JP4445425B2 - Dissimilar joints of steel and aluminum - Google Patents
Dissimilar joints of steel and aluminum Download PDFInfo
- Publication number
- JP4445425B2 JP4445425B2 JP2005114886A JP2005114886A JP4445425B2 JP 4445425 B2 JP4445425 B2 JP 4445425B2 JP 2005114886 A JP2005114886 A JP 2005114886A JP 2005114886 A JP2005114886 A JP 2005114886A JP 4445425 B2 JP4445425 B2 JP 4445425B2
- Authority
- JP
- Japan
- Prior art keywords
- compound
- nugget
- range
- layer
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Resistance Welding (AREA)
Description
本発明は、自動車、鉄道車両などの輸送分野、機械部品、建築構造物等における鉄系材料とアルミニウム系材料との異種金属部材同士の異材接合体に関するものである。 The present invention relates to a dissimilar material joined body of dissimilar metal members of an iron-based material and an aluminum-based material in a transportation field such as an automobile and a railway vehicle, a machine part, a building structure, and the like.
スポット溶接は、一般には同種の金属部材同士を接合するが、例えば鉄系材料(以下、単に鋼材と言う)とアルミニウム系材料(純アルミニウムおよびアルミニウム合金を総称したもので、以下、単にアルミニウム材と言う)という異種の金属部材の接合( 異材接合体) に適用することができれば、軽量化等に著しく寄与することができる。 In general, spot welding joins metal members of the same type together. For example, an iron-based material (hereinafter simply referred to as a steel material) and an aluminum-based material (generally referred to as pure aluminum and an aluminum alloy). If it can be applied to the joining of dissimilar metal members (dissimilar material joined body), it can significantly contribute to weight reduction and the like.
しかし、鋼材とアルミニウム材とを接合する場合、接合部に脆い金属間化合物が生成しやすいために信頼性のある高強度を有する接合部( 接合強度) を得ることは非常に困難であった。したがって、従来では、これら異種接合体(異種金属部材)の接合にはボルトやリベット等による接合がなされているが、接合継手の信頼性、気密性、コスト等の問題がある。 However, when a steel material and an aluminum material are joined, it is very difficult to obtain a reliable joint having high strength (joint strength) because a brittle intermetallic compound is easily generated in the joint. Therefore, conventionally, these dissimilar joined bodies (dissimilar metal members) are joined by bolts, rivets or the like, but there are problems such as reliability, air tightness, and cost of the joint joint.
そこで、従来より、これら異種接合体のスポット溶接法について多くの検討がなされてきている。例えば、アルミニウム材と鋼材の間に、アルミニウム−鋼クラッド材をインサートする方法が提案されている(特許文献1、2参照)。また、鋼材側に 融点の低い金属をめっきしたり、インサートしたりする方法が提案されている(特許文献3、4、5参照)。更に、アルミニウム材と鋼材の間に絶縁体粒子を挟む方法(特許文献6参照)や、部材に予め凹凸を付ける方法(特許文献7参照)なども提案されている。
Thus, many studies have been made on spot welding methods for these different types of joined bodies. For example, a method of inserting an aluminum-steel clad material between an aluminum material and a steel material has been proposed (see
しかしながら、これらいずれの方法も、単なるスポット溶接ではなく、多層でのスポット溶接やめっきや加工など別の工程が必要であり、現状の溶接ラインに新たな設備を組み入れなければならない問題があり、溶接コストも高くなる。また、溶接条件が著しく限定されるなど作業上の問題も多い。 However, both of these methods are not just spot welding, but require separate processes such as spot welding in multiple layers, plating and processing, and there is a problem that new equipment must be incorporated into the current welding line. Costs also increase. There are also many operational problems such as markedly limited welding conditions.
本発明はかかる課題を解決するためになされたものであり、上記したクラッド材などの他の材料を新たに用いることなく、また、新たな別工程を必要とすることなく、接合強度の高いスポット溶接をなしうる、鋼材とアルミニウム材との接合体を提供するものである。 The present invention has been made in order to solve such a problem, and it is a spot having a high bonding strength without newly using another material such as the above-described clad material or requiring a new separate process. The present invention provides a joined body of steel and aluminum that can be welded.
上記目的を達成するための、本発明における鋼材とアルミニウム材との異材接合体の要旨は、板厚t1が0.3 〜2.5mm である鋼材と、板厚t2が0.5 〜2.5mm であるアルミニウム材とをスポット溶接にて接合した異材接合体であって、接合体の溶接界面に、鋼材側にAl5Fe2系化合物層、アルミニウム材側にAl3Fe 系化合物とAl19Fe4Si2Mn系化合物との層、を各々有し、このAl3Fe 系化合物とAl19Fe4Si2Mn系化合物との層の、ナゲット中心±0.1mmの範囲内における、ナゲット深さ方向の平均厚さが0.5〜10μmであることとする。 In order to achieve the above object, the gist of the dissimilar material joined body of steel material and aluminum material in the present invention is a steel material having a plate thickness t 1 of 0.3 to 2.5 mm and an aluminum plate having a plate thickness t 2 of 0.5 to 2.5 mm. This is a dissimilar material joined by spot welding, with an Al 5 Fe 2 compound layer on the steel material side and an Al 3 Fe compound and Al 19 Fe 4 Si 2 on the aluminum material side at the weld interface of the joined material. Each having a layer with an Mn-based compound, and the average thickness in the nugget depth direction within the range of the nugget center ± 0.1 mm of the layer of the Al 3 Fe-based compound and the Al 19 Fe 4 Si 2 Mn-based compound. Is 0.5 to 10 μm.
鋼材同士やアルミニウム材同士など、同種の材料同士を、高い接合強度にてスポット溶接するには、一般的に、ナゲットの形成を促進すればよく、ナゲット面積が大きいほど剪断強度および十字引張強度ともに高くなることが知られている。 In order to spot-weld the same kind of materials such as steel materials and aluminum materials with high joint strength, it is generally only necessary to promote the formation of nuggets. The larger the nugget area, the greater the shear strength and the cross tensile strength. It is known to be higher.
また、ナゲット面積は入熱量と関係があり、電流量が高いほど、時間が長いほど大きくなるため、一般には、スポット溶接の際の入熱量にてナゲット径を制御することによって接合強度の高い接合体を得る。もちろんナゲット面積が大きくなりすぎると、被溶接材料の表面まで溶融が達してチリができるため、適正なナゲット面積を得ることが重要となる。 Also, the nugget area is related to the amount of heat input. The higher the amount of current and the longer the time, the larger the nugget area. Therefore, in general, bonding with high bonding strength is achieved by controlling the nugget diameter by the amount of heat input during spot welding. Get the body. Of course, if the nugget area becomes too large, melting reaches the surface of the material to be welded and dust is formed, so it is important to obtain an appropriate nugget area.
しかしながら、鋼材とアルミニウム材との異材を接合する場合、鋼材はアルミニウム材と比較して、融点、電気抵抗が高く、熱伝導率が小さいため、鋼側の発熱が大きくなり、まず低融点のアルミニウムが溶融する。次に鋼材の表面が溶融し、結果として界面にて、Al-Fe 系の脆い金属間化合物層が形成する。 However, when joining different materials of steel and aluminum, the steel has a higher melting point, higher electrical resistance and lower thermal conductivity than the aluminum, so the heat generation on the steel side increases, and the low melting point aluminum first Melts. Next, the surface of the steel material melts, and as a result, a brittle intermetallic compound layer of Al-Fe system is formed at the interface.
鋼材とアルミニウム材とのスポット接合で形成する金属間化合物は大きく二層に分かれ、鋼材側にAl5Fe2系化合物、アルミニウム材側にAl3FeまたはAl19Fe4Si2Mnを中心とする化合物が形成することが知られている。それらの金属間化合物は大変脆いため、従来より、高い接合強度は得られないとされている。 The intermetallic compound formed by spot welding of steel and aluminum is roughly divided into two layers, with Al 5 Fe 2 compound on the steel side and Al 3 Fe or Al 19 Fe 4 Si 2 Mn on the aluminum side. It is known that compounds form. Since these intermetallic compounds are very brittle, it has been conventionally considered that high bonding strength cannot be obtained.
本発明者は、鋼材とアルミニウム材との異材をスポット溶接にて接合する場合、高い接合強度を得るためには、ある程度のナゲット径を形成する高い入熱量を加えることは必要であるが、それにも増して、接合界面での界面反応層の厚さ・構造を制御することが更に必要であると考えた。 The present inventor, when joining different materials of steel and aluminum by spot welding, it is necessary to add a high heat input to form a certain nugget diameter in order to obtain high joint strength, In addition, it was considered necessary to control the thickness and structure of the interface reaction layer at the bonding interface.
そのために、接合強度に及ぼす界面反応層の厚さを詳細に調査した結果、界面反応層の挙動は、従来の薄い程良いとする知見とは、大きく異なることを知見した。即ち、界面反応層を構成する、鋼材側のAl5Fe2系化合物層と、アルミニウム材側のAl3Fe 系化合物とAl19Fe4Si2Mn系化合物との層との、厚みや面積の関係を最適範囲に制御すれば、界面反応層が例えこの二層の金属間化合物から構成されていたとしても、接合強度が高まることを知見した。 Therefore, as a result of investigating the thickness of the interfacial reaction layer on the bonding strength in detail, it was found that the behavior of the interfacial reaction layer is significantly different from the conventional knowledge that the thinner the better. That is, the thickness and area of the Al 5 Fe 2 compound layer on the steel material side and the layer of Al 3 Fe compound and Al 19 Fe 4 Si 2 Mn compound on the aluminum material side constituting the interface reaction layer It has been found that if the relationship is controlled within the optimum range, the bonding strength increases even if the interface reaction layer is composed of this two-layer intermetallic compound.
より具体的には、界面反応層の構造として、特に、鋼材側のAl5Fe2系化合物層に対し、アルミニウム材側のAl3Fe 系化合物とAl19Fe4Si2Mn系化合物との層のサイズ(ナゲット深さ方向厚さ)を最適範囲に制御し、また、この最適範囲に制御したAl3Fe 系化合物とAl19Fe4Si2Mn系化合物との層を大面積形成することによって、接合強度を飛躍的に向上できることが判明した。 More specifically, as a structure of the interface reaction layer, in particular, a layer of an Al 3 Fe compound and an Al 19 Fe 4 Si 2 Mn compound on the aluminum material side with respect to the Al 5 Fe 2 compound layer on the steel material side. By controlling the size (thickness in the nugget depth direction) to the optimum range and forming a layer of Al 3 Fe compound and Al 19 Fe 4 Si 2 Mn compound controlled to this optimum range in a large area It has been found that the bonding strength can be dramatically improved.
以上のように、本発明は、スポット溶接による異材接合の際に、比較的大きいナゲット面積を得つつ、アルミニウム材側の最適厚さ範囲の界面反応層を大面積に形成する。これにより、大きいナゲット面積をも得られ、異材接合体の接合強度を向上させることができる。この結果、鋼材とアルミニウム材との異種接合体において、前記従来技術のような、他の材料を新たに用いることなく、また、新たな別工程を必要とすることなく、接合強度の高いスポット溶接をなしうる効果を有する。 As described above, the present invention forms an interfacial reaction layer in the optimum thickness range on the aluminum material side in a large area while obtaining a relatively large nugget area when joining different materials by spot welding. Thereby, a large nugget area can also be obtained, and the joining strength of the dissimilar material joined body can be improved. As a result, spot welding with high joint strength can be performed in a heterogeneous joint of steel and aluminum without using another material as in the prior art and without requiring a separate process. The effect that can be achieved.
(異種接合体)
図1に本発明で規定する異種接合体を断面図で示す。図1において、3が鋼材( 鋼板) 1とアルミニウム材( アルミニウム合金板) 2とをスポット溶接にて接合した異材接合体である。4は鋼材1表面の酸化皮膜である。5はスポット溶接における溶接界面 (界面反応層) 6を有するナゲットで、図中に水平方向に矢印で示すナゲット径を有する。t1は鋼材の板厚、t2はアルミニウム材2の板厚、Δt はスポット溶接による接合後のアルミニウム材の最小残存板厚を示す。この図1は、ナゲット径を確保しつつ、チリの発生を抑制してアルミニウム材の最小残存板厚を保持し、さらに鋼材の溶融を最小限に抑えた接合状態を示しており、本発明の接合体もこの図のような接合状態となる。
(Heterogeneous)
FIG. 1 is a cross-sectional view of a heterogeneous bonded body defined by the present invention. In FIG. 1, 3 is a dissimilar material joined body in which a steel material (steel plate) 1 and an aluminum material (aluminum alloy plate) 2 are joined by spot welding. 4 is an oxide film on the surface of the
以下に、本発明の各要件の限定理由と、その作用について説明する。 Below, the reason for limitation of each requirement of this invention and its effect | action are demonstrated.
(鋼材の板厚)
本発明では、鋼材の板厚t1が0.3 〜2.5mm である接合体であることが必要である。鋼材の板厚t1が0.3mm 未満の場合、前記した構造部材や構造材料として必要な強度や剛性を確保できず不適正である。また、それに加えて、スポット溶接による加圧によって、鋼材の変形が大きく、酸化皮膜が容易に破壊されるため、アルミニウムとの反応が促進される。その結果、金属間化合物が形成しやすくなる。一方、2.5mm を越える場合は、前記した構造部材や構造材料としては、他の接合手段が採用されるため、スポット溶接を行って接合する必要性が少ない。このため、鋼材の板厚t1を2.5mm を超えて厚くする必要性はない。
(Steel thickness)
In the present invention, it is necessary that the steel sheet has a thickness t 1 of 0.3 to 2.5 mm. When the thickness t 1 of the steel material is less than 0.3 mm, the strength and rigidity necessary for the structural member and structural material described above cannot be secured, which is inappropriate. In addition, since the steel material is largely deformed by pressurization by spot welding and the oxide film is easily destroyed, the reaction with aluminum is promoted. As a result, an intermetallic compound is easily formed. On the other hand, when the thickness exceeds 2.5 mm, other joining means are employed as the above-described structural member or structural material, so that there is little need to join by spot welding. For this reason, it is not necessary to increase the thickness t 1 of the steel material beyond 2.5 mm.
(鋼材の引張強度)
本発明においては、使用する鋼材の形状や材料を特に限定するものではなく、構造部材に汎用される、あるいは構造部材用途から選択される、鋼板、鋼形材、鋼管などの適宜の形状、材料が使用可能である。ただ、鋼材の引張強度が400MPa以上であることが好ましい。
(Tensile strength of steel)
In the present invention, the shape and material of the steel material to be used are not particularly limited, and an appropriate shape and material, such as a steel plate, a steel shape member, a steel pipe, which are generally used for structural members or selected from structural member applications Can be used. However, the tensile strength of the steel material is preferably 400 MPa or more.
低強度鋼では一般に低合金鋼が多く、酸化皮膜がほぼ鉄酸化物であるため、FeとAlの拡散が容易となり、脆い金属間化合物が形成しやすい。このためにも引張強度が400MPa以上、望ましくは500MPa以上であることが好ましい。 In general, low-strength steels are often low-alloy steels, and the oxide film is almost iron oxide. Therefore, Fe and Al are easily diffused, and brittle intermetallic compounds are easily formed. For this reason, it is preferable that the tensile strength is 400 MPa or more, desirably 500 MPa or more.
本発明では、鋼材の成分を限定するものではないが、上記鋼材の強度を得るためには高張力鋼(ハイテン)であることが好ましい。また、鋼の成分的には、焼き入れ性を高め、析出硬化させるために、C の他に、Cr、Mo、Nb、V 、Tiなどを選択的に含有する鋼も適用できる。Cr、Mo、Nbは焼き入れ性を高めて強度を向上させ、V、Tiは析出硬化によって強度を向上させる。しかしながら、これら元素の多量の添加は、溶接部周辺の靭性を低下させ、ナゲット割れが生じやすくなる。 In this invention, although the component of steel materials is not limited, in order to acquire the intensity | strength of the said steel materials, it is preferable that it is high-tensile steel (high ten). In addition, in order to improve the hardenability and precipitation hardening in terms of steel components, steels selectively containing Cr, Mo, Nb, V, Ti, etc. in addition to C can also be applied. Cr, Mo, and Nb improve hardenability and improve strength, and V and Ti improve strength by precipitation hardening. However, the addition of a large amount of these elements reduces the toughness around the weld and tends to cause nugget cracks.
このため、鋼の成分として、基本的には、質量% で、C :0.05〜0.5%、Mn:1〜2.5%、Si:0.5〜1.5%を含み、更に、Cr:0 〜1%、Mo:0 〜0.2%、Nb:0 〜0.1%、V :0 〜0.1%、Ti:0 〜0.1%の一種または二種以上を、必要により選択的に含有させることが好ましい。そして、これら鋼材の残部組成は、Feおよび不可避的不純物からなることが好ましい。 For this reason, as a component of steel, basically, in mass%, C: 0.05 to 0.5%, Mn: 1 to 2.5%, Si: 0.5 to 1.5%, Cr: 0 to 1%, Mo : 0 to 0.2%, Nb: 0 to 0.1%, V: 0 to 0.1%, Ti: 0 to 0.1%, preferably 1 or 2 or more types are preferably selectively contained. And it is preferable that the remainder composition of these steel materials consists of Fe and an unavoidable impurity.
(アルミニウム材)
本発明で用いるアルミニウム材は、その合金の種類や形状を特に限定するものではなく、各構造用部材としての要求特性に応じて、汎用されている板材、形材、鍛造材、鋳造材などが適宜選択される。ただ、アルミニウム材の強度についても、上記鋼材の場合と同様に、スポット溶接時の加圧による変形を抑えるために高い方が望ましい。この点、アルミニウム合金の中でも強度が高く、この種構造用部材として汎用されている、A5000 系、A6000 系などの使用が最適である。
(Aluminum material)
The aluminum material used in the present invention is not particularly limited in the type and shape of the alloy, and depending on the required characteristics as each structural member, commonly used plate materials, profiles, forging materials, casting materials, etc. It is selected appropriately. However, the strength of the aluminum material is desirably higher in order to suppress deformation due to pressurization during spot welding, as in the case of the steel material. In this respect, the use of A5000 series, A6000 series, etc., which are high in strength among aluminum alloys and are widely used as this kind of structural member, is optimal.
ただ、本発明で使用するこれらアルミニウム材の板厚t2は0.5 〜2.5mm の範囲とする。アルミニウム材の板厚t2が0.5mm 未満の場合、構造材料としての強度が不 足して不適切であるのに加え、ナゲット径が得られず、アルミニウム材料表面まで溶融が達しやすくチリができやすいため、高い接合強度が得られない。一方、アルミニウム材の板厚t2が2.5mm を越える場合は、前記した鋼材の板厚の場合と 同様に、構造部材や構造材料としては他の接合手段が採用されるため、スポット溶接を行って接合する必要性が少ない。このため、アルミニウム材の板厚t2を2.5mm を超えて厚くする必要性はない。 However, the thickness t 2 of the aluminum material used in the present invention is in the range of 0.5 2.5 mm. If the thickness t 2 of the aluminum material is less than 0.5 mm, in addition to the strength as a structural material is inappropriate in shortage, no nugget diameter can be obtained easily can dust easily melting reaches an aluminum material surface Therefore, high bonding strength cannot be obtained. On the other hand, when the thickness t 2 of the aluminum material exceeds 2.5 mm, spot welding is performed because other joining means are adopted as the structural member and structural material, as in the case of the steel thickness described above. Less need to be joined. For this reason, it is not necessary to increase the thickness t 2 of the aluminum material beyond 2.5 mm.
(界面反応層における化合物)
以上の鋼材とアルミニウム材との異材接合体を前提とした上で、本発明では、スポット溶接後の異材接合体における (図1の溶接界面6における) 金属間化合物を規定する。
(Compound in the interface reaction layer)
Based on the premise of the above-mentioned dissimilar material joint of steel and aluminum, the present invention defines an intermetallic compound (at the
本発明で規定する金属間化合物を、異材接合体接合部断面の溶接界面6 の断面図である図3 、4 により示す。図3 は図4 の接合部断面の溶接界面6 の断面顕微鏡写真を模式化した図である。
The intermetallic compound defined in the present invention is shown in FIGS. 3 and 4, which are cross-sectional views of the
図3 に示すように、溶接界面6では、鋼材側に層状のAl5Fe2系化合物層、アルミニウム材側には粒状または針状のAl3Fe 系化合物とAl19Fe4Si2Mn系化合物とが混在した層、を各々有する。
As shown in FIG. 3, at the
図3 のアルミニウム材側のAl3Fe 系化合物とAl19Fe4Si2Mn系化合物とが混在した層において、ナゲット深さ方向の長さで示すl1が一点鎖線で示すナゲット中心±0.1mmの範囲内における、ナゲット深さ方向の平均厚さを示す。また、接合部における平面方向で示すS1がこの厚さ範囲の(Al3Fe+Al19Fe4Si2Mn)系化合物の面積(異材接合体接合部における平面方向の面積)を示す。
In the layer where the Al 3 Fe-based compound aluminum material side and Al 19 Fe 4 Si 2 Mn-based compound are mixed in FIG 3, the nugget center ± 0.1mm to l 1 indicating the length of the nugget depth direction shown by the dashed line The average thickness in the nugget depth direction within the range is shown. Further, S 1 shown in the plane direction at the joint exhibits an area of (Al 3 Fe + Al 19 Fe 4
図3 の鋼材側に層状に形成したAl5Fe2系化合物層において、ナゲット深さ方向の長さで示すl2が一点鎖線で示すナゲット中心±0.1mmの範囲内における、ナゲット深さ方向の平均厚さを示す。また、接合部における平面方向で示すS2がこの厚さ範囲のAl5Fe2系化合物層の面積(異材接合体接合部における平面方向の面積)を示す。 In Al 5 Fe 2 compound layer formed in layers on the steel material side of FIG. 3, the l 2 indicated by the length of the nugget depth direction in the range of nugget center ± 0.1mm indicated by the dashed line, a nugget depth direction of the Indicates the average thickness. Also, S 2 shown in the planar direction at the junction indicates the area of the Al 5 Fe 2 compound layer of this thickness range (area of a plane direction of dissimilar materials bonded body junction).
(アルミニウム材側の化合物層)
先ず、本発明では、接合強度を高めるために、Al3Fe 系化合物とAl19Fe4Si2Mn系化合物との層の、ナゲット中心±0.1mmの範囲内における、ナゲット深さ方向の平均厚さl1を0.5〜10μmの範囲とする。
(Compound layer on the aluminum material side)
First, in the present invention, in order to increase the bonding strength, the average thickness in the nugget depth direction within the range of the nugget center ± 0.1 mm of the layer of the Al 3 Fe compound and the Al 19 Fe 4 Si 2 Mn compound. Let l 1 be in the range of 0.5-10 μm.
Al3Fe 系化合物とAl19Fe4Si2Mn系化合物は、アルミニウム材側に形成される金属間化合物で、図3 、4 の通り、粒状または針状に形成される。中央部 (ナゲット中心部) では、個々の化合物粒のサイズ (または針状化合物粒の長さ) が大きく、ナゲットの端部 (図3 、4 の左右方向) に向かうにつれ、徐々に粒、針のサイズと分布が減少する。この端部では、化合物粒の密度が小さく、化合物粒が点在する形態となるが、鋼材側のAl5Fe2系化合物よりも大面積には存在する。 The Al 3 Fe-based compound and the Al 19 Fe 4 Si 2 Mn-based compound are intermetallic compounds formed on the aluminum material side, and are formed in a granular or needle shape as shown in FIGS. In the center (nugget center), the size of individual compound grains (or the length of needle-shaped compound grains) is large, and gradually toward the end of the nugget (left and right in Figs. 3 and 4), the grains and needles gradually Decrease in size and distribution. At this end, the density of the compound grains is small and the compound grains are scattered, but they exist in a larger area than the Al 5 Fe 2 compound on the steel material side.
このようなAl3Fe 系化合物とAl19Fe4Si2Mn系化合物は、上記形状による効果も含めて、くさび (アンカー) 効果があり、アルミニウム材及びAl5Fe2系化合物層との密着性を向上させ、接合強度を高める。 Such Al 3 Fe-based compounds and Al 19 Fe 4 Si 2 Mn-based compounds have a wedge (anchor) effect, including the effects of the above shapes, and adhesion between aluminum materials and Al 5 Fe 2 -based compound layers Improve the bonding strength.
このような効果は、Al3Fe 系化合物とAl19Fe4Si2Mn系化合物との層が薄過ぎては発揮されない。特にl1が0.5μm未満では、上記くさび効果が不十分で、Al5Fe2系化合物層との密着性が悪く、層間の破断が生じやすいし、平滑な界面で破断する。このため、本発明では、Al3Fe 系化合物とAl19Fe4Si2Mn系化合物層の、ナゲット中心±0.1mmの範囲内における、ナゲット深さ方向の平均厚さl1を0.5 μm 以上とする。 Such an effect cannot be exhibited if the layer of the Al 3 Fe-based compound and the Al 19 Fe 4 Si 2 Mn-based compound is too thin. In particular, when l 1 is less than 0.5 μm, the wedge effect is insufficient, the adhesiveness with the Al 5 Fe 2 compound layer is poor, the interlaminar fracture tends to occur, and the fracture occurs at a smooth interface. Therefore, in the present invention, the average thickness l 1 in the nugget depth direction within the range of the nugget center ± 0.1 mm of the Al 3 Fe based compound and the Al 19 Fe 4 Si 2 Mn based compound layer is 0.5 μm or more. To do.
一方、Al3Fe 系化合物とAl19Fe4Si2Mn系化合物層が成長しすぎて、層を厚く形成し過ぎると、却って、個々の化合物粒が破壊の起点となる。特に、l1が10μmを超えた場合には、この傾向が顕著となる。このため、本発明では、Al3Fe 系化合物とAl19Fe4Si2Mn系化合物層の、ナゲット中心±0.1mmの範囲内における、ナゲット深さ方向の平均厚さl1を10μm以下とする。 On the other hand, if the Al 3 Fe-based compound and the Al 19 Fe 4 Si 2 Mn-based compound layer grow too much and the layer is formed too thick, the individual compound grains become the starting point of destruction. In particular, this tendency becomes remarkable when l 1 exceeds 10 μm. Therefore, in the present invention, the average thickness l 1 in the nugget depth direction within the range of the nugget center ± 0.1 mm of the Al 3 Fe-based compound and the Al 19 Fe 4 Si 2 Mn-based compound layer is set to 10 μm or less. .
(鋼材側の化合物層)
本発明では、上記アルミニウム材側の金属間化合物層条件を満たした上で、接合強度を更に高めるために、前記Al5Fe2系化合物層の、ナゲット深さ方向の平均厚さl2が0.5〜5μmの範囲である部分の面積S2が、10×t2 0.5 mm2 以上、より好ましくは20×t2 0.5 mm2 以上であることが好ましい。
(Compound layer on the steel material side)
In the present invention, in order to further increase the bonding strength after satisfying the intermetallic compound layer condition on the aluminum material side, the average thickness l 2 in the nugget depth direction of the Al 5 Fe 2 compound layer is 0.5. The area S 2 of the portion in the range of ˜5 μm is preferably 10 × t 2 0.5 mm 2 or more, more preferably 20 × t 2 0.5 mm 2 or more.
そして、同じく、接合強度を更に高めるために、前記Al5Fe2系化合物層の、ナゲット中心±0.1mmの範囲内における、ナゲット深さ方向の平均厚さl2が0.5〜5μmの範囲であることが好ましい。 Similarly, in order to further increase the bonding strength, the average thickness l 2 in the nugget depth direction within the range of the nugget center ± 0.1 mm of the Al 5 Fe 2 based compound layer is in the range of 0.5 to 5 μm. It is preferable.
(アルミニウム材側の化合物層と鋼材側の化合物層との相互関係)
以上の、アルミニウム材側の化合物層と、鋼材側の化合物層との個々の規定に加えて、接合強度を更に高めるためには、アルミニウム材側の化合物層と鋼材側の化合物層との相互関係を規定することが好ましい。
(Correlation between the compound layer on the aluminum material side and the compound layer on the steel material side)
In addition to the individual provisions of the compound layer on the aluminum material side and the compound layer on the steel material side as described above, in order to further increase the bonding strength, the correlation between the compound layer on the aluminum material side and the compound layer on the steel material side Is preferably defined.
即ち、前記接合体の溶接界面において、Al5Fe2系化合物層の平均厚さl2が0.5〜5μmの範囲である部位に、平均厚さl1が0.5〜10μmの範囲のAl3Fe 系化合物とAl19Fe4Si2Mn系化合物との層が存在し、かつ、この平均厚さ範囲のAl3Fe 系化合物とAl19Fe4Si2Mn系化合物との層の面積S1が15×t2 0.5 mm2 以上であること、更には、25×t2 0.5 mm2 以上であることが好ましい。 That is, at the weld interface of the joined body, the Al 5 Fe 2 -based compound layer having an average thickness l 2 in the range of 0.5 to 5 μm and an Al 3 Fe system in which the average thickness l 1 is in the range of 0.5 to 10 μm. compound and Al 19 Fe 4 Si 2 layers of Mn-based compound is present and the area S 1 of the layer of the Al 3 Fe-based compound and Al 19 Fe 4 Si 2 Mn-based compound of the average thickness range is 15 Xt 2 0.5 mm 2 or more, more preferably 25 × t 2 0.5 mm 2 or more.
上記平均厚さ範囲のAl3Fe 系化合物とAl19Fe4Si2Mn系化合物との層の面積S2は大きい方が接合強度が高くなる。この面積S1が15×t2 0.5 mm2 未満では、同一強度である場合、ナゲットの接合面積が大きいほど、接合部の破断荷重 (接合強度) は低下する可能性が高い。一方、ナゲットの接合面積が小さい場合には、接合部は同じくより低い荷重にて破断しやすくなる。 The larger the area S 2 of the layers of the Al 3 Fe compound and the Al 19 Fe 4 Si 2 Mn compound in the average thickness range, the higher the bonding strength. When the area S 1 is less than 15 × t 2 0.5 mm 2 and the strength is the same, the larger the nugget joining area, the higher the possibility that the fracture load (joining strength) of the joint will decrease. On the other hand, when the joint area of the nugget is small, the joint part is also likely to break at a lower load.
上記平均厚さ範囲のAl3Fe 系化合物とAl19Fe4Si2Mn系化合物との層の面積S1が特に、25×t2 0.5 mm2 以上あった場合、接合力の高い接合部 (接合界面) 面積が十分に大きいため、より大きな破断荷重となる。その結果、接合界面がアルミ基材よりも十分に破断荷重が高いため、界面破断せずアルミニウム材側が破断するようになる。 When the area S 1 of the layer of the Al 3 Fe compound and the Al 19 Fe 4 Si 2 Mn compound in the average thickness range is 25 × t 2 0.5 mm 2 or more, a joint having a high bonding force ( Bonding interface) Since the area is sufficiently large, the breaking load is larger. As a result, since the joining interface has a sufficiently higher breaking load than the aluminum base material, the aluminum material side breaks without breaking the interface.
上記した最適厚さの界面反応層の面積規定は、接合強度の観点からではあるが、アルミニウム材側の化合物層と鋼材側の化合物層との相互関係を、界面反応層の最適厚さと最適面積から、最適範囲に制御するものである。このため、本発明が指向する方向としては、薄い程良いという従来の常識とは異なり、むしろ積極的に存在させる方向でもある。そして、前記した通り、接合強度向上のために、最適厚さ範囲の界面反応層を大面積形成する、言い換えると広範囲に存在させるという技術思想に基づく。 Although the above-mentioned regulation of the area of the interface reaction layer with the optimum thickness is from the viewpoint of bonding strength, the interrelation between the compound layer on the aluminum material side and the compound layer on the steel material side is determined as the optimum thickness and the optimum area of the interface reaction layer. From this, control is performed within the optimum range. For this reason, the direction in which the present invention is directed is different from the conventional common sense that the thinner the better, the more positive it is. Then, as described above, in order to improve the bonding strength, the interface reaction layer having the optimum thickness range is formed in a large area, in other words, based on the technical idea of existing in a wide range.
(接合強度と破断形態)
本発明の場合に、接合強度が高い場合、接合界面は破断せず、接合部がプラグ状に破断(Al3Fe 系化合物層が存在する範囲より外側にて、アルミニウム材が厚さ方向に丸く割れて破断)する。言い換えると、このような接合部の破断形態は、本発明の接合強度の高さを表している。
(Joint strength and fracture mode)
In the case of the present invention, when the bonding strength is high, the bonding interface does not break, and the bonded portion breaks into a plug shape (the aluminum material is rounded in the thickness direction outside the range where the Al 3 Fe-based compound layer exists). Break and break). In other words, such a fractured form of the joint represents the high joint strength of the present invention.
一方、従来のように接合強度が低い場合、接合界面で破断し、くさび状のAl3Fe 系化合物とAl19Fe4Si2Mn系化合物との層がちぎれ、Al5Fe2系化合物層とAl3Fe 系化合物とAl19Fe4Si2Mn系化合物との層間にて破断する。言い換えると、このような接合部の破断形態は、接合強度の低さを表している。 On the other hand, when the bonding strength is low as in the prior art, the fracture occurs at the bonding interface, the layer of wedge-shaped Al 3 Fe compound and Al 19 Fe 4 Si 2 Mn compound is broken, and the Al 5 Fe 2 compound layer Fracture occurs between layers of an Al 3 Fe compound and an Al 19 Fe 4 Si 2 Mn compound. In other words, such a fracture form of the joint portion represents a low joint strength.
(接合強度に効く因子)
以上説明した接合強度に効く各因子の寄与度を再度整理する。
接合強度の向上には、特に、Al3Fe 系化合物とAl19Fe4Si2Mn系化合物との層の平均厚さl1の効果が最も高く、平均厚さl2が最適範囲(0.5〜5μm)の部分のAl5Fe2系化合物層の面積S2の効果も高い。
(Factors affecting bonding strength)
The contribution of each factor that works on the bonding strength described above will be rearranged again.
In order to improve the bonding strength, the effect of the average thickness l 1 of the Al 3 Fe-based compound and the Al 19 Fe 4 Si 2 Mn-based compound is particularly high, and the average thickness l 2 is in the optimum range (0.5 to The effect of the area S 2 of the Al 5 Fe 2 -based compound layer in the 5 μm portion is also high.
Al3Fe 系化合物とAl19Fe4Si2Mn系化合物との層の平均厚さl1は、前記した通り、くさび効果によりアルミニウム材及びAl5Fe2系化合物層との密着性を付与するため、ナゲット中央部での接合力向上に寄与する。ただ、Al3Fe 系化合物とAl19Fe4Si2Mn系化合物との層の平均厚さl1のみの制御では、周囲からAl3Fe 系化合物とAl19Fe4Si2Mn系化合物との層と、Al5Fe2系化合物層との界面が剥離する可能性がある。このために破断荷重があまり高くならない可能性がある。 As described above, the average thickness l 1 of the Al 3 Fe-based compound and Al 19 Fe 4 Si 2 Mn-based compound provides adhesion between the aluminum material and the Al 5 Fe 2 based compound layer due to the wedge effect. Therefore, it contributes to the improvement of the bonding strength at the center of the nugget. However, the average thickness l 1 only control of the layers of Al 3 Fe-based compound with Al 19 Fe 4 Si 2 Mn based compound, the Al 3 Fe-based compound with Al 19 Fe 4 Si 2 Mn compounds from ambient There is a possibility that the interface between the layer and the Al 5 Fe 2 -based compound layer peels off. Therefore, the breaking load may not be so high.
これに対して、平均厚さl2が最適範囲(0.5〜5μm)の部分のAl5Fe2系化合物層の面積S2は、広範囲の安定した密着性に寄与し、スポット接合点全体の破断荷重を高める効果がある。しかし、このAl5Fe2系化合物層の面積S2のみの制御では安定した強度が得られず、強度のばらつきが大きい。 On the other hand, the area S 2 of the Al 5 Fe 2 -based compound layer where the average thickness l 2 is in the optimum range (0.5 to 5 μm) contributes to a wide range of stable adhesion, and the entire spot joint breaks. Has the effect of increasing the load. However, stable strength cannot be obtained by controlling only the area S 2 of the Al 5 Fe 2 -based compound layer, and the variation in strength is large.
このため、Al3Fe 系化合物とAl19Fe4Si2Mn系化合物との層の平均厚さl1のみの制御に加えて、このAl5Fe2系化合物層の面積S2の制御を行なった時に、高い接合強度が確実に保証される。 Therefore, in addition to controlling only the average thickness l 1 of the Al 3 Fe-based compound and the Al 19 Fe 4 Si 2 Mn-based compound, the area S 2 of the Al 5 Fe 2 based compound layer is controlled. Ensures a high bond strength.
更に、Al5Fe2系化合物層のナゲット中心±0.1mmの範囲内におけるナゲット深さ方向の平均厚さl2と、最適厚さ範囲のAl3Fe 系化合物とAl19Fe4Si2Mn系化合物との層の面積S1も、接合強度の向上には寄与するが、上記二つの因子よりは接合強度の向上効果は小さい。
ただ、これらの因子を各々単独で採用しても接合強度の向上効果は小さいが、上記Al3Fe 系化合物とAl19Fe4Si2Mn系化合物との層の平均厚さl1とAl5Fe2系化合物層の面積S2との制御に加えて、これらの制御を行なった時に、最も高い接合強度が得られる。
Furthermore, the average thickness l 2 in the nugget depth direction within the range of the nugget center ± 0.1 mm of the Al 5 Fe 2 compound layer, and the Al 3 Fe compound and Al 19 Fe 4 Si 2 Mn system in the optimum thickness range The area S 1 of the layer with the compound also contributes to the improvement of the bonding strength, but the effect of improving the bonding strength is smaller than the above two factors.
However, even if these factors are each employed alone, the effect of improving the bonding strength is small, but the average thicknesses l 1 and Al 5 of the Al 3 Fe compound and the Al 19 Fe 4 Si 2 Mn compound are small. In addition to controlling the area S 2 of the Fe 2 compound layer, the highest bonding strength can be obtained when these controls are performed.
(金属間化合物の測定方法)
本発明における、Al3Fe 系化合物とAl19Fe4Si2Mn系化合物との層や、Al5Fe2系化合物層は、接合部の断面をHAADF-STEM像(1万〜2万倍)にてEDX点分析による半定量分析を実施し、前記組織写真である図4のように検出される。言い換えると、以下に説明するHAADF-STEM法を用いて、接合部界面を測定しない限り、本発明で規定する金属間化合物の識別や、金属間化合物層の厚さや面積の正確な測定は難しいとも言える。
(Method for measuring intermetallic compounds)
In the present invention, an Al 3 Fe compound and an Al 19 Fe 4 Si 2 Mn compound layer or an Al 5 Fe 2 compound layer is a HAADF-STEM image (10,000 to 20,000 times) of the cross section of the joint. The semi-quantitative analysis by EDX point analysis is carried out in Fig. 4, and the structure photograph is detected as shown in Fig. 4. In other words, unless the joint interface is measured using the HAADF-STEM method described below, it is difficult to identify the intermetallic compound specified in the present invention and to accurately measure the thickness and area of the intermetallic compound layer. I can say that.
これら金属間化合物の識別は、上記半定量分析において、図4に示す接合部界面の1-1 〜1-24の各測定点の組成を測定し、Al、Fe、Si、Mn、Mg(at%)を百分率とした際の組成により識別する。即ち、Al量が73〜95at%で、Fe量が5〜25at%で、Si量が2at%未満の場合には「Al3Fe 系化合物」とする。また、同分析にて、Al量が70〜78at%で、Fe量が10〜30at%で、Si量が2〜15at%の場合、「Al19Fe4Si2Mn系化合物」とする。更に、Al量が60〜73at%で、Fe量が25〜35at%で、Si量が2at%未満の場合「Al5Fe2系化合物」とする。 These intermetallic compounds are identified by measuring the composition of each measurement point 1-1 to 1-24 on the interface of the joint shown in FIG. 4 in the semi-quantitative analysis described above to obtain Al, Fe, Si, Mn, Mg (at %) Is identified by the composition. That is, when the Al amount is 73 to 95 at%, the Fe amount is 5 to 25 at%, and the Si amount is less than 2 at%, the “Al 3 Fe compound” is obtained. Further, in the same analysis, when the Al amount is 70 to 78 at%, the Fe amount is 10 to 30 at%, and the Si amount is 2 to 15 at%, “Al 19 Fe 4 Si 2 Mn compound” is obtained. Furthermore, when the Al amount is 60 to 73 at%, the Fe amount is 25 to 35 at%, and the Si amount is less than 2 at%, the “Al 5 Fe 2 compound” is obtained.
HAADF-STEM法(High Angle Annular Dark Field-Scanning Transmission Electron Microscope)は、高角側に散乱された弾性散乱電子を円環状検出器で集めて像信号を得る手法である。HAADF−STEM像は回折コントラストの影響をほとんど受けず、コントラストは原子番号(Z)のほぼ2乗に比例するという特徴があり、得られた像がそのまま組成情報をもつ2次元マップとなる。微量元素も感度良く検出できるため、接合界面の微細構造解析に有効である。 The HAADF-STEM method (High Angle Annular Dark Field Scanning Transmission Electron Microscope) is a technique for obtaining an image signal by collecting elastically scattered electrons scattered on the high angle side with an annular detector. The HAADF-STEM image is hardly affected by the diffraction contrast, and the contrast is characterized by being approximately proportional to the square of the atomic number (Z), and the obtained image becomes a two-dimensional map having the composition information as it is. Since trace elements can be detected with high sensitivity, it is effective for fine structure analysis of the bonding interface.
より具体的には、接合体のナゲット中央部にて切断し、断面が観察できるよう樹脂に埋め込んで鏡面研磨を行ったものを、SIMにて界面反応層の各化合物層の平均厚さを概略測定する。その後、ナゲット中心部及びAl5Fe2系化合物と目される層の存在境界より内側の部分、Al3Fe 系化合物とAl19Fe4Si2Mn系化合物と目される層の存在境界の内外の部分、各化合物と目される層の深さ方向長さが上限を上回ると目される箇所の内外の部分を日立製作所製集束イオンビ−ム加工装置(FB-2000A)を用いてTEM観察可能な厚さまでFIB加工を施すことにより試料を薄くし、観察・分析用試料として供する。 More specifically, the average thickness of each compound layer of the interfacial reaction layer is roughly calculated by SIM after cutting at the nugget central part of the bonded body, embedding in a resin so that the cross section can be observed, and mirror polishing. taking measurement. Then, inside and outside of the nugget center and the portion inside the layer where the Al 5 Fe 2 compound is seen, the inside and outside of the layer where the Al 3 Fe compound and the Al 19 Fe 4 Si 2 Mn compound are seen The TEM observation can be performed using the focused ion beam processing device (FB-2000A) manufactured by Hitachi, Ltd., when the length in the depth direction of each compound and the layer seen as the compound exceeds the upper limit. The sample is thinned by applying FIB processing to a suitable thickness and used as a sample for observation and analysis.
そして、HAADF検出器を備えたJEOL製電界放射型透過電子顕微鏡(JEM-2010F)を用い、加速電圧200kVにて、視野100μmの範囲(1万〜2万倍)で観察し、各粒、異相について全てEDX点分析を行い、Al3Fe 系化合物とAl19Fe4Si2Mn系化合物との層や、Al5Fe2系化合物層の同定を行う。 Using a JEOL field-emission transmission electron microscope (JEM-2010F) equipped with a HAADF detector, observation was performed at an acceleration voltage of 200 kV in a field of view of 100 μm (10,000 to 20,000 times). EDX point analysis is performed for all of the above, and the layer of the Al 3 Fe compound and the Al 19 Fe 4 Si 2 Mn compound and the Al 5 Fe 2 compound layer are identified.
Al3Fe 系化合物とAl19Fe4Si2Mn系化合物の深さ方向の厚さ(長さ)は、得られた視野100μmのHAADF-STEM像より、全てのAl3Fe 系化合物とAl19Fe4Si2Mn系化合物と同定された粒・針の深さ方向の長さを測定し、平均化した。 Al 3 Fe-based compound and Al 19 Fe 4 Si 2 Mn-based compound in the depth direction of the thickness (length) from the HAADF-STEM image of the resulting field 100 [mu] m, and all Al 3 Fe-based compound Al 19 The lengths in the depth direction of grains and needles identified as Fe 4 Si 2 Mn compounds were measured and averaged.
Al5Fe2系化合物層の深さ方向の厚さ(長さ)は、同像より、厚さを5点測定し、平均した。以上の測定を、観察・分析用試料全てについて実施した。ドーム型チップを用いたスポット溶接接合では、中心部から両化合物ともに、端部となるにつれ、厚さが減少していた。したがって、それぞれの化合物の深さ方向の長さの上限を超える地点(部位)の径、下限を下回る地点の径を求め、各化合物の最適厚さ範囲となる面積に換算した。 The thickness (length) of the Al 5 Fe 2 -based compound layer in the depth direction was measured by averaging five points from the same image. The above measurement was performed on all the samples for observation and analysis. In spot welding joining using a dome-shaped tip, the thickness of both compounds from the center decreased as they reached the end. Therefore, the diameter of the point (part) exceeding the upper limit of the length in the depth direction of each compound and the diameter of the point lower than the lower limit were determined and converted into an area that would be the optimum thickness range of each compound.
(ナゲットの面積)
前記図1 におけるスポット溶接部のナゲット5 の面積は、アルミニウム材の板厚t2との関係で20×t2 0.5 〜70×t2 0.5 mm2 の範囲となるようにスポット接合することが好ましい。言い換えると、ナゲット面積が20×t2 0.5 〜70×t2 0.5 mm2 の範囲となるようにスポット溶接条件を選定することが好ましい。
(Nugget area)
The area of the spot welded
従来から、同種の金属材料をスポット溶接する際には、金属材料の厚みt に対して、スポット溶接部におけるナゲット5 の面積を20×t0.5mm2 程度とすることが強度的にも作業性からみても、経済性からみても最適であるとされている。
Conventionally, when spot-welding the same kind of metal material, the area of the
しかし、本発明では、異種金属材料同士の接合について、これよりも、上記同種の金属材料よりも大きなナゲット面積とする。スポット溶接部におけるナゲット5 の面積が、アルミニウム材の板厚t2との関係で20×t2 0.5 〜70×t2 0.5 mm2 の範囲となるようにスポット接合することで、十分な接合強度が得られ、さらに作業性、経済性ともに優れる。
However, according to the present invention, the nugget area is larger than that of the same kind of metal material for joining different kinds of metal materials. Adequate bonding strength is achieved by spot bonding so that the area of the
本発明のような異種金属材料同士の接合の場合、最適ナゲット径は、アルミニウム材側の板厚に依存しており、鋼材の板厚の影響は無視できるほど小さいことが特徴である。 In the case of joining different kinds of metal materials as in the present invention, the optimum nugget diameter depends on the plate thickness on the aluminum material side, and is characterized in that the influence of the plate thickness of the steel material is so small that it can be ignored.
ナゲット面積が20×t2 0.5mm2未満、より厳しくは30×t2 0.5mm2未満では、ナゲット面積が小さ過ぎ、接合強度が不十分である。また、ナゲット面積が70×t2 0.5 mm2 を越えると、接合強度を得るのには十分であるが、チリが発生しやすく、アルミニウム材の減肉量が多いため、逆に接合強度が低下する。したがって、ナゲット面積は20×t2 0.5 〜70×t2 0.5 mm2 の範囲、好ましくは30×t2 0.5 〜70×t2 0.5 mm2 の範囲とする。 If the nugget area is less than 20 × t 2 0.5 mm 2 , more strictly less than 30 × t 2 0.5 mm 2 , the nugget area is too small and the bonding strength is insufficient. Also, if the nugget area exceeds 70 × t 2 0.5 mm 2 , it is sufficient to obtain bonding strength, but dust is easily generated and the amount of thinning of the aluminum material is large. To do. Therefore, the nugget area is in the range of 20 × t 2 0.5 to 70 × t 2 0.5 mm 2 , preferably in the range of 30 × t 2 0.5 to 70 × t 2 0.5 mm 2 .
(ナゲット面積の測定)
本発明におけるナゲット面積は、鋼材−アルミ材が接合している界面の面積の測定によって得られる。接合界面の面積の測定方法は、接合界面にて剥離もしくは切断により分断したアルミ材側を画像解析し、ナゲットの面積を計測することによって求めることができる。ナゲット形状が略円形状の場合は、接合部を切断して断面より光学顕微鏡にて観察し、形成しているナゲットの界面での径を測定し、面積を求めても良い。その場合、少なくとも直交した2方向のナゲット径を測定する。
(Measurement of nugget area)
The nugget area in the present invention is obtained by measuring the area of the interface where the steel material-aluminum material is joined. The method for measuring the area of the bonding interface can be obtained by image-analyzing the aluminum material side separated by peeling or cutting at the bonding interface and measuring the area of the nugget. When the nugget shape is substantially circular, the joint may be cut and observed with an optical microscope from a cross section, and the diameter at the interface of the nugget formed may be measured to obtain the area. In that case, the nugget diameter in at least two orthogonal directions is measured.
(アルミニウム材の減肉量)
接合強度を確保する意味で、スポット溶接による接合後のアルミニウム材の減肉量できるだけ小さくすることが望ましい。この目安として、最小残存板厚Δt が元厚t2の50% 以上であることが望ましい。より望ましくは最小残存板厚Δt が元厚t2の90% 以上であることが良い。このアルミニウム材の最小残存板厚Δt は、断面より光学顕微鏡またはSEM にて観察し、板厚減肉長さを測定して、元の板厚との差を取って求めることができる。
(Aluminum material thickness reduction)
In order to ensure the joining strength, it is desirable to make the thickness reduction of the aluminum material after joining by spot welding as small as possible. As a guideline, it is desirable minimum residual thickness Δt is 50% or more of the original thickness t 2. More preferably, it is a good minimum residual thickness Δt is more than 90% of the original thickness t 2. The minimum remaining thickness Δt of this aluminum material can be obtained by observing the cross section with an optical microscope or SEM, measuring the thickness reduction thickness, and taking the difference from the original thickness.
(スポット溶接)
図2に異種接合体を得るためのスポット溶接の一態様を例示する。図2 において、1は鋼板、2はアルミニウム合金板、3は異種接合体、5はナゲット、7と8は電極である。
(Spot welding)
FIG. 2 illustrates an embodiment of spot welding for obtaining a heterogeneous joined body. In FIG. 2, 1 is a steel plate, 2 is an aluminum alloy plate, 3 is a dissimilar joint, 5 is a nugget, and 7 and 8 are electrodes.
以下に、本発明異種接合体を得るためのスポット溶接の各条件を説明する。
(加圧力)
スポット溶接時の加圧力については、上記比較的大きなナゲット必要面積と、上記最適界面反応層の必要面積を得るために、また、Al3Fe 系化合物とAl19Fe4Si2Mn系化合物との層の平均厚さl1、Al5Fe2系化合物層のナゲット中心±0.1mmの範囲内におけるナゲット深さ方向の平均厚さl2、最適厚さ範囲のAl3Fe 系化合物とAl19Fe4Si2Mn系化合物との層の面積S1、Al5Fe2系化合物層の面積S2、などの制御を行ない、前記本発明で規定する最適範囲内とするためには、比較的高い加圧力を印加することが必要である。
Below, each condition of spot welding for obtaining the dissimilar joined body of the present invention will be described.
(Pressure)
Regarding the pressure applied during spot welding, in order to obtain the relatively large required nugget area and the required area for the optimum interfacial reaction layer, and between the Al 3 Fe compound and the Al 19 Fe 4 Si 2 Mn compound, average thickness l 1, Al 5 Fe 2 compound layer of nugget center ± 0.1mm nugget depth direction of the average thickness of l 2 within the scope of the layers, Al 3 Fe-based compound of the optimum thickness range and Al 19 Fe 4 Si 2 area S 1 of the layer of the Mn compound, Al 5 Fe 2 compound layer area S 2, performs control such as, the to within the optimum range defined in the present invention, relatively high It is necessary to apply a pressing force.
具体的には、前記アルミニウム材の板厚t2との関係で、2 ×t2 0.5 kN〜4 ×t2 0.5kN の比較的高い加圧力の範囲から選択する。但し、この比較的高い加圧力の範囲内でも、素材や他の溶接条件によって上記化合物の出来方は異なり、必ず前記本発明で規定する最適範囲内となるは限らない。このため、素材や他の溶接条件に応じて、前記比較的高い加圧力の範囲から、前記本発明で規定する最適範囲内となる最適加圧力を選択することが必要である。 Specifically, in relation to the thickness t 2 of the aluminum material is selected from a relatively high pressure range of 2 × t 2 0.5 kN~4 × t 2 0.5 kN. However, even within this relatively high pressure range, the way of producing the compound differs depending on the material and other welding conditions, and it is not always within the optimum range defined in the present invention. For this reason, it is necessary to select an optimum pressure within the optimum range defined in the present invention from the range of the relatively high pressure according to the material and other welding conditions.
一方、上記範囲の比較的大きな加圧力を印加することで、電極チップなどの形状によらず、異種材料間、電極と材料間の電気的接触を安定化し、ナゲット内の溶融金属をナゲット周辺の未溶融部で支え、上記比較的大きなナゲット必要面積と、上記最適界面反応層の必要面積を得ることができる。また、チリの発生を抑制することができる。 On the other hand, by applying a relatively large pressing force in the above range, regardless of the shape of the electrode tip, etc., the electrical contact between different materials and between the electrodes is stabilized, and the molten metal in the nugget is moved around the nugget. It can be supported by the unmelted portion, and the relatively large nugget required area and the required area of the optimum interface reaction layer can be obtained. Moreover, generation | occurrence | production of dust can be suppressed.
加圧力が2 ×t2 0.5 kN未満では、加圧力が低過ぎ、このような効果を得られない。特に、R が先端にあるチップでは、接触面積が低下し、ナゲット面積の低下、電流密度の増加(=界面反応層の増大)につながるため、接合強度が低下する。また、Al3Fe 系化合物とAl19Fe4Si2Mn系化合物との層の平均厚さl1、Al5Fe2系化合物層のナゲット中心±0.1mmの範囲内におけるナゲット深さ方向の平均厚さl2、などが得られない可能性が高い。
When the applied pressure is less than 2 × t 2 0.5 kN, the applied pressure is too low to obtain such an effect. In particular, in the
一方、加圧力を増加するとナゲット面積が小さくなる傾向にあり、加圧力が4 ×t2 0.5kN を超えた場合、所望のナゲット面積を得ようとすると、下記最適電流を超える電流が必要となり、チリの発生や界面反応層の成長をもたらすため、接合強度が低くなる。また、アルミニウム材の変形が大きく、接合跡が大きな凹部となるため、外観上望ましくない。 On the other hand, when the applied pressure is increased, the nugget area tends to decrease.When the applied pressure exceeds 4 × t 2 0.5 kN, a current exceeding the following optimum current is required to obtain the desired nugget area. Bonding strength is lowered because of generation of dust and growth of an interface reaction layer. Moreover, since the deformation of the aluminum material is large and the joint mark becomes a concave portion, it is not desirable in appearance.
(電流)
スポット溶接時の電流については、上記比較的大きなナゲット必要面積と、上記最適界面反応層の必要面積を得るためには、また、Al3Fe 系化合物とAl19Fe4Si2Mn系化合物との層の平均厚さl1、Al5Fe2系化合物層のナゲット中心±0.1mmの範囲内におけるナゲット深さ方向の平均厚さl2、最適厚さ範囲のAl3Fe 系化合物とAl19Fe4Si2Mn系化合物との層の面積S1、Al5Fe2系化合物層の面積S2、などの制御を行ない、前記本発明で規定する最適範囲内とするためには、比較的高い電流を短時間流すことが必要である。
(Current)
Regarding the current at the time of spot welding, in order to obtain the relatively large required nugget area and the required area for the optimum interface reaction layer, the Al 3 Fe compound and the Al 19 Fe 4 Si 2 Mn compound average thickness l 1, Al 5 Fe 2 compound layer of nugget center ± 0.1mm nugget depth direction of the average thickness of l 2 within the scope of the layers, Al 3 Fe-based compound of the optimum thickness range and Al 19 Fe 4 Si 2 area S 1 of the layer of the Mn compound, Al 5 Fe 2 compound layer area S 2, performs control such as, the to within the optimum range defined in the present invention, relatively high It is necessary to pass the current for a short time.
具体的には、前記アルミニウム材の板厚t2との関係で、15×t2 0.5 〜30×t2 0.5kA の比較的高い電流を、100 ×t2 0.5msec 以下の短時間流すことが必要である。但し、この比較的高い電流や時間の範囲内でも、素材や他の溶接条件によって上記化合物の出来方は異なり、必ず前記本発明で規定する最適範囲内となるは限らない。このため、素材や他の溶接条件に応じて、前記比較的高い電流や時間の範囲から、前記本発明で規定する最適範囲内となる最適電流や時間を選択することが必要である。 Specifically, a relatively high current of 15 × t 2 0.5 to 30 × t 2 0.5 kA is allowed to flow for a short time of 100 × t 2 0.5 msec or less in relation to the thickness t 2 of the aluminum material. is necessary. However, even within this relatively high current and time range, the method of producing the above compound differs depending on the material and other welding conditions, and it is not necessarily within the optimum range defined in the present invention. For this reason, it is necessary to select the optimum current and time within the optimum range defined in the present invention from the relatively high current and time ranges according to the material and other welding conditions.
また、このような比較的高い電流を短時間流すことで、異種材料間、電極と材料間の電気的接触を安定化し、ナゲット内の溶融金属をナゲット周辺の未溶融部で支え、上記比較的大きなナゲット必要面積と、上記最適界面反応層の必要面積を得ることができる。また、チリの発生を抑制することができる。 In addition, by flowing such a relatively high current for a short time, the electrical contact between different materials and between the electrode and the material is stabilized, and the molten metal in the nugget is supported by the unmelted portion around the nugget. A large nugget required area and a required area of the optimum interface reaction layer can be obtained. Moreover, generation | occurrence | production of dust can be suppressed.
15×t2 0.5 kA未満、厳しくは18×t2 0.5 kA未満の低電流の場合、ナゲットが形成、成長するのに十分な入熱量が得られない。このため、上記比較的大きなナゲット必要面積と、上記最適界面反応層の必要面積を得ることができない。また、Al3Fe 系化合物とAl19Fe4Si2Mn系化合物との層の平均厚さl1、Al5Fe2系化合物層のナゲット中心±0.1mmの範囲内におけるナゲット深さ方向の平均厚さl2、などが得られない可能性が高い。 In the case of a low current of less than 15 × t 2 0.5 kA, strictly less than 18 × t 2 0.5 kA, a heat input sufficient to form and grow nuggets cannot be obtained. For this reason, the comparatively large nugget required area and the required area of the optimum interface reaction layer cannot be obtained. In addition, the average thickness l 1 of the layer of Al 3 Fe compound and Al 19 Fe 4 Si 2 Mn compound, the average of nugget depth direction within the range of nugget center ± 0.1 mm of Al 5 Fe 2 compound layer There is a high possibility that the thickness l 2 , etc. cannot be obtained.
一方、30×t2 0.5kA を超える高い電流の場合には、余分な設備がかかり、作業・コスト面で不利となる。このため、これらの点からは電流を30×t2 0.5kA 以下とする。したがって、使用電流は15×t2 0.5 〜30×t2 0.5kA 、好ましくは18×t2 0.5 〜30×t2 0.5kA の範囲とする。 On the other hand, in the case of a high current exceeding 30 × t 2 0.5 kA, extra equipment is required, which is disadvantageous in terms of work and cost. Therefore, the current is 30 × t 2 0.5 kA or less from these points. Therefore, the working current is in the range of 15 × t 2 0.5 to 30 × t 2 0.5 kA, preferably 18 × t 2 0.5 to 30 × t 2 0.5 kA.
(通電時間)
通電時間は、前記アルミニウム材の板厚t2との関係で、100 ×t2msecの比較的短時間とする。通電時間が100 ×t2msecを超える長時間の場合、ナゲット径は確保できるが、チリの発生や界面反応層の成長をもたらすため、接合強度が低くなる。上記のように、界面反応層を制御するには、通電時間が100 ×t2msec以下、好ましくは20×t2 0.5msec 〜80×t2 0.5msec とする。但し、前記した通り、素材や他の溶接条件に応じて、前記電流との関係で、前記本発明で規定する化合物制御が最適範囲内となる最適時間を選択することが必要である。
(Energization time)
The energization time is set to a relatively short time of 100 × t 2 msec in relation to the thickness t 2 of the aluminum material. When the energization time is longer than 100 × t 2 msec, the nugget diameter can be secured, but since the generation of dust and the growth of the interface reaction layer are brought about, the bonding strength is lowered. As described above, in order to control the interface reaction layer, the energization time is set to 100 × t 2 msec or less, preferably 20 × t 2 0.5 msec to 80 × t 2 0.5 msec. However, as described above, it is necessary to select an optimum time during which the compound control defined in the present invention is within the optimum range in relation to the current, depending on the material and other welding conditions.
(電極形状)
スポット溶接の電極チップの形状は、上記ナゲット面積と界面反応層を得られるのであれば、何れの形状でも良いし、鋼材側、アルミニウム材側の電極チップが異なる形状でも異なるサイズでも構わない。但し、鋼材側、アルミニウム材側の両側共に、図2 に示すような、先端がR となった「ドーム型」の電極チップが望ましい。このようなドーム型の場合、電極チップの先端径、先端R は、上記電流密度低下とナゲット面積増加を両立するためには、7mm φ以上で、100mmR以上である必要がある。また、極性についても規定するものではないが、直流スポット溶接を用いる場合は、アルミニウム材側を陽極とし、鋼材側を陰極とする方が望ましい。
(Electrode shape)
The shape of the electrode tip for spot welding may be any shape as long as the nugget area and the interface reaction layer can be obtained, and the electrode tips on the steel material side and the aluminum material side may have different shapes or different sizes. However, it is desirable to use a “dome-shaped” electrode tip with R at the tip as shown in Fig. 2 on both the steel and aluminum sides. In the case of such a dome shape, the tip diameter and
なお、特に先端径が7mm φ以上で、かつ先端R が120mmR以上の電極チップを双方に用いることで、上記電流密度低下とナゲット面積増加を最適に両立させることができる。このチップを用いた場合、前記板厚t2との関係で、2.5 ×t2 0.5 kN〜4 ×t2 0.5kN の加圧力を印加し、かつ18×t2 0.5 〜30×t2 0.5kA の電流を100 ×t2 0.5msec 以下流すことが好ましい。
In particular, by using both electrode tips having a tip diameter of 7 mmφ or more and a
最適接合条件は、以上説明したこれら各条件のバランスにあり、例えばチップ径やチップR、加圧力の増加して、電流密度を低下した場合は、それに伴って電流量を増加して、界面反応層を最適厚さに制御する必要がある。また、ナゲット面積、最適厚さの界面反応層の面積を阻害しない限り、このスポット溶接条件の前後に、より低電流での条件を加え、複数段の電流パターンとしてもよい。 The optimum joining condition is the balance of each of the above-described conditions. For example, when the chip diameter, the chip R, or the pressurizing force is increased and the current density is decreased, the current amount is increased accordingly, and the interface reaction is increased. It is necessary to control the layer to an optimum thickness. Further, as long as the nugget area and the area of the interface reaction layer having the optimum thickness are not inhibited, a condition with a lower current may be added before and after the spot welding condition to form a multi-stage current pattern.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより、下記実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention is not limited to the following examples. Of course, it is also possible to implement them, and they are all included in the technical scope of the present invention.
表1に示す化学成分(質量%)を含有する供試鋼を溶製し、1.2mm の板厚となるまで圧延を行い、薄鋼板を得た。この薄鋼板を、連続焼鈍によって500 〜1000℃の焼鈍後、油洗または水洗を行い、その後焼き戻しにより980 MPa 級の高張力鋼板を得た。 Test steels containing the chemical components (mass%) shown in Table 1 were melted and rolled to a plate thickness of 1.2 mm to obtain thin steel plates. This thin steel plate was annealed at 500 to 1000 ° C. by continuous annealing, then washed with oil or water, and then tempered to obtain a 980 MPa class high strength steel plate.
また、アルミニウム材については板厚1.0mm(表3、4、6)と1.6mm(表5)の2 種類の市販A6022(6000系) アルミニウム合金板を用いた。 As for the aluminum material, two types of commercially available A6022 (6000 series) aluminum alloy plates having a thickness of 1.0 mm (Tables 3, 4, 6) and 1.6 mm (Table 5) were used.
これら鋼板( 鋼材) とアルミニウム合金板( アルミニウム材) とをJIS A 3137記載の十字引張試験片形状に加工した上で、表2に示す条件でスポット溶接を行い、異種接合体を作成した。 These steel plates (steel materials) and aluminum alloy plates (aluminum materials) were processed into the shape of a cross tensile test piece described in JIS A 3137 and spot-welded under the conditions shown in Table 2 to prepare dissimilar joints.
スポット溶接には、直流抵抗溶接試験機を用い、予め加圧力、溶接電流、時間など条件と、前記本発明で規定する化合物の平均厚みや面積の制御との相関関係を調査した。その上で、アルミニウム材の板厚t2に合わせて、加圧力、溶接電流、時間を各々設定し、表2 で示す条件にて一点の溶接を行った。 In spot welding, a direct current resistance welding tester was used, and the correlation between conditions such as pressure, welding current, and time and the control of the average thickness and area of the compound defined in the present invention was investigated in advance. Then, the welding pressure, welding current, and time were set according to the thickness t 2 of the aluminum material, and one point was welded under the conditions shown in Table 2.
電極チップは全てCu-Cr 合金からなるドーム型で、50mmR-12mmφ(表3 )、120mmR-12mm φ(表4 、5 )、150mmR-12mm φ (表6)、の3 形状のチップを各々用いた。陽極をアルミニウム材、陰極を鋼材とし、各溶接例おいて各々両側の電極チップの形状は同一とした。 The electrode tips are all dome-shaped made of Cu-Cr alloy, and each has three shapes of 50mmR-12mmφ (Table 3), 120mmR-12mm φ (Tables 4 and 5), and 150mmR-12mm φ (Table 6). It was. The anode was an aluminum material and the cathode was a steel material, and the electrode tips on both sides were the same in each welding example.
また、アルミニウム材の減肉量は、各実施例とも共通して、最小残存板厚Δt が元厚t2の50% 以上であった。 Further, as for the thickness reduction of the aluminum material, the minimum remaining plate thickness Δt was 50% or more of the original thickness t 2 in common with each example.
これら製作した各接合体に付き、前記した測定方法にて、各化合物の深さ方向厚さや最適厚さ範囲の面積を測定した。これらの結果を表3〜6に示す。 Attached to each of the manufactured joined bodies, the thickness in the depth direction and the area of the optimum thickness range of each compound were measured by the measurement method described above. These results are shown in Tables 3-6.
各接合体の接合強度の評価としては、異種接合体の十字引張試験を実施した。十字引張試験は、A6022 材同士の接合強度=1.0kN を基準にして、接合強度が1.5kN 以上または破断形態がアルミ母材破断であれば◎、接合強度が1.0 〜1.5kN であれば○、接合強度が0.5 〜1.0kN であれば△、接合強度が0.5kN 未満であれば×とした。 As an evaluation of the bonding strength of each bonded body, a cross tensile test of different bonded bodies was performed. The cross tension test is based on the joint strength of A6022 materials = 1.0 kN, ◎ if the joint strength is 1.5 kN or more or the fracture mode is aluminum base material fracture, ○ if the joint strength is 1.0 to 1.5 kN, When the bonding strength was 0.5 to 1.0 kN, Δ was marked, and when the bonding strength was less than 0.5 kN, x was marked.
なお、本実施例にて強度の評価に、十字引張試験を用いたのは、剪断引張試験の方が試験条件間での差異が大きかったためである。剪断引張試験の傾向は十字引張試験結果と合致しており、十字引張試験にて○、◎の評価を得たものは、いずれも2.5kN 以上の高い剪断強度であった。 Note that the cross tension test was used for strength evaluation in this example because the shear tension test had a greater difference between the test conditions. The tendency of the shear tensile test was consistent with the result of the cross tensile test, and all of the samples that were evaluated as ◯ or ◎ in the cross tensile test had a high shear strength of 2.5 kN or more.
表1 の鋼種とA6022 材とのスポット溶接後の異種接合体の十字引張試験結果を表3〜6 に示す。 Tables 3 to 6 show the results of cross-tension tests of different types of joints after spot welding between the steel types shown in Table 1 and A6022.
表3〜8 の各表において、本発明の金属間化合物層条件である、Al3Fe 系化合物とAl19Fe4Si2Mn系化合物との層の、ナゲット中心±0.1mmの範囲内における、ナゲット深さ方向の平均厚さl1が0.5〜10μmの範囲にある各発明例は、異種接合体の接合強度が高くなることがわかる。 In each table of Tables 3-8, within the range of the nugget center ± 0.1 mm of the layer of the Al 3 Fe compound and the Al 19 Fe 4 Si 2 Mn compound, which is the intermetallic compound layer condition of the present invention, It can be seen that each invention example in which the average thickness l 1 in the nugget depth direction is in the range of 0.5 to 10 μm increases the bonding strength of the dissimilar bonded body.
更に、Al3Fe 系化合物とAl19Fe4Si2Mn系化合物との層の平均厚さl1とAl5Fe2系化合物層の面積S2との制御に加えて、Al5Fe2系化合物層のナゲット中心±0.1mmの範囲内におけるナゲット深さ方向の平均厚さl2と、最適厚さ範囲のAl3Fe 系化合物とAl19Fe4Si2Mn系化合物との層の面積S1との制御を行なった発明例は、それ以外の発明例に比して、最も高い接合強度が得られている。表4〜6の各の発明例E、F、Gがこれに該当する。 Furthermore, in addition to controlling the average thickness l 1 of the Al 3 Fe-based compound and Al 19 Fe 4 Si 2 Mn-based compound and the area S 2 of the Al 5 Fe 2 -based compound layer, the Al 5 Fe 2 based The average thickness l 2 in the nugget depth direction within the range of the nugget center ± 0.1 mm of the compound layer, and the layer area S of the Al 3 Fe compound and the Al 19 Fe 4 Si 2 Mn compound in the optimum thickness range The example of the invention controlled with 1 has the highest bonding strength compared to the other examples. The invention examples E, F, and G in Tables 4 to 6 correspond to this.
一方、表3〜8 の各表において、本発明の金属間化合物層条件を満たさない各比較例は、異種接合体の接合強度が低い。表3〜8 の各比較例はAl3Fe 系化合物とAl19Fe4Si2Mn系化合物との層の前記平均厚さl1が範囲の上限か下限から外れている。 On the other hand, in each table of Tables 3-8, each comparative example that does not satisfy the intermetallic compound layer condition of the present invention has low bonding strength of the dissimilar bonded body. In each of Comparative Examples in Tables 3 to 8, the average thickness l 1 of the layer of the Al 3 Fe compound and the Al 19 Fe 4 Si 2 Mn compound is outside the upper limit or lower limit of the range.
なお、表3〜8 の各表において、ナゲット面積は、比較例では前述の推奨範囲から外れるものが多かった。例えば、50mmR-12mmφ(表3 )では全て12×t2 0.5 〜19×t2 0.5mm2の範囲であり、また、120mmR-12mm φ(表4 、5 )、150mmR-12mm φ (表6)の条件Bではいずれも17×t2 0.5 〜20×t2 0.5 mm2 の範囲であり、ナゲット面積が小さかった。また、120mmR-12mm φ(表4 、5 )、150mmR-12mm φ (表6)の条件Cではいずれも72×t2 0.5 〜89×t2 0.5mm2の範囲であり、ナゲット面積が逆に大きかった。 In each of Tables 3 to 8, the nugget area often deviated from the above recommended range in the comparative example. For example, 50mmR-12mmφ (Table 3) is all in the range of 12 × t 2 0.5 to 19 × t 2 0.5 mm 2 , and 120mmR-12mm φ (Tables 4 and 5), 150mmR-12mm φ (Table 6) In condition B, all were in the range of 17 × t 2 0.5 to 20 × t 2 0.5 mm 2 and the nugget area was small. Also, in condition C of 120mmR-12mmφ (Tables 4 and 5) and 150mmR-12mmφ (Table 6), both are in the range of 72 × t 2 0.5 to 89 × t 2 0.5 mm 2 , and the nugget area is reversed It was big.
これに対して、発明例ではいずれも、ナゲット面積が前述の推奨範囲内にあった。前記したように、本発明ではナゲット面積を20×t2 0.5 〜70×t2 0.5mm2の範囲とする方が望ましい。 In contrast, in all of the inventive examples, the nugget area was within the above-mentioned recommended range. As described above, in the present invention, it is desirable that the nugget area be in the range of 20 × t 2 0.5 to 70 × t 2 0.5 mm 2 .
しかしながら、比較例である120mmR-12mm φ(表4 、5 )、150mmR-12mm φ (表6)の条件Aは、28×t2 0.5 〜38×t2 0.5mm2の範囲であり、それらの表の発明例である条件D、E、Gとほぼ同等のナゲット径であるにもかかわらず、接合強度が低かった。 However, the condition A of 120 mm R-12 mm φ (Tables 4 and 5) and 150 mm R-12 mm φ (Table 6), which are comparative examples, is in the range of 28 × t 2 0.5 to 38 × t 2 0.5 mm 2 . Despite the nugget diameter almost equivalent to the conditions D, E, and G, which are the invention examples in the table, the bonding strength was low.
以上のことから、高い接合強度を得るためには、ある程度のナゲット面積を形成することが必要であるが、それにも増して、接合界面での界面反応層の厚さ・構造を制御することが更に必要であることが分かる。 From the above, in order to obtain a high bonding strength, it is necessary to form a certain nugget area, but in addition to that, it is possible to control the thickness and structure of the interface reaction layer at the bonding interface. It can also be seen that it is necessary.
したがって、これらの実施例の結果から、本発明で規定する各要件や好ましい要件の臨界的な意義が分かる。
Therefore, the critical significance of each requirement prescribed | regulated by this invention and a preferable requirement is understood from the result of these Examples.
本発明によれば、クラッド材などの他材料を入れることなく、また別工程を入れることなく、更に、鋼材側やアルミニウム材側、あるいはスポット溶接側条件を大きく変えることなく、接合強度の高いスポット溶接をなしうる、鋼材とアルミニウム材との異種接合体を提供できる。このような接合体は、自動車、鉄道車両などの輸送分野、機械部品、建築構造物等における各種構造部材として大変有用に適用できる。したがって、本発明は鋼材とアルミニウムとの異種接合体の用途を大きく拡大するものである。 According to the present invention, a spot having a high bonding strength without any other material such as a clad material, without a separate process, and without significantly changing the conditions on the steel material side, the aluminum material side, or the spot welding side. Dissimilar joints of steel and aluminum that can be welded can be provided. Such a joined body can be very usefully applied as various structural members in transportation fields such as automobiles and railway vehicles, machine parts, building structures, and the like. Therefore, the present invention greatly expands the use of the heterogeneous joined body of steel and aluminum.
1:鋼板、2:アルミニウム合金板、3:異種接合体、4:酸化皮膜、
5:ナゲット、6:界面反応層、7、8:電極
1: steel plate, 2: aluminum alloy plate, 3: dissimilar joined body, 4: oxide film,
5: Nugget, 6: Interfacial reaction layer, 7, 8: Electrode
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005114886A JP4445425B2 (en) | 2005-04-12 | 2005-04-12 | Dissimilar joints of steel and aluminum |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005114886A JP4445425B2 (en) | 2005-04-12 | 2005-04-12 | Dissimilar joints of steel and aluminum |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006289452A JP2006289452A (en) | 2006-10-26 |
JP4445425B2 true JP4445425B2 (en) | 2010-04-07 |
Family
ID=37410609
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005114886A Expired - Fee Related JP4445425B2 (en) | 2005-04-12 | 2005-04-12 | Dissimilar joints of steel and aluminum |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4445425B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102114574B (en) * | 2006-02-23 | 2013-01-09 | 株式会社神户制钢所 | Joint product between steel product and aluminum material, spot welding method, and electrode chip for use in the method |
JP2008105087A (en) * | 2006-10-27 | 2008-05-08 | Honda Motor Co Ltd | Joining method of iron member with aluminum member, and iron-aluminum joined structure |
JP2009061500A (en) * | 2007-08-10 | 2009-03-26 | Nissan Motor Co Ltd | Dissimilar metal bonded member, and method of bonding dissimilar metals |
CN102066597B (en) | 2008-06-13 | 2013-03-06 | 株式会社神户制钢所 | Steel material for dissimilar metal joining, joined body of dissimilar metals and process for joining dissimilar metal materials |
JP5572046B2 (en) | 2010-09-13 | 2014-08-13 | 株式会社神戸製鋼所 | Dissimilar material joining method |
JP5997895B2 (en) * | 2011-11-11 | 2016-09-28 | 株式会社Uacj | MIG welded joint structure |
KR102223529B1 (en) * | 2014-03-14 | 2021-03-05 | 닛폰세이테츠 가부시키가이샤 | Welded structure and method for manufacturing welded structure |
US10625367B2 (en) * | 2016-04-08 | 2020-04-21 | GM Global Technology Operations LLC | Method of resistance spot welding aluminum to steel |
JP2022063070A (en) | 2020-10-09 | 2022-04-21 | 株式会社豊田中央研究所 | Spot welding method |
JP7570998B2 (en) | 2021-10-29 | 2024-10-22 | 株式会社豊田中央研究所 | Method for manufacturing metal joint |
-
2005
- 2005-04-12 JP JP2005114886A patent/JP4445425B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006289452A (en) | 2006-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100785557B1 (en) | Steel sheet for dissimilar materials weldbonding to aluminum material and dissimilar materials bonded body | |
JP4072558B2 (en) | Joined body of steel and aluminum, and spot welding method thereof | |
EP1987904B1 (en) | Joint product between steel product and aluminum material | |
KR100790638B1 (en) | Joined body of dissimilar materials comprising steel material and aluminum material, and joining method therefor | |
JP6287083B2 (en) | Dissimilar metal joining method between steel plate and aluminum alloy plate | |
WO2009150904A1 (en) | Steel material for dissimilar metal joining, joined body of dissimilar metals and process for joining dissimilar metal materials | |
KR101419191B1 (en) | Method for joining differing materials | |
US20240253148A1 (en) | Welding methods for joining light metal and high-strength steel using solid state and resistance spot welding processes | |
JP2005305504A (en) | Joined body of different materials of steel material and aluminum material and method for joining the same | |
JP4445425B2 (en) | Dissimilar joints of steel and aluminum | |
JP5134261B2 (en) | Dissimilar joints of steel and aluminum | |
JP4690087B2 (en) | Dissimilar joints of steel and aluminum and their joining methods | |
JP5297099B2 (en) | Dissimilar material joined body and dissimilar material joining method | |
JP4469165B2 (en) | Dissimilar joints of steel and aluminum and their joining methods | |
JP4838491B2 (en) | Dissimilar joints of steel and aluminum | |
JP7003805B2 (en) | Joined structure and its manufacturing method | |
JP2009299140A (en) | Steel material to be joined to dissimilar material, joined body of dissimilar materials, and method for joining dissimilar materials | |
Sreenivasulu | Joining of Dissimilar alloy Sheets (Al 6063&AISI 304) during Resistance Spot Welding Process: A Feasibility Study for Automotive industry | |
JP7570998B2 (en) | Method for manufacturing metal joint | |
JP7485242B1 (en) | Welding member and manufacturing method thereof | |
JP4427590B2 (en) | Steel for dissimilar material joining, dissimilar material joined body, and dissimilar material joining method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070928 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090902 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090915 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091111 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100112 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100115 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4445425 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130122 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130122 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |