JP4460698B2 - Ranging method and apparatus - Google Patents

Ranging method and apparatus Download PDF

Info

Publication number
JP4460698B2
JP4460698B2 JP36635099A JP36635099A JP4460698B2 JP 4460698 B2 JP4460698 B2 JP 4460698B2 JP 36635099 A JP36635099 A JP 36635099A JP 36635099 A JP36635099 A JP 36635099A JP 4460698 B2 JP4460698 B2 JP 4460698B2
Authority
JP
Japan
Prior art keywords
station
signal
receiving means
reference position
spread spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36635099A
Other languages
Japanese (ja)
Other versions
JP2001183447A (en
Inventor
守 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Faurecia Clarion Electronics Co Ltd
Original Assignee
Clarion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clarion Co Ltd filed Critical Clarion Co Ltd
Priority to JP36635099A priority Critical patent/JP4460698B2/en
Publication of JP2001183447A publication Critical patent/JP2001183447A/en
Application granted granted Critical
Publication of JP4460698B2 publication Critical patent/JP4460698B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、スペクトラム拡散変調信号による通信方式を利用した測距方法及び装置に関する。
【0002】
【従来の技術】
現在、主に使われている測距方法としては、レーダー方式がある。この方式は、図6に示すように、測定器1から測定物2に電波を照射し、測定器1から反射した電波の遅延時間2τを計測することにより測定器1から測定物2までの距離Lを求めている。即ち、L=2τ・C/2である。
但し、2τは電波の到達遅延時間、Cは光速である。
【0003】
この方式では、測定物2のみた電波を照射しなければならないため、測定器1のアンテナ1aの指向性を鋭くしなければならない。このため、測距する対象範囲が広くなる場合、その範囲内を鋭く指向された電波でスキャンニングしなければならないため、測距検出時間が多くかかる。
【0004】
また、測距しようとする測定物の台数が複数であると、同じ周波数帯の電波を使用すると、相互に電波の衝突が起こるために異なる測距を行うことはできず、台数に比例した周波数帯域の電波が必要となる。
【0005】
更に別の測距方法としては、電波の折り返しを利用した測距方式がある。この方式は、図7に示すように、自局3から送信された信号を、他局4が受信しその周波数を周波数変換器4aにより変換して自局3に送り返し、その信号の往復の遅延時間2τから距離Lを算出するものである。
【0006】
この方式では、上述したように往復で、異なる2つの周波数帯の電波を使用する必要がある。しかも周波数を変換して送り返すためS/N比の劣化を招いてしまう。
【0007】
【発明が解決しようとする課題】
上記2つの従来方式では、上述したように測定対象物が複数ある場合、異なる2つ以上の周波数帯の電波を使用することが必要となる。
【0008】
更に、送信した信号の反射もしくは、送り返しの方法で測距しているため、各々の測定物に対して個別に測距を行わなければならない。このため、測距する時間が多くかかる等の問題がある。
【0009】
本発明の目的はかかる従来方式の問題点を改良するため、スペクトラム拡散通信方式を利用した測距方法及び装置を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するため、本発明の測距方法は、自局では他局へ当該自局の送信手段が備える拡散符号発生器を用いて符号化した第1のスペクトラム拡散変調信号を当該送信手段から送信しつつ、当該第1のスペクトラム拡散変調信号を受信手段に入力し当該受信手段が備える拡散符号発生器を用いて逆拡散を行って当該受信手段での相関信号を検出して前記送信信号の第1基準位置を検出し、他局では前記第1のスペクトラム拡散変調信号を当該他局の受信手段で受信し当該受信手段が備える拡散符号発生器を用いて逆拡散を行って当該受信手段での相関信号を検出して受信信号の第2基準位置を検出し、前記第1のスペクトラム拡散変調信号の受信に呼応して当該他局の送信手段が備える拡散符号発生器を用いて符号化した第2のスペクトラム拡散変調信号を当該他局の送信手段から送信しつつ、当該第2のスペクトラム拡散変調信号を当該他局の受信手段に入力し当該受信手段が備える拡散符号発生器を用いて逆拡散を行って当該受信手段の相関信号を検出して当該他局からの送信信号の第3基準位置を検出し、前記第2基準位置と前記第3基準位置の相対位相時間差を当該他局の送信手段から送信している第2のスペクトラム拡散変調信号に付加して前記自局に送信し、前記自局では、前記第2のスペクトラム拡散変調信号を当該自局の受信手段で受信し当該受信手段が備える拡散符号発生器を用いて逆拡散を行って当該受信手段の相関信号を検出して受信信号の第4基準位置を検出し、前記第1基準位置と前記第4基準位置の時間差から前記相対位相時間差を引いた時間差に基づいて、自局と他局間の距離を算出することを要旨とする。
【0011】
また、本発明の測距装置は、スペクトラム拡散変調信号の送信手段及び受信手段を備える自局及び他局を備え、自局と他局間の距離を測定する測距装置において、前記自局は、前記他局へ当該自局の送信手段が備える拡散符号発生器を用いて符号化した第1のスペクトラム拡散変調信号を送信手段から送信しつつ、当該第1のスペクトラム拡散変調信号を受信手段に入力し当該受信手段が備える拡散符号発生器を用いて逆拡散を行って当該受信手段の相関信号を検出して自局からの送信信号の第1基準位置を検出する手段を備え、前記他局は、前記第1のスペクトラム拡散変調信号を当該他局の受信手段で受信し当該受信手段が備える拡散符号発生器を用いて逆拡散を行って当該受信手段の相関信号を検出して受信信号の第2基準位置を検出する手段と、前記第1のスペクトラム拡散変調信号の受信に呼応して当該他局の送信手段が備える拡散符号発生器を用いて符号化した第2のスペクトラム拡散変調信号を当該他局の送信手段から送信する手段と、前記送信手段から送信されている第2のスペクトラム拡散変調信号を当該他局の受信手段に入力し当該受信手段が備える拡散符号発生器を用いて逆拡散を行って当該受信手段の相関信号を検出して当該他局からの送信信号の第3基準位置を検出し、前記第2基準位置と前記第3基準位置の相対位相時間差を検出する検出手段とを備え、該検出手段により検出された相対位相時間差を当該他局の送信手段から送信している第2のスペクトラム拡散変調信号に付加して前記自局に送信し、前記自局は、前記第2のスペクトラム拡散変調信号を当該自局の受信手段で受信し当該受信手段が備える拡散符号発生器を用いて逆拡散を行って当該受信手段の相関信号を検出して受信信号の第4基準位置を検出し、前記第1基準位置と前記第4基準位置の時間差から前記相対位相時間差を引いた時間差に基づいて、自局と他局間の距離を算出することを要旨とする。
【0013】
【発明の実施の形態】
本発明の測距方法の実施形態を図1に示す。
図1において、自局5と他局6の間の距離Lを求めようとする場合、自局5から他局6へスペクトラム拡散変調された第1のスペクトラム拡散変調信号S1を送信する。
【0014】
他局6では、受信した第1のスペクトラム拡散変調信号S1と、送信しようとする第2のスペクトラム拡散変調信号S2との相対位相時間差△t1(相対時間差)を検出し、検出された相対位相時間差のデータDを上記信号S2に付加して自局5に送信する。
【0015】
自局5では、他局6が行ったように、他局6から送信されて来た第2のスペクトラム拡散変調信号S2と自局5の第1のスペクトラム拡散変調信号S1との位相時間差△t2を検出する。また、この時、上記S2に付加されていた上記データDを復調する。そして上記位相時間差△t2と該データD(△t1)を用いて、自局5と他局6の電波の遅延時間2τを求め、距離Lを算出する。
【0016】
図2は上述した測距方法の原理を説明するための、自局5と他局6の各信号のタイミング関係を示す。
(1)自局5において、基準PN符号により第1のスペクトラム拡散変調信号S1(送信信号)の逆拡散(相関)を行い、送信信号の基準位置Rを検出する。
(2)他局6では、基準PN符号により受信された第1のスペクトラム拡散変調信号S1’(受信信号)と第2のスペクトラム拡散変調信号S2(送信信号)の逆拡散を行い、両信号間の相対位相時間差△t1を検出する。この△t1のデータは上記信号S2に付加して自局5に送信する。この時、受信信号S1’は自局5の送信信号S1に対して、自局5と他局6間の距離Lに比例した遅延τ1を受けている。
(3)自局5では、他局6から送信され受信された第2のスペクトラム拡散変調信号S2’(受信信号)の逆拡散を行い、自局5の送信信号S1との位相時間差△t2を検出する。この時、上記他局6からの送信信号S2’は他局6の送信信号S2に対して、他局6と自局5間の距離Lに比例した遅延τ2を受けている。
(4)自局5と他局6間の電波(スペクトラム拡散変調信号)の往復遅延時間Tは、
T=△t2−△t1=τ1+τ2
となり、距離Lは、
L=T・C/2 で求まる。Cは光速でτ1=τ2
【0017】
図3は上述した測距方法に基づく測距装置の自局5及び他局6に設けた構成の一実施例を示す。
同図において、自局5は、第1のスペクトラム拡散変調信号S1の送信手段5a、受信された第2のスペクトラム拡散変調信号S2’に付加されている位相時間差のデータDを復調する復調手段5b、上記信号S2’と第1のスペクトラム拡散変調信号S1との位相時間差△t2の検出手段5c、該検出手段5cにより検出された検出値(位相時間差△t2)と上記データDとから自局5と他局6間の距離Lを算出する距離算出手段5dを備えている。
【0018】
これに対し他局6は、受信された第1のスペクトラム拡散変調信号S1’と第2のスペクトラム拡散変調信号S2との相対位相時間差△t1を検出する検出手段6a、該検出手段6aにより検出された相対位相時間差△t1のデータDを第2のスペクトラム拡散変調信号S2に付加して送信する送信手段6bと、を備えている。
【0019】
自局5の送信手段5aより第1のスペクトラム拡散変調信号S1を他局6aに送信すると共に検出手段5cにおいて基準PN符号により上記信号S1の逆拡散を行い信号の基準位置Rを検出する。
【0020】
他局6の検出手段6aは基準PN符号により受信された第1のスペクトラム拡散変調信号S1’と第2のスペクトラム拡散変調信号(送信信号)の逆拡散を行って、両信号間の相対位相時間差△t1を検出する。
【0021】
次に自局5の復調手段5bは受信された第2のスペクトラム拡散変調信号S2’に付加されているデータDを復調して相対位相時間差△t1を得ると共に検出手段5cは上記S2の逆拡散を行って第1のスペクトラム拡散変調信号S1(送信信号)との位相時間差△t2を検出する。そして距離算出手段5dはT=△t2−△t1,L=T・C/2 の計算を行って距離Lを算出する。
【0022】
上述した図3の実施例では、自局と他局の構成が相違していたが、これを同一構成とした実施例を図4に示す。
同図において、11は第1のスペクトラム拡散変調信号S1の送信手段、12は第2のスペクトラム拡散変調信号の受信手段、13は受信された第2のスペクトラム拡散変調信号S2’に付加されている相対位相時間差データD1(△t1)を復調する復調手段、14は第1のスペクトラム拡散変調信号S1と受信された第2のスペクトラム拡散変調信号S2’との位相時間差△t1を検出する検出手段、15は上記位相時間差△t2のデータD2を第1のスペクトラム拡散変調信号S1に付加する手段、16は上記データD1とD2から距離データLを算出する距離算出手段である。
【0023】
上述した構成の測距手段10が、自局5と他局6に搭載されており、従って、例えば、複数の移動体に測距手段10を搭載することにより、各移動体間の相対距離を各移動体が計測することができる。
【0024】
図5は図4の実施例の具体的構成例を示す。
同図において、11aは拡散クロック(ck1)発生器、11bは拡散符号(PN符号)発生器、11cは掛算器、11dは掛算器、11eは搬送波(f1)発信器、11fは増幅器で、これらにより送信手段11を構成している。
【0025】
また、12aは増幅器、12bは掛算器、12cは搬送波(f2)発信器、12dはAGC回路で、これらにより受信手段12を構成している。
また、13aはデータ複数部で、復調手段13を構成している。
更に、14aは拡散クロック(ck2)発生器、14bは拡散符号発生器、14cは掛算器、14dはバンドパスフィルタ(BPF)、14eは検波器、14fは時間差検出部で、これらにより検出手段14を構成している。15はデータ付加回路、16は距離算出回路である。
【0026】
送信手段11において、拡散クロック発生器11aからの拡散クロックck1に応答して拡散符号発生器11bにより発生された拡散符号(PN符号)と送信データD3とは掛算器11cで掛算されて拡散され、更に掛算器11dで搬送波f1により復調されて得られた第1のスペクトラム拡散変調信号S1は増幅器11fで増幅され送信される。
この時、上記信号S1の一部は受信手段12に送られる。
【0027】
受信手段12では、上記信号S1又は受信された第2のスペクトラム拡散変調信号S2’を増幅器12aで増幅し、掛算器12bで搬送波f2で変調し、AGC回路12dにより信号レベルを一定にした後、AGC出力信号の一方はデータ復調部13aに送られ、前記相対位相時間差△t1のデータD1の復調を行う。AGC出力信号の他方は、検出手段14に送られる。検出手段14では、該信号が拡散クロック発生器14aからの拡散クロックck2に応答して拡散符号発生器14bにより発生された拡散符号と掛算器14cで掛算され、相関がとられる。相関出力信号はBPF14dを介して検波器14eで検波され時間差検出部14fに入力される。時間差検出部14fでは、前記信号S1の相関信号を基準Rとして、前記受信信号S2’の相関信号の位相時間差△t2を検出する。検出された△t2のデータD2はデータ付加回路15及び距離算出回路16に送られる。
【0028】
距離算出回路16は上記データD1,D2から距離Lを前述したようにして算出し、データ付加回路15は上記データD2を送信データD3に付加し、他での測距に使用される。
【0029】
【発明の効果】
以上説明したように本発明によれば従来のレーダー方式のように、スキャンニングは不要なので測距時間は短縮され、また測距しようとする台数が複数あっても相互に電波の衝突が起こることもない。
また電波の折り返しを用いた測距方式に比べても、周波数帯を2つ必要とすることもなく、S/N比の劣化を招くこともなく、特に移動体間の測距に好適である。
【図面の簡単な説明】
【図1】本発明の測距方法の説明図である。
【図2】本発明の測距方法の原理を説明するためのタイミング関係を示す図である。
【図3】本発明の測距装置の一実施例を示すブロック図である。
【図4】本発明の測距装置の他の実施例を示すブロック図である。
【図5】図4の実施例の具体的構成例を示す図である。
【図6】従来のレーダー測距方式の説明図である。
【図7】従来の他の測距方式の説明図である。
【符号の説明】
5 自局
6 他局
5a 送信手段
5b 復調手段
5c 検出手段
5d 距離算出手段
6a 検出手段
6b 送信手段
11 送信手段
12 受信手段
13 復調手段
14 検出手段
15 データ付加手段
16 距離算出手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a distance measuring method and apparatus using a communication system using a spread spectrum modulation signal.
[0002]
[Prior art]
Currently, the radar method is mainly used as a ranging method. In this method, as shown in FIG. 6, the distance from the measuring instrument 1 to the measuring object 2 is measured by irradiating the measuring object 1 with radio waves and measuring the delay time 2τ of the radio wave reflected from the measuring instrument 1. L is being sought. That is, L = 2τ · C / 2.
However, 2τ is the arrival delay time of the radio wave, and C is the speed of light.
[0003]
In this method, since the radio wave from the measuring object 2 must be irradiated, the directivity of the antenna 1a of the measuring instrument 1 must be sharpened. For this reason, when the target range to be measured becomes wide, it is necessary to scan within the range with a sharply directed radio wave, so that it takes a long distance detection time.
[0004]
In addition, if there are multiple objects to be measured, if radio waves in the same frequency band are used, radio waves collide with each other, so different distance measurement cannot be performed. Band radio waves are required.
[0005]
As another distance measuring method, there is a distance measuring method using the return of radio waves. In this system, as shown in FIG. 7, the other station 4 receives the signal transmitted from the own station 3, converts the frequency by the frequency converter 4a, and sends it back to the own station 3. The distance L is calculated from the time 2τ.
[0006]
In this method, it is necessary to use radio waves of two different frequency bands in a reciprocating manner as described above. Moreover, since the frequency is converted and sent back, the S / N ratio is degraded.
[0007]
[Problems to be solved by the invention]
In the above two conventional methods, when there are a plurality of measurement objects as described above, it is necessary to use radio waves in two or more different frequency bands.
[0008]
Furthermore, since the distance is measured by reflecting or transmitting the transmitted signal, it is necessary to perform distance measurement for each measurement object individually. For this reason, there is a problem that it takes a long time to measure the distance.
[0009]
An object of the present invention is to provide a distance measuring method and apparatus using a spread spectrum communication system in order to improve the problems of the conventional system.
[0010]
[Means for Solving the Problems]
To achieve the above object, the distance measuring method of the present invention, the transmission means of the first spread-spectrum modulated signal encoded using a spreading code generator included in the transmitting means of the own station to another station in the own station The first spread spectrum modulation signal is input to the receiving means while being transmitted from the receiver, and despreading is performed using a spreading code generator provided in the receiving means to detect a correlation signal in the receiving means and the transmission signal The first reference position is detected, the other station receives the first spread spectrum modulation signal by the receiving means of the other station, performs despreading using a spreading code generator provided in the receiving means, and the receiving means The second reference position of the received signal is detected by detecting the correlation signal in the signal, and is encoded using the spread code generator provided in the transmission means of the other station in response to the reception of the first spread spectrum modulation signal the second of spectrum that was While transmitting the spread-modulated signal from the transmitting means of the other stations, performing despreading using the spreading code generator the second spread spectrum modulation signal is input to the receiving means to the receiving means of the other stations comprising Detecting the correlation signal of the receiving means to detect the third reference position of the transmission signal from the other station, and determining the relative phase time difference between the second reference position and the third reference position from the transmitting means of the other station. in addition to the second spread-spectrum modulated signal are transmitted by transmitting to the local station, said the self station, received the said receiving means comprises at said second spread spectrum modulation signal receiving means of the own station A spread code generator is used for despreading to detect a correlation signal of the receiving means to detect a fourth reference position of the received signal, and the relative phase is determined from a time difference between the first reference position and the fourth reference position. Time minus time difference Based on, and be required to calculate the distance between the own station and another station.
[0011]
Further, the distance measuring apparatus of the present invention includes a local station and other stations provided with a means for transmitting and receiving a spread spectrum modulation signal, and the distance measuring apparatus for measuring the distance between the local station and the other station, The first spread spectrum modulation signal is transmitted to the other station from the transmission means while the first spread spectrum modulation signal encoded using the spread code generator included in the transmission means of the local station is transmitted to the reception means. Means for detecting the first reference position of the transmission signal from the own station by performing despreading using a spreading code generator provided in the receiving means and detecting a correlation signal of the receiving means; Receives the first spread spectrum modulation signal by the receiving means of the other station, performs despreading using a spreading code generator provided in the receiving means, detects the correlation signal of the receiving means , Detect second reference position That means and said first spread spectrum modulation signal a second spread spectrum modulation signal transmitting means of the other station which is encoded using a spread code generator included in the transmitting means of the other stations in response to receiving the means for transmitting from said second spread spectrum modulation signals that are transmitted by performing despreading using the spreading code generator comprises an input and the receiving means to the receiving means of the other station received from said transmitting means Detection means for detecting a correlation signal of the means to detect a third reference position of a transmission signal from the other station, and detecting a relative phase time difference between the second reference position and the third reference position. The relative phase time difference detected by the means is added to the second spread spectrum modulation signal transmitted from the transmission means of the other station and transmitted to the own station, and the own station transmits the second spread spectrum modulation. No. The detecting a fourth reference position detection to the received signal a correlation signal of the receiving means by performing inverse spread using the received by the receiving means spreading code generator provided in the receiving means of the own station, the The gist is to calculate a distance between the own station and another station based on a time difference obtained by subtracting the relative phase time difference from a time difference between the first reference position and the fourth reference position.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the distance measuring method of the present invention is shown in FIG.
In FIG. 1, when the distance L between the own station 5 and the other station 6 is to be obtained, the first spread spectrum modulation signal S 1 subjected to spread spectrum modulation is transmitted from the own station 5 to the other station 6.
[0014]
The other station 6 detects the relative phase time difference Δt 1 (relative time difference) between the received first spread spectrum modulation signal S1 and the second spread spectrum modulation signal S2 to be transmitted, and detects the detected relative phase. The time difference data D is added to the signal S2 and transmitted to the own station 5.
[0015]
In the own station 5, as performed by the other station 6, the phase time difference Δt between the second spread spectrum modulation signal S2 transmitted from the other station 6 and the first spread spectrum modulation signal S1 of the own station 5 Detect 2 At this time, the data D added to S2 is demodulated. Then, using the phase time difference Δt 2 and the data D (Δt 1 ), the delay time 2τ of the radio wave between the own station 5 and the other station 6 is obtained, and the distance L is calculated.
[0016]
FIG. 2 shows the timing relationship between the signals of the own station 5 and the other station 6 for explaining the principle of the distance measuring method described above.
(1) The local station 5 performs despreading (correlation) of the first spread spectrum modulation signal S1 (transmission signal) with the reference PN code, and detects the reference position R of the transmission signal.
(2) The other station 6 performs despreading of the first spread spectrum modulation signal S1 ′ (reception signal) and the second spread spectrum modulation signal S2 (transmission signal) received by the reference PN code, Relative phase time difference Δt 1 is detected. The data of Δt 1 is added to the signal S 2 and transmitted to the own station 5. At this time, the received signal S1 ′ receives a delay τ 1 proportional to the distance L between the own station 5 and the other station 6 with respect to the transmission signal S1 of the own station 5.
(3) The own station 5 despreads the second spread spectrum modulation signal S2 ′ (received signal) transmitted from the other station 6 and received, and the phase time difference Δt 2 with the transmission signal S1 of the own station 5 Is detected. At this time, the transmission signal S2 ′ from the other station 6 receives a delay τ2 proportional to the distance L between the other station 6 and the own station 5 with respect to the transmission signal S2 of the other station 6.
(4) The round-trip delay time T of the radio wave (spread spectrum modulation signal) between the own station 5 and the other station 6 is
T = Δt 2 −Δt 1 = τ 1 + τ 2
And the distance L is
L = T · C / 2 C is the speed of light, and τ 1 = τ 2
[0017]
FIG. 3 shows an embodiment of the configuration provided in the own station 5 and the other station 6 of the distance measuring apparatus based on the distance measuring method described above.
In the figure, a local station 5 transmits a first spread spectrum modulation signal S1 transmission means 5a and a demodulation means 5b for demodulating phase time difference data D added to the received second spread spectrum modulation signal S2 ′. From the detection means 5c of the phase time difference Δt 2 between the signal S2 ′ and the first spread spectrum modulation signal S1, the detection value (phase time difference Δt 2 ) detected by the detection means 5c and the data D A distance calculating means 5d for calculating a distance L between the station 5 and the other station 6 is provided.
[0018]
On the other hand, the other station 6 detects the relative phase time difference Δt 1 between the received first spread spectrum modulation signal S1 ′ and the second spread spectrum modulation signal S2, and the detection means 6a detects the relative phase time difference Δt 1. Transmission means 6b for transmitting the data D of the relative phase time difference Δt 1 added to the second spread spectrum modulation signal S2.
[0019]
The first spread spectrum modulation signal S1 is transmitted from the transmission means 5a of the own station 5 to the other station 6a, and the signal S1 is despread by the reference PN code in the detection means 5c to detect the reference position R of the signal.
[0020]
The detecting means 6a of the other station 6 performs despreading of the first spread spectrum modulation signal S1 ′ received by the reference PN code and the second spread spectrum modulation signal (transmission signal), and the relative phase time difference between the two signals Δt 1 is detected.
[0021]
Then detecting means 5c with demodulation means 5b of the local station 5 obtains a relative phase time difference △ t 1 demodulates the data D is added to the second spread-spectrum modulated signal S2 received 'is opposite the signal line S2 Spreading is performed to detect a phase time difference Δt 2 from the first spread spectrum modulation signal S1 (transmission signal). The distance calculation means 5d calculates T = Δt 2 −Δt 1 and L = T · C / 2 to calculate the distance L.
[0022]
In the embodiment of FIG. 3 described above, the configurations of the own station and other stations are different. FIG. 4 shows an embodiment in which this is the same configuration.
In the figure, 11 is a transmission means for the first spread spectrum modulation signal S1, 12 is a reception means for the second spread spectrum modulation signal, and 13 is added to the received second spread spectrum modulation signal S2 '. Demodulating means for demodulating the relative phase time difference data D1 (Δt 1 ), 14 is a detection for detecting the phase time difference Δt 1 between the first spread spectrum modulation signal S1 and the received second spread spectrum modulation signal S2 ′. means, 15 means for adding data D2 of the phase time difference △ t 2 to the first spread-spectrum modulated signal S1, is 16 a distance calculating means for calculating the distance data L from the data D1 and D2.
[0023]
The distance measuring means 10 having the above-described configuration is mounted on the own station 5 and the other station 6. Therefore, for example, by mounting the distance measuring means 10 on a plurality of moving bodies, the relative distance between the moving bodies can be determined. Each moving body can measure.
[0024]
FIG. 5 shows a specific configuration example of the embodiment of FIG.
In this figure, 11a is a spread clock (ck1) generator, 11b is a spread code (PN code) generator, 11c is a multiplier, 11d is a multiplier, 11e is a carrier wave (f1) transmitter, and 11f is an amplifier. Thus, the transmission means 11 is configured.
[0025]
Further, 12a is an amplifier, 12b is a multiplier, 12c is a carrier wave (f2) transmitter, 12d is an AGC circuit, and these constitute the receiving means 12.
Further, reference numeral 13a denotes a plurality of data and constitutes a demodulating means 13.
Furthermore, 14a is a spread clock (ck2) generator, 14b is a spread code generator, 14c is a multiplier, 14d is a band pass filter (BPF), 14e is a detector, 14f is a time difference detector, and these are the detection means 14 Is configured. 15 is a data adding circuit, and 16 is a distance calculating circuit.
[0026]
In the transmission means 11, the spread code (PN code) generated by the spread code generator 11b in response to the spread clock ck1 from the spread clock generator 11a and the transmission data D3 are multiplied and spread by the multiplier 11c, Further, the first spread spectrum modulation signal S1 obtained by demodulating with the carrier wave f1 by the multiplier 11d is amplified by the amplifier 11f and transmitted.
At this time, a part of the signal S1 is sent to the receiving means 12.
[0027]
In the receiving means 12, the signal S1 or the received second spread spectrum modulated signal S2 ′ is amplified by the amplifier 12a, modulated by the carrier f2 by the multiplier 12b, and the signal level is made constant by the AGC circuit 12d. One of the AGC output signals is sent to the data demodulator 13a to demodulate the data D1 having the relative phase time difference Δt 1 . The other of the AGC output signals is sent to the detection means 14. In the detection means 14, the signal is multiplied by the multiplier 14c and the spread code generated by the spread code generator 14b in response to the spread clock ck2 from the spread clock generator 14a to obtain a correlation. The correlation output signal is detected by the detector 14e via the BPF 14d and input to the time difference detector 14f. The time difference detector 14f detects the phase time difference Δt 2 of the correlation signal of the received signal S2 ′ using the correlation signal of the signal S1 as a reference R. The detected data D2 of Δt 2 is sent to the data addition circuit 15 and the distance calculation circuit 16.
[0028]
The distance calculation circuit 16 calculates the distance L from the data D1 and D2 as described above, and the data addition circuit 15 adds the data D2 to the transmission data D3 and is used for distance measurement in other areas.
[0029]
【The invention's effect】
As described above, according to the present invention, as in the conventional radar system, scanning is not required, so the distance measurement time is shortened, and even when there are a plurality of distance measuring devices, radio wave collision occurs. Nor.
Compared to a distance measurement method using radio wave folding, two frequency bands are not required, and the S / N ratio is not deteriorated, which is particularly suitable for distance measurement between moving bodies. .
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a distance measuring method of the present invention.
FIG. 2 is a diagram showing a timing relationship for explaining the principle of the distance measuring method of the present invention.
FIG. 3 is a block diagram showing an embodiment of a distance measuring device of the present invention.
FIG. 4 is a block diagram showing another embodiment of the distance measuring device of the present invention.
FIG. 5 is a diagram illustrating a specific configuration example of the embodiment of FIG. 4;
FIG. 6 is an explanatory diagram of a conventional radar ranging method.
FIG. 7 is an explanatory diagram of another conventional ranging method.
[Explanation of symbols]
5 Local station 6 Other station 5a Transmitting means 5b Demodulating means 5c Detection means 5d Distance calculating means 6a Detection means 6b Transmitting means 11 Transmitting means 12 Receiving means 13 Demodulating means 14 Detection means 15 Data adding means 16 Distance calculating means

Claims (2)

自局では他局へ当該自局の送信手段が備える拡散符号発生器を用いて符号化した第1のスペクトラム拡散変調信号を当該送信手段から送信しつつ、当該第1のスペクトラム拡散変調信号を受信手段に入力し当該受信手段が備える拡散符号発生器を用いて逆拡散を行って当該受信手段での相関信号を検出して前記送信信号の第1基準位置を検出し、
他局では前記第1のスペクトラム拡散変調信号を当該他局の受信手段で受信し当該受信手段が備える拡散符号発生器を用いて逆拡散を行って当該受信手段での相関信号を検出して受信信号の第2基準位置を検出し、前記第1のスペクトラム拡散変調信号の受信に呼応して当該他局の送信手段が備える拡散符号発生器を用いて符号化した第2のスペクトラム拡散変調信号を当該他局の送信手段から送信しつつ、当該第2のスペクトラム拡散変調信号を当該他局の受信手段に入力し当該受信手段が備える拡散符号発生器を用いて逆拡散を行って当該受信手段の相関信号を検出して当該他局からの送信信号の第3基準位置を検出し、前記第2基準位置と前記第3基準位置の相対位相時間差を当該他局の送信手段から送信している第2のスペクトラム拡散変調信号に付加して前記自局に送信し、
前記自局では、前記第2のスペクトラム拡散変調信号を当該自局の受信手段で受信し当該受信手段が備える拡散符号発生器を用いて逆拡散を行って当該受信手段の相関信号を検出して受信信号の第4基準位置を検出し、前記第1基準位置と前記第4基準位置の時間差から前記相対位相時間差を引いた時間差に基づいて、自局と他局間の距離を算出する
ことを特徴とする測距方法。
While the own station transmits a first spread-spectrum modulated signal encoded using a spreading code generator included in the transmitting means of the other stations own station from the transmission unit, receives the first spread-spectrum modulated signal The first reference position of the transmission signal is detected by performing despreading using a spreading code generator included in the receiving means and detecting a correlation signal in the receiving means ,
In the other station, the first spread spectrum modulation signal is received by the receiving means of the other station, and despreading is performed using a spreading code generator provided in the receiving means, and the correlation signal in the receiving means is detected and received. A second reference position of the signal is detected , and a second spread spectrum modulation signal encoded using a spread code generator provided in the transmission means of the other station in response to reception of the first spread spectrum modulation signal is obtained. While transmitting from the transmitting means of the other station, the second spread spectrum modulation signal is input to the receiving means of the other station, and despreading is performed using a spreading code generator provided in the receiving means, and the receiving means The third reference position of the transmission signal from the other station is detected by detecting the correlation signal, and the relative phase time difference between the second reference position and the third reference position is transmitted from the transmission means of the other station. 2 spectrum In addition to dispersed modulated signal transmitted to the own station,
The own station receives the second spread spectrum modulation signal by the receiving means of the own station, performs despreading using a spreading code generator provided in the receiving means, and detects a correlation signal of the receiving means. Detecting a fourth reference position of a received signal, and calculating a distance between the own station and another station based on a time difference obtained by subtracting the relative phase time difference from a time difference between the first reference position and the fourth reference position. Characteristic ranging method.
スペクトラム拡散変調信号の送信手段及び受信手段を備える自局及び他局を備え、自局と他局間の距離を測定する測距装置において、
前記自局は、前記他局へ当該自局の送信手段が備える拡散符号発生器を用いて符号化した第1のスペクトラム拡散変調信号を送信手段から送信しつつ、当該第1のスペクトラム拡散変調信号を受信手段に入力し当該受信手段が備える拡散符号発生器を用いて逆拡散を行って当該受信手段の相関信号を検出して自局からの送信信号の第1基準位置を検出する手段を備え、
前記他局は、前記第1のスペクトラム拡散変調信号を当該他局の受信手段で受信し当該受信手段が備える拡散符号発生器を用いて逆拡散を行って当該受信手段の相関信号を検出して受信信号の第2基準位置を検出する手段と、
前記第1のスペクトラム拡散変調信号の受信に呼応して当該他局の送信手段が備える拡散符号発生器を用いて符号化した第2のスペクトラム拡散変調信号を当該他局の送信手段から送信する手段と、
前記送信手段から送信されている第2のスペクトラム拡散変調信号を当該他局の受信手段に入力し当該受信手段が備える拡散符号発生器を用いて逆拡散を行って当該受信手段の相関信号を検出して当該他局からの送信信号の第3基準位置を検出し、前記第2基準位置と前記第3基準位置の相対位相時間差を検出する検出手段とを備え、
該検出手段により検出された相対位相時間差を当該他局の送信手段から送信している第2のスペクトラム拡散変調信号に付加して前記自局に送信し、
前記自局は、前記第2のスペクトラム拡散変調信号を当該自局の受信手段で受信し当該受信手段が備える拡散符号発生器を用いて逆拡散を行って当該受信手段の相関信号を検出して受信信号の第4基準位置を検出し、前記第1基準位置と前記第4基準位置の時間差から前記相対位相時間差を引いた時間差に基づいて、自局と他局間の距離を算出する
ことを特徴とする測距装置。
In a distance measuring apparatus comprising a local station and other stations having a spread spectrum modulation signal transmitting means and receiving means, and measuring the distance between the local station and other stations,
The own station transmits the first spread spectrum modulation signal transmitted from the transmission means to the other station using the spread code generator included in the transmission means of the own station. And a means for detecting the first reference position of the transmission signal from the own station by detecting the correlation signal of the receiving means by performing despreading using a spreading code generator provided in the receiving means. ,
The other station receives the first spread spectrum modulation signal by the receiving means of the other station and performs despreading using a spreading code generator provided in the receiving means to detect a correlation signal of the receiving means. Means for detecting a second reference position of the received signal;
Means for transmitting from the transmission means of the other station the second spread spectrum modulation signal encoded using the spread code generator provided in the transmission means of the other station in response to reception of the first spread spectrum modulation signal When,
The second spread spectrum modulation signal transmitted from the transmitting means is input to the receiving means of the other station and despreading is performed using a spreading code generator provided in the receiving means to detect the correlation signal of the receiving means and the third reference position of the transmission signal from another station is detected and a detection means for detecting a relative phase time difference between the third reference position and the second reference position,
The relative phase time difference detected by the detection means is added to the second spread spectrum modulation signal transmitted from the transmission means of the other station and transmitted to the own station,
The own station receives the second spread spectrum modulation signal by the receiving means of the own station and performs despreading using a spreading code generator provided in the receiving means to detect a correlation signal of the receiving means. Detecting a fourth reference position of a received signal, and calculating a distance between the own station and another station based on a time difference obtained by subtracting the relative phase time difference from a time difference between the first reference position and the fourth reference position. A distance measuring device.
JP36635099A 1999-12-24 1999-12-24 Ranging method and apparatus Expired - Fee Related JP4460698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36635099A JP4460698B2 (en) 1999-12-24 1999-12-24 Ranging method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36635099A JP4460698B2 (en) 1999-12-24 1999-12-24 Ranging method and apparatus

Publications (2)

Publication Number Publication Date
JP2001183447A JP2001183447A (en) 2001-07-06
JP4460698B2 true JP4460698B2 (en) 2010-05-12

Family

ID=18486570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36635099A Expired - Fee Related JP4460698B2 (en) 1999-12-24 1999-12-24 Ranging method and apparatus

Country Status (1)

Country Link
JP (1) JP4460698B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4520633B2 (en) * 2000-12-28 2010-08-11 クラリオン株式会社 Ranging method and ranging device
JP4553634B2 (en) * 2004-06-03 2010-09-29 セイコープレシジョン株式会社 Distance measuring device and distance measuring method
JP4506295B2 (en) 2004-06-11 2010-07-21 ソニー株式会社 Wireless communication apparatus, wireless communication method, and computer program
US7466219B2 (en) * 2004-10-19 2008-12-16 Sanyo Electric Co., Ltd. Communication device and distance calculation system
JP4704412B2 (en) * 2007-11-27 2011-06-15 株式会社日本自動車部品総合研究所 Object orientation detection apparatus and object orientation detection system
JP5188204B2 (en) * 2008-02-28 2013-04-24 三菱電機株式会社 Ranging communication device
JP6135217B2 (en) * 2013-03-18 2017-05-31 富士通株式会社 Signal correction apparatus, transmission apparatus, signal correction method, and transmission system

Also Published As

Publication number Publication date
JP2001183447A (en) 2001-07-06

Similar Documents

Publication Publication Date Title
JP2990097B2 (en) Continuous-wave wide-band precision ranging radar equipment.
US6801153B2 (en) Spread spectrum radar with leak compensation at baseband
US8723720B2 (en) Wireless location detection and/or tracking device and associated methods
US9664777B2 (en) Radar device
US6771698B1 (en) System and method for testing antenna gain
JP4460698B2 (en) Ranging method and apparatus
KR20180130900A (en) Narrow-band radar device and operating method thereof
JP3056579B2 (en) In-vehicle radar device
JP2003207557A (en) Mobile station and movable body communication system
JPH05122120A (en) Inter-vehicle communication equipment
JP5190805B2 (en) Radar equipment
JP3611115B2 (en) Ranging device and radar device equipped with the ranging device
JP4520633B2 (en) Ranging method and ranging device
JP3800157B2 (en) Ranging system
JP2005106470A5 (en)
JP2003287567A (en) Spread spectrum range-finding communication apparatus
JP2001033542A (en) Intervehicle distance measuring method
JPH1183970A (en) Direction detection system
JPH1194933A (en) Range finder
JPH05249231A (en) Doppler radar equipment
JPH1194934A (en) Radar equipment
EP1134593A1 (en) Communication method for measuring distance between mobile bodies
JP2006275658A (en) Pulse-wave radar device
JPH1013315A (en) Propagation delay profile measurement system
JPH08136645A (en) Method and device for controlling sensitivity with time of radar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090202

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090911

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees