JP4445476B2 - Heat treatment furnace and solar cell - Google Patents

Heat treatment furnace and solar cell Download PDF

Info

Publication number
JP4445476B2
JP4445476B2 JP2006045140A JP2006045140A JP4445476B2 JP 4445476 B2 JP4445476 B2 JP 4445476B2 JP 2006045140 A JP2006045140 A JP 2006045140A JP 2006045140 A JP2006045140 A JP 2006045140A JP 4445476 B2 JP4445476 B2 JP 4445476B2
Authority
JP
Japan
Prior art keywords
heat
furnace
treated
heat treatment
treatment furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006045140A
Other languages
Japanese (ja)
Other versions
JP2007225173A (en
Inventor
光徳 中谷
隆 大橋
道郎 青木
誠 新井
良夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Mitsubishi Electric Corp
Original Assignee
NGK Insulators Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Mitsubishi Electric Corp filed Critical NGK Insulators Ltd
Priority to JP2006045140A priority Critical patent/JP4445476B2/en
Publication of JP2007225173A publication Critical patent/JP2007225173A/en
Application granted granted Critical
Publication of JP4445476B2 publication Critical patent/JP4445476B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Tunnel Furnaces (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Furnace Details (AREA)

Description

本発明は、太陽電池セル等の熱処理に使用される熱処理炉と当該熱処理炉により製造された太陽電池セルとに関するものである。   The present invention relates to a heat treatment furnace used for heat treatment of a solar battery cell and the like, and a solar battery cell manufactured by the heat treatment furnace.

太陽電池セルの製造においては、基板の表面及び裏面に導電性の電極材料をペースト状にして所定のパターンで印刷形成した後、熱処理炉内を連続的又は間欠的に移動させながら熱処理(乾燥・焼成)する工程が有る。通常、このような熱処理に用いられる熱処理炉には、炉の入口側から出口側に向かって、被熱処理物の乾燥を行う乾燥領域と、被熱処理物の焼成を行う焼成領域とが順に設けられており、被熱処理物は乾燥領域を搬送されながら乾燥された後、焼成領域を搬送されながら焼成され、その後、炉外に搬出される。   In the manufacture of solar cells, conductive electrode materials are pasted on the front and back surfaces of a substrate and printed in a predetermined pattern, and then heat-treated (dried and dried) while moving in a heat-treating furnace continuously or intermittently. There is a step of firing. Usually, in a heat treatment furnace used for such heat treatment, a drying region for drying the material to be heat treated and a firing region for firing the material to be heat treated are sequentially provided from the inlet side to the outlet side of the furnace. The material to be heat-treated is dried while being transported through the drying region, then is fired while being transported through the firing region, and is then carried out of the furnace.

熱処理炉内で被熱処理物を搬送するための搬送機構としては、被熱処理物が太陽電池セルである場合、メッシュベルトコンベアが広く使用されている(例えば、特許文献1参照)。しかしながら、メッシュベルトコンベアは、メッシュベルト自身の熱容量が非常に大きく、被熱処理物の加熱に要するエネルギーと同等以上のエネルギーが、メッシュベルトの加熱に費やされる。また、太陽電池セルにおける乾燥後の焼成、すなわち、アルミニウムや銀からなる電極材料の基板表面への焼き付けは、短時間で急速に800℃程度まで加熱し、その後急冷却することが良好な製品特性を得る上で理想的とされているが、熱容量の大きなメッシュベルトコンベアでは、そのような理想的な熱処理状態を実現するのは困難であった。   As a transport mechanism for transporting an object to be heat treated in a heat treatment furnace, a mesh belt conveyor is widely used when the object to be heat treated is a solar battery cell (see, for example, Patent Document 1). However, the mesh belt conveyor has a very large heat capacity of the mesh belt itself, and energy equal to or higher than the energy required for heating the object to be heat-treated is consumed for heating the mesh belt. In addition, baking after drying in solar cells, that is, baking of electrode materials made of aluminum or silver onto the substrate surface, is quickly heated to about 800 ° C. in a short time, and then rapidly cooled. In the mesh belt conveyor having a large heat capacity, it is difficult to realize such an ideal heat treatment state.

また、最近では、メッシュベルトコンベアに比して熱容量が小さく、迅速な昇降温が可能なことから、ウォーキングビームや、ワイヤー等の線材に張力を付与して張り渡し、当該線材にウォーキングビーム的な搬送動作を行わせるようにした搬送機構も使用されるようになってきている(例えば、特許文献2〜5参照)。しかしながら、これらの搬送機構を用いた熱処理炉は、被熱処理物を載置して移動する搬送部(ビームやワイヤー)の少なくとも一部は、常に炉内に存在する状態となっているため、そのように炉内に存在する部分上において、焼成中の熱衝撃等による被熱処理物の割れが生じた場合には、割れた破片を搬送部上から除去するのが困難であり、その除去作業のために、一旦、ヒータの電源を落とし、炉の稼働を長時間に渡って停止しなければならず、それが生産性に大きな影響を及ぼしていた。   Recently, the heat capacity is smaller than that of mesh belt conveyors, and rapid heating and cooling is possible. Therefore, tension is applied to the walking beam and wire such as wire, and the wire is like a walking beam. A transport mechanism that performs a transport operation has also been used (see, for example, Patent Documents 2 to 5). However, in a heat treatment furnace using these transfer mechanisms, since at least a part of a transfer part (beam or wire) on which the object to be heat-treated is placed and moved is always in the furnace, Thus, when cracks occur in the heat-treated material due to thermal shock during firing on the part existing in the furnace, it is difficult to remove the broken pieces from the transport section. For this reason, the heater must be turned off and the operation of the furnace must be stopped for a long time, which has had a great effect on productivity.

特開2002−203888号公報JP 2002-203888 A 特開2003−261222号公報JP 2003-261222 A 特開2004−286425号公報JP 2004-286425 A 特開2004−286426号公報JP 2004-286426 A 特開2004−286434号公報JP 2004-286434 A

本発明は、このような従来の事情に鑑みてなされたものであり、その目的とするところは、消費エネルギーが低く、被熱処理物の理想的な熱処理状態を得ることが容易で、更に、炉の内部において搬送部上で被熱処理物の割れが生じた場合に、炉の稼働を停止せず、あるいは短時間の停止するだけで、容易に搬送部上から破片を除去することが可能な熱処理炉を提供することにある。   The present invention has been made in view of such a conventional situation. The object of the present invention is low energy consumption, and it is easy to obtain an ideal heat treatment state of an object to be heat treated. Heat treatment that can easily remove debris from the transport section without stopping the operation of the furnace or just stopping for a short time when cracking of the heat-treated material occurs on the transport section inside To provide a furnace.

上記目的を達成するため、本発明によれば、以下の熱処理炉及び太陽電池セルが提供される。   In order to achieve the above object, according to the present invention, the following heat treatment furnace and solar battery cell are provided.

[1] 被熱処理物を搬送しながら当該被熱処理物に所定の熱処理を施す熱処理炉であって、前記被熱処理物を搬送するための搬送機構として、前記被熱処理物を炉内に投入し、炉内の所定位置まで搬送する投入側搬送機構と、前記所定位置において前記投入側搬送機構から前記被熱処理物を受け取り、前記所定位置から炉外まで搬送する搬出側搬送機構とを備え、前記投入側搬送機構及び前記搬出側搬送機構が、それぞれ所定のサイクルで周期的な動作を行う片持ち構造のビームによって前記被熱処理物を搬送するものであり、前記投入側搬送機構及び前記搬出側搬送機構の前記ビームの全体が、前記被熱処理物の投入時及び取り出し時に完全に炉外に出た状態となる熱処理炉。 [1] A heat treatment furnace that performs a predetermined heat treatment on the heat treatment object while conveying the heat treatment object, and as a transport mechanism for transporting the heat treatment object, the heat treatment object is put into the furnace, An input side transport mechanism for transporting to a predetermined position in the furnace; and a unloading side transport mechanism for receiving the heat-treated material from the input side transport mechanism at the predetermined position and transporting from the predetermined position to the outside of the furnace. The transporting mechanism and the unloading-side transport mechanism are configured to transport the object to be heat-treated by a cantilevered beam that periodically operates in a predetermined cycle, and the input-side transporting mechanism and the unloading-side transporting mechanism. A heat treatment furnace in which the entire beam is completely out of the furnace at the time of loading and unloading the object to be heat treated.

[2] 炉の入口側から出口側に向かって、前記被熱処理物の乾燥を行う乾燥領域と、前記被熱処理物の焼成を行う焼成領域とが順に設けられ、前記乾燥領域では前記被熱処理物の搬送を前記投入側搬送機構により行い、前記焼成領域では前記被熱処理物の搬送を前記搬出側搬送機構により行う前記[1]に記載の熱処理炉。 [2] A drying region for drying the material to be heat-treated and a firing region for baking the material to be heat-treated are provided in this order from the inlet side to the outlet side of the furnace, and the material to be heat-treated is provided in the drying region. The heat treatment furnace according to [1], wherein the transfer is performed by the input-side transport mechanism, and the workpiece is transported by the unloading-side transport mechanism in the firing region.

[3] 前記ビームの下側に接触して前記ビームを支持する支持ローラーを設けた前記[1]又は[2]に記載の熱処理炉。 [3] The heat treatment furnace according to [1] or [2], wherein a support roller that supports the beam in contact with the lower side of the beam is provided.

[4] 前記搬出側搬送機構の前記ビームに、前記被熱処理物の縁部とのみ接触して前記被熱処理物を保持するための保持治具が装着されており、当該保持治具の前記被熱処理物に接触する部分の幅が2mm以下である前記[1]〜[3]の何れかに記載の熱処理炉。 [4] A holding jig for holding the heat-treated object in contact with only the edge of the object to be heat-treated is attached to the beam of the carry-out side transport mechanism. The heat treatment furnace according to any one of [1] to [3], wherein the width of the portion in contact with the heat-treated product is 2 mm or less.

[5] 前記投入側搬送機構と前記搬出側搬送機構とのうちの一方の動作のサイクル時間が、他方の動作のサイクル時間の整数倍である前記[1]〜[4]の何れかに記載の熱処理炉。 [5] The cycle time of one operation of the loading side transport mechanism and the unloading side transport mechanism is any one of the above [1] to [4], which is an integral multiple of the cycle time of the other operation. Heat treatment furnace.

[6] 炉内の加熱手段としてヒータを有し、当該ヒータが、前記被熱処理物よりも上方の位置であって、かつ、炉の真上から見て前記被熱処理物の通過領域と重ならないような位置に設けられている前記[1]〜[5]の何れかに記載の熱処理炉。 [6] A heater is provided as a heating means in the furnace, and the heater is positioned above the object to be heat-treated and does not overlap with a region through which the object to be heat-treated is viewed from directly above the furnace. The heat treatment furnace according to any one of [1] to [5], which is provided at such a position.

[7] 前記焼成領域において、炉の真上から見て前記ヒータと前記被熱処理物の通過領域との間の位置に、炉天井部から下方に伸びる整流板が設けられるとともに、前記ヒータの上方に給気口が設けられ、前記被熱処理物の通過領域の上方に排気口が設けられた前記[6]に記載の熱処理炉。 [7] In the firing region, a rectifying plate extending downward from the furnace ceiling portion is provided at a position between the heater and the passage region of the heat-treated material when viewed from directly above the furnace, and above the heater. The heat treatment furnace as set forth in [6], wherein an air supply port is provided at the top and an exhaust port is provided above a region through which the heat-treated object passes.

[8] 炉の内底面から搬送面までの高さLが、前記被熱処理物の最大寸法Dとの関係において、L≧1.3×Dを満たすものである前記[1]〜[7]の何れかに記載の熱処理炉。 [8] The above [1] to [7], wherein the height L from the inner bottom surface of the furnace to the transfer surface satisfies L ≧ 1.3 × D in relation to the maximum dimension D of the workpiece. The heat treatment furnace according to any one of the above.

[9] 前記[1]〜[8]の何れかに記載の熱処理炉を用いて製造された太陽電池セル。 [9] A solar battery cell manufactured using the heat treatment furnace according to any one of [1] to [8].

本発明の熱処理炉は、搬送機構としてメッシュベルトに比して熱容量が小さいビームを使用しているため、消費エネルギーが低く、また、急加熱や急冷却が容易で、被熱処理物の理想的な熱処理状態を得やすい。更に、被熱処理物を載置して移動するビームが、被熱処理物の投入時及び取り出し時に完全に炉外に出た状態となるので、炉の内部においてビーム上で被熱処理物の割れが生じた場合に、炉の稼働を停止せず、あるいは短時間の停止するだけで、炉外で容易にビーム上から破片を除去することができる。また、本発明の太陽電池セルは、前記のような熱処理炉にて、理想的な熱処理状態で製造されるため、搬送機構にメッシュベルトを用いた熱処理炉にて製造された太陽電池セルに比して良好な特性(発電能力等)が期待できる。   The heat treatment furnace of the present invention uses a beam having a smaller heat capacity than the mesh belt as a transport mechanism, so that it consumes less energy and is easy to heat and cool quickly, making it ideal for the object to be heat treated. Easy to obtain heat treatment. Furthermore, since the beam that moves with the object to be heat-treated is completely out of the furnace at the time of loading and unloading the object to be heat-treated, the heat-treated object is cracked on the beam inside the furnace. In this case, it is possible to easily remove debris from the beam outside the furnace without stopping the operation of the furnace or just stopping for a short time. Further, since the solar battery cell of the present invention is manufactured in an ideal heat treatment state in the heat treatment furnace as described above, it is compared with the solar battery cell produced in a heat treatment furnace using a mesh belt as a transport mechanism. Therefore, good characteristics (such as power generation capacity) can be expected.

前記のとおり、本発明の熱処理炉は、被熱処理物を搬送しながら当該被熱処理物に所定の熱処理を施す熱処理炉であって、前記被熱処理物を搬送するための搬送機構として、前記被熱処理物を炉内に投入し、炉内の所定位置まで搬送する投入側搬送機構と、前記所定位置において前記投入側搬送機構から前記被熱処理物を受け取り、前記所定位置から炉外まで搬送する搬出側搬送機構とを備え、前記投入側搬送機構及び前記搬出側搬送機構が、それぞれ所定のサイクルで周期的な動作を行う片持ち構造のビームによって前記被熱処理物を搬送するものであり、前記投入側搬送機構及び前記搬出側搬送機構の前記ビームの全体が、前記被熱処理物の投入時及び取り出し時に完全に炉外に出た状態となるよう構成されている。   As described above, the heat treatment furnace of the present invention is a heat treatment furnace that performs a predetermined heat treatment on the object to be heat treated while conveying the object to be heat treated, and the heat treatment furnace serves as a conveyance mechanism for conveying the object to be heat treated. A loading-side transfer mechanism for loading an object into the furnace and transporting it to a predetermined position in the furnace; and a unloading side for receiving the material to be heat-treated from the charging-side transfer mechanism at the predetermined position and transporting it from the predetermined position to the outside of the furnace A transfer mechanism, wherein the input side transfer mechanism and the output side transfer mechanism transfer the object to be heat-treated by a cantilever beam that periodically operates in a predetermined cycle. The entire beam of the transfer mechanism and the unload-side transfer mechanism is configured to be completely out of the furnace when the workpiece is put in and taken out.

以下、本発明の代表的な実施形態を図面を参照しながら具体的に説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。   Hereinafter, representative embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments, and is within the scope of the present invention. It should be understood that design changes, improvements, and the like can be made as appropriate based on the general knowledge of vendors.

図1〜3は、本発明に係る熱処理炉の実施形態の一例を搬送方向に沿った断面で示した概略断面図であり、図1は被熱処理物の投入時の状態、図2は被熱処理物の投入側搬送機構から搬出側搬送機構への受け渡し時の状態、図3は被熱処理物の取り出し時の状態をそれぞれ示している。   FIGS. 1 to 3 are schematic cross-sectional views showing an example of an embodiment of a heat treatment furnace according to the present invention in a cross-section along the conveying direction, FIG. 1 is a state when an object to be heat-treated is charged, and FIG. FIG. 3 shows a state at the time of delivery from the input side transport mechanism to the carry-out side transport mechanism, and FIG.

本実施形態の熱処理炉は、炉の入口側から出口側に向かって、被熱処理物51の乾燥を行う乾燥領域9と、被熱処理物51の焼成を行う焼成領域19とが順に設けられ、乾燥領域9では被熱処理物51の搬送を投入側搬送機構により行い、焼成領域19では被熱処理物51の搬送を搬出側搬送機構により行うようになっている。このような構成の熱処理炉は、被熱処理物の乾燥と焼成とが一台の炉でできるという利点が有る。   The heat treatment furnace of this embodiment is provided with a drying region 9 for drying the object to be heat-treated 51 and a baking region 19 for baking the object to be heat-treated 51 in this order from the inlet side to the outlet side of the furnace, and drying. In the region 9, the workpiece 51 is transported by the input-side transport mechanism, and in the firing region 19, the workpiece 51 is transported by the unloading-side transport mechanism. The heat treatment furnace having such a configuration has an advantage that the heat treatment object can be dried and fired in a single furnace.

炉の入口側に設けられた投入側搬送機構は、ビーム支持体21によって一端部を支持された水平方向に伸びる片持ち構造のビーム22を有する。ビーム支持体21は、駆動機構(図示せず)により一定のストロークで上昇、前進、下降、後退の動作を所定のサイクルで周期的に繰り返すように構成されており、これによってビーム22も同様の周期的動作を行う。   The input side transport mechanism provided on the entrance side of the furnace includes a beam 22 having a cantilever structure extending in the horizontal direction and having one end supported by a beam support 21. The beam support 21 is configured to periodically repeat the ascending, advancing, descending, and retreating operations with a predetermined stroke by a driving mechanism (not shown). Perform periodic operation.

ビーム22の先端付近には、被熱処理物51の縁部とのみ接触して被熱処理物51を保持するための保持治具23が装着されている。被熱処理物51が太陽電池セルであるような場合には、銀やアルミニウムを主成分とした金属粒子を有機溶剤や高分子樹脂で練ってペースト状にした電極材料が、基板の表面のみならず裏面にもスクリーン印刷法で印刷されており、乾燥領域9においてビーム22がそれに直接接触した状態になっていると、接触部で印刷面が剥離したり、傷や焼け跡が付いたりして、被熱処理物51の性能や外観に悪影響を及ぼす他、剥離した印刷面がビーム22に付着して搬送系が汚染されるおそれが有る。このため、前記のような保持治具23を使用し、搬送機構の被熱処理物51に対する接触を、電極材料の印刷がなされていない被熱処理物51の縁部にのみ限定するのが望ましい。   In the vicinity of the tip of the beam 22, a holding jig 23 for holding the object to be heat-treated 51 in contact with only the edge of the object to be heat-treated 51 is mounted. When the object to be heat-treated 51 is a solar battery cell, an electrode material obtained by kneading metal particles mainly composed of silver or aluminum with an organic solvent or a polymer resin to form a paste is not limited to the surface of the substrate. If the back surface is also printed by screen printing and the beam 22 is in direct contact with it in the dry region 9, the printed surface may be peeled off at the contact area, or scratches or burn marks may be attached. In addition to adversely affecting the performance and appearance of the heat-treated product 51, the peeled printed surface may adhere to the beam 22 and contaminate the transport system. For this reason, it is desirable to use the holding jig 23 as described above and limit the contact of the transport mechanism to the heat-treated object 51 only to the edge of the heat-treated object 51 on which no electrode material is printed.

また、ビーム22のビーム支持体21によって支持されている側と反対側の端部付近には、ビーム22の下側に接触してビーム22を支持する支持ローラー24が設けられている。ビーム22は方持ち構造で重心が偏心しているので、このように回転できる支持ローラー24を設けてビーム22を下側から支持し、ビーム22を安定させることが好ましい。   A support roller 24 that supports the beam 22 in contact with the lower side of the beam 22 is provided near the end of the beam 22 opposite to the side supported by the beam support 21. Since the beam 22 is a cantilever structure and the center of gravity is eccentric, it is preferable to provide a support roller 24 that can rotate in this way to support the beam 22 from below and stabilize the beam 22.

炉の出口側に設けられた搬出側搬送機構は、ビーム支持体31によって一端部を支持された水平方向に伸びる片持ち構造のビーム32を有する。ビーム支持体31は、駆動機構(図示せず)により一定のストロークで前進、後退の動作を所定のサイクルで周期的に繰り返すように構成されており、これによってビーム32も同様の周期的動作を行う。   The carry-out side transport mechanism provided on the outlet side of the furnace has a beam 32 having a cantilever structure extending in the horizontal direction and having one end supported by a beam support 31. The beam support 31 is configured to periodically repeat the forward and backward movements with a predetermined stroke by a driving mechanism (not shown) in a predetermined cycle, whereby the beam 32 also performs the same periodic movement. Do.

ビーム32の先端付近には、被熱処理物51の縁部とのみ接触して被熱処理物51を保持するための保持治具33が装着されている。被熱処理物51が太陽電池セルであるような場合には、前述のとおり、基板の裏面にも、アルミニウムを主成分とした電極材料が印刷されており、この電極材料中の反応性に富んだアルミニウムが焼成領域19の高温下においてビーム32と直接接触した状態となっていると、接触部での両者の反応により、被熱処理物51の性能の低下や外観の劣化を招くおそれが有る。このため、前記のような保持治具33を使用し、搬送機構の被熱処理物に対する接触を、電極材料の印刷がなされていない被熱処理物51の縁部にのみ限定するのが望ましい。   In the vicinity of the tip of the beam 32, a holding jig 33 for holding the workpiece 51 in contact with only the edge of the workpiece 51 is mounted. When the object to be heat-treated 51 is a solar battery cell, as described above, the electrode material mainly composed of aluminum is also printed on the back surface of the substrate, and the reactivity in the electrode material is high. If aluminum is in direct contact with the beam 32 at a high temperature in the fired region 19, there is a possibility that the performance of the article 51 to be heat-treated or the appearance thereof may be deteriorated due to the reaction between the two at the contact portion. For this reason, it is desirable to use the holding jig 33 as described above and limit the contact of the transport mechanism to the heat-treated object only to the edge of the heat-treated object 51 on which no electrode material is printed.

また、投入側搬送機構と同様に、搬出側搬送機構においても、ビーム32のビーム支持体31によって支持されている側と反対側の端部付近には、ビーム32の下側に接触してビーム22を支持する支持ローラー34が設けられている。ビーム32は方持ち構造で重心が偏心しているので、このように回転できる支持ローラー34を設けてビーム32を下側から支持し、ビーム32を安定させることが好ましい。   In the same manner as the input side transport mechanism, in the unload side transport mechanism, the beam 32 is in contact with the lower side of the beam 32 near the end of the beam 32 opposite to the side supported by the beam support 31. A support roller 34 is provided to support 22. Since the beam 32 is a cantilever structure and the center of gravity is decentered, it is preferable to provide a support roller 34 that can rotate in this way to support the beam 32 from below and to stabilize the beam 32.

本実施形態に係る熱処理炉においては、これら搬送機構の他、搬出側搬送機構により炉の出口を通じて炉外まで搬送された被熱処理物51を、搬出側搬送機構から受け取る取り出し機構を備える。取り出し機構は、ビーム支持体41によって一端部を支持された水平方向に伸びる片持ち構造のビーム42を有する。ビーム支持体41は、駆動機構(図示せず)により一定のストロークで上昇、下降の動作を所定のサイクルで周期的に繰り返すように構成されており、これによってビーム42も同様の周期的動作を行う。   In addition to these transfer mechanisms, the heat treatment furnace according to the present embodiment includes a take-out mechanism that receives, from the carry-out side transfer mechanism, the heat-treated object 51 transferred to the outside of the furnace through the exit of the furnace by the carry-out side transfer mechanism. The take-out mechanism has a beam 42 having a cantilever structure extending in the horizontal direction and having one end supported by a beam support 41. The beam support 41 is configured to periodically repeat the ascending and descending operations with a predetermined stroke by a driving mechanism (not shown) in a predetermined cycle, whereby the beam 42 also performs similar periodic operations. Do.

ビーム42の先端付近には、被熱処理物51の縁部とのみ接触して被熱処理物51を保持するための保持治具43が装着されている。被熱処理物51が太陽電池セルであるような場合には、前述のとおり、基板の裏面にも、アルミニウムを主成分とした電極材料が印刷されており、焼成領域19を通過した直後においては、まだ電極材料中の反応性に富んだアルミニウムの粒子内部は溶融状態にある場合があり、それが炉外において常温のビーム42と直接接触すると、接触部において被熱処理物51が変色したり、性能の低下を招くおそれが有る。このため、前記のような保持治具43を使用し、搬送機構の被熱処理物に対する接触を、電極材料の印刷がなされていない被熱処理物51の縁部にのみ限定するのが望ましい。   A holding jig 43 for holding the object to be heat-treated 51 in contact with only the edge of the object to be heat-treated 51 is mounted near the tip of the beam 42. When the object to be heat-treated 51 is a solar battery cell, as described above, the electrode material mainly composed of aluminum is also printed on the back surface of the substrate, and immediately after passing through the firing region 19, In some cases, the inside of the aluminum particles having high reactivity in the electrode material may be in a molten state, and when it is in direct contact with the room temperature beam 42 outside the furnace, the heat-treated object 51 is discolored at the contact portion or the performance is increased. There is a risk of lowering. For this reason, it is desirable to use the holding jig 43 as described above and limit the contact of the transport mechanism to the heat-treated object only to the edge of the heat-treated object 51 on which no electrode material is printed.

乾燥領域9には、直線型のヒータ1が搬送方向と直交する方向に必要本数配置され、所望の温度条件を得られるように熱電対4を用いて温度制御される。炉の保温性を高めるため、投入側搬送機構の出入り口以外は断熱材2で被われている。乾燥中に発生する電極材料中の有機成分等は、給気管5から導入した空気などのガスを用いて、排気管3から排気される。   In the drying region 9, a required number of linear heaters 1 are arranged in a direction orthogonal to the conveying direction, and the temperature is controlled using the thermocouple 4 so as to obtain a desired temperature condition. In order to improve the heat retaining property of the furnace, the insulating material 2 is covered except for the entrance / exit of the input side transport mechanism. Organic components and the like in the electrode material generated during drying are exhausted from the exhaust pipe 3 using a gas such as air introduced from the air supply pipe 5.

焼成領域19には、直線型のヒータ11が搬送方向と平行に必要本数配置され、所望の温度条件を得られるように熱電対14を用いて温度制御される。炉の保温性を高めるため、搬出側搬送機構の出入り口以外は断熱材12で被われている。焼成中に発生する電極材料中の有機成分等は、給気管15から導入した空気などのガスを用いて、排気管13から排気される。   A necessary number of linear heaters 11 are arranged in the firing region 19 in parallel with the transport direction, and the temperature is controlled using a thermocouple 14 so as to obtain a desired temperature condition. In order to improve the heat retaining property of the furnace, the insulating material 12 is covered except for the entrance / exit of the carry-out side transport mechanism. Organic components and the like in the electrode material generated during firing are exhausted from the exhaust pipe 13 using a gas such as air introduced from the air supply pipe 15.

このような構成の熱処理炉において、まず、被熱処理物51の投入時には、図1に示すように、炉の入口側の投入側搬送機構は、ビーム22の全体が炉外に完全に出た状態となっており、この状態で被熱処理物51がビーム22に装着された保持治具23上に載置される。この際、炉の出口側の搬出側搬送機構も、ビーム32が炉外に完全に出た状態となっている。なお、本発明において「投入時」とは、このように被熱処理物51が投入側搬送機構の保持治具23上(保持治具23を用いず、被熱処理物を直接ビーム22上に載置する場合はビーム22上)に載置された時点を言うものとする。   In the heat treatment furnace having such a configuration, first, when the object to be heat-treated 51 is charged, as shown in FIG. 1, the loading-side transfer mechanism on the furnace inlet side is in a state where the entire beam 22 is completely out of the furnace. In this state, the object to be heat-treated 51 is placed on the holding jig 23 attached to the beam 22. At this time, the carry-out side transport mechanism on the outlet side of the furnace is also in a state where the beam 32 is completely out of the furnace. In the present invention, “at the time of charging” means that the object to be heat-treated 51 is placed on the holding jig 23 of the feeding-side transport mechanism (the object to be heat-treated is directly placed on the beam 22 without using the holding jig 23). In this case, it is assumed that the time point when it is placed on the beam 22).

次に、ビーム22が上昇して前進(炉の出口方向への移動)し、被熱処理物51を炉内に入れ、図2に示すように、投入側搬送機構から搬出側搬送機構への受け渡し位置である乾燥領域9の終端部まで搬送する。また、これと同時に、搬出側搬送機構のビーム32が後退(炉の入口方向への移動)し、その先端部がビーム22の先端部の下方に到達した状態で静止する。   Next, the beam 22 ascends and moves forward (moves in the direction of the furnace outlet), the workpiece 51 is placed in the furnace, and, as shown in FIG. 2, is transferred from the input side transport mechanism to the unload side transport mechanism. It conveys to the terminal part of the dry area 9 which is a position. At the same time, the beam 32 of the carry-out side transport mechanism moves backward (moves in the direction of the furnace entrance), and stops in a state where the tip portion reaches below the tip portion of the beam 22.

続いて、図4に部分的に拡大して示すように、ビーム22が下降し、その下降の過程で被熱処理物51は、ビーム22に装着された保持治具23上からビーム32に装着された保持治具33上に移載され、投入側搬送機構から搬出側搬送機構への受け渡しが完了する。なお、図4の例では、搬出側搬送機構のビーム22は1本で、搬出側搬送機構のビーム32は2本であるが、これは、一般的に、乾燥よりも焼成の方が処理温度が高く、処理温度が高くなるに伴って、被熱処理物とビームとの距離が近い程、被熱処理物の処理温度が不均一になり製品特性も不均一になりやすいため、焼成領域19において被熱処理物の搬送を行うビーム32が、被熱処理物51からより遠くなるような配置が得られるよう配慮したものである。また、このように1本のビーム22が、搬出側搬送機構の2本のビーム32間で下降することにより、ビーム22とビーム32が干渉することなく受け渡しが行える。   Subsequently, as shown in a partially enlarged view in FIG. 4, the beam 22 descends, and the workpiece 51 is mounted on the beam 32 from the holding jig 23 mounted on the beam 22 in the descending process. Is transferred onto the holding jig 33, and the transfer from the loading side transport mechanism to the unloading side transport mechanism is completed. In the example of FIG. 4, the number of the beam 22 of the carry-out side transport mechanism is one and the number of the beam 32 of the carry-out side transport mechanism is two. In general, this is the processing temperature for firing rather than drying. As the processing temperature increases, the closer the distance between the object to be heat-treated and the beam, the more uneven the processing temperature of the object to be heat-treated and the non-uniform product characteristics. The arrangement is such that the beam 32 for transporting the heat-treated product is arranged farther from the object to be heat-treated 51. In addition, since one beam 22 descends between the two beams 32 of the carry-out side transport mechanism in this way, delivery can be performed without interference between the beam 22 and the beam 32.

こうして受け渡しが完了した後、ビーム22は後退し、同時にビーム32は前進して、図3に示すように、両ビーム22、23は再びその全体が完全に炉外に出た状態となる。最後に、図5に部分的に拡大して示すように、取り出し機構のビーム42が上昇し、その上昇の過程で被熱処理物51は、ビーム32に装着された保持治具33上からビーム42に装着された保持治具43上に移載され、搬出側搬送機構から取り出し機構への受け渡しがなされる。なお、図5の例では、取り出し機構のビーム42が搬出側搬送機構のビーム22と同様に1本であり、この1本のビーム42が、搬出側搬送機構の2本のビーム32間で上昇することにより、ビーム42とビーム32が干渉することなく受け渡しが行える。   After the delivery is completed in this way, the beam 22 moves backward, and at the same time, the beam 32 moves forward. As shown in FIG. 3, both the beams 22 and 23 are completely out of the furnace again. Finally, as shown in a partially enlarged view in FIG. 5, the beam 42 of the take-out mechanism rises, and in the course of the rise, the object to be heat-treated 51 is moved from above the holding jig 33 attached to the beam 32. Is transferred onto the holding jig 43 attached to the transfer mechanism, and transferred from the carry-out side transfer mechanism to the take-out mechanism. In the example of FIG. 5, the beam 42 of the take-out mechanism is one like the beam 22 of the carry-out side transfer mechanism, and this one beam 42 rises between the two beams 32 of the carry-out side transfer mechanism. By doing so, the beam 42 and the beam 32 can be delivered without interference.

このように本発明の熱処理炉においては、被熱処理物を搬送する搬送機構を2つに分け、各搬送機構に片持ち構造のビームを用いたことにより、被熱処理物を載置して移動する搬送部、すなわちビームの全体を、完全に炉外に出すことができるので、炉の内部においてビーム上で被熱処理物の割れが生じた場合に、炉の稼働を停止せず、あるいは短時間の停止するだけで、炉外で容易にビーム上から破片を除去することができる。また、搬送機構としてメッシュベルトに比して熱容量が小さいビームを使用しているため、消費エネルギーが低く、急加熱や急冷却も容易で、被熱処理物の理想的な熱処理状態を得やすい。   As described above, in the heat treatment furnace of the present invention, the conveyance mechanism for conveying the object to be heat-treated is divided into two, and the cantilever structure is used for each conveyance mechanism, so that the object to be heat-treated is placed and moved. Since the entire conveying unit, that is, the entire beam can be taken out of the furnace, if the material to be heat-treated breaks on the beam inside the furnace, the operation of the furnace is not stopped or a short time is required. Debris can be easily removed from the beam outside the furnace simply by stopping. Further, since a beam having a smaller heat capacity than that of the mesh belt is used as the transport mechanism, energy consumption is low, rapid heating and rapid cooling are easy, and an ideal heat treatment state of the object to be heat treated can be easily obtained.

本発明の熱処理炉における基本的な搬送動作は、前述のとおりであるが、乾燥と焼成とを連続的に行う場合には、乾燥処理を行う時間と焼成を行う時間とが異なるのが通常である。これに対応するため、本発明においては、投入側搬送機構と搬出側搬送機構とのうちの一方の動作のサイクル時間が、他方の動作のサイクル時間の整数倍となるように、各搬送機構の動作のサイクル時間を調整することが好ましい。   The basic transfer operation in the heat treatment furnace of the present invention is as described above. However, when drying and firing are performed continuously, the time for performing the drying treatment and the time for performing the firing are usually different. is there. In order to cope with this, in the present invention, each transport mechanism is configured so that the cycle time of one operation of the input side transport mechanism and the carry-out side transport mechanism is an integral multiple of the cycle time of the other operation. It is preferable to adjust the cycle time of operation.

例えば、乾燥時間が焼成時間より長い場合は、投入側搬送機構のサイクル時間を搬出側搬送機構のサイクル時間のn倍(n;整数)とし、投入側搬送機構が1サイクルの動作をする間に、搬出側搬送機構がn倍のサイクルの動作をするようにすれば、乾燥時間も焼成時間も適切な値を選択できる。また、図1のような位置関係を原点として、両搬送機構を同時に起動させれば、両搬送機構間の被熱処理物の受け渡しが確実に行え、受け渡しのエラーが発生しない。逆に、乾燥時間が焼成時間より短い場合、例えば、乾燥時間が焼成時間の1/n倍の場合には、搬出側搬送機構のサイクル時間を投入側搬送機構のサイクル時間のn倍として、搬出側搬送機構が1サイクルの動作をする間に、投入側搬送機構がn倍のサイクルの動作をするようにするとともに、搬出側搬送機構のビームに被熱処理物がn個載るように保持治具を取り付けておき、搬出側搬送機構のビームにn個の被熱処理物が載った時点で搬出側搬送機構が焼成領域での搬送動作を開始するようにしてもよい。   For example, when the drying time is longer than the firing time, the cycle time of the input-side transport mechanism is set to n times (n; an integer) the cycle time of the output-side transport mechanism, and the input-side transport mechanism is operating for one cycle. If the carry-out side transport mechanism operates n times as many cycles, it is possible to select appropriate values for the drying time and the baking time. Further, if both the transport mechanisms are started simultaneously with the positional relationship as shown in FIG. 1 as the origin, the workpiece to be heat-treated between the transport mechanisms can be reliably delivered, and no delivery error occurs. On the other hand, when the drying time is shorter than the firing time, for example, when the drying time is 1 / n times the firing time, the cycle time of the carry-out side transport mechanism is set to n times the cycle time of the input side transport mechanism. A holding jig so that the input-side transport mechanism operates n times as long as the side-side transport mechanism operates for one cycle, and n workpieces are mounted on the beam of the transport-side transport mechanism. And the carry-out side transfer mechanism may start the transfer operation in the firing region when n heat-treated objects are placed on the beam of the carry-out side transfer mechanism.

勿論、投入側搬送機構と搬出側搬送機構とは、同じサイクル時間で動作してもよく、また、被熱処理物を焼成する間だけ搬出側搬送機構を速く動作させ、その後、搬出側搬送機構のビームの先端が受け渡し位置に戻った状態で、投入側搬送機構のビームが受け渡し位置に次の被熱処理物を搬送して来るまで停止して待つように、待ち時間を設けてもよい。   Of course, the loading-side transport mechanism and the unloading-side transport mechanism may operate in the same cycle time, and the unloading-side transport mechanism is operated quickly only during the firing of the object to be heat treated. A waiting time may be provided so that the beam of the input side transport mechanism stops and waits until the next heat-treated object is transported to the delivery position in a state where the tip of the beam has returned to the delivery position.

本発明の熱処理炉において、図4等に示すように、搬出側搬送機構のビーム32に、被熱処理物51の縁部とのみ接触して被熱処理物51を保持するための保持治具33を装着する場合、保持治具33の被熱処理物51に接触する部分の幅aを2mm以下とすることが好ましい。このように、被熱処理物51を保持治具33で保持する場合において、両者の接触部分の幅aが大きすぎると、焼成時における当該接触部分の最高到達温度が他の部位に比して低くなる。   In the heat treatment furnace of the present invention, as shown in FIG. 4 and the like, a holding jig 33 for holding the object to be heat-treated 51 in contact with the beam 32 of the carry-out side transport mechanism only in contact with the edge of the object to be heat-treated 51 is provided. When mounting, it is preferable that the width a of the portion of the holding jig 33 that contacts the workpiece 51 is 2 mm or less. As described above, when the workpiece 51 is held by the holding jig 33, if the width a of the contact portion between the two is too large, the maximum temperature reached at the contact portion during firing is lower than that in other portions. Become.

その結果、例えば被熱処理物51が太陽電池セルであるような場合には、最高到達温度が低かった前記接触部分においてセル変換効率の低下が生ずる。本発明者らが、前記接触部分の幅aと接触部分におけるセル変換効率との関係を調べた結果、前記接触部分の幅aが2mm以下であれば、前記接触部分と他の部位との最高到達温度の差を小さく抑えることができ、セル変換効率もセル全面でほぼ均一になることがわかった。   As a result, for example, when the object to be heat-treated 51 is a solar battery cell, the cell conversion efficiency is lowered at the contact portion where the maximum temperature reached is low. As a result of investigating the relationship between the width a of the contact portion and the cell conversion efficiency in the contact portion, the present inventors have found that if the width a of the contact portion is 2 mm or less, the maximum of the contact portion and other parts. It was found that the difference in temperature reached could be kept small, and the cell conversion efficiency was almost uniform over the entire cell surface.

図6は、焼成領域の炉内構造の一例を、搬送方向に直交する断面で示した概略説明図である。本発明の熱処理炉においては、この図に示すように、加熱手段であるヒータ11を被熱処理物51よりも上方の位置に設けることが好ましい。前述のとおり、本発明の熱処理炉では、搬送機構のビーム上で被熱処理物の割れが生じた場合、ビーム上に留まっている破片は、ビームを炉外に出すことで容易に取り除けるが、ビーム上に留まることなく炉内でビームから落下する破片も存在する。   FIG. 6 is a schematic explanatory view showing an example of the in-furnace structure of the firing region in a cross section orthogonal to the transport direction. In the heat treatment furnace of the present invention, as shown in this figure, it is preferable to provide the heater 11 as a heating means at a position above the workpiece 51. As described above, in the heat treatment furnace of the present invention, when a crack of the heat treatment object occurs on the beam of the transport mechanism, the debris remaining on the beam can be easily removed by taking the beam out of the furnace. There are also pieces that fall from the beam in the furnace without staying on top.

したがって、もしヒータが被熱処理物よりも下方の位置に設けられていると、ビームから落下した被熱処理物の破片がヒータ上に載る場合が有る。また、被熱処理物の割れが生じなくても、例えば被熱処理物が太陽電池セルであるような場合には、摩擦等により基板から剥離した電極材料等が落下して、ヒータ上に降り積もることが有る。これらの場合、実質的に炉内を加熱するヒータの効率が低下したり、ヒータ線の断線を招くおそれが有る。更に、ヒータの外管にガラス管を採用しているような場合には、前記のように電極材料が降り積もってガラス管に付着すると、高温下でガラスと電極材料との反応が瞬時に進んでヒータが破損し、ヒータ交換のために数時間に渡って炉の稼働を停止しなければならない状況になる場合も有る。   Therefore, if the heater is provided at a position below the object to be heat-treated, fragments of the object to be heat-treated dropped from the beam may be placed on the heater. In addition, even if cracking of the object to be heat-treated does not occur, for example, when the object to be heat-treated is a solar battery cell, the electrode material or the like peeled off from the substrate due to friction or the like may fall and fall on the heater. Yes. In these cases, there is a possibility that the efficiency of the heater for substantially heating the inside of the furnace is lowered or the heater wire is disconnected. Furthermore, in the case where a glass tube is used as the outer tube of the heater, when the electrode material falls and adheres to the glass tube as described above, the reaction between the glass and the electrode material proceeds instantaneously at a high temperature. In some cases, the heater breaks down and the furnace must be shut down for several hours to replace the heater.

ヒータを被熱処理物よりも上方の位置に設ければ、このようなトラブルを回避することができる。なお、従来の太陽電池セル焼成用の熱処理炉においては、被熱処理物である太陽電池セルの上方と下方との両方の位置にヒータを設け、太陽電池セルの表裏をヒータの輻射で全面的に熱して、表裏の温度均一性を確保するのが一般的であった。しかし、本発明者らが検討した結果、太陽電池セルの上方の位置にだけヒータを設けても、問題なく表裏の温度均一性を確保できることがわかった。   If a heater is provided at a position above the object to be heat treated, such trouble can be avoided. In a conventional heat treatment furnace for firing solar cells, heaters are provided at both the upper and lower positions of the solar cells, which are the objects to be heat treated, and the front and back surfaces of the solar cells are entirely exposed by the radiation of the heaters. It was common to heat and ensure temperature uniformity on the front and back. However, as a result of investigations by the present inventors, it has been found that even when a heater is provided only at a position above the solar battery cell, temperature uniformity on the front and back sides can be ensured without problems.

これは、ヒータの発熱光が、ホイヘンスの原理により炉壁面で多重反射されて、太陽電池セルの表裏を輻射で万遍無く加熱する効果と、炉壁面で吸収された熱が炉壁付近の雰囲気ガスを温めて対流上昇して炉内温度や太陽電池セルの温度の上昇に充分寄与する効果とにより、太陽電池セルの温度均一性が確保されるためである。   This is because the heater's exothermic light is multiple-reflected by the furnace wall according to Huygens's principle, and the front and back of the solar cells are uniformly heated by radiation, and the heat absorbed by the furnace wall is the atmosphere near the furnace wall. This is because the temperature uniformity of the solar cells is ensured by the effect of warming the gas and increasing the convection to sufficiently contribute to the rise in the furnace temperature and the temperature of the solar cells.

また、図6のように、ヒータ11を被熱処理物51よりも上方の位置に設ける場合においては、被熱処理物51から発生する有機蒸気や燃焼ガス53によってヒータ11が汚染されにくいように、炉の真上から見て被熱処理物51の通過領域と重ならないような位置にヒータ11を設けることが好ましい。更に、炉の真上から見てヒータ11と被熱処理物51の通過領域との間の位置に、炉天井部から下方に伸びる整流板17を設けるとともに、ヒータ11の上方に給気口16を、被熱処理物51の通過領域の上方に排気口13を、それぞれ設けることが好ましい。   Further, as shown in FIG. 6, when the heater 11 is provided at a position above the object to be heat-treated 51, a furnace is used so that the heater 11 is not easily contaminated by the organic vapor or combustion gas 53 generated from the object to be heat-treated 51. It is preferable to provide the heater 11 at a position that does not overlap with the passage region of the object to be heat-treated 51 when viewed from directly above. Further, a rectifying plate 17 extending downward from the furnace ceiling portion is provided at a position between the heater 11 and the passage region of the object to be heat-treated 51 when viewed from directly above the furnace, and an air supply port 16 is provided above the heater 11. The exhaust port 13 is preferably provided above the passage region of the object to be heat-treated 51.

こうすることにより、給気口16より炉内に導入された空気等のガスは、ヒータ11で暖められた後、整流板17の下端部の下方から被熱処理物51の通過領域に回り込み、被熱処理物51から発生した有機蒸気や燃焼ガス53を伴って上昇し、排気口13より炉外に排出されるという雰囲気の流れが作られ、被熱処理物51から発生した有機蒸気や燃焼ガス53によるヒータ11の汚染をより効果的に防止できる。   By doing so, the gas such as air introduced into the furnace through the air supply port 16 is heated by the heater 11, then flows from the lower end of the rectifying plate 17 to the passage region of the object to be heat-treated 51, A flow of an atmosphere is created in which the organic vapor and combustion gas 53 generated from the heat-treated product 51 rise and are discharged from the exhaust port 13 to the outside of the furnace, and are generated by the organic vapor and combustion gas 53 generated from the heat-treated material 51. Contamination of the heater 11 can be more effectively prevented.

また、本発明の熱処理炉においては、炉の内底面から搬送面までの高さLが、被熱処理物51の最大寸法Dとの関係において、L≧1.3×Dを満たすものであることが好ましい。ここで、「被熱処理物の最大寸法D」とは被熱処理物の最も大きい(長い)部位の寸法を言い、例えば、被熱処理物が長方形である場合は長辺、円形である場合は直径が相当する。また、「搬送面」とは、ビームの下面(底面)のことを言うものとし、ビームが上下方向の動作をする場合においては、ビームが最も下降した状態にあるときの当該ビームの下面を意味する。   In the heat treatment furnace of the present invention, the height L from the inner bottom surface of the furnace to the transfer surface satisfies L ≧ 1.3 × D in relation to the maximum dimension D of the object to be heat treated 51. Is preferred. Here, the “maximum dimension D of the object to be heat treated” refers to the dimension of the largest (longest) portion of the object to be heat treated, for example, the long side when the object to be heat treated is rectangular, and the diameter when it is circular. Equivalent to. In addition, the “transport surface” means the lower surface (bottom surface) of the beam, and when the beam moves in the vertical direction, it means the lower surface of the beam when the beam is in the most lowered state. To do.

炉の内底面から搬送面までの高さLと、被熱処理物51の最大寸法Dとが前記の関係を満たす場合には、図6のように、被熱処理物51がビーム32から落下して、炉底にランダムに堆積しても、数百枚レベルであれば、その高さは搬送面までは至らない。したがって、落下した被熱処理物51により搬送が阻害されて炉の稼働を突然止めるような事態は生じにくくなり、計画的な生産ができる。   When the height L from the inner bottom surface of the furnace to the transfer surface and the maximum dimension D of the workpiece 51 satisfy the above relationship, the workpiece 51 falls from the beam 32 as shown in FIG. Even if it is randomly deposited on the bottom of the furnace, the height does not reach the conveying surface if it is at the level of several hundred sheets. Therefore, a situation in which the operation is suddenly stopped due to the transfer being hindered by the dropped heat-treated object 51 is less likely to occur, and planned production can be performed.

本発明の熱処理炉において、加熱手段に用いるヒータの種類や形状は特に限定されるものではなく、炉の用途に応じて適宜好適なものを選択することができる。また、前記実施形態においては、炉の形態として、乾燥領域と焼成領域とが一体となったものを示したが、乾燥と焼成の何れか一方を目的とした熱処理炉であってもよい。本発明に係る熱処理炉の熱処理対象となる被熱処理物は、特に限定されるものではないが、太陽電池セルのように、比較的小型で平板状の製品の熱処理に特に好適に用いることができる。   In the heat treatment furnace of the present invention, the type and shape of the heater used for the heating means are not particularly limited, and a suitable one can be appropriately selected according to the use of the furnace. Moreover, in the said embodiment, although the thing which integrated the drying area | region and the baking area | region was shown as a form of a furnace, the heat processing furnace aiming at any one of drying and baking may be sufficient. The material to be heat-treated in the heat-treating furnace according to the present invention is not particularly limited, but it can be particularly suitably used for heat-treating relatively small and flat products such as solar cells. .

本発明の太陽電池セルは、以上説明した本発明の熱処理炉で熱処理されることにより製造されたものであり、搬送機構として熱容量が小さいビームを使用した熱処理炉を用いたことで、急加熱・急冷却が容易となり、より理想的な熱処理状態を実現することが可能となるため、搬送機構として熱容量の大きいにメッシュベルトを使用した従来の熱処理炉にて製造された太陽電池セルに比して、良好な特性(発電能力等)が期待できる。特に、前記のように、太陽電池セルの縁部に接触する部分の幅が2mm以下であるような保持治具を使用した熱処理炉で製造した場合においては、前記接触部分でのセル変換効率の劣化がほとんど無く、セル全面でほぼ均一な変換効率を実現できる。   The solar battery cell of the present invention is manufactured by heat treatment in the heat treatment furnace of the present invention described above, and by using a heat treatment furnace using a beam having a small heat capacity as a transport mechanism, rapid heating and Quick cooling becomes easy and it is possible to realize a more ideal heat treatment state, so compared to solar cells manufactured in a conventional heat treatment furnace using a mesh belt with a large heat capacity as a transport mechanism. Good characteristics (power generation capacity, etc.) can be expected. In particular, as described above, in the case of manufacturing in a heat treatment furnace using a holding jig such that the width of the portion contacting the edge of the solar battery cell is 2 mm or less, the cell conversion efficiency at the contact portion is reduced. There is almost no deterioration, and almost uniform conversion efficiency can be realized on the entire cell surface.

本発明は、太陽電池セル等の熱処理を行うための熱処理炉及び良好な特性を有する太陽電池セルとして好適に利用することができるものである。   INDUSTRIAL APPLICABILITY The present invention can be suitably used as a heat treatment furnace for performing heat treatment of a solar battery cell or the like and a solar battery cell having good characteristics.

本発明に係る熱処理炉の実施形態の一例を搬送方向に沿った断面で示した概略説明図である。It is the schematic explanatory drawing which showed the example of embodiment of the heat processing furnace which concerns on this invention with the cross section along a conveyance direction. 本発明に係る熱処理炉の実施形態の一例を搬送方向に沿った断面で示した概略説明図である。It is the schematic explanatory drawing which showed the example of embodiment of the heat processing furnace which concerns on this invention with the cross section along a conveyance direction. 本発明に係る熱処理炉の実施形態の一例を搬送方向に沿った断面で示した概略説明図である。It is the schematic explanatory drawing which showed the example of embodiment of the heat processing furnace which concerns on this invention with the cross section along a conveyance direction. 投入側搬送機構から搬出側搬送機構への受け渡し時の状態を拡大して示した概略説明図である。It is the schematic explanatory drawing which expanded and showed the state at the time of delivery to the carrying-out side conveyance mechanism from a loading side conveyance mechanism. 搬出側搬送機構から取り出し機構への受け渡し時の状態を拡大して示した概略説明図である。It is the schematic explanatory drawing which expanded and showed the state at the time of delivery from the carrying-out side conveyance mechanism to the taking-out mechanism. 焼成領域の炉内構造の一例を搬送方向に直交する断面で示した概略説明図である。It is the schematic explanatory drawing which showed the example of the in-furnace structure of a baking area | region with the cross section orthogonal to a conveyance direction.

符号の説明Explanation of symbols

1:ヒータ、2:断熱材、3:排気管、4:熱電対、5:給気管、9:乾燥領域、10:、11:ヒータ、12:断熱材、13:排気管、14:熱電対、15:給気管、16:給気管、17:整流板、19:焼成領域、21:ビーム支持体、22:ビーム、23:保持治具、24:支持ローラー、31:ビーム支持体、32:ビーム、33:保持治具、34:支持ローラー、41:ビーム支持体、42:ビーム、43:保持治具、51:被熱処理物、53:有機蒸気や燃焼ガス。 1: heater, 2: heat insulating material, 3: exhaust pipe, 4: thermocouple, 5: air supply pipe, 9: drying region, 10 :, 11: heater, 12: heat insulating material, 13: exhaust pipe, 14: thermocouple , 15: air supply pipe, 16: air supply pipe, 17: current plate, 19: firing region, 21: beam support, 22: beam, 23: holding jig, 24: support roller, 31: beam support, 32: Beam: 33: holding jig, 34: support roller, 41: beam support, 42: beam, 43: holding jig, 51: object to be heat treated, 53: organic vapor or combustion gas.

Claims (10)

被熱処理物を搬送しながら当該被熱処理物に所定の熱処理を施す熱処理炉であって、
前記被熱処理物を搬送するための搬送機構として、前記被熱処理物を炉内に投入し、炉内の所定位置まで搬送する投入側搬送機構と、前記所定位置において前記投入側搬送機構から前記被熱処理物を受け取り、前記所定位置から炉外まで搬送する搬出側搬送機構とを備え、前記投入側搬送機構及び前記搬出側搬送機構が、それぞれ所定のサイクルで周期的な動作を行う片持ち構造のビームによって前記被熱処理物を搬送するものであり、前記投入側搬送機構及び前記搬出側搬送機構の前記ビームの全体が、前記被熱処理物の炉内への投入前及び炉外への取り出し後に完全に炉外に出た状態となる熱処理炉。
A heat treatment furnace for performing a predetermined heat treatment on the heat treatment object while conveying the heat treatment object,
As a transport mechanism for transporting the material to be heat treated, the material to be heat treated is placed in a furnace and transported to a predetermined position in the furnace, and the material to be transported from the input side transport mechanism at the predetermined position. A carry-out side conveyance mechanism that receives the heat-treated product and conveys the heat-treated product from the predetermined position to the outside of the furnace. The object to be heat-treated is conveyed by a beam, and the whole of the beam of the input-side transfer mechanism and the unloading-side transfer mechanism is before the heat-treated object is put into the furnace and after being taken out of the furnace. A heat treatment furnace that is completely out of the furnace.
炉の入口側から出口側に向かって、前記被熱処理物の乾燥を行う乾燥領域と、前記被熱処理物の焼成を行う焼成領域とが順に設けられ、前記乾燥領域では前記被熱処理物の搬送を前記投入側搬送機構により行い、前記焼成領域では前記被熱処理物の搬送を前記搬出側搬送機構により行う請求項1に記載の熱処理炉。   From the entrance side to the exit side of the furnace, a drying region for drying the heat-treated material and a firing region for firing the heat-treated material are sequentially provided, and the heat-treated material is conveyed in the drying region. 2. The heat treatment furnace according to claim 1, wherein the heat treatment furnace is provided by the input side transfer mechanism, and the heat treatment object is transferred by the carry-out side transfer mechanism in the firing region. 前記投入側搬送機構のビームの下側に接触して前記ビームを支持する支持ローラーを設けた請求項1又は2に記載の熱処理炉。 The heat treatment furnace according to claim 1, further comprising a support roller that contacts the lower side of the beam of the input side transport mechanism to support the beam. 前記搬出側搬送機構のビームの下側に接触して前記ビームを支持する支持ローラーを設けた請求項1〜3の何れか一項に記載の熱処理炉。The heat processing furnace as described in any one of Claims 1-3 which provided the support roller which contacts the lower side of the beam of the said carrying-out side conveyance mechanism and supports the said beam. 前記搬出側搬送機構の前記ビームに、前記被熱処理物の縁部とのみ接触して前記被熱処理物を保持するための保持治具が装着されており、当該保持治具の前記被熱処理物に接触する部分の幅が2mm以下である請求項1〜の何れか一項に記載の熱処理炉。 A holding jig is attached to the beam of the carry-out side transport mechanism so as to hold only the edge of the object to be heat-treated and hold the object to be heat-treated. The heat treatment furnace according to any one of claims 1 to 4 , wherein the width of the contacting portion is 2 mm or less. 前記投入側搬送機構と前記搬出側搬送機構とのうちの一方の動作のサイクル時間が、他方の動作のサイクル時間の整数倍である請求項1〜の何れか一項に記載の熱処理炉。 The heat treatment furnace according to any one of claims 1 to 5 , wherein a cycle time of one operation of the input side transfer mechanism and the carry-out side transfer mechanism is an integral multiple of a cycle time of the other operation. 炉内の加熱手段としてヒータを有し、当該ヒータが、前記被熱処理物よりも上方の位置であって、かつ、炉の真上から見て前記被熱処理物の通過領域と重ならないような位置に設けられている請求項1〜の何れか一項に記載の熱処理炉。 A heater is provided as a heating means in the furnace, and the heater is located above the object to be heat-treated and does not overlap with the passage region of the object to be heat-treated when viewed from directly above the furnace. The heat treatment furnace as described in any one of Claims 1-6 provided in. 前記焼成領域において、炉の真上から見て前記ヒータと前記被熱処理物の通過領域との間の位置に、炉天井部から下方に伸びる整流板が設けられるとともに、前記ヒータの上方に給気口が設けられ、前記被熱処理物の通過領域の上方に排気口が設けられた請求項に記載の熱処理炉。 In the firing region, a rectifying plate extending downward from the furnace ceiling portion is provided at a position between the heater and the passage region of the heat-treated material when viewed from directly above the furnace, and an air supply is provided above the heater. The heat treatment furnace according to claim 7 , wherein an opening is provided and an exhaust port is provided above a region through which the heat-treated object passes. 炉の内底面から搬送面までの高さLが、前記被熱処理物の最大寸法Dとの関係において、L≧1.3×Dを満たすものである請求項1〜の何れか一項に記載の熱処理炉。 Height L from the inner bottom surface of the furnace to the conveying surface, wherein the relationship between the maximum dimension D of the heat-treated, to any one of claims 1-8 satisfies the L ≧ 1.3 × D The heat treatment furnace described. 請求項1〜の何れか一項に記載の熱処理炉を用いて製造された太陽電池セル。 Solar cells produced using the heat treatment furnace according to any one of claims 1-9.
JP2006045140A 2006-02-22 2006-02-22 Heat treatment furnace and solar cell Expired - Fee Related JP4445476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006045140A JP4445476B2 (en) 2006-02-22 2006-02-22 Heat treatment furnace and solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006045140A JP4445476B2 (en) 2006-02-22 2006-02-22 Heat treatment furnace and solar cell

Publications (2)

Publication Number Publication Date
JP2007225173A JP2007225173A (en) 2007-09-06
JP4445476B2 true JP4445476B2 (en) 2010-04-07

Family

ID=38547151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006045140A Expired - Fee Related JP4445476B2 (en) 2006-02-22 2006-02-22 Heat treatment furnace and solar cell

Country Status (1)

Country Link
JP (1) JP4445476B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5068132B2 (en) * 2007-10-05 2012-11-07 日本碍子株式会社 Heat treatment furnace
JP5278290B2 (en) 2009-11-27 2013-09-04 株式会社デンソー Failure diagnosis device for fuel injection system
JP7379135B2 (en) * 2019-12-20 2023-11-14 株式会社ジェイテクトサーモシステム heat treatment equipment
CN113755675B (en) * 2021-07-20 2024-05-31 宁国市华丰耐磨材料有限公司 High-chromium grinding ball staged quenching heat treatment air cooling device

Also Published As

Publication number Publication date
JP2007225173A (en) 2007-09-06

Similar Documents

Publication Publication Date Title
US6495800B2 (en) Continuous-conduction wafer bump reflow system
CN1346960A (en) Continuous firing furnace and its use method
JP2011075132A (en) Continuous baking furnace for solar battery
JP4445476B2 (en) Heat treatment furnace and solar cell
US6501051B1 (en) Continuous-conduction wafer bump reflow system
JP2000128346A (en) Floating device, floating carrier and heat treatment device
JP2006518445A (en) Method and system for uniform heat treatment of materials
US7645136B2 (en) Continuous heat treatment furnace and heat treatment method
US8692161B2 (en) Furnace system with case integrated cooling system
JP2007187398A (en) Continuous heat treatment furnace
JP3683166B2 (en) Substrate heat treatment method and continuous heat treatment furnace used therefor
JP3667270B2 (en) Substrate heat treatment method and furnace equipment therefor
JP2003165735A (en) Heat treatment apparatus for glass substrates
JP7329421B2 (en) Waste solar panel processing method and processing system
KR101546320B1 (en) apparatus for firing substrates
JP4523479B2 (en) Continuous heat treatment furnace and heat treatment method
KR200318436Y1 (en) Roller Hearth kiln for forming paste film in PDP
JP4541326B2 (en) Continuous heat treatment furnace and heat treatment method
JP2003077398A (en) Manufacturing method of plasma display panel and furnace equipment for same
JP2003267548A (en) Non-contact vertical type burning (drying) furnace
KR100776370B1 (en) Burning apparatus
JP5454935B2 (en) Continuous heat treatment furnace
JP2009092301A (en) Heat treatment furnace
JP2003014375A (en) Continuous calcination furnace apparatus for workpiece plate
JP2002206863A (en) Continuously heat treating furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100115

R150 Certificate of patent or registration of utility model

Ref document number: 4445476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees