変化の再現性が良好である。また、層状無機化合物粒子の2〜20wt%の配合割合での添加で絶縁特性が得られると共に、引張強度や耐久性を向上させることができる。また、状無機化合物粒子とマトリックス(母材)としての硬化後の非導電性エラストマーとの親和性が高くなる。そのため、複合体中における亀裂生成を阻害できると共に、仮に亀裂が生成したとしても分子スケール(1nm未満のスケール)又はナノメータースケール(1000nm未満のスケール)で亀裂の伝播を抑制できるので、荷重を印加及び除加した場合や熱的な変化を受けた場合における複合体の機械的強度や耐久性を飛躍的に向上させることができる。
According to the present invention, the machine械的high strength, has good reproducibility of the electrical resistance value change against compressive deformation iteration. Further, the addition of the layered inorganic compound particles at a blending ratio of 2 to 20 wt% can obtain the insulation characteristics and improve the tensile strength and durability. Moreover, affinity with the non-conductive elastomer after curing as a layer-like inorganic compound particles and a matrix (base material) is high. Therefore, crack generation in the composite can be inhibited, and even if cracks are generated, propagation of cracks can be suppressed on a molecular scale (scale less than 1 nm) or nanometer scale (scale less than 1000 nm), so a load is applied. In addition, the mechanical strength and durability of the composite can be dramatically improved when it is added or subjected to thermal changes.

請求項の発明によれば、請求項の効果をより向上させることができる。 According to the invention of claim 2 , the effect of claim 1 can be further improved.

請求項の発明によれば、複合体の電気抵抗値がより低くなるので、複合体の電気抵抗値変化の範囲をより広くすることができる。 According to invention of Claim 3 , since the electrical resistance value of a composite_body | complex becomes lower, the range of the electrical resistance value change of a composite_body | complex can be made wider.

請求項の発明によれば、繰り返しの圧縮変形に対する電気抵抗値変化の再現性や引張強度を更に向上させることができる。 According to invention of Claim 4 , the reproducibility and tensile strength of an electrical resistance value change with respect to repeated compression deformation can further be improved.

以下、本発明の実施形態について説明する。
本実施形態に係る感圧導電性エラストマーは、非導電性エラストマー中に、板状、針状、又は繊維状の導電性フィラーと、粒径がナノメーターサイズのセラミック粒子とを分散させたものである。
Hereinafter, embodiments of the present invention will be described.
The pressure-sensitive conductive elastomer according to this embodiment is obtained by dispersing a plate-like, needle-like, or fibrous conductive filler and ceramic particles having a particle size of nanometer in a non-conductive elastomer. is there.

非導電性エラストマーの種類は特に限定されるものではないが、1液型又は2液型の常温硬化シリコーンゴムが好適である。1液型の常温硬化シリコーンゴムとしては、空気中の湿気で加水分解を起こし、硬化(架橋)が進行する縮合型のもの等が挙げられ、オキシム型やアルコール型のもの等を使用することができる。2液型の常温硬化シリコーンゴムとしては、錫(Sn)化合物等の有機金属脂肪酸塩によって常温硬化する縮合型のもの等が挙げられる。   The type of non-conductive elastomer is not particularly limited, but a one-pack type or two-pack type room temperature curing silicone rubber is suitable. Examples of the one-pack type room-temperature-curing silicone rubber include condensation-type ones that undergo hydrolysis by moisture in the air and cure (cross-linking), and oxime-type and alcohol-type ones can be used. it can. Examples of the two-pack type room-temperature-curing silicone rubber include condensation-type ones that are cured at room temperature with an organometallic fatty acid salt such as a tin (Sn) compound.

導電性フィラーとしては、板状、針状、又は繊維状のフィラー(セラミックフィラー、ガラスフィラー、ポリマーフィラー等)の表面に導電性物質(カーボン、金属、導電性セラミック等)をコーティングしたもの等が挙げられる。導電性物質のコーティング方法としては、CVD(chemical vapor deposition,化学的蒸着)、PVD(physical vapor deposition,物理的蒸着)、焼き付け、メッキ、析出、塗布等が挙げられる。セラミックフィラーとしては、マイカ(雲母,弾力に富む六角板状のアルミニウムけい酸塩鉱物)、アルミナ(Al23)、シリカ(SiO2)、サファイヤ、炭化ケイ素(SiC)等が挙げられる。ポリマーフィラーとしては、ポリスチレン、ポリエチレン、エポキシ樹脂、ポリテトラフルオロエチレン等が挙げられる。 Examples of the conductive filler include a plate-like, needle-like, or fibrous filler (ceramic filler, glass filler, polymer filler, etc.) coated with a conductive substance (carbon, metal, conductive ceramic, etc.), etc. Can be mentioned. Examples of the conductive material coating method include CVD (chemical vapor deposition), PVD (physical vapor deposition), baking, plating, deposition, and coating. Examples of the ceramic filler include mica (a mica, a hexagonal plate-like aluminum silicate mineral rich in elasticity), alumina (Al 2 O 3 ), silica (SiO 2 ), sapphire, silicon carbide (SiC), and the like. Examples of the polymer filler include polystyrene, polyethylene, epoxy resin, polytetrafluoroethylene, and the like.

導電性フィラーのサイズ(粒径又は最大長さ)としては、1〜30μmが好適である。これに対し、導電性フィラーのサイズが1μm未満であれば複合体(感圧導電性エラストマー)の電気抵抗値変化が小さくなる一方、30μmを超えれば複合体の繰り返しの圧縮変形に対する電気抵抗値変化の再現性が悪くなるので、いずれの場合も望ましくない。   The size (particle size or maximum length) of the conductive filler is preferably 1 to 30 μm. On the other hand, if the size of the conductive filler is less than 1 μm, the change in the electrical resistance value of the composite (pressure-sensitive conductive elastomer) is small, whereas if it exceeds 30 μm, the change in the electrical resistance value against repeated compression deformation of the composite. In both cases, the reproducibility of the image quality is undesirable.

ここで、導電性フィラーのアスペクト比が2〜30であれば、導電性フィラー同士が接触し易くなるので、複合体の圧縮変形に対する電気抵抗値変化の範囲を広げることができると共に、複合体の機械的強度を高くすることができるという利点がある。これに対し、導電性フィラーのアスペクト比が2未満であれば複合体中における導電性フィラーの配向度が低いために強度の改善ができない一方、30を越えれば複合体の圧縮変形に対する電気抵抗値変化が急激で広い荷重範囲での使用ができないので、いずれの場合も望ましくない。なお、ここでいうアスペクト比とは、板状の導電性フィラーではその厚みに対する等価円直径の比をいい、針状又は繊維状の導電性フィラーではその断面の等価円直径に対する長さの比をいう。   Here, if the aspect ratio of the conductive filler is 2 to 30, the conductive fillers can easily come into contact with each other, so that the range of the electrical resistance value change with respect to the compression deformation of the composite can be expanded, and the composite There is an advantage that the mechanical strength can be increased. On the other hand, if the aspect ratio of the conductive filler is less than 2, the strength cannot be improved due to the low degree of orientation of the conductive filler in the composite, whereas if it exceeds 30, the electrical resistance value against compressive deformation of the composite In either case, the change is abrupt and cannot be used in a wide load range. The aspect ratio here means the ratio of the equivalent circular diameter to the thickness of the plate-like conductive filler, and the ratio of the length to the equivalent circular diameter of the cross-section of the needle-like or fibrous conductive filler. Say.

導電性フィラーの配合割合としては、10〜40wt%が好適である。これに対し、導電性フィラーの配合割合が10wt%未満であれば複合体の電気抵抗値が高くなる一方、40wt%を超えれば複合体の伸びや弾性が低下すると共に、無加圧時の複合体の絶縁性が保たれないので、いずれの場合も望ましくない。なお、導電性フィラーの体積抵抗率が106Ω/cm以下、好ましくは10Ω/cm以下、より好ましくは10-1Ω/cm以下であれば、複合体の電気抵抗値がより低くなるので、複合体の電気抵抗値変化の範囲をより広くできるという利点がある。 The blending ratio of the conductive filler is preferably 10 to 40 wt%. On the other hand, when the blending ratio of the conductive filler is less than 10 wt%, the electrical resistance value of the composite increases, whereas when it exceeds 40 wt%, the elongation and elasticity of the composite decrease and the composite without pressure is applied. In any case, it is not desirable because the insulation of the body is not maintained. In addition, if the volume resistivity of the conductive filler is 10 6 Ω / cm or less, preferably 10 Ω / cm or less, more preferably 10 −1 Ω / cm or less, the electrical resistance value of the composite becomes lower. There is an advantage that the range of change in the electrical resistance value of the composite can be made wider.

セラミック粒子としては、粒径がナノメーターサイズの等軸状セラミック粒子、板状セラミック結晶、針状セラミック結晶、セラミック単結晶粒子、セラミック多結晶粒子、造粒セラミック粉体、セラミック顆粒、後述する層状無機化合物粒子等が挙げられる。   Ceramic particles include nanometer-sized equiaxed ceramic particles, plate-shaped ceramic crystals, needle-shaped ceramic crystals, ceramic single crystal particles, ceramic polycrystalline particles, granulated ceramic powder, ceramic granules, and a layered form described later. Examples include inorganic compound particles.

セラミック粒子の粒径としては、5〜100nmが好適である。これに対し、セラミック粒子の粒径が5nm未満であればセラミック粒子の均一分散が困難になると共に、複合体の電気抵抗値変化が小さくなる一方、100nmを超えれば複合体の繰り返しの圧縮変形に対する電気抵抗値変化の再現性が悪くなるので、いずれの場合も望ましくない。   The particle size of the ceramic particles is preferably 5 to 100 nm. On the other hand, if the particle size of the ceramic particles is less than 5 nm, uniform dispersion of the ceramic particles becomes difficult and the change in the electric resistance value of the composite is reduced. On the other hand, if the particle size exceeds 100 nm, the composite is repeatedly compressed and deformed. In any case, the reproducibility of the change in the electric resistance value is deteriorated.

セラミック粒子の配合割合としては、2〜20wt%が好適である。これに対し、セラミック粒子の配合割合が2wt%未満であれば複合体の電気抵抗値が低くなると共に、複合体の強度を高くすることができないために繰り返しの圧縮変形に対する電気抵抗値変化の再現性が悪くなる一方、20wt%を超えれば複合体の伸びや弾性が低下するので、いずれの場合も望ましくない。   The mixing ratio of the ceramic particles is preferably 2 to 20 wt%. On the other hand, if the blending ratio of the ceramic particles is less than 2 wt%, the electrical resistance value of the composite is lowered and the strength of the composite cannot be increased, so that the electrical resistance value change due to repeated compression deformation is reproduced. On the other hand, if it exceeds 20 wt%, the elongation and elasticity of the composite will be lowered, so that it is not desirable in either case.

このように、板状、針状、又は繊維状の導電性フィラーを用いれば、複合体中の導電パスが生じ易くなるので、複合体の電気抵抗値変化の範囲を広げることができる。また、導電性フィラーの他に粒径がナノメーターサイズのセラミック粒子も配合しておけば、導電性フィラーが均一に分散すると共に、複合体の機械的強度も高くなる。そのため、このような感圧導電性エラストマーによれば、機械的強度が高く、繰り返しの圧縮変形に対する電気抵抗値変化の再現性が良好であるという利点がある。   As described above, if a plate-like, needle-like, or fibrous conductive filler is used, a conductive path in the composite is easily generated, and thus the range of change in the electrical resistance value of the composite can be expanded. If ceramic particles having a particle size of nanometer in addition to the conductive filler are blended, the conductive filler is uniformly dispersed and the mechanical strength of the composite is increased. Therefore, according to such a pressure-sensitive conductive elastomer, there is an advantage that the mechanical strength is high and the reproducibility of the change in electric resistance value with respect to repeated compression deformation is good.

ここで、セラミック粒子が極めて大きい表面積を有する層状無機化合物粒子であれば、少量の添加で絶縁特性が得られると共に、引張強度や耐久性を向上させることができるという利点がある。このような層状無機化合物粒子としては、粘土鉱物(モンモリロナイト、スメクタイト、ハイドロタルサイト、バイデライト、ノントロナイト、ヘクトライト、サボナイト、ソーコナイト、スチブンサイト、ベントナイト、雲母鉱物、チタン酸化合物等)等が挙げられる。   Here, if the ceramic particles are layered inorganic compound particles having an extremely large surface area, there are advantages that insulation properties can be obtained with a small amount of addition, and tensile strength and durability can be improved. Examples of such layered inorganic compound particles include clay minerals (montmorillonite, smectite, hydrotalcite, beidellite, nontronite, hectorite, saponite, soconite, stevensite, bentonite, mica mineral, titanic acid compound, etc.). .

また、有機化合物をインターカレートした層状無機化合物粒子を配合すれば、層状無機化合物粒子とマトリックス(母材)としての硬化後の非導電性エラストマーとの親和性が高くなる。そのため、複合体中における亀裂生成を阻害できると共に、仮に亀裂が生成したとしても分子スケール又はナノメータースケールで亀裂の伝播を抑制できるので、荷重を印加及び除加した場合や熱的な変化を受けた場合における複合体の機械的強度や耐久性を飛躍的に向上させることができるという利点がある。   In addition, if layered inorganic compound particles intercalated with an organic compound are blended, the affinity between the layered inorganic compound particles and the non-conductive elastomer after curing as a matrix (base material) increases. Therefore, crack generation in the composite can be inhibited, and even if cracks are generated, propagation of cracks can be suppressed on a molecular scale or nanometer scale. There is an advantage that the mechanical strength and durability of the composite can be dramatically improved.

有機化合物としては、炭素数6以上のアルキル基を有しかつ末端にイオン化可能な極性基(アミノ基、ヒドロキシ基、カルボキシル基、アルデヒド基等)を有するアミン、アルコール、カルボン酸、アルデヒド等が挙げられる。層状無機化合物粒子に有機化合物をインターカレートする方法としては、層状無機化合物粒子の懸濁液に有機化合物を添加、溶解させて所定時間撹拌する方法等が挙げられる。この場合、混合液に超音波を照射しながら撹拌すれば、より効率良くインターカレートできるという利点がある。   Examples of the organic compound include amines, alcohols, carboxylic acids, aldehydes, etc., having an alkyl group having 6 or more carbon atoms and having a polar group (amino group, hydroxy group, carboxyl group, aldehyde group, etc.) that can be ionized at the terminal. It is done. Examples of the method of intercalating the organic compound into the layered inorganic compound particles include a method of adding and dissolving the organic compound in the suspension of the layered inorganic compound particles and stirring for a predetermined time. In this case, there is an advantage that intercalation can be performed more efficiently if the mixture is stirred while irradiating ultrasonic waves.

更に、有機化合物及び硬化(架橋)前の非導電性エラストマーをインターカレートした層状無機化合物粒子を配合すれば、より効果的である。有機化合物及び硬化前の非導電性エラストマーをインターカレートする方法としては、上記のようにして有機化合物をあらかじめインターカレートしておいた層状無機化合物粒子を硬化前の非導電性エラストマーの溶液に添加し、この混合液を所定時間撹拌する方法等が挙げられる。この場合、混合液に超音波を照射しながら撹拌すれば、上記と同様、より効率良くインターカレートできるという利点がある。   Furthermore, it is more effective if layered inorganic compound particles intercalated with an organic compound and a non-conductive elastomer before curing (crosslinking) are blended. As a method for intercalating the organic compound and the non-conductive elastomer before curing, the layered inorganic compound particles in which the organic compound is pre-intercalated as described above are added to the non-conductive elastomer solution before curing. The method of adding and stirring this liquid mixture for a predetermined time etc. are mentioned. In this case, if the mixture is stirred while irradiating with ultrasonic waves, there is an advantage that the intercalation can be performed more efficiently as described above.

加えて、導電性フィラーの面方向又は長さ方向を、シート状に形成された非導電性エラストマーの面方向に対して略平行に配向させておけば、繰り返しの圧縮変形に対する電気抵抗値変化の再現性や引張強度を更に向上させることができるという利点がある。導電性フィラーの面方向又は長さ方向を非導電性エラストマーの面方向に対して略平行に配向させる方法としては、カレンダー成形等により複合体を所定厚さのシート状に圧延する方法等が挙げられる。   In addition, if the surface direction or length direction of the conductive filler is oriented substantially parallel to the surface direction of the non-conductive elastomer formed in a sheet shape, the electric resistance value changes due to repeated compression deformation. There is an advantage that reproducibility and tensile strength can be further improved. Examples of the method of orienting the surface direction or length direction of the conductive filler substantially parallel to the surface direction of the non-conductive elastomer include a method of rolling the composite into a sheet having a predetermined thickness by calendar molding or the like. It is done.

次に、本発明の実施例について説明する。
非導電性エラストマーとしては、1液型の常温硬化シリコーンゴム(信越化学工業株式会社製,KE−445)を用いた。導電性フィラーとしては、板状の導電性セラミック粉末(大塚化学株式会社製,BK400M,サイズ:3〜8μm,平均アスペクト比:2.7)を用いた。セラミック粒子としては、ヘキサデシルアミンをインターカレートしたモンモリロナイト粉末(クニミネ工業株式会社製,クニピアF,平均2次粒子径:5μm)を用いた。
Next, examples of the present invention will be described.
As the non-conductive elastomer, one-pack type room temperature curing silicone rubber (manufactured by Shin-Etsu Chemical Co., Ltd., KE-445) was used. As the conductive filler, a plate-shaped conductive ceramic powder (manufactured by Otsuka Chemical Co., Ltd., BK400M, size: 3 to 8 μm, average aspect ratio: 2.7) was used. As the ceramic particles, montmorillonite powder intercalated with hexadecylamine (Kunimine Industries, Ltd., Kunipia F, average secondary particle size: 5 μm) was used.

感圧導電性エラストマーの作製に際しては、まず、硬化前の非導電性エラストマーを表1の配合量でヘキサン溶媒に溶かして非導電性エラストマー溶液とし、これに導電性フィラーやセラミック粒子を表1の割合で配合し、混合機で充分に混合した。   In preparing the pressure-sensitive conductive elastomer, first, the non-conductive elastomer before curing is dissolved in a hexane solvent at the blending amount shown in Table 1 to obtain a non-conductive elastomer solution. It mix | blended in the ratio and mixed thoroughly with the mixer.

Figure 0004517225
Figure 0004517225

次いで、混合物に超音波(振動数:22.9kHz,2時間)を照射して硬化前の非導電性エラストマーをセラミック粒子にインターカレートしながらエバポレーションによりヘキサン溶媒を留去し、充分に脱泡した。脱泡後の混合物をカレンダー成形機により圧延し、その圧延物を室温で24時間放置して硬化させ、厚さ1mmの感圧導電性エラストマーシートを作製した。   Next, the mixture is irradiated with ultrasonic waves (frequency: 22.9 kHz, 2 hours) to evaporate the hexane solvent by evaporation while intercalating the non-conductive elastomer before curing into the ceramic particles, and the mixture is sufficiently removed. Foamed. The defoamed mixture was rolled by a calendering machine, and the rolled product was allowed to stand at room temperature for 24 hours to be cured to produce a pressure-sensitive conductive elastomer sheet having a thickness of 1 mm.

得られた感圧導電性エラストマーシートから5mm×5mm角(面積:25mm2)の角形シートを切り取り、繰り返し(2〜10回)の圧縮変形に対する電気抵抗値変化特性(F−R特性)を調べた。その結果を図1に示す。なお、電気抵抗値の測定に際しては、1対の電極を上面に有する電極基板上に角形シートを載置し、更にその上をゴムカバーで覆うことにより、角形シートの上面全体に負荷(荷重)が加わるようにした。 A 5 mm × 5 mm square (area: 25 mm 2 ) square sheet is cut out from the obtained pressure-sensitive conductive elastomer sheet, and the electrical resistance value change characteristic (FR characteristic) against repeated (2 to 10 times) compression deformation is examined. It was. The result is shown in FIG. In measuring the electrical resistance value, a square sheet is placed on an electrode substrate having a pair of electrodes on the upper surface, and further covered with a rubber cover, so that a load (load) is applied to the entire upper surface of the square sheet. Was added.

更に、繰り返し(2000回、20000回、100000回、200000回)の圧縮変形に対する電気抵抗値変化特性(耐久特性)を調べた。その結果を図2に示す。なお、圧縮サイクルは、3000gfの負荷を1秒−ON(印加)、1秒−OFF(除加)のサイクルとした。   Furthermore, the electrical resistance value change characteristic (durability characteristic) with respect to repeated compression deformation (2000 times, 20000 times, 100000 times, 200000 times) was examined. The result is shown in FIG. The compression cycle was a load of 3000 gf with a cycle of 1 second-ON (application) and 1 second-OFF (addition).

次に、得られた感圧導電性エラストマーシートの機械的特性(引張強度、伸び率、硬度)を調べた。その結果を表2に示す。   Next, the mechanical properties (tensile strength, elongation rate, hardness) of the obtained pressure-sensitive conductive elastomer sheet were examined. The results are shown in Table 2.

Figure 0004517225
Figure 0004517225

〔比較例1〕
導電性フィラーとしてカーボンブラック粒子(日本カーボン株式会社製,粒径:1〜10μm,平均粒径:5μm)を用い、セラミック粒子の代わりにシリコーンゴム粒子(東レダウコウニング株式会社製,粒径:20〜120μm,平均粒径:70μm)を用いた他は、実施例と同様の操作を行った。その結果を図3、図4、及び表2に示す。なお、耐久特性については、繰り返し回数を4000回と17000回とした。
[Comparative Example 1]
Carbon black particles (manufactured by Nippon Carbon Co., Ltd., particle size: 1 to 10 μm, average particle size: 5 μm) are used as the conductive filler, and silicone rubber particles (manufactured by Toray Dow Corning Co., Ltd., particle size: The same operation as in the example was performed except that 20 to 120 μm and an average particle size: 70 μm) were used. The results are shown in FIGS. 3 and 4 and Table 2. In addition, about durability characteristics, the repetition frequency was 4000 times and 17000 times.

図1〜図4から明らかなように、比較例1では圧縮変形の回数による電気抵抗値変化特性のばらつきが大きいのに対し、実施例ではそのばらつきが小さく、繰り返しの圧縮変形に対する電気抵抗値変化の再現性(ヒステリシス)や耐久性が良好であることが分かる。また、表2から明らかなように、実施例の引張強度や伸び率は比較例1よりも向上していることが分かる。   As apparent from FIGS. 1 to 4, the variation in the electrical resistance value change characteristic due to the number of compression deformations is large in Comparative Example 1, whereas the variation is small in the example, and the electrical resistance value change due to repeated compression deformations. It can be seen that the reproducibility (hysteresis) and durability are good. Further, as is apparent from Table 2, it can be seen that the tensile strength and the elongation rate of the examples are higher than those of Comparative Example 1.

〔比較例2〕
導電性フィラーとして針状の導電性セラミック粉末(大塚化学株式会社製,BK400W,サイズ(長さ):10〜20μm,平均アスペクト比:43)を用い、セラミック粒子を添加しない他は、実施例と同様にして繰り返し(2〜10回)の圧縮変形に対する電気抵抗値変化特性(F−R特性)を調べた。その結果を図5及び表2に示す。
[Comparative Example 2]
Except for using a needle-shaped conductive ceramic powder (manufactured by Otsuka Chemical Co., Ltd., BK400W, size (length): 10 to 20 μm, average aspect ratio: 43) as the conductive filler, and without adding ceramic particles, Similarly, the electrical resistance value change characteristic (FR characteristic) with respect to repeated (2 to 10 times) compression deformation was examined. The results are shown in FIG.

図5及び図1から明らかなように、比較例2では圧縮変形の回数による電気抵抗値変化特性のばらつきが大きく、高い荷重値において圧縮変形の増大に伴う電気抵抗値の低下が認められないのに対し、実施例ではそのばらつきが小さく、繰り返しの圧縮変形に対する電気抵抗値変化の再現性や高い荷重値における電気抵抗値変化の度合いが良好であることが分かる。また、表2から明らかなように、伸び率は実施例よりも比較例2の方がわずかに高いものの、実施例の強度及び硬度は比較例2よりも向上していることが分かる。   As apparent from FIGS. 5 and 1, in Comparative Example 2, the variation in the electrical resistance value variation characteristic due to the number of compression deformations is large, and a decrease in the electrical resistance value accompanying an increase in compression deformation is not observed at high load values. On the other hand, in the examples, the variation is small, and it can be seen that the reproducibility of the change in the electric resistance value due to repeated compression deformation and the degree of the change in the electric resistance value at a high load value are good. Further, as apparent from Table 2, although the elongation rate is slightly higher in Comparative Example 2 than in Example, it can be seen that the strength and hardness of Example are improved as compared with Comparative Example 2.

以上のように、本発明の感圧導電性エラストマーは、無加圧・無変形状態では高い電気抵抗値を示し、圧縮変形時の荷重の増加に従って電気抵抗値が減少して導電性を示す感圧導電性センサとして有用であり、特に、板状、針状、又は繊維状の導電性フィラーの他に粒径がナノメーターサイズのセラミック粒子も添加することにより、高い機械的強度と繰り返し圧縮変形に対する電気抵抗値変化の良好な再現性(信頼性)を与えるのに適している。   As described above, the pressure-sensitive conductive elastomer of the present invention exhibits a high electric resistance value in a non-pressurized and non-deformed state, and the electric resistance value decreases as the load during compression deformation increases and exhibits a conductive property. It is useful as a pressure-conducting sensor. Especially, by adding ceramic particles with a particle size of nanometer in addition to plate-like, needle-like or fibrous conductive fillers, high mechanical strength and repeated compression deformation It is suitable for giving good reproducibility (reliability) of the electric resistance value change with respect to.

実施例における繰り返しの圧縮変形に対する電気抵抗値変化特性を表すグラフ。The graph showing the electrical resistance value change characteristic with respect to the repeated compression deformation in an Example. 実施例における繰り返しの圧縮変形に対する電気抵抗値変化特性(耐久特性)を表すグラフ。The graph showing the electrical resistance value change characteristic (durability characteristic) with respect to the repeated compression deformation in an Example. 比較例1における繰り返しの圧縮変形に対する電気抵抗値変化特性を表すグラフ。The graph showing the electrical resistance value change characteristic with respect to the repeated compression deformation in the comparative example 1. FIG. 比較例1における繰り返しの圧縮変形に対する電気抵抗値変化特性(耐久特性)を表すグラフ。The graph showing the electrical resistance value change characteristic (durability characteristic) with respect to the repeated compression deformation in the comparative example 1. FIG. 比較例2における繰り返しの圧縮変形に対する電気抵抗値変化特性を表すグラフ。The graph showing the electrical resistance value change characteristic with respect to the repeated compression deformation in the comparative example 2. FIG.

Claims (4)

無加圧・無変形状態では高い電気抵抗値を示し、圧縮変形時の荷重の増加に従って電気抵抗が減少して導電性を示す感圧導電性エラストマーであって、
非導電性エラストマー中に、10〜40wt%の配合割合で板状、針状、又は繊維状の導電性フィラーと、2〜20wt%の配合割合で有機化合物をインターカレートした層状無機化合物粒子であり粒径が5〜100nmのセラミック粒子とを分散させたことを特徴とする感圧導電性エラストマー。
A pressure-sensitive conductive elastomer that exhibits a high electrical resistance value in a non-pressurized / non-deformed state, and exhibits electrical conductivity by decreasing its electrical resistance with increasing load during compression deformation,
During the non-conductive elastomer, plate the proportions of 10 to 40 wt%, acicular, or a conductive filler fibrous organic compound in proportion of 2 to 20 wt% with intercalated layered inorganic compound particles A pressure-sensitive conductive elastomer in which ceramic particles having a particle diameter of 5 to 100 nm are dispersed.
前記層状無機化合物粒子は、有機化合物及び硬化前の非導電性エラストマーをインターカレートした層状無機化合物粒子である請求項1記載の感圧導電性エラストマー。   The pressure-sensitive conductive elastomer according to claim 1, wherein the layered inorganic compound particles are layered inorganic compound particles obtained by intercalating an organic compound and a non-conductive elastomer before curing. 前記導電性フィラーの体積抵抗率は10Ω/cm以下である請求項1又は2記載の感圧導電性エラストマー。 The pressure-sensitive conductive elastomer according to claim 1 or 2, wherein the conductive filler has a volume resistivity of 10 6 Ω / cm or less. 前記導電性フィラーは、その面方向又は長さ方向を、シート状に形成された非導電性エラストマーの面方向に対して略平行に配向させたものである請求項1から3のいずれか記載の感圧導電性エラストマー。   4. The conductive filler according to claim 1, wherein a surface direction or a length direction of the conductive filler is oriented substantially parallel to a surface direction of a non-conductive elastomer formed in a sheet shape. 5. Pressure sensitive conductive elastomer.
JP2004175124A 2004-06-14 2004-06-14 Pressure sensitive conductive elastomer Expired - Lifetime JP4517225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004175124A JP4517225B2 (en) 2004-06-14 2004-06-14 Pressure sensitive conductive elastomer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004175124A JP4517225B2 (en) 2004-06-14 2004-06-14 Pressure sensitive conductive elastomer

Publications (2)

Publication Number Publication Date
JP2005350614A JP2005350614A (en) 2005-12-22
JP4517225B2 true JP4517225B2 (en) 2010-08-04

Family

ID=35585355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004175124A Expired - Lifetime JP4517225B2 (en) 2004-06-14 2004-06-14 Pressure sensitive conductive elastomer

Country Status (1)

Country Link
JP (1) JP4517225B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049605A1 (en) 2017-09-06 2019-03-14 シンジーテック株式会社 Pressure-sensitive elastomer porous body

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4630964B2 (en) * 2006-02-16 2011-02-09 国立大学法人長岡技術科学大学 Pressure sensitive conductive elastomer
US9018030B2 (en) 2008-03-20 2015-04-28 Symbol Technologies, Inc. Transparent force sensor and method of fabrication
US20120073388A1 (en) * 2009-05-22 2012-03-29 University Of New Brunswick Force sensing compositions, devices and methods
US8988191B2 (en) 2009-08-27 2015-03-24 Symbol Technologies, Inc. Systems and methods for pressure-based authentication of an input on a touch screen
US8963874B2 (en) 2010-07-31 2015-02-24 Symbol Technologies, Inc. Touch screen rendering system and method of operation thereof
US9043004B2 (en) 2012-12-13 2015-05-26 Nike, Inc. Apparel having sensor system
JP6502767B2 (en) * 2015-06-30 2019-04-17 住友理工株式会社 Pressure sensitive conductive elastomer composition and pressure sensitive conductive elastomer crosslinked product

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02186604A (en) * 1986-11-20 1990-07-20 Yokohama Rubber Co Ltd:The Pressure-sensitive resistance changing type conductive composition
JPH0790236A (en) * 1993-09-24 1995-04-04 Soken Kagaku Kk Adhesive having anisotropic conductivity
JP2000299016A (en) * 1999-04-15 2000-10-24 Koichi Niihara Deformed conductive elastomer and its manufacture
WO2003002682A1 (en) * 2001-06-29 2003-01-09 3M Innovative Properties Company Devices, compositions, and methods incorporating adhesives whose preformance is enhanced by organophilic clay constituents

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02186604A (en) * 1986-11-20 1990-07-20 Yokohama Rubber Co Ltd:The Pressure-sensitive resistance changing type conductive composition
JPH0790236A (en) * 1993-09-24 1995-04-04 Soken Kagaku Kk Adhesive having anisotropic conductivity
JP2000299016A (en) * 1999-04-15 2000-10-24 Koichi Niihara Deformed conductive elastomer and its manufacture
WO2003002682A1 (en) * 2001-06-29 2003-01-09 3M Innovative Properties Company Devices, compositions, and methods incorporating adhesives whose preformance is enhanced by organophilic clay constituents

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049605A1 (en) 2017-09-06 2019-03-14 シンジーテック株式会社 Pressure-sensitive elastomer porous body

Also Published As

Publication number Publication date
JP2005350614A (en) 2005-12-22

Similar Documents

Publication Publication Date Title
Naguib et al. Ti 3 C 2 T x (MXene)–polyacrylamide nanocomposite films
JP6682644B2 (en) Boron nitride lump particles, method for producing the same, and heat conductive resin composition using the same
TWI700243B (en) Hexagonal boron nitride powder, its manufacturing method, and its composition and heat dissipation material
Konishi et al. Nanoparticle induced network self-assembly in polymer–carbon black composites
TWI715729B (en) Hexagonal boron nitride powder, its manufacturing method, resin composition and resin sheet
Zheng et al. Electrical conductivity and dielectric properties of PMMA/expanded graphite composites
CN105026312B (en) Boron nitride powder and the resin combination containing the boron nitride powder
JP4655252B2 (en) Method for producing modified conductive elastomer
KR20140103256A (en) Anisotropic thermally conductive composition and molded article thereof
JP4517225B2 (en) Pressure sensitive conductive elastomer
JP5761111B2 (en) Insulating heat dissipation sheet and method for granulating boron nitride
JP2013122003A (en) Heat conductive filler and manufacturing method thereof
US11643554B2 (en) Composite resin granules and method for producing the same, and thermally conductive resin molded body using composite resin granules and method for producing thermally conductive resin molded body
JP5630596B2 (en) Conductive particle powder
Nayak et al. Polydimethylsiloxane–PbZr0. 52Ti0. 48O3 nanocomposites with high permittivity: Effect of poling and temperature on dielectric properties
CN1183557C (en) Organic positive temperature coefficient thermal sensitive resistor and its producing method
JP4630964B2 (en) Pressure sensitive conductive elastomer
Kumar et al. Conductive films of sonicated multiwall carbon nanotubes on stretchable substrates
Zhang et al. Synthesize procedures, mechanical and electrical properties of poly (vinylidene fluoride) nanocomposite thin films containing multiwalled carbon nanotubes
Liu et al. Effect of Al 2 O 3-coated SiO 2 on properties of Al 2 O 3-coated SiO 2/PI composite films
CN110144067B (en) Preparation method of heat-conducting composite material of natural rubber
JP2005060204A (en) Conductive material-covered expanded graphite, graphite based conductive filler, conductive rubber material, rubber molding and method for producing rubber molding
CN108841179A (en) A kind of liquid heat conductive formed body for electric vehicle component
US9786407B1 (en) Highly conductive graphene-based polymer composite
JP2005053752A (en) Modified graphite particle and paint with which the modified graphite particle is compounded

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4517225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term