JP4480015B2 - Laminated oxide film coated iron powder - Google Patents

Laminated oxide film coated iron powder Download PDF

Info

Publication number
JP4480015B2
JP4480015B2 JP2005057193A JP2005057193A JP4480015B2 JP 4480015 B2 JP4480015 B2 JP 4480015B2 JP 2005057193 A JP2005057193 A JP 2005057193A JP 2005057193 A JP2005057193 A JP 2005057193A JP 4480015 B2 JP4480015 B2 JP 4480015B2
Authority
JP
Japan
Prior art keywords
oxide
film
iron powder
coated
ternary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005057193A
Other languages
Japanese (ja)
Other versions
JP2006245183A (en
Inventor
宗明 渡辺
亮治 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamet Corp
Original Assignee
Diamet Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diamet Corp filed Critical Diamet Corp
Priority to JP2005057193A priority Critical patent/JP4480015B2/en
Publication of JP2006245183A publication Critical patent/JP2006245183A/en
Application granted granted Critical
Publication of JP4480015B2 publication Critical patent/JP4480015B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

この発明は、金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜が鉄粉末の表面に被覆されてなるMg含有酸化膜被覆鉄粉末の前記Mg−Fe−O三元系酸化物堆積膜の表面に、さらに各種酸化膜が被覆された積層酸化膜被覆鉄粉末に関するものであり、この積層酸化膜被覆鉄粉末で作製した複合軟磁性材は低鉄損を必要とする各種電磁気回路部品、例えば、モータ、アクチュエータ、ヨーク、コア、リアクトルなどの各種電磁気部品の素材として使用される。   The present invention relates to the Mg-Fe--of the Mg-containing oxide film-coated iron powder in which the surface of the iron powder is coated with a Mg-Fe-O ternary oxide deposited film in which metal Fe fine particles are dispersed in the substrate. The present invention relates to a laminated oxide film-coated iron powder in which various oxide films are further coated on the surface of an O ternary oxide deposited film, and the composite soft magnetic material made of this laminated oxide film-coated iron powder has a low iron loss. It is used as a material for various electromagnetic circuit components required, for example, various electromagnetic components such as motors, actuators, yokes, cores, and reactors.

一般に、各種電磁気回路部品に使用される軟磁性材は、鉄損が小さいことが要求されるため、電気抵抗を高くして渦電流損を低減させ、保磁力を小さくしてヒステリシス損を低減させることは一般に知られていることである。さらに、近年、電磁気回路の小型化、高応答化が求められているところから、磁束密度がより高いことも重要視されている。   In general, soft magnetic materials used in various electromagnetic circuit components are required to have low iron loss. Therefore, electrical resistance is increased to reduce eddy current loss, and coercive force is reduced to reduce hysteresis loss. That is generally known. Further, in recent years, since the miniaturization and high response of the electromagnetic circuit are demanded, it is important to have a higher magnetic flux density.

かかる高比抵抗を有する軟磁性材料を製造するための原料粉末の一例として鉄粉末の表面にMg含有フェライト膜を被覆したMg含有酸化膜被覆鉄粉末が知られている(特許文献1参照)。
特開平11−1702号公報
As an example of a raw material powder for producing a soft magnetic material having such a high specific resistance, there is known an Mg-containing oxide film-coated iron powder in which the surface of an iron powder is coated with an Mg-containing ferrite film (see Patent Document 1).
Japanese Patent Laid-Open No. 11-1702

しかし、従来のMg含有フェライト膜を被覆したMg含有酸化膜被覆鉄粉末は、鉄粉末の表面にMg含有フェライト膜を化学的方法により被覆するために、プレス成形した圧粉体に高温歪取り焼成を行って得られた複合軟磁性材はフェライト膜が不安定となり、変化して絶縁性が低下すると共に、鉄粉末の表面に対するMg含有フェライト膜の密着性が十分でなく、従来のMg含有フェライト膜を被覆したMg含有酸化膜被覆鉄粉末をプレス成形し焼成することにより作製した複合軟磁性材はプレス成形中にMg含有フェライト膜が剥離したり破れるなどして十分な絶縁効果が発揮できず、したがって、十分な高比抵抗が得られないという欠点があった。   However, conventional iron powder coated with Mg-containing oxide film coated with Mg-containing ferrite film is high-temperature strain-removed and fired on pressed green compact to coat Mg-containing ferrite film on the surface of iron powder by chemical method. In the composite soft magnetic material obtained by performing the above, the ferrite film becomes unstable and changes to deteriorate the insulation, and the adhesion of the Mg-containing ferrite film to the surface of the iron powder is not sufficient. The composite soft magnetic material produced by press-molding and firing Mg-containing oxide film-coated iron powder coated with a film cannot exhibit sufficient insulation effect due to peeling or tearing of the Mg-containing ferrite film during press molding Therefore, there is a drawback that a sufficiently high specific resistance cannot be obtained.

そこで、本発明者らは、プレス成形しても、プレス成形時に鉄粉末表面の高抵抗酸化膜が破れることが無く表面に酸化膜が強固に密着した鉄粉末であり、プレス成形後に高温歪取り焼成を行っても表面の絶縁性が低下することなく高抵抗を維持できて渦電流損失が低くなり、また歪取り焼鈍の焼成を行った場合に、より保磁力が低減できてヒステリシス損失が低くなるMg含有酸化膜被覆鉄粉末を得るべく研究を行った。
その結果、鉄粉末を予め酸化雰囲気中で加熱する酸化処理を施すことなどにより鉄粉末の表面に酸化鉄膜を形成した鉄粉末(以下、酸化処理鉄粉末という)を作製し、この酸化処理鉄粉末にMg粉末を添加し混合して得られた混合粉末を不活性ガス雰囲気または真空雰囲気中で転動しながら加熱処理を施すと、
(イ)金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜が鉄粉末の表面に形成され、この金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜は金属Fe微粒子が素地中に分散していることから高度の靭性を有し、従来のMg含有フェライト膜に比べて変形性に優れかつ高度の靭性を有することから鉄粉末の変形に充分に追従し、さらに金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜は鉄粉末に対する密着性が格段に優れることから、プレス成形中に絶縁皮膜であるMg−Fe−O三元系酸化物堆積膜が破壊されて鉄粉末同士が接触することが少なく、プレス成形後に高温歪取り焼成を行ってもMg−Fe−O三元系酸化物堆積膜の絶縁性が低下することなく高抵抗を維持できて渦電流損失が低くなり、さらに歪取り焼成を行った場合に一層保磁力が低減できてヒステリシス損失が低くなり、したがって、低鉄損を有する複合軟磁性材料が得られること、
(ロ)前記金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜は、MgおよびOが表面から内部に向って減少しておりかつFeが内部に向って増加している濃度勾配を有すること、
(ハ)前記鉄粉末と金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜との界面領域には、鉄粉末の中心部に含まれる硫黄よりも高濃度の硫黄を含む硫黄濃化層が形成されること、
(ニ)前記金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜は結晶粒径:200nm以下の微細結晶組織を有すること、
(ホ)前記鉄粉末の表面に形成されている金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜の最表面が実質的にMgOで構成されていることが一層好ましいこと、などの知見が得られ、かかる知見に基づいて本発明者らは、
(a)金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜が鉄粉末の表面に被覆されているMg含有酸化膜被覆鉄粉末、
(b)金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜が鉄粉末の表面に被覆されているMg含有酸化膜被覆鉄粉末であって、前記金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜は、MgおよびOが表面から内部に向って減少しておりかつFeが内部に向って増加している濃度勾配を有するMg含有酸化膜被覆鉄粉末、
(c)前記Mg含有酸化膜被覆鉄粉末は、金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜と鉄粉末との界面領域に、鉄粉末の中心部に含まれる硫黄よりも高濃度の硫黄を含む硫黄濃化層を有する前記(a)または(b)記載のMg含有酸化膜被覆鉄粉末、
(d)前記金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜は、結晶粒径:200nm以下の微細結晶組織を有する前記(a)、(b)または(c)記載のMg含有酸化膜被覆鉄粉末、
(e)前記金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜の最表面は、実質的にMgOで構成されている前記(a)、(b)、(c)または(d)記載のMg含有酸化膜被覆鉄粉末、などを発明した。
Therefore, the present inventors are an iron powder in which the high resistance oxide film on the surface of the iron powder is not broken during the press molding, and the oxide film is firmly adhered to the surface during the press molding. Even after firing, high resistance can be maintained without lowering the surface insulation, resulting in low eddy current loss, and coercivity can be further reduced and hysteresis loss reduced when firing for stress relief annealing. Research was conducted to obtain an Mg-containing oxide film-coated iron powder.
As a result, an iron powder in which an iron oxide film is formed on the surface of the iron powder (hereinafter referred to as an oxidized iron powder) is prepared by subjecting the iron powder to an oxidation treatment in which the iron powder is heated in an oxidizing atmosphere in advance. When heat treatment is performed while rolling the mixed powder obtained by adding and mixing Mg powder to the powder in an inert gas atmosphere or vacuum atmosphere,
(A) Mg—Fe—O ternary oxide deposited film in which metal Fe fine particles are dispersed in the substrate is formed on the surface of the iron powder, and Mg—Fe in which the metal Fe fine particles are dispersed in the substrate. -O ternary oxide deposited film has high toughness because metallic Fe fine particles are dispersed in the substrate, and has excellent deformability and high toughness compared to conventional Mg-containing ferrite films Since the Mg-Fe-O ternary oxide deposited film that sufficiently follows the deformation of the iron powder and the metal Fe fine particles are dispersed in the substrate has excellent adhesion to the iron powder, press molding The Mg-Fe-O ternary oxide deposited film, which is an insulating film, is destroyed and the iron powder is less likely to come into contact with each other. Even if high-temperature strain relief firing is performed after press molding, the Mg-Fe-O ternary High resistance without reducing the insulating properties of the oxide-based oxide film The eddy current loss is low can be maintained, even more hysteresis loss is lower can be reduced coercivity when performing stress relief firing, therefore, that the composite soft magnetic material having a low iron loss is obtained,
(B) In the Mg—Fe—O ternary oxide deposited film in which the metal Fe fine particles are dispersed in the substrate, Mg and O are decreased from the surface toward the inside, and Fe is directed toward the inside. Having an increasing concentration gradient,
(C) The interface region between the iron powder and the Mg—Fe—O ternary oxide deposited film in which the metal Fe fine particles are dispersed in the substrate has a higher concentration than the sulfur contained in the center of the iron powder. That a sulfur-enriched layer containing sulfur is formed,
(D) the Mg—Fe—O ternary oxide deposited film in which the metal Fe fine particles are dispersed in the substrate has a fine crystal structure with a crystal grain size of 200 nm or less;
(E) The outermost surface of the Mg—Fe—O ternary oxide deposited film in which the metal Fe fine particles formed on the surface of the iron powder are dispersed in the substrate is substantially composed of MgO. Based on this finding, the present inventors have obtained the following findings:
(A) a Mg-containing oxide film-coated iron powder in which an Mg-Fe-O ternary oxide deposition film in which metal Fe fine particles are dispersed in the substrate is coated on the surface of the iron powder;
(B) a Mg-containing oxide film-coated iron powder in which an Mg-Fe-O ternary oxide deposition film in which metal Fe fine particles are dispersed in a substrate is coated on the surface of the iron powder, the metal Fe The Mg—Fe—O ternary oxide deposited film in which fine particles are dispersed in the substrate has a concentration gradient in which Mg and O decrease from the surface toward the inside and Fe increases toward the inside. Mg-containing oxide film-coated iron powder having
(C) The Mg-containing oxide film-coated iron powder has a central portion of the iron powder in an interface region between the Mg-Fe-O ternary oxide deposited film in which metal Fe fine particles are dispersed in the substrate and the iron powder. Mg-containing oxide film-coated iron powder according to (a) or (b), which has a sulfur enriched layer containing sulfur at a higher concentration than sulfur contained in
(D) The Mg—Fe—O ternary oxide deposited film in which the metal Fe fine particles are dispersed in the substrate has the crystal grain size: 200 nm or less (a), (b) or (C) Mg-containing oxide film-coated iron powder according to the description,
(E) The outermost surface of the Mg—Fe—O ternary oxide deposited film in which the metal Fe fine particles are dispersed in the substrate is substantially composed of MgO (a), (b), Invented the Mg-containing oxide film-coated iron powder described in (c) or (d).

これら発明した前記(a)〜(d)記載のMg含有酸化膜被覆鉄粉末は、鉄粉末を予め酸化雰囲気中で加熱することにより酸化処理鉄粉末を作製し、
これら酸化処理鉄粉末にMg粉末を添加し混合して得られた混合粉末を不活性ガス雰囲気または真空雰囲気中で転動しながら加熱することにより作製するが、一層具体的には、鉄粉末を予め酸化雰囲気中、温度:50〜500℃に加熱することにより鉄粉末の表面に酸化鉄膜を形成した酸化処理鉄粉末を作製し、この酸化処理鉄粉末にMg粉末を添加し混合して得られた混合粉末を温度:150〜1100℃、圧力:1×10−12〜1×10−1MPaの不活性ガス雰囲気または真空雰囲気中で転動しながら加熱することにより作製する。
These invention-provided Mg-containing oxide film-coated iron powders (a) to (d) are prepared by previously oxidizing iron powder by heating the iron powder in an oxidizing atmosphere,
The mixed powder obtained by adding and mixing Mg powder to these oxidized iron powders is prepared by heating while rolling in an inert gas atmosphere or a vacuum atmosphere. An oxidation-treated iron powder in which an iron oxide film is formed on the surface of the iron powder is prepared in advance in an oxidizing atmosphere at a temperature of 50 to 500 ° C., and Mg powder is added to and mixed with the oxidized iron powder. The obtained mixed powder is produced by heating while rolling in an inert gas atmosphere or vacuum atmosphere at a temperature of 150 to 1100 ° C. and a pressure of 1 × 10 −12 to 1 × 10 −1 MPa.

また、発明した前記(e)記載の最表面が実質的にMgOで構成されている金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜は、鉄粉末を予め酸化雰囲気中、温度:50〜500℃に加熱して酸化処理することにより鉄粉末の表面に酸化鉄膜を形成した酸化処理鉄粉末を作製し、この酸化処理粉末にMg粉末を一層多く添加し混合して得られた混合粉末を温度:150〜1100℃、圧力:1×10−12〜1×10−1MPaの不活性ガス雰囲気または真空雰囲気中で転動しながら加熱することにより得られる。 Further, the invented Mg-Fe-O ternary oxide deposited film in which the metal Fe fine particles whose outermost surface is substantially composed of MgO is dispersed in the substrate is composed of iron powder. An oxidized iron powder in which an iron oxide film is formed on the surface of the iron powder is prepared by heating in an oxidizing atmosphere at a temperature of 50 to 500 ° C. in advance, and more Mg powder is added to the oxidized powder. The mixed powder obtained by mixing is heated by rolling in an inert gas atmosphere or vacuum atmosphere at a temperature of 150 to 1100 ° C. and a pressure of 1 × 10 −12 to 1 × 10 −1 MPa. It is done.

「堆積膜」という用語は、通常、真空蒸発やスパッタされた皮膜構成原子が例えば基板上に堆積した皮膜を示すが、鉄粉末の表面に形成されている金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜は、酸化膜を有する鉄粉末表面の酸化鉄(Fe−O)とMgが反応を伴って当該鉄粉末表面に堆積した皮膜を示す。Mg−Fe−O系三元系酸化物は、Mgウスタイト(Mg、Fe)O、(Mg、Fe)などが存在するが、少なくともMgウスタイト(Mg、Fe)Oを含むことが好ましく、好ましくはMgウスタイト(Mg、Fe)Oを主成分として含むことが一層好ましい。Mgウスタイト(Mg、Fe)Oは(Mg、Fe):O=1:1だけでなく、Oが固溶幅を有していても良い。そして、この発明した鉄粉末の表面に形成されている金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜は金属Fe微粒子がMg−Fe−O三元系酸化物のMg含有酸化膜素地中に分散していることから高度の靭性を有する。このためプレス成形時の鉄粉末の変形に充分に追従すると共に酸化膜の鉄粉末に対する密着性が格段に優れたものとなっている。この発明した鉄粉末の表面に形成されている金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜の膜厚は、圧粉成形した複合軟磁性材の高磁束密度と高比抵抗を得るために5〜500nmの範囲内にあるのが好ましい。膜厚が5nmより薄いと圧粉成形した複合軟磁性材の比抵抗が充分でなく渦電流損が増加するので好ましくなく、一方、膜厚が500nmより厚いと圧粉成形した複合軟磁性材の磁束密度が低下し好ましくないからである。さらに好ましい膜厚は5〜200nmである。 The term “deposited film” usually indicates a film in which the constituent atoms of the film formed by vacuum evaporation or sputtering are deposited on a substrate, for example, but the metal Fe fine particles formed on the surface of the iron powder are dispersed in the substrate. The Mg—Fe—O ternary oxide deposited film indicates a film in which iron oxide (Fe—O) and Mg on the surface of the iron powder having an oxide film are deposited on the surface of the iron powder with a reaction. The Mg—Fe—O ternary oxide includes Mg wustite (Mg, Fe) O, (Mg, Fe) 3 O 4, etc., but preferably contains at least Mg wustite (Mg, Fe) O. It is more preferable that Mg wustite (Mg, Fe) O is contained as a main component. Mg wustite (Mg, Fe) O is not only (Mg, Fe): O = 1: 1, but O may have a solid solution width. The Mg-Fe-O ternary oxide deposited film in which the metal Fe fine particles formed on the surface of the iron powder according to the present invention are dispersed in the substrate is composed of the metal Fe fine particles in the Mg-Fe-O ternary system. Since it is dispersed in the oxide-containing Mg-containing oxide base, it has a high degree of toughness. For this reason, the deformation of the iron powder at the time of press molding is sufficiently followed and the adhesion of the oxide film to the iron powder is remarkably excellent. The film thickness of the Mg-Fe-O ternary oxide deposited film in which the metal Fe fine particles formed on the surface of the iron powder according to the present invention are dispersed in the substrate is higher than that of the compacted composite soft magnetic material. In order to obtain a magnetic flux density and a high specific resistance, it is preferably in the range of 5 to 500 nm. If the film thickness is less than 5 nm, the specific resistance of the powder-molded composite soft magnetic material is not sufficient and the eddy current loss increases. On the other hand, if the film thickness is thicker than 500 nm, it is not preferable. This is because the magnetic flux density is lowered, which is not preferable. A more preferable film thickness is 5 to 200 nm.

この発明したMg含有酸化物被覆鉄粉末を構成する前記金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜は、MgおよびOが表面から内部に向って減少しておりかつFeが内部に向って増加している濃度勾配を有しており、この様な濃度勾配を有することにより酸化膜の鉄粒子に対する密着性がより一層優れることからプレス成形中に絶縁皮膜である酸化膜が破壊されて鉄粒子同士が接触することが少なくなり、プレス成形後に高温歪取り焼成を行っても酸化膜の絶縁性が低下することなく高抵抗を維持することができ、したがって、渦電流損失が低くなる。
また、前記金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜と鉄粉末との界面領域に、鉄粉末の中心部に含まれる硫黄よりも高濃度の硫黄を含む硫黄濃化層を有する。界面領域にこの様な硫黄濃化層を有することにより、酸化膜の鉄粒子に対する密着性がより一層優れるようになって、圧粉成形時の粉末の変形に堆積膜が追従して被覆の破れを防止することができ、焼成時にも鉄粉末同士の接触結合を防止することができて高抵抗を維持することができ、したがって、渦電流損失が低くなる。硫黄濃化層の硫黄は鉄粉末の不可避不純分から供給されるものと考えられる。
In the Mg—Fe—O ternary oxide deposited film in which the metal Fe fine particles constituting the Mg-containing oxide-coated iron powder according to the present invention are dispersed in the substrate, Mg and O decrease from the surface toward the inside. In addition, Fe has a concentration gradient increasing toward the inside, and by having such a concentration gradient, the adhesion of the oxide film to iron particles is further improved, so that insulation during press molding is performed. The oxide film that is the film is destroyed and the iron particles are less in contact with each other, and high resistance can be maintained without lowering the insulating property of the oxide film even if high temperature strain relief firing is performed after press molding, Therefore, eddy current loss is reduced.
Further, in the interface region between the Mg-Fe-O ternary oxide deposited film in which the metal Fe fine particles are dispersed in the substrate and the iron powder, sulfur having a higher concentration than the sulfur contained in the central portion of the iron powder. Having a sulfur-enriched layer. By having such a sulfur-concentrated layer in the interface region, the adhesion of the oxide film to the iron particles is further improved, and the deposited film follows the deformation of the powder during compacting and the coating is broken. Can be prevented, contact bonding between iron powders can be prevented even during firing, and high resistance can be maintained, and eddy current loss is therefore reduced. Sulfur in the sulfur enriched layer is considered to be supplied from the inevitable impure content of the iron powder.

この発明したMg含有酸化物被覆鉄粉末を構成する前記金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜は、結晶粒が微細であるほど好ましく、結晶粒径:200nm以下の微細結晶組織を有することが好ましい。この様な微細結晶組織を有することにより、圧粉成形時の粉末の変形に微結晶堆積膜が追従して被覆の破れを防止することができ、さらに焼成時にも鉄粉末同士の接触結合を防止することができ、また、高温歪取り焼成を行っても酸化物が安定で絶縁性低下が防止できて高抵抗を維持することができ、そのため渦電流損失が低くなる。結晶粒径が200nmより大きいと、堆積膜の膜厚が500nmよりも厚くなり圧粉成形した複合軟磁性材の磁束密度が低下するので好ましくない。
また、前記金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜は、その最表面におけるMgOの含有量が多くなるほど好ましく、最表面が実質的にMgOで構成されていることが最も好ましい。この様な最表面が実質的にMgOであると、プレス成形した圧粉体の焼成時にもFeの拡散が防止され鉄粉末同士の接触結合を防止することができ絶縁性低下が防止でき高抵抗で渦電流損失が低くなるからである。
この発明したMg含有酸化膜被覆鉄粉末を構成する前記金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜は、Mgの一部をMgに対して10原子%以下のAl,Si,Ni,Mn,Zn,Cu,Coのうち1種以上で置換した疑三元系酸化物堆積膜でも良い。
In the Mg—Fe—O ternary oxide deposited film in which the metal Fe fine particles constituting the Mg-containing oxide-coated iron powder according to the present invention are dispersed in the substrate, the finer the crystal grains, the more preferable the crystal grains Diameter: It is preferable to have a fine crystal structure of 200 nm or less. By having such a fine crystal structure, the microcrystalline deposition film can follow the deformation of the powder during compaction molding to prevent the coating from being broken, and also prevent contact bonding between iron powders during firing. In addition, even when high-temperature strain relief firing is performed, the oxide is stable and can prevent deterioration in insulation, and can maintain a high resistance. Therefore, eddy current loss is reduced. If the crystal grain size is larger than 200 nm, the thickness of the deposited film becomes thicker than 500 nm, and the magnetic flux density of the compacted soft magnetic material is reduced, which is not preferable.
The Mg—Fe—O ternary oxide deposited film in which the metal Fe fine particles are dispersed in the substrate is preferably as the content of MgO on the outermost surface increases, and the outermost surface is substantially composed of MgO. Most preferably. When such an outermost surface is substantially MgO, the diffusion of Fe can be prevented even during firing of the press-molded green compact, and contact bonding between the iron powders can be prevented, so that a decrease in insulation can be prevented and high resistance can be achieved. This is because eddy current loss decreases.
The Mg—Fe—O ternary oxide deposited film in which the metal Fe fine particles constituting the Mg-containing oxide film-coated iron powder according to the present invention are dispersed in a substrate is composed of 10 atoms of Mg with respect to Mg. A pseudo ternary oxide deposited film substituted with at least one of Al, Si, Ni, Mn, Zn, Cu, and Co in% or less may be used.

この発明したMg含有酸化膜被覆鉄粉末は、平均粒径:5〜500μmの範囲内にある粉末を使用することが好ましい。その理由は、平均粒径が5μmより小さすぎると、粉末の圧縮性が低下し、粉末の体積割合が低くなるために磁束密度の値が低下するので好ましくなく、一方、平均粒径が500μmより大きすぎると、粉末内部の渦電流が増大して高周波における透磁率が低下することによるものである。 As the Mg-containing oxide film-coated iron powder according to the present invention, it is preferable to use a powder having an average particle diameter of 5 to 500 μm. The reason is that if the average particle size is less than 5 μm, the compressibility of the powder is lowered, and the volume ratio of the powder is lowered, so the value of the magnetic flux density is lowered. On the other hand, the average particle size is less than 500 μm. If it is too large, the eddy current inside the powder increases and the magnetic permeability at high frequency decreases.

この発明は、これら(a)〜(e)記載のMg含有酸化膜被覆鉄粉末における金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜に、さらに各種酸化物膜を形成した粉末の発明を成すべく研究を行った。その結果、
(i)前記(a)〜(e)記載の発明したMg含有酸化膜被覆鉄粉末の金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜(以下、金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜を「Mg−Fe−O三元系酸化物堆積膜」という)の上に亜鉛酸化膜が被覆された積層酸化膜被覆鉄粉末は、Mg−Fe−O三元系酸化物堆積膜と亜鉛酸化膜の界面領域に、Mg−Fe−O三元系酸化物堆積膜におけるMgの一部がZnで置換されたZn−Mg−Fe−O四元系酸化物反応膜が形成され、このMg−Zn−Fe−O四元系酸化物反応膜が形成されることにより、Mg−Fe−O三元系酸化物堆積膜と亜鉛酸化膜との密着性が一層向上し、さらに外面が亜鉛酸化膜で形成されていることにより耐候性が向上し、大気中で長期間保管しても過剰な酸化物や水酸化物,炭酸化物等の生成を抑制し、圧粉成形後の焼成体の比抵抗が安定して得られ、これら積層酸化膜が被覆された積層酸化膜被覆鉄粉末を用いた複合軟磁性材も鉄損の少ない複合軟磁性材が得られる、
(ii)前記(a)〜(e)記載の発明したMg含有酸化膜被覆鉄粉末のMg−Fe−O三元系酸化物堆積膜の上に、さらに酸化ホウ素、酸化バナジウム、酸化ビスマス、酸化アンチモンおよび酸化モリブデンのうちの1種もしくは2種以上を含む酸化膜が被覆された積層酸化膜被覆鉄粉末は、Mg−Fe−O三元系酸化物堆積膜と酸化ホウ素、酸化バナジウム、酸化ビスマス、酸化アンチモンおよび酸化モリブデンのうちの1種もしくは2種以上を含む酸化膜との界面領域に、Mg−Fe−O三元系酸化物堆積膜と酸化ホウ素、酸化バナジウム、酸化ビスマス、酸化アンチモンおよび酸化モリブデンのうちの1種もしくは2種以上を含む酸化膜とが反応して形成された反応皮膜が形成されることが密着性向上のためには一層好ましく、この粉末を圧粉し、成形したのち、温度:500〜1000℃で燒成すると、高密度および高強度を有し、鉄損の少ない複合軟磁性材が得られる、
(iii)前記(a)〜(e)記載の発明したMg含有酸化膜被覆鉄粉末のMg−Fe−O三元系酸化物堆積膜の上にさらに酸化ケイ素および酸化アルミニウムのうち1種もしくは2種を含む酸化膜が被覆された積層酸化膜被覆鉄粉末は、Mg−Fe−O三元系酸化物堆積膜と酸化ケイ素および酸化アルミニウムのうち1種または2種を含む酸化膜の界面領域に、Mg−Fe−O三元系酸化物堆積膜と酸化ケイ素および酸化アルミニウムのうち1種または2種を含む酸化膜とが反応して形成された反応皮膜が形成されることが密着性向上のためには一層好ましく、この粉末を圧粉し、成形したのち、温度:400〜1300℃で燒成すると、高密度および高強度を有し、さらに一層の高比抵抗を有し、さらに酸化ケイ素や酸化アルミニウムを介して焼結されるために機械的強度の優れ、さらに酸化ケイ素や酸化アルミニウムが主体となって焼結されるところから保磁力を小さく保つことができ、したがって、ヒステリシス損の少ない複合軟磁性材が得られる、などの研究結果が得られたのである。
The present invention further provides various oxidations on the Mg—Fe—O ternary oxide deposited film in which the metal Fe fine particles in the Mg-containing oxide film-coated iron powder described in (a) to (e) are dispersed in the substrate. Research was conducted in order to invent the powder that formed the material film. as a result,
(I) Mg—Fe—O ternary oxide deposited film (hereinafter referred to as metal) in which metal Fe fine particles of the Mg-containing oxide film-coated iron powder described in (a) to (e) are dispersed in the substrate. Laminate of Mg-Fe-O ternary oxide deposited film in which Fe fine particles are dispersed in the substrate is referred to as "Mg-Fe-O ternary oxide deposited film"). In the oxide film-coated iron powder, a part of Mg in the Mg—Fe—O ternary oxide deposited film is replaced with Zn in the interface region between the Mg—Fe—O ternary oxide deposited film and the zinc oxide film. Zn-Mg-Fe-O quaternary oxide reaction film is formed, and this Mg-Zn-Fe-O quaternary oxide reaction film is formed, thereby forming Mg-Fe-O ternary oxide reaction film. The adhesion between the deposited material film and the zinc oxide film is further improved, and the outer surface is formed of a zinc oxide film. Improved, the generation of excess oxides, hydroxides, carbonates, etc. is suppressed even after long-term storage in the atmosphere, and the specific resistance of the fired body after compacting can be stably obtained. A composite soft magnetic material using a laminated oxide film-coated iron powder coated with a laminated oxide film can also be obtained as a composite soft magnetic material with less iron loss.
(Ii) Boron oxide, vanadium oxide, bismuth oxide, oxidation on the Mg-Fe-O ternary oxide deposited film of the Mg-containing oxide film-coated iron powder according to the invention described in (a) to (e) above A laminated oxide film-coated iron powder coated with an oxide film containing one or more of antimony and molybdenum oxide is composed of a Mg—Fe—O ternary oxide deposited film, boron oxide, vanadium oxide, and bismuth oxide. In addition, an Mg—Fe—O ternary oxide deposited film and boron oxide, vanadium oxide, bismuth oxide, antimony oxide, and an interface region with an oxide film containing one or more of antimony oxide and molybdenum oxide In order to improve adhesion, it is more preferable that a reaction film formed by reacting with an oxide film containing one or more of molybdenum oxides is formed. The compacting, after molding, temperature: when 燒成 at 500 to 1000 ° C., has a high density and high strength, low core loss composite soft magnetic material is obtained,
(Iii) One or two of silicon oxide and aluminum oxide on the Mg—Fe—O ternary oxide deposited film of the inventive Mg-containing oxide film-coated iron powder described in (a) to (e) above The laminated oxide film-coated iron powder coated with the oxide film containing the seed is formed in the interface region between the Mg-Fe-O ternary oxide deposited film and the oxide film containing one or two of silicon oxide and aluminum oxide. The formation of a reaction film formed by the reaction of the Mg—Fe—O ternary oxide deposited film with an oxide film containing one or two of silicon oxide and aluminum oxide improves adhesion. For this purpose, this powder is compacted and molded, and then formed at a temperature of 400 to 1300 ° C., it has high density and high strength, further high specific resistance, and silicon oxide. Or through aluminum oxide Since it is sintered, it has excellent mechanical strength, and since it is sintered mainly with silicon oxide or aluminum oxide, the coercive force can be kept small, so that a composite soft magnetic material with low hysteresis loss can be obtained. The research results were obtained.

この発明は、かかる研究結果に基づいてなされたものであって、
(1)鉄粉末の表面にMg−Fe−O三元系酸化物堆積膜が被覆されているMg含有酸化膜被覆鉄粉末の前記Mg−Fe−O三元系酸化物堆積膜の上に、さらに亜鉛酸化膜が被覆されている積層酸化膜被覆鉄粉末、
(2)鉄粉末の表面にMg−Fe−O三元系酸化物堆積膜が被覆されているMg含有酸化膜被覆鉄粉末の前記Mg−Fe−O三元系酸化物堆積膜の上に、さらに亜鉛酸化膜が被覆されており、前記Mg−Fe−O三元系酸化物堆積膜と前記亜鉛酸化膜の界面領域にMg−Fe−O三元系酸化物堆積膜のMgの一部がZnで置換されたZn−Mg−Fe−O四元系酸化物反応被膜が被覆されている積層酸化膜被覆鉄粉末、
(3)鉄粉末の表面にMg−Fe−O三元系酸化物堆積膜が被覆されているMg含有酸化膜被覆鉄粉末の前記Mg−Fe−O三元系酸化物堆積膜の上に、さらに酸化ホウ素、酸化バナジウム、酸化ビスマス、酸化アンチモンおよび酸化モリブデンのうちの1種または2種以上を含む酸化膜が被覆されている積層酸化膜被覆鉄粉末、
(4)鉄粉末の表面にMg−Fe−O三元系酸化物堆積膜が被覆されているMg含有酸化膜被覆鉄粉末の前記Mg−Fe−O三元系酸化物堆積膜の上に、さらに酸化ホウ素、酸化バナジウム、酸化ビスマス、酸化アンチモンおよび酸化モリブデンのうちの1種または2種以上を含む酸化膜が被覆されており、
前記Mg−Fe−O三元系酸化物堆積膜と酸化ホウ素、酸化バナジウム、酸化ビスマス、酸化アンチモンおよび酸化モリブデンのうちの1種または2種以上を含む酸化膜との界面領域に、前記Mg−Fe−O三元系酸化物堆積膜と前記酸化ホウ素、酸化バナジウム、酸化ビスマス、酸化アンチモンおよび酸化モリブデンのうちの1種または2種以上を含む酸化膜とが反応して被覆された反応皮膜が被覆されている積層酸化膜被覆鉄粉末、
(5)鉄粉末の表面にMg−Fe−O三元系酸化物堆積膜が被覆されているMg含有酸化膜被覆鉄粉末の前記Mg−Fe−O三元系酸化物堆積膜の上に、さらに酸化ケイ素および酸化アルミニウムのうち1種または2種を含む酸化膜が被覆されている積層酸化膜被覆鉄粉末、
(6)鉄粉末の表面にMg−Fe−O三元系酸化物堆積膜が被覆されているMg含有酸化膜被覆鉄粉末の前記Mg−Fe−O三元系酸化物堆積膜の上に、さらに酸化ケイ素および酸化アルミニウムのうち1種または2種を含む酸化膜が被覆されており、
前記Mg−Fe−O三元系酸化物堆積膜と前記酸化ケイ素,酸化アルミニウムのうち1種または2種を含む酸化膜との界面領域に、前記Mg−Fe−O三元系酸化物堆積膜と酸化ケイ素および酸化アルミニウムのうち1種または2種を含む酸化膜とが反応して形成された反応皮膜が形成されている積層酸化膜被覆鉄粉末、
(7)前記Mg−Fe−O三元系酸化物堆積膜は、MgおよびOが表面から内部に向って減少しておりかつFeが内部に向って増加している濃度勾配を有する前記(1)、(2)、(3)、(4)、(5)または(6)記載の積層酸化膜被覆鉄粉末、
(8)前記鉄粉末と前記Mg−Fe−O三元系酸化物堆積膜との界面領域に、鉄粉末の中心部に含まれる硫黄よりも高濃度の硫黄を含む硫黄濃化層を有する粉末である前記(1)、(2)、(3)、(4)、(5)または(6)記載の積層酸化膜被覆鉄粉末、
(9)前記Mg−Fe−O三元系酸化物堆積膜は、結晶粒径:200nm以下の微細結晶組織を有する前記(1)〜(8)のうちのいずれかに記載の積層酸化膜被覆鉄粉末、に特徴を有するものである。
The present invention has been made based on the results of such research,
(1) On the Mg-Fe-O ternary oxide deposited film of the Mg-containing oxide film-coated iron powder in which the surface of the iron powder is coated with the Mg-Fe-O ternary oxide deposited film, Furthermore, laminated oxide film coated iron powder coated with zinc oxide film,
(2) On the Mg-Fe-O ternary oxide deposited film of the Mg-containing oxide film-coated iron powder in which the surface of the iron powder is coated with the Mg-Fe-O ternary oxide deposited film, Further, a zinc oxide film is coated, and a part of Mg of the Mg—Fe—O ternary oxide deposited film is formed in an interface region between the Mg—Fe—O ternary oxide deposited film and the zinc oxide film. A laminated oxide film-coated iron powder coated with a Zn-Mg-Fe-O quaternary oxide reaction film substituted with Zn;
(3) On the Mg-Fe-O ternary oxide deposited film of the Mg-containing oxide film-coated iron powder in which the surface of the iron powder is coated with the Mg-Fe-O ternary oxide deposited film, Furthermore, a laminated oxide film-coated iron powder coated with an oxide film containing one or more of boron oxide, vanadium oxide, bismuth oxide, antimony oxide and molybdenum oxide,
(4) On the Mg-Fe-O ternary oxide deposited film of the Mg-containing oxide film-coated iron powder in which the surface of the iron powder is coated with the Mg-Fe-O ternary oxide deposited film, Furthermore, an oxide film containing one or more of boron oxide, vanadium oxide, bismuth oxide, antimony oxide and molybdenum oxide is coated,
In the interface region between the Mg—Fe—O ternary oxide deposited film and an oxide film containing one or more of boron oxide, vanadium oxide, bismuth oxide, antimony oxide, and molybdenum oxide, the Mg— A reaction film coated by reacting an Fe-O ternary oxide deposited film with an oxide film containing one or more of boron oxide, vanadium oxide, bismuth oxide, antimony oxide, and molybdenum oxide. Coated laminated oxide film coated iron powder,
(5) On the Mg-Fe-O ternary oxide deposited film of the Mg-containing oxide film-coated iron powder in which the surface of the iron powder is coated with the Mg-Fe-O ternary oxide deposited film, Furthermore, a laminated oxide film-coated iron powder coated with an oxide film containing one or two of silicon oxide and aluminum oxide,
(6) On the Mg-Fe-O ternary oxide deposited film of the Mg-containing oxide film-coated iron powder in which the surface of the iron powder is coated with the Mg-Fe-O ternary oxide deposited film, Furthermore, an oxide film containing one or two of silicon oxide and aluminum oxide is coated,
In the interface region between the Mg—Fe—O ternary oxide deposited film and the oxide film containing one or two of silicon oxide and aluminum oxide, the Mg—Fe—O ternary oxide deposited film is formed. A laminated oxide film-coated iron powder in which a reaction film formed by a reaction between an oxide film containing one or two of silicon oxide and aluminum oxide is formed,
(7) The Mg—Fe—O ternary oxide deposited film has a concentration gradient in which Mg and O decrease from the surface toward the inside and Fe increases toward the inside (1 ), (2), (3), (4), (5) or (6) laminated oxide film-coated iron powder,
(8) Powder having a sulfur-concentrated layer containing sulfur at a higher concentration than sulfur contained in the central portion of the iron powder in the interface region between the iron powder and the Mg—Fe—O ternary oxide deposited film The laminated oxide film-coated iron powder according to (1), (2), (3), (4), (5) or (6),
(9) The Mg—Fe—O ternary oxide deposited film has a fine grain structure with a crystal grain size of 200 nm or less. The stacked oxide film coating according to any one of (1) to (8) It is characterized by iron powder.

この発明の前記(1)および(2)記載の積層酸化膜被覆鉄粉末を製造するには、鉄粉末の表面にMg−Fe−O三元系酸化物堆積膜が被覆されているMg含有酸化膜被覆鉄粉末にZn粉末を添加し混合して混合粉末を作製し、この混合粉末を真空または不活性ガス雰囲気中で加熱することによりMg−Fe−O三元系酸化物堆積膜の上に金属Zn膜を形成し、この金属Zn膜が形成された粉末を大気中で加熱する後酸化処理を施すことにより鉄粉末の表面にMg−Fe−O三元系酸化物堆積膜が形成されており、そのMg−Fe−O三元系酸化物堆積膜の上にZnO膜が形成することにより製造することができる。
この発明の前記(3)および(4)記載の積層酸化膜被覆鉄粉末を製造するには、鉄粉末の表面にMg−Fe−O三元系酸化物堆積膜が被覆されているMg含有酸化膜被覆鉄粉末に酸化ホウ素のゾル溶液または粉末、酸化バナジウム粉末のゾル溶液または、酸化ビスマスのゾル溶液または粉末、酸化アンチモンのゾル溶液または粉末および酸化モリブデンのゾル溶液または粉末のうちの1種もしくは2種以上を添加し、混合して混合粉末を作製し、得られた混合粉末を加熱することにより製造することができる。
前記Mg含有酸化膜被覆鉄粉末に添加する酸化ホウ素のゾル溶液または粉末、酸化バナジウム粉末のゾル溶液または、酸化ビスマスのゾル溶液または粉末、酸化アンチモンのゾル溶液または粉末および酸化モリブデンのゾル溶液または粉末の添加量は、0.05〜1質量%の範囲内にあることが好ましい。
この発明の前記(5)および(6)記載の積層酸化膜被覆鉄粉末を製造するには、鉄粉末の表面にMg−Fe−O三元系酸化物堆積膜が被覆されているMg含有酸化膜被覆鉄粉末に酸化ケイ素のゾル溶液または粉末、酸化アルミニウムのゾル溶液または粉末のうちの1種もしくは2種以上を添加し、混合して混合粉末を作製し、得られた混合粉末を加熱することにより製造することができる。前記Mg含有酸化膜被覆鉄粉末に添加する酸化ケイ素のゾル溶液または粉末、酸化アルミニウムのゾル溶液または粉末のうちの1種もしくは2種以上の添加量は、0.05〜1質量%の範囲内にあることが好ましい。
In order to produce the laminated oxide film-coated iron powder according to (1) and (2) of the present invention, the Mg-containing oxide in which the Mg-Fe-O ternary oxide deposited film is coated on the surface of the iron powder. Zn powder is added to and mixed with the film-coated iron powder to produce a mixed powder, and this mixed powder is heated in a vacuum or an inert gas atmosphere to form an Mg-Fe-O ternary oxide deposited film. A metal Zn film is formed, and the powder on which the metal Zn film is formed is heated in the air and then subjected to an oxidation treatment to form an Mg-Fe-O ternary oxide deposited film on the surface of the iron powder. It can be manufactured by forming a ZnO film on the Mg—Fe—O ternary oxide deposited film.
In order to produce the laminated oxide film-coated iron powder according to (3) and (4) of the present invention, the Mg-containing oxide in which the Mg-Fe-O ternary oxide deposited film is coated on the surface of the iron powder. Boron oxide sol solution or powder, vanadium oxide powder sol solution or powder, bismuth oxide sol solution or powder, antimony oxide sol solution or powder and molybdenum oxide sol solution or powder Two or more kinds can be added and mixed to produce a mixed powder, and the obtained mixed powder can be heated to produce the mixed powder.
Boron oxide sol solution or powder, vanadium oxide powder sol solution or bismuth oxide sol solution or powder, antimony oxide sol solution or powder and molybdenum oxide sol solution or powder added to the Mg-containing oxide film-coated iron powder Is preferably in the range of 0.05 to 1% by mass.
In order to produce the laminated oxide film-coated iron powder according to (5) and (6) of the present invention, the Mg-containing oxide in which the Mg-Fe-O ternary oxide deposited film is coated on the surface of the iron powder. One or more of silicon oxide sol solution or powder, aluminum oxide sol solution or powder is added to the film-coated iron powder, mixed to produce a mixed powder, and the obtained mixed powder is heated. Can be manufactured. The addition amount of one or more of silicon oxide sol solution or powder, aluminum oxide sol solution or powder added to the Mg-containing oxide film-coated iron powder is in the range of 0.05 to 1% by mass. It is preferable that it exists in.

前述のこの発明の積層酸化膜被覆鉄粉末に、有機絶縁材料や無機絶縁材料、あるいは有機絶縁材料と無機絶縁材料との混合材料を混合して比抵抗および強度のさらに向上した複合軟磁性材を作製することができる。この場合、有機絶縁材料では、エポキシ樹脂やフッ素樹脂、フェノール樹脂、ウレタン樹脂、シリコーン樹脂、ポリエステル樹脂、フェノキシ樹脂、ユリア樹脂、イソシアネート樹脂、アクリル樹脂、ポリイミド樹脂、PPS樹脂,等を用いることができる。また無機絶縁材料では、リン酸鉄などのリン酸塩、各種ガラス状絶縁物、珪酸ソーダを主成分とする水ガラス、絶縁性酸化物、等を用いることができる。
また、この発明の積層酸化膜被覆鉄粉末を圧粉成形し、得られた圧粉成形体を温度:500〜1000℃で燒結することにより複合軟磁性材を作製することができる。
A composite soft magnetic material further improved in specific resistance and strength by mixing an organic insulating material, an inorganic insulating material, or a mixed material of an organic insulating material and an inorganic insulating material with the above-described laminated oxide film-coated iron powder of the present invention. Can be produced. In this case, as the organic insulating material, epoxy resin, fluorine resin, phenol resin, urethane resin, silicone resin, polyester resin, phenoxy resin, urea resin, isocyanate resin, acrylic resin, polyimide resin, PPS resin, or the like can be used. . As the inorganic insulating material, phosphates such as iron phosphate, various glassy insulators, water glass mainly composed of sodium silicate, insulating oxides, and the like can be used.
Also, a composite soft magnetic material can be produced by compacting the laminated oxide film-coated iron powder of the present invention and sintering the resulting compacted body at a temperature of 500 to 1000 ° C.

この発明の積層酸化膜被覆鉄粉末を用いた複合軟磁性材は高密度、高強度、高比抵抗および高磁束密度を有し、この複合軟磁性材は,高磁束密度で高周波低鉄損の特徴を有する事からこの特徴を生かした各種電磁気回路部品の材料として使用できる。前記電磁気回路部品は、磁心、電動機コア,発電機コア、ソレノイドコア、イグニッションコア、リアクトル、トランス、チョークコイルコアまたは磁気センサコアなどがある。そして、この発明の積層酸化膜被覆鉄粉末を用いた高抵抗を有する複合軟磁性材からなる電磁気回路部品を組み込んだ電気機器には、電動機、発電機、ソレノイド、インジェクタ、電磁駆動弁、インバータ、コンバータ、変圧器、継電器、磁気センサシステム等があり、電気機器の高効率高性能化や小型軽量化を行うことができる。 The composite soft magnetic material using the laminated oxide film-coated iron powder of the present invention has high density, high strength, high specific resistance and high magnetic flux density. This composite soft magnetic material has high magnetic flux density, high frequency and low iron loss. Because of its characteristics, it can be used as a material for various electromagnetic circuit components that take advantage of this characteristic. Examples of the electromagnetic circuit component include a magnetic core, a motor core, a generator core, a solenoid core, an ignition core, a reactor, a transformer, a choke coil core, and a magnetic sensor core. And in an electric device incorporating an electromagnetic circuit component made of a composite soft magnetic material having a high resistance using the laminated oxide film-coated iron powder of the present invention, an electric motor, a generator, a solenoid, an injector, an electromagnetically driven valve, an inverter, There are converters, transformers, relays, magnetic sensor systems, etc., and it is possible to improve the efficiency, performance, size and weight of electrical equipment.

この発明の積層酸化膜被覆鉄粉末をプレス成形し焼成して複合軟磁性材を製造すると、プレス成形しても成形中に膜が破壊することが少なく、したがって、得られた複合軟磁性材は高比抵抗を有することから低渦電流損失を有し、さらに高温歪取り焼鈍により保磁力が低いことから低ヒステリシス損失を有する複合軟磁性材を低コスト安定して作製することができ、電気・電子産業上優れた効果をもたらすものである。   When the composite soft magnetic material is manufactured by press-molding and firing the laminated oxide film-coated iron powder of the present invention, the film is less likely to break during the molding even when press-molded. Because of its high specific resistance, it has low eddy current loss and low coercive force due to high temperature strain relief annealing, so it can stably produce composite soft magnetic materials with low hysteresis loss at low cost. It has excellent effects on the electronics industry.

実施例1
原料粉末として、平均粒径:80μmを有し不可避不純物として硫黄を極微量含む純鉄粉末を用意し、さらに、平均粒径:50μmのMg粉末を用意した。前記純鉄粉末を大気中、温度:220℃、2時間保持の条件で酸化処理することにより表面に酸化鉄膜を有する酸化処理鉄粉末を作製した。この酸化処理鉄粉末に対し先に用意したMg粉末を、酸化処理鉄粉末:Mg粉末=99.8質量%:0.2質量%の割合で添加し混合して混合粉末を作製し、得られた混合粉末を温度:660℃、圧力:2.7×10−4MPa、1時間保持したのち、さらに大気中、温度:200℃、1時間保持することにより鉄粉末の表面に堆積膜が被覆されているMg含有酸化膜被覆鉄粉末を作製した。
このMg含有酸化膜被覆鉄粉末における堆積膜の組織を電子顕微鏡で観察し、その堆積膜の厚さと最大結晶粒径を測定し、その結果を表1に示したのち、さらにMg含有酸化膜被覆鉄粉末に形成された堆積膜をX線光電子分光装置により分析を行い、結合エネルギーを解析したところ、金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜であることが解った。さらに、Mg含有酸化膜被覆鉄粉末における鉄粉末とMg−Fe−O三元系酸化物堆積膜との界面領域をオージェ電子分光装置を用いた方法により調べた結果、MgおよびOが表面から内部に向って減少しておりかつFeが内部に向って増加している濃度勾配を有していることが解り、堆積膜と鉄粉末との界面領域に、鉄粉末の中心部に含まれる不純物硫黄(バックグラウンド)よりも明らかにオージェ電子分光法でピークをもって硫黄が検出されていることから鉄粉末の中心部に含まれる硫黄よりも高濃度の硫黄を含む硫黄濃化層を有することが解った。
Example 1
A pure iron powder having an average particle size of 80 μm and containing an extremely small amount of sulfur as an inevitable impurity was prepared as a raw material powder, and an Mg powder having an average particle size of 50 μm was prepared. The pure iron powder was oxidized in the atmosphere at a temperature of 220 ° C. for 2 hours to prepare an oxidized iron powder having an iron oxide film on the surface. To this oxidized iron powder, the previously prepared Mg powder was added at a ratio of oxidized iron powder: Mg powder = 99.8 mass%: 0.2 mass% to prepare a mixed powder. The mixed powder was kept at a temperature of 660 ° C. and a pressure of 2.7 × 10 −4 MPa for 1 hour, and further held in the atmosphere at a temperature of 200 ° C. for 1 hour to cover the surface of the iron powder with a deposited film. An Mg-containing oxide film-coated iron powder was prepared.
The structure of the deposited film in the Mg-containing oxide film-coated iron powder is observed with an electron microscope, the thickness of the deposited film and the maximum crystal grain size are measured, and the results are shown in Table 1. The deposited film formed on the iron powder was analyzed with an X-ray photoelectron spectrometer, and the binding energy was analyzed. As a result, the Mg-Fe-O ternary oxide deposited film in which metal Fe fine particles were dispersed in the substrate was obtained. I understood that there was. Furthermore, as a result of investigating the interface region between the iron powder and the Mg-Fe-O ternary oxide deposited film in the Mg-containing oxide film-coated iron powder by a method using an Auger electron spectrometer, Impurity sulfur contained in the center of the iron powder is found in the interface region between the deposited film and the iron powder in the interface region between the deposited film and the iron powder. From the fact that sulfur is detected with a peak in the Auger electron spectroscopy more clearly than (background), it was found that it has a sulfur enriched layer containing a higher concentration of sulfur than the sulfur contained in the center of the iron powder. .

このようにして作製したMg含有酸化膜被覆鉄粉末にZn粉末を、Mg含有酸化膜被覆鉄粉末:Zn粉末=99.5質量%:0.5質量%の割合になるように添加し混合して得られた混合粉末を温度:460℃、圧力:1×10−8MPa、1時間保持したのち、大気中、温度:190℃で加熱する後酸化処理を施すことにより鉄粉末の表面に堆積膜が被覆されており、その堆積膜の上にZnO膜が被覆されている本発明積層酸化膜被覆鉄粉末1を作製した。
この本発明積層酸化膜被覆鉄粉末1は、鉄粉末の表面に金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜が被覆されており、このMg−Fe−O三元系酸化物堆積膜の上にさらにZnO膜が被覆されており、このMg−Fe−O三元系酸化物堆積膜とZnO膜の界面領域に、Mg−Fe−O三元系酸化物堆積膜におけるMgの一部がZnで置換されているZn−Mg−Fe−O四元系酸化物堆積膜が被覆されていることがわかった。
Zn powder was added to the Mg-containing oxide film-coated iron powder thus prepared, and mixed so that the ratio of Mg-containing oxide film-coated iron powder: Zn powder = 99.5% by mass: 0.5% by mass. The mixed powder obtained was held at a temperature of 460 ° C. and a pressure of 1 × 10 −8 MPa for 1 hour, and then heated in the atmosphere at a temperature of 190 ° C. and then subjected to an oxidation treatment to deposit on the surface of the iron powder. The laminated oxide film-coated iron powder 1 according to the present invention, in which the film was coated and the ZnO film was coated on the deposited film, was produced.
In the present laminated oxide film-coated iron powder 1, the surface of the iron powder is coated with a Mg—Fe—O ternary oxide deposited film in which metal Fe fine particles are dispersed in the substrate. A ZnO film is further coated on the -O ternary oxide deposited film, and the Mg-Fe-O ternary system is formed in the interface region between the Mg-Fe-O ternary oxide deposited film and the ZnO film. It was found that a Zn—Mg—Fe—O quaternary oxide deposited film in which a part of Mg in the oxide deposited film was substituted with Zn was coated.

実施例2
酸化硼素のゾル溶液、酸化バナジウムのゾル溶液、酸化ビスマスのゾル溶液、酸化アンチモンのゾル溶液または酸化モリブデンのゾル溶液を用意し、これら酸化硼素のゾル溶液、酸化バナジウムのゾル溶液、酸化ビスマスのゾル溶液、酸化アンチモンのゾル溶液または酸化モリブデンのゾル溶液を、それぞれ、実施例1で作製したMg含有酸化膜被覆鉄粉末にMg含有酸化膜被覆鉄粉末:ゾル溶液=99.5質量%:0.5質量%の割合になるように添加し混合して混合粉末を作製した。得られたこれら混合粉末をアルゴン中、温度:910℃で加熱することにより鉄粉末の表面におけるMg−Fe−O三元系酸化物堆積膜の上にさらに酸化硼素、酸化バナジウム、酸化ビスマス、酸化アンチモンまたは酸化モリブデンなどの酸化膜が形成され、それによって鉄粉末の表面におけるMg−Fe−O三元系酸化物堆積膜の上にさらに酸化硼素膜が被覆されている本発明積層酸化膜被覆鉄粉末2、鉄粉末の表面におけるMg−Fe−O三元系酸化物堆積膜の上にさらに酸化バナジウムが被覆されている本発明積層酸化膜被覆鉄粉末3、鉄粉末の表面におけるMg−Fe−O三元系酸化物堆積膜の上にさらに酸化ビスマスが被覆されている本発明積層酸化膜被覆鉄粉末4、鉄粉末の表面におけるMg−Fe−O三元系酸化物堆積膜の上にさらに酸化アンチモンが被覆されている本発明積層酸化膜被覆鉄粉末5および鉄粉末の表面におけるMg-Fe-O三元系酸化物堆積膜の上にさらに酸化モリブデンが被覆されている本発明積層酸化膜被覆鉄粉末6を作製した。
Example 2
Prepare boron oxide sol solution, vanadium oxide sol solution, bismuth oxide sol solution, antimony oxide sol solution or molybdenum oxide sol solution, boron oxide sol solution, vanadium oxide sol solution, bismuth oxide sol solution. A solution, an antimony oxide sol solution, or a molybdenum oxide sol solution were added to the Mg-containing oxide film-coated iron powder prepared in Example 1, respectively, and the Mg-containing oxide film-coated iron powder: sol solution = 99.5% by mass: 0.00. It added and mixed so that it might become a ratio of 5 mass%, and mixed powder was produced. By heating these mixed powders in argon at a temperature of 910 ° C., boron oxide, vanadium oxide, bismuth oxide, and oxidation are further formed on the Mg—Fe—O ternary oxide deposited film on the surface of the iron powder. The laminated oxide film-coated iron according to the present invention in which an oxide film such as antimony or molybdenum oxide is formed, and thereby a boron oxide film is further coated on the Mg-Fe-O ternary oxide deposited film on the surface of the iron powder Powder 2, the present invention laminated oxide film coated iron powder 3 in which vanadium oxide is further coated on the Mg—Fe—O ternary oxide deposited film on the surface of the iron powder, Mg—Fe— on the surface of the iron powder The laminated oxide film-coated iron powder 4 according to the present invention in which bismuth oxide is further coated on the O ternary oxide deposited film, and the Mg-Fe-O ternary oxide deposited film on the surface of the iron powder. Furthermore, the present invention laminated oxide film coated iron powder 5 coated with antimony oxide and the present invention laminated oxide further coated with molybdenum oxide on the Mg—Fe—O ternary oxide deposited film on the surface of the iron powder. Film-coated iron powder 6 was produced.

これら本発明積層酸化膜被覆鉄粉末2〜6に被覆されているMg−Fe−O三元系酸化物堆積膜と前記酸化硼素、酸化バナジウム、酸化ビスマス、酸化アンチモンまたは酸化モリブデンの酸化膜とこれらの界面領域をオージェ電子分光装置を用いた方法により調べた結果、MgおよびOが表面から内部に向って減少しておりかつFeが内部に向って増加している濃度勾配を有していることが解り、Mg−Fe−O三元系酸化物堆積膜と前記酸化硼素、酸化バナジウム、酸化ビスマス、酸化アンチモンおよび酸化モリブデンの酸化膜との界面領域に、Mg−Fe−O三元系酸化物堆積膜と前記酸化硼素、酸化バナジウム、酸化ビスマス、酸化アンチモンまたは酸化モリブデンの酸化膜と反応して形成された反応皮膜がそれぞれ形成されていることがわかった。 Mg-Fe-O ternary oxide deposition film coated with these laminated oxide film-coated iron powders 2 to 6 of the present invention, boron oxide, vanadium oxide, bismuth oxide, antimony oxide or molybdenum oxide oxide film, and these As a result of investigating the interface region of the material by a method using an Auger electron spectrometer, it has a concentration gradient in which Mg and O decrease from the surface toward the inside and Fe increases toward the inside. The Mg—Fe—O ternary oxide is formed in an interface region between the Mg—Fe—O ternary oxide deposited film and the boron oxide, vanadium oxide, bismuth oxide, antimony oxide and molybdenum oxide oxide films. A reaction film formed by reacting the deposited film with the boron oxide, vanadium oxide, bismuth oxide, antimony oxide or molybdenum oxide oxide film is formed. It was found.

実施例3
シリカのゾルゲル(シリケート)溶液またはアルミナのゾルゲル溶液を用意し、シリカのゾルゲル(シリケート)溶液またはアルミナのゾルゲル溶液をそれぞれ実施例1で作製したMg含有酸化膜被覆鉄粉末に、Mg含有酸化膜被覆鉄粉末:ゾルゲル溶液=99.5質量%:0.5質量%の割合になるように添加し混合して混合粉末を作製し、この得られた混合粉末を窒素中、温度:800℃で加熱することにより鉄粉末の表面にMg−Fe−O三元系酸化物堆積膜が被覆されており、そのMg−Fe−O三元系酸化物堆積膜の上にさらにシリカが被覆されている本発明積層酸化膜被覆鉄粉末7、鉄粉末の表面にMg−Fe−O三元系酸化物堆積膜が被覆されており、そのMg−Fe−O三元系酸化物堆積膜の上にさらに酸化アルミニウムが被覆されている本発明積層酸化膜被覆鉄粉末8を作製した。
これら本発明積層酸化膜被覆鉄粉末7〜8についてMg−Fe−O三元系酸化物堆積膜と前記酸化ケイ素または酸化アルミニウムの酸化膜との界面領域をオージェ電子分光装置を用いた方法により調べた結果、Mg−Fe−O三元系酸化物堆積膜と前記酸化ケイ素、酸化アルミニウムの酸化膜との界面領域に反応して形成された反応皮膜が形成されていることがわかった。
Example 3
A silica sol-gel (silicate) solution or an alumina sol-gel solution is prepared, and the silica-containing sol-gel (silicate) solution or the alumina sol-gel solution is coated on the Mg-containing oxide film-coated iron powder prepared in Example 1, respectively. Iron powder: sol-gel solution = 99.5 mass%: 0.5 mass% is added and mixed to prepare a mixed powder. The obtained mixed powder is heated in nitrogen at a temperature of 800 ° C. As a result, the surface of the iron powder is coated with the Mg—Fe—O ternary oxide deposited film, and the Mg—Fe—O ternary oxide deposited film is further coated with silica. Invention laminated oxide film coated iron powder 7, the surface of the iron powder is coated with a Mg—Fe—O ternary oxide deposited film, and further oxidized on the Mg—Fe—O ternary oxide deposited film Aluminum is The present invention stacked oxide film-coated iron powder 8 being overturned was produced.
The interfacial region between the Mg—Fe—O ternary oxide deposited film and the silicon oxide or aluminum oxide oxide film was examined by a method using an Auger electron spectrometer for these laminated oxide film-coated iron powders 7-8. As a result, it was found that a reaction film formed by reacting with an interface region between the Mg—Fe—O ternary oxide deposited film and the oxide film of silicon oxide and aluminum oxide was formed.

実施例1〜3で得られた本発明積層酸化膜被覆鉄粉末1〜8を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、温度:600℃、30分保持の条件で焼成を行い、板状およびリング状焼成体からなる複合軟磁性材を作製し、この板状焼成体からなる複合軟磁性材の比抵抗を測定してその結果を表1に示し、さらにリング状焼成体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度1.5T、周波数50Hzの時の鉄損および磁束密度1.0T、周波数400Hzの時の鉄損などの磁気特性を測定し、それらの結果を表1に示した。   The laminated oxide film-coated iron powders 1 to 8 obtained in Examples 1 to 3 are placed in a mold and press-molded to form a plate-like powder having dimensions of 55 mm in length, 10 mm in width, and 5 mm in thickness. The body and outer diameter: 35 mm, inner diameter: 25 mm, and height: 5 mm, a ring-shaped green compact was molded. The resulting green compact was maintained in a nitrogen atmosphere at a temperature of 600 ° C. for 30 minutes. After firing, a composite soft magnetic material made of a plate-like and ring-like fired body was produced, the specific resistance of the composite soft magnetic material made of this plate-like fired body was measured, and the results are shown in Table 1. A composite soft magnetic material made of a fired body is wound, and magnetic flux density, coercive force, and iron loss at a magnetic flux density of 1.5 T, a frequency of 50 Hz and a magnetic loss of 1.0 T, a magnetic loss at a frequency of 400 Hz, etc. The magnetic properties were measured and the results are shown in Table 1.

従来例1
実施例1で用意した純鉄粉末の表面にMg含有フェライト層を化学的に形成した従来酸化物被覆鉄粉末1を作製し、この従来酸化物被覆鉄粉末1を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、温度:600℃、30分保持の条件で焼結を行い、板状およびリング状焼結体からなる複合軟磁性材を作製し、板状焼結体からなる複合軟磁性材の比抵抗を測定してその結果を表1に示し、さらにリング状焼結体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度1.5T、周波数50Hzの時の鉄損および磁束密度1.0T、周波数400Hzの時の鉄損などの磁気特性を測定し、それらの結果を表1に示した。
Conventional Example 1
A conventional oxide-coated iron powder 1 in which an Mg-containing ferrite layer is chemically formed on the surface of the pure iron powder prepared in Example 1 is prepared, and this conventional oxide-coated iron powder 1 is placed in a mold and press-molded. A plate-shaped green compact having dimensions of 55 mm in length, 10 mm in width, and 5 mm in thickness, and a ring-shaped green compact having dimensions of 35 mm in outer diameter, 25 mm in inner diameter, and 5 mm in height are obtained. The obtained green compact is sintered in a nitrogen atmosphere at a temperature of 600 ° C. for 30 minutes to produce a composite soft magnetic material composed of a plate-shaped and ring-shaped sintered body. The specific resistance of the composite soft magnetic material is measured and the result is shown in Table 1. Further, the composite soft magnetic material made of a ring-shaped sintered body is wound, and the magnetic flux density, coercive force, and magnetic flux density of 1.5 T are applied. Iron loss and magnetic flux density 1.0T at frequency 50Hz, frequency 4 The magnetic properties such as iron loss when 0Hz was measured. The results are shown in Table 1.

Figure 0004480015
Figure 0004480015

表1に示される結果から、本発明積層酸化膜被覆鉄粉末1〜8を使用して作製した複合軟磁性材は、従来酸化物被覆鉄粉末1を使用して作製した複合軟磁性材従来複合軟磁性材と比べて、密度については大差は無いが、本発明積層酸化膜被覆鉄粉末1〜8を使用して作製した複合軟磁性材は、従来酸化物被覆鉄粉末1を使用して作製した複合軟磁性材に比べて、磁束密度が高く、保磁力が小さく、さらに比抵抗が格段に高く、そのため鉄損が格段に小さくなるなどの特性を有することから、本発明積層酸化膜被覆鉄粉末1〜8は従来酸化物被覆鉄粉末1と比べて一層優れた特性を有する複合軟磁性材を提供することができる軟磁性原料粉末であることが分かる。   From the results shown in Table 1, the composite soft magnetic material produced using the laminated oxide film-coated iron powders 1 to 8 of the present invention is the conventional composite soft magnetic material produced using the oxide-coated iron powder 1 Compared with the soft magnetic material, the density is not much different, but the composite soft magnetic material produced using the laminated oxide film-coated iron powders 1 to 8 of the present invention is produced using the conventional oxide-coated iron powder 1. Compared with the composite soft magnetic material, the laminated oxide film-coated iron of the present invention has characteristics such as a high magnetic flux density, a small coercive force, and a remarkably high specific resistance. It can be seen that the powders 1 to 8 are soft magnetic raw material powders that can provide a composite soft magnetic material having more excellent characteristics than the conventional oxide-coated iron powder 1.

Claims (13)

鉄粉末の表面に金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜(以下、Mg−Fe−O三元系酸化物堆積膜という)が被覆されているMg含有酸化膜被覆鉄粉末の前記Mg−Fe−O三元系酸化物堆積膜の上に、さらに亜鉛酸化膜が被覆されていることを特徴とする積層酸化膜被覆鉄粉末。 The surface of the iron powder is coated with a Mg—Fe—O ternary oxide deposition film (hereinafter referred to as a Mg—Fe—O ternary oxide deposition film) in which metal Fe fine particles are dispersed in the substrate. A laminated oxide film-coated iron powder, wherein a zinc oxide film is further coated on the Mg-Fe-O ternary oxide deposited film of the Mg-containing oxide film-coated iron powder. 鉄粉末の表面に金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜(以下、Mg−Fe−O三元系酸化物堆積膜という)が被覆されているMg含有酸化膜被覆鉄粉末の前記Mg−Fe−O三元系酸化物堆積膜の上に、さらに亜鉛酸化膜が被覆されており、前記Mg−Fe−O三元系酸化物堆積膜と前記亜鉛酸化膜との界面領域にMg−Fe−O三元系酸化物堆積膜のMgの一部がZnで置換されたMg−Zn−Fe−O四元系酸化物反応皮膜が形成されていることを特徴とする積層酸化膜被覆鉄粉末。 The surface of the iron powder is coated with a Mg—Fe—O ternary oxide deposition film (hereinafter referred to as a Mg—Fe—O ternary oxide deposition film) in which metal Fe fine particles are dispersed in the substrate. A zinc oxide film is further coated on the Mg-Fe-O ternary oxide deposited film of the Mg-containing oxide film-coated iron powder, and the Mg-Fe-O ternary oxide deposited film and the An Mg-Zn-Fe-O quaternary oxide reaction film in which a part of Mg in the Mg-Fe-O ternary oxide deposited film is substituted with Zn is formed in the interface region with the zinc oxide film. A laminated oxide film-coated iron powder characterized by the above. 鉄粉末の表面に金属Fe微粒子が素地中に分散しているMg-Fe-O三元系酸化物堆積膜(以下、Mg−Fe−O三元系酸化物堆積膜という)が被覆されているMg含有酸化膜被覆鉄粉末の前記Mg−Fe−O三元系酸化物堆積膜の上に、さらに酸化ホウ素、酸化バナジウム、酸化ビスマス、酸化アンチモンおよび酸化モリブデンのうちの1種または2種以上を含む酸化膜が被覆されていることを特徴とする積層酸化膜被覆鉄粉末。 The surface of the iron powder is coated with a Mg—Fe—O ternary oxide deposition film (hereinafter referred to as a Mg—Fe—O ternary oxide deposition film) in which metal Fe fine particles are dispersed in the substrate. One or more of boron oxide, vanadium oxide, bismuth oxide, antimony oxide and molybdenum oxide are further added on the Mg-Fe-O ternary oxide deposited film of the Mg-containing oxide film-coated iron powder. A laminated oxide film-coated iron powder, characterized by being coated with an oxide film. 鉄粉末の表面に金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜(以下、Mg−Fe−O三元系酸化物堆積膜という)が被覆されているMg含有酸化膜被覆鉄粉末の前記Mg−Fe−O三元系酸化物堆積膜の上に、さらに酸化ホウ素、酸化バナジウム、酸化ビスマス、酸化アンチモンおよび酸化モリブデンのうちの1種または2種以上を含む酸化膜が被覆されており、
前記Mg−Fe−O三元系酸化物堆積膜と酸化ホウ素、酸化バナジウム、酸化ビスマス、酸化アンチモンおよび酸化モリブデンのうちの1種または2種以上を含む酸化膜との界面領域に、前記Mg−Fe−O三元系酸化物堆積膜と前記酸化ホウ素、酸化バナジウム、酸化ビスマス、酸化アンチモンおよび酸化モリブデンのうちの1種または2種以上を含む酸化膜とが反応して形成された反応皮膜が形成されていることを特徴とする積層酸化膜被覆鉄粉末。
The surface of the iron powder is coated with a Mg—Fe—O ternary oxide deposition film (hereinafter referred to as a Mg—Fe—O ternary oxide deposition film) in which metal Fe fine particles are dispersed in the substrate. One or more of boron oxide, vanadium oxide, bismuth oxide, antimony oxide and molybdenum oxide are further added on the Mg-Fe-O ternary oxide deposited film of the Mg-containing oxide film-coated iron powder. Containing oxide film,
In the interface region between the Mg—Fe—O ternary oxide deposited film and an oxide film containing one or more of boron oxide, vanadium oxide, bismuth oxide, antimony oxide, and molybdenum oxide, the Mg— A reaction film formed by reacting an Fe-O ternary oxide deposited film with an oxide film containing one or more of boron oxide, vanadium oxide, bismuth oxide, antimony oxide, and molybdenum oxide. A laminated oxide film-coated iron powder characterized by being formed.
鉄粉末の表面に金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜(以下、Mg−Fe−O三元系酸化物堆積膜という)が被覆されているMg含有酸化膜被覆鉄粉末の前記Mg−Fe−O三元系酸化物堆積膜の上に、さらに酸化ケイ素および酸化アルミニウムのうち1種または2種を含む酸化膜が被覆されていることを特徴とする積層酸化膜被覆鉄粉末。 The surface of the iron powder is coated with a Mg—Fe—O ternary oxide deposition film (hereinafter referred to as a Mg—Fe—O ternary oxide deposition film) in which metal Fe fine particles are dispersed in the substrate. An oxide film containing one or two of silicon oxide and aluminum oxide is further coated on the Mg—Fe—O ternary oxide deposited film of the Mg-containing oxide film-coated iron powder. Laminated oxide film coated iron powder. 鉄粉末の表面に金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜(以下、Mg−Fe−O三元系酸化物堆積膜という)が被覆されているMg含有酸化膜被覆鉄粉末の前記Mg−Fe−O三元系酸化物堆積膜の上に、さらに酸化ケイ素,酸化アルミニウムのうち1種または2種を含む酸化膜が被覆されており、
前記Mg−Fe−O三元系酸化物堆積膜と前記酸化ケイ素,酸化アルミニウムのうち1種または2種を含む酸化膜の界面領域に、前記Mg−Fe−O三元系酸化物堆積膜と酸化ケイ素および酸化アルミニウムのうち1種または2種を含む酸化膜とが反応して形成された反応皮膜が形成されていることを特徴とする積層酸化膜被覆鉄粉末。
The surface of the iron powder is coated with a Mg—Fe—O ternary oxide deposition film (hereinafter referred to as a Mg—Fe—O ternary oxide deposition film) in which metal Fe fine particles are dispersed in the substrate. An oxide film containing one or two of silicon oxide and aluminum oxide is further coated on the Mg-Fe-O ternary oxide deposited film of the Mg-containing oxide film-coated iron powder,
In the interface region between the Mg—Fe—O ternary oxide deposited film and the oxide film containing one or two of silicon oxide and aluminum oxide, the Mg—Fe—O ternary oxide deposited film and A laminated oxide film-coated iron powder, characterized in that a reaction film formed by a reaction between an oxide film containing one or two of silicon oxide and aluminum oxide is formed.
前記Mg−Fe−O三元系酸化物堆積膜が鉄粉末の表面に被覆されているMg含有酸化膜被覆鉄粉末の前記Mg−Fe−O三元系酸化物堆積膜は、MgおよびOが表面から内部に向って減少しておりかつFeが内部に向って増加している濃度勾配を有することを特徴とする請求項1、2、3、4、5または6記載の積層酸化膜被覆鉄粉末。 The Mg-Fe-O ternary oxide deposited film is coated with the Mg-Fe-O ternary oxide deposited film on the surface of the iron powder. 7. The laminated oxide film-coated iron according to claim 1, which has a concentration gradient in which Fe decreases from the surface toward the inside and Fe increases toward the inside. Powder. 前記鉄粉末と前記Mg−Fe−O三元系酸化物堆積膜との界面領域に、鉄粉末の中心部に含まれる硫黄よりも高濃度の硫黄を含む硫黄濃化層を有することを特徴とする請求項1、2、3、4、5、6または7記載の積層酸化膜被覆鉄粉末。 In the interface region between the iron powder and the Mg—Fe—O ternary oxide deposited film, a sulfur-concentrated layer containing sulfur having a higher concentration than sulfur contained in the center of the iron powder is provided. The laminated oxide film-coated iron powder according to claim 1, 2, 3, 4, 5, 6 or 7. 前記Mg−Fe−O三元系酸化物堆積膜は、結晶粒径:200nm以下の微細結晶組織を有することを特徴とする請求項1〜8の内のいずれかの請求項に記載の積層酸化膜被覆鉄粉末。 The stacked oxidation according to any one of claims 1 to 8, wherein the Mg-Fe-O ternary oxide deposited film has a fine crystal structure with a crystal grain size of 200 nm or less. Film-coated iron powder. 請求項1〜9の内のいずれかの請求項に記載の積層酸化膜被覆鉄粉末を用いた複合軟磁性材。 A composite soft magnetic material using the laminated oxide film-coated iron powder according to any one of claims 1 to 9. 請求項10記載の複合軟磁性材からなる電磁気回路部品。 An electromagnetic circuit component comprising the composite soft magnetic material according to claim 10. 前記電磁気回路部品は、磁心、電動機コア,発電機コア,ソレノイドコア,イグニッションコア,リアクトル,トランス,チョークコイルコアまたは磁気センサコアであることを特徴とする請求項11記載の電磁気回路部品。 The electromagnetic circuit component according to claim 11, wherein the electromagnetic circuit component is a magnetic core, a motor core, a generator core, a solenoid core, an ignition core, a reactor, a transformer, a choke coil core, or a magnetic sensor core. 請求項11または12記載の前記電磁気回路部品を組み込んだ電気機器。 An electric device incorporating the electromagnetic circuit component according to claim 11 or 12.
JP2005057193A 2005-03-02 2005-03-02 Laminated oxide film coated iron powder Expired - Fee Related JP4480015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005057193A JP4480015B2 (en) 2005-03-02 2005-03-02 Laminated oxide film coated iron powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005057193A JP4480015B2 (en) 2005-03-02 2005-03-02 Laminated oxide film coated iron powder

Publications (2)

Publication Number Publication Date
JP2006245183A JP2006245183A (en) 2006-09-14
JP4480015B2 true JP4480015B2 (en) 2010-06-16

Family

ID=37051306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005057193A Expired - Fee Related JP4480015B2 (en) 2005-03-02 2005-03-02 Laminated oxide film coated iron powder

Country Status (1)

Country Link
JP (1) JP4480015B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4971886B2 (en) * 2007-06-28 2012-07-11 株式会社神戸製鋼所 Soft magnetic powder, soft magnetic molded body, and production method thereof
JP2009141346A (en) * 2007-11-16 2009-06-25 Mitsubishi Materials Corp High-strength high-resistivity low-loss composite soft magnetic material and method of manufacturing the same, and electromagnetic circuit component
PL2252419T3 (en) 2008-03-20 2017-11-30 Höganäs Ab (Publ) Ferromagnetic powder composition and method for its production
JP5734984B2 (en) 2009-09-18 2015-06-17 ホガナス アクチボラゲット Ferromagnetic powder composition and method for producing the same
EP2537165A1 (en) 2010-02-18 2012-12-26 Höganäs AB Ferromagnetic powder composition and method for its production
TWI598895B (en) * 2015-11-19 2017-09-11 Alps Electric Co Ltd Powder magnetic core and its manufacturing method

Also Published As

Publication number Publication date
JP2006245183A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
US8481178B2 (en) Iron powder coated with Mg-containing oxide film
JP4782058B2 (en) Manufacturing method of high strength soft magnetic composite compacted fired material and high strength soft magnetic composite compacted fired material
EP2696356A1 (en) Composite soft magnetic powder, method for producing same, and powder magnetic core using same
JP2007123703A (en) SOFT MAGNETIC POWDER COATED WITH Si OXIDE FILM
JP2009117651A (en) High-strength soft-magnetic composite material obtained by compaction/burning, and method of manufacturing the same
KR20070049670A (en) Method for producing soft magnetic metal powder coated with mg-containing oxidized film and method for producing composite soft magnetic material using said powder
JP4903101B2 (en) High specific resistance and low loss composite soft magnetic material and manufacturing method thereof
JP5049845B2 (en) High-strength, high-resistivity, low-loss composite soft magnetic material, manufacturing method thereof, and electromagnetic circuit component
JP2009164317A (en) Method for manufacturing soft magnetism composite consolidated core
JP4480015B2 (en) Laminated oxide film coated iron powder
JP2007126696A (en) METHOD FOR MANUFACTURING IRON POWDER HAVING SURFACE COATED WITH HIGH-Si LAYER
JP4863628B2 (en) Method for producing Mg-containing oxide film-coated soft magnetic metal powder and method for producing composite soft magnetic material using this powder
JP4367709B2 (en) Laminated oxide film coated iron powder
JP4883755B2 (en) Oxide film-coated Fe-Si-based iron-based soft magnetic powder, manufacturing method thereof, composite soft magnetic material, reactor core, reactor, electromagnetic circuit component, and electrical equipment
JP4863648B2 (en) Method for producing Mg-containing oxide film-coated soft magnetic metal powder and method for producing composite soft magnetic material using this powder
JP4761835B2 (en) Mg-containing iron oxide coated iron powder
WO2007052772A1 (en) Fe-Si TYPE IRON-BASED SOFT MAGNETIC POWDER COATED WITH OXIDE DEPOSIT FILM AND PROCESS FOR PRODUCING THE SAME
JP4761836B2 (en) Mg-containing iron oxide coated iron powder
JP4480627B2 (en) Composite soft magnetic powder and method for producing the same
JPH10208923A (en) Composite magnetic material and production thereof
JP4748772B2 (en) Oxide film-coated iron powder and method for producing the same
JP5027390B2 (en) Deposited film-coated iron powder
JP4480628B2 (en) Composite soft magnetic powder and method for producing the same
JP2008091414A (en) Composite soft magnetic material having high strength, high magnetic flux density, high resistance and less iron loss, and manufacturing method thereof
JP2006324612A (en) Composite soft magnetic material consisting of deposited oxide film-coated iron/silicon powder and sintered green compact of its powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100311

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100311

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees