JP4507901B2 - Exhaust gas purification system and exhaust gas purification method thereof - Google Patents
Exhaust gas purification system and exhaust gas purification method thereof Download PDFInfo
- Publication number
- JP4507901B2 JP4507901B2 JP2005030130A JP2005030130A JP4507901B2 JP 4507901 B2 JP4507901 B2 JP 4507901B2 JP 2005030130 A JP2005030130 A JP 2005030130A JP 2005030130 A JP2005030130 A JP 2005030130A JP 4507901 B2 JP4507901 B2 JP 4507901B2
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- urea
- gas purification
- catalyst
- purification system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Exhaust Gas After Treatment (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Treating Waste Gases (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Description
本発明は、内燃機関の排気ガス中の窒素酸化物を浄化するために、選択還元型NOx触媒を備えた排気ガス浄化システム及びその排気ガス浄化方法に関する。 The present invention relates to an exhaust gas purification system including a selective reduction type NOx catalyst for purifying nitrogen oxide in exhaust gas of an internal combustion engine, and an exhaust gas purification method thereof.
ディーゼルエンジン及びリーンバーンガソリンエンジン等の内燃機関に使用される排気ガス浄化装置に関して、種々の研究及び開発が進められており、排気ガス中の窒素酸化物(NOx)を浄化するために、選択還元型NOx触媒(SCR(Selective Catalytic Reduction)触媒) 等が提案されている。 Various studies and developments have been made on exhaust gas purification devices used in internal combustion engines such as diesel engines and lean burn gasoline engines, and selective reduction is performed to purify nitrogen oxides (NOx) in the exhaust gas. Type NOx catalyst (SCR (Selective Catalytic Reduction) catalyst) and the like have been proposed.
この選択還元型NOx触媒は、コージェライトや酸化アルミニウムや酸化チタン等で形成されるハニカム構造の担持体(触媒構造体)に、チタニアーバナジウム、ゼオライト、酸化クロム、酸化マンガン、酸化モリブデン、酸化チタン、酸化タングステン等を担持して形成される。 This selective reduction type NOx catalyst is made of titania-vanadium, zeolite, chromium oxide, manganese oxide, molybdenum oxide, titanium oxide on a honeycomb structure carrier (catalyst structure) formed of cordierite, aluminum oxide, titanium oxide or the like. Further, it is formed by supporting tungsten oxide or the like.
この選択還元型NOx触媒を備えた排気ガス浄化システムでは、酸素過剰の雰囲気で、排気管内に液体アンモニアやアンモニア水や尿素水等の還元剤を噴射して、アンモニア(NH3 )を供給し、排気ガス中のNOxに対してアンモニアと選択的に反応させることにより、NOxを還元している(例えば、特許文献1〜3参照。)。
In the exhaust gas purification system equipped with this selective reduction type NOx catalyst, in an oxygen-excess atmosphere, a reducing agent such as liquid ammonia, ammonia water or urea water is injected into the exhaust pipe to supply ammonia (NH 3 ), NOx is reduced by selectively reacting with NOx in the exhaust gas with ammonia (see, for example,
そして、液体アンモニアやアンモニア水は毒性が強く注意深い取り扱いが必要であるので、比較的取り扱いが容易な尿素水が用いられており、この尿素を加水分解や熱分解してアンモニアを生成させ、この生成したアンモニアでNOxを還元している。 Since liquid ammonia and aqueous ammonia are highly toxic and require careful handling, urea water, which is relatively easy to handle, is used. This urea is hydrolyzed and thermally decomposed to produce ammonia, which is then generated. NOx is reduced with the ammonia.
しかしながら、この尿素水を使用する場合においては、次のような問題がある。排気管内に尿素が供給された後、選択還元型NOx触媒に到達するまでの間に、尿素からアンモニアになる量が少なく、即ち、アンモニア生成率が低いため、NOxの浄化率が低くなってしまう。これを避けようとすると、尿素供給位置から選択還元型NOx触媒までの距離を大きくすると排気ガス浄化装置の排気管への配置が難しくなり、排気ガス温度も低下するという問題が生じる。 However, when this urea water is used, there are the following problems. After urea is supplied into the exhaust pipe and before reaching the selective reduction type NOx catalyst, the amount of ammonia converted into ammonia is small, that is, the ammonia production rate is low, so the NOx purification rate is low. . In order to avoid this, if the distance from the urea supply position to the selective reduction type NOx catalyst is increased, it becomes difficult to dispose the exhaust gas purification device in the exhaust pipe, and the exhaust gas temperature also decreases.
特に、排気ガスが、所定の温度(150℃〜170℃程度)以下ではアンモニア生成率が低いため、尿素水を供給しても、選択還元型NOx触媒のNOx浄化率が低くなってしまうだけでなく、未反応の尿素が大気中に放出されてしまう。そのため、従来技術においては、この排気ガス温度が低い領域におけるNOxの浄化を諦めて、尿素の供給を停止して、未反応の尿素が大気中に放出されるのを防止している。 In particular, when the exhaust gas is below a predetermined temperature (about 150 ° C. to 170 ° C.), the ammonia production rate is low, so even if urea water is supplied, the NOx purification rate of the selective reduction type NOx catalyst only becomes low. And unreacted urea is released into the atmosphere. Therefore, in the prior art, NOx purification in the region where the exhaust gas temperature is low is given up and urea supply is stopped to prevent unreacted urea from being released into the atmosphere.
また、低温におけるアンモニア生成率を向上するために、アルミナ、チタニア、シリカ、ジルコニア、ゼオライト等の加水分解触媒を、選択還元型NOx触媒の上流側に設置したり、加水分解触媒とヒーター加熱との組み合わせ等の対策が講じられている(例えば、特許文献4参照。)。 In addition, in order to improve the ammonia production rate at low temperature, a hydrolysis catalyst such as alumina, titania, silica, zirconia, zeolite or the like is installed on the upstream side of the selective reduction type NOx catalyst, or between the hydrolysis catalyst and heater heating. Measures such as a combination are taken (for example, see Patent Document 4).
更に、選択還元型NOx触媒の表面にアンモニアを吸着させる方法も試みられているが、アンモニアの吸着量が限られるため、効果を持続できないという問題がある。 Furthermore, although a method of adsorbing ammonia on the surface of the selective reduction type NOx catalyst has been tried, there is a problem that the effect cannot be sustained because the amount of adsorption of ammonia is limited.
一方、本発明者は、担持体を形成する材料として用いている窒化ケイ素が、100℃〜150℃の低温時においても、尿素の加水分解反応の促進に大きな効果をあげることができるとの知見を本発明者らの実験から得た。また、この窒化ケイ素に酸化チタン等の水分吸着物質を加えると更に加水分解を促進することができるとの知見を同じく本発明者らの実験から得た。
本発明は、上記の知見を得て、上記の問題を解決するためになされたものであり、その目的は、選択還元NOx触媒を備えた排気ガス浄化システムにおいて、排気ガスの100℃〜150℃の排気ガス低温時においても、NOx浄化率を向上することができる排気ガス浄化システム及びその排気ガス浄化方法を提供することにある。 The present invention has been made to solve the above-mentioned problems by obtaining the above knowledge, and the object thereof is an exhaust gas purification system equipped with a selective reduction NOx catalyst. Another object of the present invention is to provide an exhaust gas purification system and an exhaust gas purification method thereof that can improve the NOx purification rate even at low exhaust gas temperatures.
上記の目的を達成するための排気ガス浄化システムは、排気ガス通路に、上流側から順に尿素供給ノズルと尿素加水分解触媒と選択還元型NOx触媒を配設した排気ガス浄化システムにおいて、前記尿素加水分解触媒の排気ガスとの接触面に窒化ケイ素面を形成して構成される。 An exhaust gas purification system for achieving the above object is the exhaust gas purification system in which a urea supply nozzle, a urea hydrolysis catalyst, and a selective reduction type NOx catalyst are arranged in the exhaust gas passage in order from the upstream side. A silicon nitride surface is formed on the contact surface of the cracking catalyst with the exhaust gas.
この構成によれば、窒化ケイ素面を、低温における反応促進効果が大きい尿素加水分解触媒の排気ガスとの接触面に形成することにより、従来の加水分解触媒では尿素加水分解反応率が低かった100℃〜150℃の範囲においても、尿素を加水分解してアンモニアを生成することができるようになり、選択還元型NOx触媒におけるNOx浄化率を向上することができる。つまり、尿素の加水分解反応((NH2)2 CO+H20→2NH3+CO2)を促進することができる。
According to this configuration, by forming the silicon nitride surface on the contact surface with the exhaust gas of the urea hydrolysis catalyst having a large reaction promoting effect at a low temperature, the conventional hydrolysis catalyst has a low urea hydrolysis reaction rate. Even in the range of from 150 ° C. to 150 ° C., urea can be hydrolyzed to generate ammonia, and the NOx purification rate in the selective reduction type NOx catalyst can be improved. That is, the hydrolysis reaction of urea ((NH 2 ) 2 CO +
そして、上記の排気ガスシステムにおいて、前記尿素加水分解触媒に水分吸着物質を備えて構成する。この構成により、尿素の分解を促進する水分を尿素加水分解触媒に吸着して、尿素と水分との接触確率を高めることができるので、尿素加水分解反応の促進に加え、更に、水分の吸着により、(6H2 O+Si3 N4 →3SiO2 +4NH3 )等の反応が促進されるので、アンモニア(NH3 )の発生率が高くなる。特に、100℃〜200℃ではこの後者の反応が進み易くなる。 In the above exhaust gas system, the urea hydrolysis catalyst is provided with a moisture adsorbing substance. With this configuration, moisture that promotes the decomposition of urea can be adsorbed to the urea hydrolysis catalyst and the contact probability between urea and moisture can be increased. Therefore, in addition to the promotion of the urea hydrolysis reaction, , (6H 2 O + Si 3 N 4 → 3SiO 2 + 4NH 3 ) and the like are promoted, so that the generation rate of ammonia (NH 3 ) is increased. In particular, the latter reaction is likely to proceed at 100 ° C. to 200 ° C.
また、上記の排気ガス浄化システムにおいて、前記尿素加水分解触媒に流入する排気ガス温度が100℃〜150℃の範囲においても、前記尿素供給ノズルからの尿素の供給を停止することなく、尿素を供給する制御を行うNOx浄化制御手段を備えて構成する。 In the exhaust gas purification system, urea is supplied without stopping the urea supply from the urea supply nozzle even when the temperature of the exhaust gas flowing into the urea hydrolysis catalyst is in the range of 100 ° C to 150 ° C. And NOx purification control means for performing the control.
なお、排気ガスの温度が150℃以上の場合には、従来の選択還元型NOx触媒を備えた排気ガス浄化システムと同様に、尿素供給ノズルからの尿素を供給する制御を行う。言い換えれば、本発明では、尿素供給ノズルから尿素を供給する排気ガスの温度範囲の下限温度を100℃まで下げた制御を行う。そして、この尿素の供給範囲を100℃まで低下させても、窒化ケイ素の尿素加水分解反応により、アンモニア生成率及びNOx浄化率が向上しているので、NOxを浄化できるとともに、供給した尿素が未反応のまま排出されるのを防止できる。 When the temperature of the exhaust gas is 150 ° C. or higher, the control for supplying urea from the urea supply nozzle is performed as in the exhaust gas purification system provided with the conventional selective reduction type NOx catalyst. In other words, in the present invention, control is performed by lowering the lower limit temperature of the exhaust gas temperature range for supplying urea from the urea supply nozzle to 100 ° C. Even if the urea supply range is lowered to 100 ° C., the urea generation reaction of silicon nitride improves the ammonia production rate and the NOx purification rate. It is possible to prevent the reaction from being discharged.
また、上記の排気ガス浄化システムにおいて、前記尿素加水分解触媒に水分吸着物質を備えて構成する。この水分吸着物質として酸化チタン(TiO2 )を用いる。 In the above exhaust gas purification system, the urea hydrolysis catalyst is provided with a moisture adsorbing substance. Titanium oxide (TiO 2 ) is used as the moisture adsorbing substance.
また、上記の排気ガス浄化システムにおいて、前記尿素加水分解触媒の触媒構造体を窒化ケイ素で形成する。又は、前記尿素加水分解触媒の触媒構造体に窒化ケイ素をコーティングして形成する。これらの構造により、容易に尿素加水分解触媒の排気ガスとの接触面に窒化ケイ素を設けることができる。 In the above exhaust gas purification system, the catalyst structure of the urea hydrolysis catalyst is formed of silicon nitride. Alternatively, the catalyst structure of the urea hydrolysis catalyst is formed by coating silicon nitride. With these structures, silicon nitride can be easily provided on the contact surface of the urea hydrolysis catalyst with the exhaust gas.
あるいは、上記の目的を達成するための排気ガス浄化システムは、排気ガス通路に、上流側から順に尿素供給ノズルと選択還元型NOx触媒を配設した排気ガス浄化システムにおいて、前記選択還元型NOx触媒の排気ガスとの接触面に窒化ケイ素面を形成して構成される。 Alternatively, an exhaust gas purification system for achieving the above object is the exhaust gas purification system in which a urea supply nozzle and a selective reduction type NOx catalyst are arranged in an exhaust gas passage in order from the upstream side. A silicon nitride surface is formed on the contact surface with the exhaust gas.
この構成によれば、窒化ケイ素で尿素の加水分解反応((NH2)2 CO+H20→2NH3+CO2)を促進して、尿素からアンモニアへの反応を促進でき、この反応で発生するアンモニアを、選択還元型NOx触媒に供給できるので、選択還元型NOx触媒におけるNOx浄化率、特に低温におけるNOx浄化率を向上することができる。
According to this configuration, the hydrolysis reaction of urea ((NH 2 ) 2 CO +
上記の排気ガス浄化システムにおいて、前記選択還元型NOx触媒に水分吸着物質を備えて構成する。この水分吸着物質として酸化チタン(TiO2 )を用いる。 In the above exhaust gas purification system, the selective reduction type NOx catalyst is provided with a moisture adsorbing substance. Titanium oxide (TiO 2 ) is used as the moisture adsorbing substance.
この構成により、尿素の分解を促進する水分を選択還元型NOx触媒に吸着して、尿素と水分との接触確率を高めることができるので、尿素加水分解反応の促進に加え、更に、水分の吸着により、(6H2 O+Si3 N4 →3SiO2 +4NH3 )等の反応が促進されるので、アンモニア(NH3 )の発生率が高くなる。特に、100℃〜200℃ではこの後者の反応が進み易くなる。 With this configuration, moisture that promotes the decomposition of urea can be adsorbed to the selective reduction type NOx catalyst, and the contact probability between urea and moisture can be increased. As a result, the reaction such as (6H 2 O + Si 3 N 4 → 3SiO 2 + 4NH 3 ) is promoted, so that the generation rate of ammonia (NH 3 ) is increased. In particular, the latter reaction is likely to proceed at 100 ° C. to 200 ° C.
また、上記の排気ガス浄化システムにおいて、前記選択還元型NOx触媒に流入する排気ガス温度が100℃〜150℃の範囲においても、前記尿素供給ノズルからの尿素の供給を停止することなく、尿素を供給する制御を行うNOx浄化制御手段を備えて構成する。 Further, in the above exhaust gas purification system, urea can be supplied without stopping the urea supply from the urea supply nozzle even when the temperature of the exhaust gas flowing into the selective reduction NOx catalyst is in the range of 100 ° C. to 150 ° C. A NOx purification control means for controlling the supply is provided.
なお、排気ガスの温度が150℃以上の場合には、従来の選択還元型NOx触媒を備えた排気ガス浄化システムと同様に、尿素供給ノズルからの尿素を供給する制御を行う。言い換えれば、本発明では、尿素供給ノズルから尿素を供給する排気ガスの温度範囲の下限温度を100℃まで下げた制御を行う。そして、この尿素の供給範囲を100℃まで低下させても、窒化ケイ素の尿素加水分解反応により、アンモニア生成率及びNOx浄化率が向上しているので、NOxを浄化できるとともに、供給した尿素が未反応のまま排出されるのを防止できる。 When the temperature of the exhaust gas is 150 ° C. or higher, the control for supplying urea from the urea supply nozzle is performed as in the exhaust gas purification system provided with the conventional selective reduction type NOx catalyst. In other words, in the present invention, control is performed by lowering the lower limit temperature of the exhaust gas temperature range for supplying urea from the urea supply nozzle to 100 ° C. Even if the urea supply range is lowered to 100 ° C., the urea generation reaction of silicon nitride improves the ammonia production rate and the NOx purification rate. It is possible to prevent the reaction from being discharged.
また、上記の目的を達成するための排気ガス浄化方法は、排気ガス通路に、上流側から順に尿素供給ノズルと、排気ガスとの接触面に窒化ケイ素を設けた尿素加水分解触媒と、選択還元型NOx触媒を配設した排気ガス浄化システムにおいて、前記尿素加水分解触媒に流入する排気ガス温度が100℃〜150℃の範囲においても、前記尿素供給ノズルからの尿素の供給を停止することなく、尿素を供給する制御を行うことを特徴とする。 In addition, an exhaust gas purification method for achieving the above-described object includes a urea supply nozzle in the exhaust gas passage in order from the upstream side, a urea hydrolysis catalyst in which silicon nitride is provided on the contact surface with the exhaust gas, and selective reduction. In the exhaust gas purification system provided with a NOx catalyst, even when the exhaust gas temperature flowing into the urea hydrolysis catalyst is in the range of 100 ° C. to 150 ° C., without stopping the supply of urea from the urea supply nozzle, Control for supplying urea is performed.
あるいは、上記の目的を達成するための排気ガス浄化方法は、排気ガス通路に、上流側から順に尿素供給ノズルと、排気ガスとの接触面に窒化ケイ素を設けた選択還元型NOx触媒を配設した排気ガス浄化システムにおいて、前記選択還元型NOx触媒に流入する排気ガス温度が100℃〜150℃の範囲においても、前記尿素供給ノズルからの尿素の供給を停止することなく、尿素を供給する制御を行うことを特徴とする。 Alternatively, in the exhaust gas purification method for achieving the above object, a selective reduction type NOx catalyst in which silicon nitride is provided on the contact surface between the urea supply nozzle and the exhaust gas in order from the upstream side is disposed in the exhaust gas passage. In the exhaust gas purification system, the control for supplying urea without stopping the supply of urea from the urea supply nozzle even when the temperature of the exhaust gas flowing into the selective reduction type NOx catalyst is in the range of 100 ° C. to 150 ° C. It is characterized by performing.
上記の排気ガス浄化方法において、排気ガスの空燃比をリッチ状態にすることにより、前記窒化ケイ素の再生を行う。更に、排気通路にDPF装置を備えた排気ガス浄化システムにおいて、前記窒化ケイ素の再生を、前記DPF装置の再生時に行う。 In the exhaust gas purification method, the silicon nitride is regenerated by making the air-fuel ratio of the exhaust gas rich. Furthermore, in the exhaust gas purification system provided with the DPF device in the exhaust passage, the silicon nitride is regenerated when the DPF device is regenerated.
この構成により、アンモニア発生の反応と並行して行われる、(3O2+Si3N4→3SiO2+2N2)や(6CO2+Si3N4→3SiO2+6CO+2N 2 )等の反応によって生じた二酸化ケイ素(SiO2)を、(3SiO2+2N2→Si3N4+3O2)の反応で窒化ケイ素(Si3N4)に戻すことができる。 With this configuration, the carbon dioxide generated by the reaction such as (3O 2 + Si 3 N 4 → 3SiO 2 + 2N 2 ) or (6CO 2 + Si 3 N 4 → 3SiO 2 + 6CO + 2N 2 ) performed in parallel with the reaction of ammonia generation. Silicon (SiO 2 ) can be returned to silicon nitride (Si 3 N 4 ) by a reaction of (3SiO 2 + 2N 2 → Si 3 N 4 + 3O 2 ).
また、上記の排気ガス浄化方法において、窒化ケイ素を設けた部分に流入する排気ガスの温度を300℃以上にすると共に、排気ガスの空燃比をリッチ状態にすることにより、窒化ケイ素の再生を行う。なお、ここでいう排気ガスの空燃比状態とは、必ずしもシリンダ内における空燃比の状態を意味するものではなく、排気ガス浄化装置に流入する排気ガス中に供給した空気量と燃料量(気筒(シリンダ)内で燃焼した分も含めて)との比のことをいう。 Further, in the above exhaust gas purification method, the temperature of the exhaust gas flowing into the portion where the silicon nitride is provided is set to 300 ° C. or higher, and the air / fuel ratio of the exhaust gas is made rich so that silicon nitride is regenerated. . Here, the air-fuel ratio state of the exhaust gas does not necessarily mean the state of the air-fuel ratio in the cylinder, but the amount of air and the amount of fuel (cylinder (cylinder) supplied to the exhaust gas flowing into the exhaust gas purification device) This is the ratio to the amount of combustion in the cylinder).
上記の排気ガス浄化方法において、更に、排気通路にDPF装置を備えた排気ガス浄化システムにおいて、前記窒化ケイ素の再生を、前記DPF装置の再生時に行う。この構成によれば、DPFの再生時に、DPFに捕集されたPMを燃焼除去するために、排気ガス温度を上昇すると、DPFに捕集されたPMが燃焼し、DPFの下流側の排気ガスの空燃比が酸素が少ないリッチ状態(還元雰囲気)になるので、これを利用して二酸化ケイ素を窒化ケイ素に戻す。そのため、DPFを備えた排気ガス浄化システムでは、この窒化ケイ素の復元のための排気ガスの高温化とリッチ空燃比化を行う必要がなくなる。 In the above exhaust gas purification method, in the exhaust gas purification system provided with a DPF device in an exhaust passage, the silicon nitride is regenerated at the time of regeneration of the DPF device. According to this configuration, when the exhaust gas temperature is increased in order to burn and remove PM trapped in the DPF during regeneration of the DPF, the PM trapped in the DPF burns and exhaust gas on the downstream side of the DPF. Since the air-fuel ratio becomes rich with less oxygen (reducing atmosphere), silicon dioxide is returned to silicon nitride using this. Therefore, in the exhaust gas purification system provided with the DPF, it is not necessary to increase the temperature and the rich air-fuel ratio of the exhaust gas for restoring the silicon nitride.
本発明に係る排気ガス浄化システム及びその排気ガス浄化方法によれば、尿素の加水分解用に、窒化ケイ素を用いることで、排気ガスが100℃〜150℃の低温の場合においても、尿素からアンモニアへの加水分解反応を促進させることができるので、アンモニア生成率を高めることができ、選択還元型NOx触媒のNOx浄化率を向上できる。また、酸化チタン等の水分吸着材を窒化ケイ素と組み合わせることにより、よりアンモニア生成率を向上できる。 According to the exhaust gas purification system and the exhaust gas purification method of the present invention, by using silicon nitride for hydrolysis of urea, even when the exhaust gas is at a low temperature of 100 ° C. to 150 ° C., ammonia is converted from urea to ammonia. Therefore, the ammonia production rate can be increased, and the NOx purification rate of the selective reduction type NOx catalyst can be improved. Moreover, the ammonia production rate can be further improved by combining a moisture adsorbing material such as titanium oxide with silicon nitride.
従って、排気ガスが100℃〜150℃の低温の場合においても、排気ガス通路に尿素を供給して、NOxを浄化することができるので、排気ガス低温時の排気ガス浄化システムのNOxの浄化性能を向上できる。 Therefore, even when the exhaust gas is at a low temperature of 100 ° C. to 150 ° C., urea can be supplied to the exhaust gas passage to purify NOx, so that the NOx purification performance of the exhaust gas purification system at a low temperature of the exhaust gas. Can be improved.
以下、本発明に係る実施の形態の排気ガス浄化システム及びその排気ガス浄化方法について、図面を参照しながら説明する。 Hereinafter, an exhaust gas purification system and an exhaust gas purification method thereof according to an embodiment of the present invention will be described with reference to the drawings.
なお、ここでいう排気ガスの空燃比状態とは、必ずしも気筒(シリンダ)内における空燃比の状態を意味するものではなく、排気ガス浄化装置等に流入する排気ガス中に供給した空気量と燃料量(シリンダ内で燃焼した分も含めて)との比のことをいう。 Note that the air-fuel ratio state of the exhaust gas here does not necessarily mean the state of the air-fuel ratio in the cylinder (cylinder), but the amount of air supplied to the exhaust gas flowing into the exhaust gas purification device and the fuel This is the ratio to the amount (including the amount burned in the cylinder).
図1に、本発明の第1の実施の形態の排気ガス浄化システム1の構成を示す。この排気ガス浄化システム1は、エンジン(内燃機関)2の排気通路3に排気ガス浄化装置10を配置して構成される。この排気ガス浄化装置10は、DPF(ディーゼルパティキュレートフィルタ)11、尿素水供給装置12、尿素加水分解触媒13、選択還元型NOx触媒(SCR触媒)14及び酸化触媒(DOC)15を備えて構成される。
FIG. 1 shows a configuration of an exhaust
DPF11は、多孔質のセラミックのハニカムのチャンネルの入口と出口を交互に目封じしたモノリスハニカム型ウォールスルータイプのフィルタ等で形成され、排気ガス中のPM (粒子状物質)を捕集・除去する。このDPF11はPMの燃焼除去を促進するために酸化触媒やPM酸化触媒を担持した触媒層を排気ガス通路に塗布する場合もある。
The
尿素水供給装置12は、尿素水噴射ノズル12aと尿素水貯蔵タンク12bと両者を連結する配管12cと尿素水供給用のポンプ12d等から構成される。この尿素水供給装置12は、エンジン2の制御と共に排気ガス浄化装置10の制御を行う制御装置30によって制御され、NOx還元用の尿素水が尿素水噴射ノズル12aから排気通路3内に供給される。
The urea
尿素加水分解触媒13は、本発明では、窒化ケイ素(Si3 N4 )製のハニカムの壁面に酸化チタン(TiO2 )を担持して形成される。あるいは、酸化アルミニウム、酸化チタン製のハニカム等の担持体に、窒化ケイ素のコーティング層を塗布し、このコーティング層に酸化チタンを担持して形成する。これらの構成により、尿素加水分解触媒13の排気ガスとの接触面に窒化ケイ素と酸化チタンを設ける。この尿素加水分解触媒13は、尿素水供給装置12から供給された尿素水の加水分解を促進し、尿素をアンモニアに変換する。また、この加水分解により発熱するので、排気ガスを昇温でき、下流側の選択還元型NOx触媒14をより活性化することができる。
In the present invention, the
選択還元型NOx触媒14は、コージェライト、酸化アルミニウム、酸化チタン等からなるハニカム構造の担持体に、チタニアーバナジウム、ゼオライト、酸化クロム、酸化マンガン、酸化モリブデン、酸化チタン、酸化タングステン等を担持して形成される。この選択還元型NOx触媒14は、このアンモニアと排気ガス中のNOxを反応させて、NOxを窒素(N2 )に還元して浄化する。
The selective reduction
酸化触媒15は、コージェライト、炭化ケイ素、又はステンレス等の構造材で形成された、多数の多角形セルを有するモノリス触媒で形成される。このセルの内壁には表面積を稼いでいる触媒コート層があり、その大きい表面に、白金やロジウムやパラジウム等の触媒金属を担持して構成される。
The
この酸化触媒15は、NOxに対して過剰に供給され、NOxと反応せずに選択還元型NOx触媒14を通過したアンモニアや尿素を酸化して、これらの成分が大気中に放出されるのを防止する。
This
そして、図1に示すように、この尿素加水分解触媒13の上流側に、上流側排気温度センサ21を設け、また、選択還元型NOx触媒14の上流側に上流側NOx濃度センサ22を設け、選択還元型NOx触媒14の下流側に、下流側NOx濃度センサ23を設ける。更に、DPF11の再生制御のために、DPF11の目詰まり状態を監視する差圧センサ24を設ける。また、排気ガスの空燃比制御のために、必要に応じて、排気ガス浄化装置10の上流側に上流側λセンサ25、下流側に下流側排気温度センサ26、下流側O2 センサ27等が設けられる。
As shown in FIG. 1, an upstream side
そして、図1に示すように、エンジン2の運転の全般的な制御を行う制御装置(ECU:エンジンコントロールユニット)30が設けられる。この制御装置30は、DPF11の再生制御を行うDPF再生制御手段30aや選択還元型NOx触媒14のNOx浄化能力の制御を行うNOx浄化制御手段30bを備えて構成される。この制御装置30に各センサ21〜27等からの検出値が入力され、この制御装置30からエンジン2のEGR弁や燃料噴射用のコモンレール電子制御燃料噴射装置の燃料噴射弁や吸気絞り弁(吸気スロットル弁)等や尿素供給装置12の尿素噴射ノズル12a、ポンプ12dを制御する信号が出力される。
As shown in FIG. 1, a control device (ECU: engine control unit) 30 that performs overall control of the operation of the
そして、本発明においては、NOx浄化制御手段30bが、尿素加水分解触媒13に流入する排気ガス温度が100℃〜150℃の範囲においても、尿素供給ノズル12aからの尿素の供給を停止することなく、尿素を供給する制御を行うように構成する。
In the present invention, the NOx purification control means 30b does not stop the supply of urea from the
この制御により、窒化ケイ素を含む尿素加水分解触媒13で、図3の上の方の図に示すような反応が発生する。つまり、窒化ケイ素(Si3N4)が尿素((NH2)2 CO)及び水(H2O)を吸着するので、尿素と水の接触の確率が増加し、尿素の加水分解反応((NH2)2CO+H20→2NH3+CO2)が促進される。また、水分吸着により、(6H2O+Si3N4→3SiO2+4NH3)等の反応が発生し、アンモニア(NH 3 )の発生を補助する。
By this control, the reaction shown in the upper diagram of FIG. 3 occurs in the
また、これらの反応と並行して、(3O2+Si3N4→3SiO2+2N2)や(6CO2+Si3N4→3SiO2+6CO+2N 2 )等の反応が生じるが、低温の100℃〜200℃の範囲では、(6H 2 O+Si3N4→3SiO2+4NH3)の反応が進みやすい。そして、窒化ケイ素の表面に酸化チタン(TiO2)等の水分吸着物質を配置することで、尿素の加水分解反応を更に促進することができる。 In parallel with these reactions, reactions such as (3O 2 + Si 3 N 4 → 3SiO 2 + 2N 2 ) and (6CO 2 + Si 3 N 4 → 3SiO 2 + 6CO + 2N 2 ) occur. In the range of 200 ° C., the reaction ( 6H 2 O + Si 3 N 4 → 3SiO 2 + 4NH 3 ) is likely to proceed. Then, by arranging the water adsorption material such as titanium oxide (TiO 2) on the surface of the silicon nitride, it is possible to further accelerate the hydrolysis reaction of the urea.
一方、窒化ケイ素の表面はこれらの反応で酸化されて、図3の下の方の図に示すように、二酸化ケイ素(SiO2 )になる。そのため、NOx浄化制御手段30bは、窒化ケイ素に再生するために、排気ガス温度を300℃以上とすると共に、尿素加水分解触媒13に流入する排気ガスの空燃比状態をリッチ状態(例えば、空気過剰率換算でλR =1.1〜0.8)の酸素が少ない還元雰囲気にして、(3SiO2 +2N2 →Si3 N4 +3O2 )の反応で元の窒化ケイ素に戻す。
On the other hand, the surface of silicon nitride is oxidized by these reactions to become silicon dioxide (SiO 2 ) as shown in the lower diagram of FIG. Therefore, the NOx purification control means 30b sets the exhaust gas temperature to 300 ° C. or more and regenerates the silicon nitride, and the exhaust gas flowing into the
この排気ガスの空燃比をリッチ状態にする制御では、EGR弁を制御してEGR量を増加させたり、吸気絞り弁を制御して新規の吸気量を減少させたりすると共に、シリンダ内噴射におけるポストインジェクション等により、排気ガスを昇温させたり、排気ガス中の空燃比を低下させる。これらの制御により、排気ガスの状態を所定の目標空燃比状態にすると共に、所定の温度範囲(300℃〜500℃)にして、NOx浄化能力を回復し、NOx触媒の再生を行う。 In the control for making the air-fuel ratio of the exhaust gas rich, the EGR valve is controlled to increase the EGR amount, the intake throttle valve is controlled to decrease the new intake amount, and the post-cylinder injection is performed. The temperature of the exhaust gas is raised or the air-fuel ratio in the exhaust gas is lowered by injection or the like. By these controls, the exhaust gas is brought into a predetermined target air-fuel ratio state, and in a predetermined temperature range (300 ° C. to 500 ° C.), the NOx purification ability is recovered, and the NOx catalyst is regenerated.
一方、DPF再生制御手段30aは、DPF11の再生制御で、DPF11のPMの蓄積量が増加して目詰まり状態が悪化したことを差圧センサ24で検出した時に、EGR弁を制御してEGR量を増加させたり、吸気絞り弁を制御して新規の吸気量を減少させたりして、排気ガスの空燃比を低下させたり、シリンダ内噴射におけるポストインジェクション等により、排気ガス中へ燃料を添加する。そして、この燃料をDPFに担持した酸化触媒で酸化して、この酸化反応による熱を利用して排気ガスの温度及びDPF11を昇温して、又、排気ガス中のNOの酸化反応で生じるNO2 を利用して、DPF11に捕集されたPMを酸化して除去する。
On the other hand, the DPF regeneration control means 30a controls the EGR valve to detect the EGR amount when the
このDPF11の再生時には、DPF11に捕集されたPMを燃焼除去するために、排気ガス温度を上昇すると、DPF11に捕集されたPMが燃焼し、DPF11の下流側の排気ガスの空燃比が酸素が少ないリッチ状態(還元雰囲気)になるので、この時にも二酸化ケイ素を窒化ケイ素に戻す反応が生じる。従って、DPF11の再生時に、加水分解用の窒化ケイ素の復元も行うことができる。そのため、DPF11を備えた排気ガス浄化システム1では、この窒化ケイ素の復元のための排気ガスの高温化とリッチ空燃比化を行う必要がなくなる。なお、DPF11の再生で、尿素加水分解触媒13に流入する排気ガスの空燃比状態が十分なリッチ状態(例えば、空気過剰率換算でλR =1.1〜0.8)に達していない場合には、ポスト噴射等を行って酸素が少ない還元雰囲気にして、二酸化ケイ素を窒化ケイ素に戻す。
When the
次に、本発明の第2の実施の形態の排気ガス浄化システム1Aについて説明する。
Next, an exhaust
図2に示すように、この排気ガス浄化システム1Aは、エンジン(内燃機関)2の排気通路3に排気ガス浄化装置10Aを配置して構成されるが、この排気ガス浄化装置10Aでは、尿素加水分解触媒13を設ける代わりに、選択還元型NOx触媒14の排気ガスとの接触面に窒化ケイ素を設ける。つまり、排気ガス通路2に、上流側から順にDPF11と尿素供給ノズル12aと選択還元型NOx触媒14Aと酸化触媒15を配設する。その他は、第1の実施の形態と同様に構成される。
As shown in FIG. 2, the exhaust
この構成において、選択還元型NOx触媒14Aの触媒構造体を窒化ケイ素で形成すると、この選択還元型NOx触媒14Aで、図4に示すような尿素の加水分解反応とNOxの還元反応が生じる。そして、窒化ケイ素を触媒の担持体となる基材とすることでアンモニアや水の吸着量が大きくなり、また、極わずかではあるが、窒化ケイ素の表面でのNOx分解反応が生じるので、更に、NOx浄化率向上に対する効果が大きくなる。
In this configuration, when the catalyst structure of the selective reduction
従って、上記の構成の排気ガス浄化システム1及びその排気ガス浄化方法によれば、尿素の加水分解用に、窒化ケイ素を用いることで、排気ガスが100℃〜150℃の低温の場合においても、尿素からアンモニアへの加水分解反応を促進させることができる。そのため、アンモニア生成率を高めることができ、選択還元型NOx触媒のNOx浄化率を向上できる。また、酸化チタン等の水分吸着材を窒化ケイ素と組み合わせることにより、よりアンモニア生成率を向上できる。
Therefore, according to the exhaust
その結果、排気ガスが100℃〜150℃の低温の場合においても、排気ガス通路に尿素を供給して、NOxを浄化することができるようになるので、排気ガス低温時の排気ガス浄化システムのNOxの浄化性能を向上できる。 As a result, even when the exhaust gas is at a low temperature of 100 ° C. to 150 ° C., urea can be supplied to the exhaust gas passage to purify NOx. The NOx purification performance can be improved.
実施例1aを、窒化ケイ素製のハニカムを用いた加水分解触媒で形成し、実施例1bを、窒化ケイ素製のハニカムの壁面に酸化チタンを担持した加水分解触媒で形成した。また、比較例1を、コージェライトハニカムに酸化アルミニウムを担持した加水分解触媒で形成した。 Example 1a was formed with a hydrolysis catalyst using a silicon nitride honeycomb, and Example 1b was formed with a hydrolysis catalyst having titanium oxide supported on the walls of a silicon nitride honeycomb. Further, Comparative Example 1 was formed with a hydrolysis catalyst in which aluminum oxide was supported on a cordierite honeycomb.
これらの実施例1a,1bと比較例1の各加水分解触媒の前方で32.5%濃度の尿素水を噴射し、この尿素水を含むガスを100℃〜250℃に加熱し、加水分解触媒の後方でアンモニア濃度を測定してアンモニア生成率を算出した。また、比較例2として、加水分解触媒を用いない場合のアンモニア生成率を測定した。これらの結果を図5に、実施例1a,1bと比較例1,2をそれぞれA1,A2とB1,B2で示す。図5に示すように、実施例1a(A1)と実施例1b(A2)は低温から高いアンモニア生成率を示した。 A urea solution having a concentration of 32.5% is injected in front of each of the hydrolysis catalysts of Examples 1a and 1b and Comparative Example 1, and a gas containing the urea solution is heated to 100 ° C. to 250 ° C. The ammonia production rate was calculated by measuring the ammonia concentration behind. Further, as Comparative Example 2, the ammonia production rate when no hydrolysis catalyst was used was measured. These results are shown in FIG. 5 for Examples 1a and 1b and Comparative Examples 1 and 2, respectively, as A1, A2 and B1, B2. As shown in FIG. 5, Example 1a (A1) and Example 1b (A2) showed high ammonia production rates from low temperatures.
更に、これらの加水分解触媒をそれぞれ用いて図1に示すような排気ガス浄化システムをそれぞれ構成して、選択還元型NOx触媒のNOx浄化率を測定した。その結果を、図6に示す。実施例1a(A1)と実施例1b(A2)は、比較例1(B1)と比較例2(B2)に比べて、低温から高いNOx浄化性能を示し、特に実施例1b(A2)が最も高い性能を示した。 Further, an exhaust gas purification system as shown in FIG. 1 was configured using each of these hydrolysis catalysts, and the NOx purification rate of the selective reduction type NOx catalyst was measured. The result is shown in FIG. Example 1a (A1) and Example 1b (A2) show higher NOx purification performance from low temperature than Comparative Example 1 (B1) and Comparative Example 2 (B2), and Example 1b (A2) is the most. High performance was shown.
実施例2(C1)の選択還元型NOx触媒を窒化ケイ素製ハニカムで形成し、この窒化ケイ素製ハニカムの壁面において下層に酸化アルミニウム、上層に白金とゼオライトを担持した。また、実施例3(D1)の選択還元型NOx触媒を窒化ケイ素製ハニカムで形成し、この窒化ケイ素製ハニカムの壁面において下層に酸化アルミニウム、上層に酸化チタンと酸化バナジウム(TiO 2 −V 2 O 5 )を担持した。更に、比較例3(D2)の選択還元型NOx触媒をコージェライトハニカムで形成し、この壁面において、下層に酸化アルミニウム、上層に白金とゼオライトを担持した。 The selective reduction type NOx catalyst of Example 2 (C1) was formed of a silicon nitride honeycomb, and on the wall surface of the silicon nitride honeycomb, aluminum oxide was supported on the lower layer, and platinum and zeolite were supported on the upper layer. In addition, the selective reduction type NOx catalyst of Example 3 (D1) is formed of a silicon nitride honeycomb, and on the wall surface of the silicon nitride honeycomb, the lower layer is aluminum oxide, and the upper layer is titanium oxide and vanadium oxide (TiO 2 —V 2 O). 5 ) was supported. Further, the selective reduction type NOx catalyst of Comparative Example 3 (D2) was formed of a cordierite honeycomb, and on this wall surface, aluminum oxide was supported on the lower layer, and platinum and zeolite were supported on the upper layer.
更に、これらの選択還元型NOx触媒をそれぞれ用いて図2に示すような排気ガス浄化システムをそれぞれ構成して、選択還元型NOx触媒のNOx浄化率を測定した。その結果を図7に示す。実施例2(C1)が実施例3(D1)と比較例3(D2)に比べて最も高い浄化性能を示した。特に、低温でその効果が大きいことが分かった。 Further, an exhaust gas purification system as shown in FIG. 2 was configured using each of these selective reduction type NOx catalysts, and the NOx purification rate of the selective reduction type NOx catalyst was measured. The result is shown in FIG. Example 2 (C1) showed the highest purification performance compared to Example 3 (D1) and Comparative Example 3 (D2). In particular, it has been found that the effect is large at low temperatures.
1 排気ガス浄化システム
2 エンジン
3 排気通路
10 排気ガス浄化装置
11 DPF
12 尿素供給装置
13 尿素加水分解触媒
14 選択還元型NOx触媒
15 酸化触媒
30 制御装置
30a DPF再生制御手段
30b NOx浄化制御手段
DESCRIPTION OF
DESCRIPTION OF
Claims (12)
The exhaust gas purification system according to claim 11, further comprising: regenerating the silicon nitride at the time of regeneration of the DPF device in an exhaust gas purification system having a DPF device in an exhaust passage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005030130A JP4507901B2 (en) | 2005-02-07 | 2005-02-07 | Exhaust gas purification system and exhaust gas purification method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005030130A JP4507901B2 (en) | 2005-02-07 | 2005-02-07 | Exhaust gas purification system and exhaust gas purification method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006212591A JP2006212591A (en) | 2006-08-17 |
JP4507901B2 true JP4507901B2 (en) | 2010-07-21 |
Family
ID=36976236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005030130A Expired - Fee Related JP4507901B2 (en) | 2005-02-07 | 2005-02-07 | Exhaust gas purification system and exhaust gas purification method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4507901B2 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008075620A (en) * | 2006-09-25 | 2008-04-03 | Hino Motors Ltd | Exhaust emission control device |
KR100785156B1 (en) * | 2006-10-19 | 2007-12-11 | 현대자동차주식회사 | Exhaust gas reduction system for vehicle |
US8800268B2 (en) * | 2006-12-01 | 2014-08-12 | Basf Corporation | Zone coated filter, emission treatment systems and methods |
JP2008255928A (en) * | 2007-04-06 | 2008-10-23 | Toyota Motor Corp | Exhaust emission control device of internal combustion engine |
US8176732B2 (en) * | 2007-05-03 | 2012-05-15 | Mack Trucks, Inc. | Exhaust aftertreatment system |
US8800270B2 (en) * | 2007-11-14 | 2014-08-12 | Umicore Autocat Usa Inc. | Process for reducing NO2 from combustion system exhaust |
JP2009150279A (en) * | 2007-12-19 | 2009-07-09 | Hino Motors Ltd | Exhaust gas treatment device |
JP5071341B2 (en) * | 2008-10-17 | 2012-11-14 | マツダ株式会社 | Engine exhaust purification system |
JP5407288B2 (en) * | 2008-11-13 | 2014-02-05 | 三菱ふそうトラック・バス株式会社 | Exhaust gas treatment device and exhaust gas treatment method |
WO2011034270A1 (en) * | 2009-09-18 | 2011-03-24 | 광성(주) | Scr system for a ship or an overland plant |
WO2011034237A1 (en) * | 2009-09-18 | 2011-03-24 | 광성(주) | Scr system |
DE102010013696A1 (en) * | 2010-04-01 | 2011-10-06 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Method for operating an exhaust gas treatment device |
JP6326580B2 (en) * | 2013-04-24 | 2018-05-23 | 株式会社 Acr | Exhaust gas purification apparatus equipped with NOx reduction catalyst means |
DE102013017230B4 (en) * | 2013-10-17 | 2021-12-23 | Man Energy Solutions Se | Method for desulphating an exhaust gas aftertreatment system of an internal combustion engine |
EP3482825A1 (en) * | 2017-11-14 | 2019-05-15 | Umicore Ag & Co. Kg | Scr catalytic converter |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03221147A (en) * | 1989-07-28 | 1991-09-30 | Degussa Ag | Catalyst and method for purification of exhaust gas |
JPH11125110A (en) * | 1997-08-09 | 1999-05-11 | Man Nutzfahrzeuge Ag | Device and method to reduce catalytic nox in engine exhaust gas containing oxygen |
JP2004316658A (en) * | 2003-04-16 | 2004-11-11 | Arvin Technologies Inc | Temperature control of exhaust system |
JP2005042687A (en) * | 2003-07-25 | 2005-02-17 | Hitachi Metals Ltd | Exhaust emission control device and emission control method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10254764A1 (en) * | 2002-11-22 | 2004-06-03 | Emitec Gesellschaft Für Emissionstechnologie Mbh | exhaust system |
-
2005
- 2005-02-07 JP JP2005030130A patent/JP4507901B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03221147A (en) * | 1989-07-28 | 1991-09-30 | Degussa Ag | Catalyst and method for purification of exhaust gas |
JPH11125110A (en) * | 1997-08-09 | 1999-05-11 | Man Nutzfahrzeuge Ag | Device and method to reduce catalytic nox in engine exhaust gas containing oxygen |
JP2004316658A (en) * | 2003-04-16 | 2004-11-11 | Arvin Technologies Inc | Temperature control of exhaust system |
JP2005042687A (en) * | 2003-07-25 | 2005-02-17 | Hitachi Metals Ltd | Exhaust emission control device and emission control method |
Also Published As
Publication number | Publication date |
---|---|
JP2006212591A (en) | 2006-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4274270B2 (en) | NOx purification system and control method of NOx purification system | |
JP5087836B2 (en) | Exhaust gas purification system control method and exhaust gas purification system | |
JP5251266B2 (en) | Exhaust gas purification device and exhaust gas purification system | |
EP2855017B1 (en) | Selective catalytic reduction wall flow filter incorporating a vanadate | |
JP4507901B2 (en) | Exhaust gas purification system and exhaust gas purification method thereof | |
JP6264261B2 (en) | Exhaust gas purification system | |
JP2010265862A (en) | Exhaust emission control device | |
KR20110117323A (en) | Diesel engine exhaust gas purification device having ammonia decomposition module | |
US8677740B2 (en) | Method for predicting regeneration of DeNOx catalyst and exhaust system using the same | |
CN107636271B (en) | Method, multifunctional filter and system for removing particulate matter and harmful compounds from engine exhaust | |
JP2010180861A (en) | Exhaust emission control device | |
JP2009041454A (en) | Nox emission control method and nox emission control system | |
JP2009041430A (en) | Nox emission control method and nox emission control system | |
JP2012237282A (en) | Catalyst device | |
JP5600422B2 (en) | Exhaust system | |
KR20140062899A (en) | Exhaust gas purification system of vehicle | |
JP2010242515A (en) | Exhaust emission control system and exhaust emission control method | |
JP6809391B2 (en) | Injection device | |
JP4582806B2 (en) | Exhaust gas purification device | |
JP6020105B2 (en) | Diesel engine exhaust gas purification method and exhaust gas purification system | |
JP2010185369A (en) | Fuel supply device of engine | |
WO2010010738A1 (en) | Exhaust gas purification system | |
JP5470808B2 (en) | Exhaust gas purification system and exhaust gas purification method | |
JP6565997B2 (en) | Exhaust gas purification method | |
JP7211174B2 (en) | Exhaust pipe structure and vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070823 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091014 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091020 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100126 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100319 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100413 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100426 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130514 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140514 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |