JP4443917B2 - 粒子線治療装置 - Google Patents

粒子線治療装置 Download PDF

Info

Publication number
JP4443917B2
JP4443917B2 JP2003433617A JP2003433617A JP4443917B2 JP 4443917 B2 JP4443917 B2 JP 4443917B2 JP 2003433617 A JP2003433617 A JP 2003433617A JP 2003433617 A JP2003433617 A JP 2003433617A JP 4443917 B2 JP4443917 B2 JP 4443917B2
Authority
JP
Japan
Prior art keywords
command value
particle beam
data
electromagnet
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003433617A
Other languages
English (en)
Other versions
JP2005185703A (ja
Inventor
大春 千葉
康剛 藤島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003433617A priority Critical patent/JP4443917B2/ja
Priority to US11/018,320 priority patent/US20050139787A1/en
Publication of JP2005185703A publication Critical patent/JP2005185703A/ja
Priority to US11/339,842 priority patent/US7586112B2/en
Application granted granted Critical
Publication of JP4443917B2 publication Critical patent/JP4443917B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1079Sharing a beam by multiple treatment stations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/04Irradiation devices with beam-forming means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiation-Therapy Devices (AREA)
  • Particle Accelerators (AREA)

Description

本発明は、粒子線治療装置に係り、特に、陽子及び炭素イオン等の荷電粒子ビームを患部に照射して治療する粒子線治療装置に関する。
癌などの患者の患部に陽子等の荷電粒子ビームを照射する治療方法が知られている。この治療に用いる治療装置のうち大規模なものは、従来、荷電粒子ビーム発生装置、ビーム輸送系、及び複数の治療室を備えている。荷電粒子ビーム発生装置で加速された荷電粒子ビームは、ビーム輸送系を経て各治療室の照射装置に達し、照射装置のノズルから患者の患部に照射される。このとき、ビーム輸送系は、1つの共通のビーム輸送系と、この1つの第1ビーム輸送系から分岐して各治療室の照射装置へと設けられた複数の分岐後のビーム輸送系とから構成される。各分岐ビーム輸送系の分岐位置には、第1ビーム輸送系からの荷電粒子ビームを偏向し当該分岐ビーム輸送系へ導入するための切替え電磁石がそれぞれ設けられている(例えば、特許文献1参照)。
特表平11−501232号公報(第12−13頁、図1,2)
一般に、複数の治療室を有する治療装置では、各治療室において患者の位置決め等のセットアップが行われ、セットアップが完了した治療室からビームが要求されると、制御装置が荷電粒子ビーム発生装置及びビーム輸送系に設けられた各電磁石へ指令値信号を出力してビーム設定及び当該治療室へのビーム輸送経路を形成し、照射を行うというサイクルが繰り返して行われる。この際、1つの治療室においてビーム設定及び照射が行われている最中に、次の治療室はセットアップを完了し待機状態となる。これにより、照射が終了したら直ちに次の治療室のビーム設定及びビーム輸送経路の形成が行われるようになっている。したがって、ビーム設定に長時間を要すると、次の治療室の待機時間が長くなってしまい、治療効率が低下する。したがって、制御装置によるビーム設定時間は可能な限り短縮するのが好ましい。
ここで、上記従来の粒子線治療装置においては、上記特許文献1には明確には記載されていないが、通常、制御装置から各電磁石へ出力される指令値(以下、指令値群と記載)はビームの種類毎に単純に指令値群全体が丸ごと保存される。ここでいうビームの種類とは、ビームエネルギー,強度,出射先(治療室番号等)、及び回転ガントリーの角度等のパラメータにより決定されるビームの種類のことである。近年、必要となるビームの種類は患者の腫瘍の多様性により増加する傾向にあり、上記ビームの種類を決定するパラメータ数として例えばエネルギーを400種,強度を10種,出射先を4種(すなわち治療室が4つ)、及び回転ガントリーの回転角度を720種(すなわち0.5度刻みで360度分)とした場合、400×10×4×720=11,520,000種類もの指令値群を保存する必要がある。
このように膨大な指令値群を扱う場合、ビーム設定の際に、制御装置が治療室から要求されたビームに応じた特定の指令値群をそれら多数の指令値群の中から検索するのに要する時間が長くなり、ビーム設定に要する時間が長くなってしまう。その結果、治療効率が低下し、各治療室における単位時間当たりの治療人数が低下することになる。
本発明は、上記従来技術の問題に鑑みてなされたものであり、その目的は、一治療室における単位時間当たりの治療人数を増加することができる粒子治療装置を提供することにある。
上記した目的を達成する本発明の特徴は、荷電粒子ビーム発生装置、及び荷電粒子ビーム発生装置から出射された荷電粒子ビームを照射装置に輸送するビーム輸送系に設けられた電磁石の励磁電流をそれぞれ指令する指令値群を、回転ガントリーの回転角度に依存しない第1の指令値群と回転ガントリーの回転角度に依存する第2の指令値群分けて記憶装置に格納し、この記憶装置に格納した第1の指令値群及び第2の指令値群のそれぞれから該当する指令値を読み出して、ビーム輸送系のガントリー部分の電磁石の一部を第2の指令値群の指令値を用いて制御し、ビーム輸送系の残りの電磁石と荷電粒子ビーム発生装置の電磁石とを第1の指令値群の指令値を用いて制御することである。これにより、例えばガントリー輸送系に設けられたステアリング電磁石の励磁電流を第2の指令値群によってそれぞれ指令し、その他の電磁石の励磁電流を第1の指令値群によってそれぞれ指令するようにすれば、第1の指令値群は回転ガントリーの角度に依存しないため、ビームの種類のうち回転ガントリーの角度のみが相違する場合については指令値群中の第1の指令値群を共用することができる。その結果、電磁石への指令値群を全て丸ごと保存していた従来方式に比べ、保存する指令値群の量を大幅に削減することができるため、保存されている指令値群から必要な指令値群を特定するための検索時間を短縮することができる。したがって、制御装置によるビーム設定時間を短縮することができるので、一治療室における単位時間当たりの治療人数を増加することができる。
本発明のもう1つの特徴は、回転ガントリーの回転角度に応じた第2の指令値群を算出する角度展開算出手段を有することにある。これにより、例えばある一定のビームエネルギーにおいて、オペレータが所定の回転ガントリー角度で荷電粒子ビームを照射しながら指令値の調整を行い1つの指令値群を作成すれば、この調整により作成した指令値群を基に、そのビームエネルギーにおけるその他の回転ガントリー角度に応じた(例えば0.5度刻みの)第2の指令値群を自動的に算出することができる。このようにして、回転ガントリーの角度に応じた指令値群を算出し用意しておくことにより、治療室からどのような回転ガントリー角度が要求されてもそれに応じてビーム輸送系の設定を行うことができ、制御装置によるビームの自動設定範囲を大幅に拡大することができる。
本発明のさらにもう1つの特徴は、荷電粒子ビーム発生装置から出射される荷電粒子ビームのエネルギーに応じた第1及び第2の指令値群を算出するエネルギー展開算出手段を有することにある。これにより、例えばある一定の回転ガントリー角度において、オペレータが所定のビームエネルギーで荷電粒子ビームを照射しながら指令値の調整を行い1つの指令値群を作成すれば、この調整により作成した指令値群を基に、そのガントリー角度におけるその他のビームエネルギーに応じた(例えば0.5MeV刻みの)第1及び第2の指令値群を自動的に算出することができる。このようにして、ビームエネルギーに応じた指令値群を算出し用意しておくことにより、治療室からどのようなビームエネルギーが要求されてもそれに応じてビーム輸送系の設定を行うことができ、制御装置によるビームの自動設定範囲を大幅に拡大することができる。
本発明のさらにもう1つの特徴は、第1の指令値群と第2の指令値群を対応付けるインデックス情報を保存するインデックス情報保存手段、及びこのインデックス情報を用いて対応付けられた第1の指令値群及び第2の指令値群を読み出す読出し手段を有することにある。これにより、オペレータはインデックス情報のみを用いて分類された2つの指令値群を意識することなく必要な指令値群を特定することができ、データの取り扱い性を向上できる。さらに、第1の指令値群と第2の指令値群が誤った組み合わせで読み出されることを防止することができる。
本発明によれば、一治療室における単位時間当たりの治療人数を増加することができる。
以下、本発明の粒子線治療装置の好適な一実施形態である粒子線治療システムを図面を参照しつつ説明する。
本実施形態の粒子線治療システムは、図1に示すように、荷電粒子ビーム発生装置1と、4つの治療室2A,2B,2C及び3と、荷電粒子ビーム発生装置1の下流側に接続された第1ビーム輸送系(ビーム輸送系)4及びこの第1ビーム輸送系4から分岐するようにそれぞれ設けられた第2ビーム輸送系(ビーム輸送系)5A,5B,5C,5Dを有するビーム輸送系と、切替え電磁石6A,6B,6Cとを有している。第1ビーム輸送系4は、第2ビーム輸送系5A,5B,5C,5Dのそれぞれにイオンビームを導く共通のビーム輸送系である。
荷電粒子ビーム発生装置1は、イオン源(図示せず)、前段荷電粒子ビーム発生装置(ライナック)11及びシンクロトロン12を有する。イオン源で発生したイオン(例えば、陽子イオン(または炭素イオン))は前段荷電粒子ビーム発生装置(例えば直線荷電粒子ビーム発生装置)11で加速される。前段荷電粒子ビーム発生装置11から出射されたイオンビーム(陽子ビーム)は四極電磁石9及び偏向電磁石10を介しシンクロトロン12に入射される。荷電粒子ビーム(粒子線)であるそのイオンビームは、シンクロトロン12で、高周波加速空胴(図示せず)から印加される高周波電力によってエネルギーを与えられて加速される。シンクロトロン12内を周回するイオンビームのエネルギーが設定されたエネルギー(例えば100〜200MeV)までに高められた後、出射用の高周波印加装置(図示せず)から高周波がイオンビームに印加される。安定限界内で周回しているイオンビームは、この高周波の印加によって安定限界外に移行し、出射用デフレクタ(図示せず)を通ってシンクロトロン12から出射される。イオンビームの出射の際には、シンクロトロン12に設けられた四極電磁石13及び偏向電磁石14等の電磁石に導かれる電流が電流設定値に保持され、安定限界もほぼ一定に保持されている。高周波印加装置への高周波電力の印加を停止することによって、シンクロトロン12からのイオンビームの出射が停止される。
シンクロトロン12から出射されたイオンビームは、第1ビーム輸送系4により下流側へ輸送される。第1ビーム輸送系4は、ビーム経路61、及びビーム経路61にビーム進行方向上流側より配置された四極電磁石18、偏向電磁石17、四極電磁石18、切替え電磁石6A、四極電磁石19、切替え電磁石6B、四極電磁石20、切替え電磁石6Cを備えている。第1ビーム輸送系4に導入されたイオンビームは、これらの電磁石及び切替え電磁石6A,6B,6Cの励磁、非励磁の切り替えによる偏向作用の有無によって、第2ビーム輸送系5A,5B,5C,5Dのいずれかに選択的に導入される。各切替え電磁石は、偏向電磁石の一種である。
第2ビーム輸送系5Aは、ビーム経路61に接続されて治療室2A内に配置された照射装置15Aに連絡されるビーム経路62、及びビーム経路62にビーム進行方向上流側より配置された偏向電磁石21A、四極電磁石22A、偏向電磁石23A、ステアリング電磁石7HA、ステアリング電磁石7VA、四極電磁石24A、ステアリング電磁石8HA、ステアリング電磁石8VA、偏向電磁石25A、偏向電磁石26Aを備える。ステアリング電磁石7HA,7VA,8HA,8VAはイオンビームの位置調整のための電磁石であり、そのうち7HA,8HAはイオンビームの水平方向の位置調整を、7VA,8VAはイオンビームの鉛直方向の位置調整を行う。これらステアリング電磁石7HA,7VA,8HA,8VAは、第2ビーム輸送系5Aの治療室2A内の部分(ガントリー輸送系)に設けられている。
第2ビーム輸送系5Bは、ビーム経路61に接続されて治療室2B内に配置された照射装置15Bに連絡されるビーム経路63、及びビーム経路63にビーム進行方向上流側より配置された偏向電磁石21B、四極電磁石22B、偏向電磁石23B、ステアリング電磁石7HB、ステアリング電磁石7VB、四極電磁石24B、ステアリング電磁石8HB、ステアリング電磁石8VB、偏向電磁石25B、偏向電磁石26Bを備える。ステアリング電磁石7HB,7VB,8HB,8VBは上記第2ビーム輸送系5Aのステアリング電磁石7HA,7VA,8HA,8VAと同様である。
第2ビーム輸送系5Cは、ビーム経路61に接続されて治療室2C内に配置された照射装置15Cに連絡されるビーム経路64、及びビーム経路64にビーム進行方向上流側より配置された偏向電磁石21C、四極電磁石22C、偏向電磁石23C、ステアリング電磁石7HC、ステアリング電磁石7VC、四極電磁石24C、ステアリング電磁石8HC、ステアリング電磁石8VC、偏向電磁石25C、偏向電磁石26Cを備える。ステアリング電磁石7HC,7VC,8HC,8VCは上記第2ビーム輸送系5Aのステアリング電磁石7HA,7VA,8HA,8VAと同様である。
第2ビーム輸送系5Dは、ビーム経路61に接続されて治療室3内に設置された固定照射装置16に連絡されるビーム経路65、及びビーム経路65にビーム進行方向上流より配置された四極電磁石27,28を備えている。
以上のような構成により、第2ビーム輸送系5Aへ導入されたイオンビームは、該当する電磁石の励磁によりビーム経路62を通って照射装置15Aへと輸送される。第2ビーム輸送系5Bへ導入されたイオンビームは、該当する電磁石の励磁によりビーム経路63を通って照射装置15Bへと輸送される。第2ビーム輸送系5Cへ導入されたイオンビームは、該当する電磁石の励磁によりビーム経路64を通って照射装置15Cへと輸送される。また、第2ビーム輸送系5Dへ導入されたイオンビームは、該当する電磁石の励磁によりビーム経路65を通って照射装置16へと輸送される。
治療室2A〜Cは、内部にそれぞれ設置された回転ガントリー(図示せず)に取り付けられた照射装置15A〜Cをそれぞれ備える。治療室2A〜Cは例えば癌患者用の第1〜第3治療室であり、治療室3は、固定式の照射装置16を備えた例えば眼科治療用の第4治療室である。
図2を用いて、治療室2A内の構成及び機器配置を説明する。治療室2B,2Cも治療室2Aと同様な構成及び機器配置を有しているので、説明は省略する。治療室2Aは、1階部分に設けた施療室(区画)31、及びこれより一段低い地下1階部分に設けたガントリー室(区画)32を備えている。また、治療室2Aの外側で治療室2Aに近接して照射制御室33が配置されている。照射制御室33は治療室2B,2Cに対しても同様に配置される。照射制御室33は、施療室31やガントリー室32とは遮断されている。しかしながら、施療室31内における患者30Aの様子は、照射制御室33及び施療室31の境界壁に設けられた例えばガラス窓越しにあるいは施療室31内に設けたテレビカメラ(図示せず)で撮影した映像のモニターによる観察で見ることができる。
第2ビーム輸送系5Aの一部である逆U字状のビーム輸送装置及び照射装置15Aは、回転ガントリー(図示せず)の略筒状の回転胴50に設置されている。回転胴50はモータ(図示せず)により回転可能に構成されている。回転胴50内には治療ゲージ(図示せず)が形成される。
照射装置15Aは、回転胴50に取り付けられ前述の逆U字状のビーム輸送装置に接続されるケーシング(図示せず)、及びイオンビームを出射するノズル先端側に設けられるスノート(図示せず)を有している。ケーシング及びスノート内には、図示していないが、例えば偏向電磁石、散乱体装置、リングコリメータ、患者コリメータ、ボーラス等が配置される。
ビーム経路62を経て逆U字状のビーム輸送装置から治療室2A内の照射装置15A内へ導入されたイオンビームは、照射装置15A内でリングコリメータによってその照射野を粗くコリメートされ、患者コリメータによってビーム進行方向と垂直な平面方向に患部形状に合わせて整形される。更に、そのイオンビームは、ボーラスによってその到達深度が治療用ベッド29Aに載っている患者30Aの患部の最大深さに合わせて調整される。治療用ベッド29Aは、照射装置15Aからイオンビームを照射する前に、ベッド駆動装置(図示せず)によって移動され上記治療ゲージ内に挿入されるとともに、照射装置15Aからの照射にあたって位置決めが行われる。このようにして照射装置15Aにて粒子線治療に最適な線量分布が形成されたイオンビームは、患者30Aの患部(例えば癌や腫瘍の発生部位)に照射され、患部においてそのエネルギーを放出し、高線量領域を形成する。イオンビームの照射装置15B,15C内での移動状態、及び治療用ベッドの位置決めは、照射装置15Aと同様に行われる。
このとき、回転胴50の回転は、ガントリーコントローラ34によってモータの回転を制御することによって行われる。また、照射装置15A〜C内の偏向電磁石、散乱体装置、リングコリメータ等は照射ノズルコントローラ35によって駆動制御される。またベッド駆動装置はベッドコントローラ36によって駆動制御される。これらコントローラ34,35,36は、いずれも治療装置2A内のガントリー室32に配置された照射制御装置40によって制御される。なお、施療室31側に延設されたケーブルを介しペンダント41が照射制御装置40に接続されており、患者30Aの傍らに立った医者(又はオペレータ)が、ペンダント41の操作により、制御開始信号及び制御停止信号を照射制御装置40を介して該当するコントローラ34〜36に伝える。例えばペンダント41から回転ガントリーの制御開始信号が出力されると、後述の中央制御装置100が記憶装置110内の治療計画情報のうち患者30Aに関する回転ガントリーの角度情報を取り込んで照射制御装置40を介して該当するコントローラ34に伝える。コントローラ34はそのガントリー角度情報を用いて回転ガントリーを回転させる。
照射制御室33内に配置されたオペレータコンソール37には、治療用ベッド29Aの位置決め、回転ガントリーの角度調整、照射装置15A内の各装置の設定等の準備が完了した際にオペレータが押す準備完了スイッチ38、機械側の準備完了表示やインデックス表示(詳細後述)を行うディスプレイ39、及びビーム照射を開始する際にオペレータが押す照射指示スイッチ42が設置されている。照射制御室33は治療室3に対しても別途設けられている。
本実施形態の粒子線治療システムが備えている制御システムを、図3を用いて説明する。制御システム90は、中央制御装置(制御装置)100、治療計画データベースを格納した記憶装置110、治療順序制御装置120、電磁石電源制御装置130、加速器用電源装置(以下、加速器電源という)140、ビームパス電磁石用電源装置(以下、ビームパス電源という)150、ビームスイッチング電磁石用電源装置(以下、スイッチング電源という)160及び経路切替制御装置170を有する。更に、本実施形態の粒子線治療システムはスイッチ切替盤180を有している。なお、図3では治療室2A〜Cのうち、図示の煩雑防止のため治療室2Aに係わる構成のみを例示しているが、他の2つの治療室2B,2Cについても同様の構成となっている。
記憶装置110の治療計画データベースには、予め医者が作成した、照射治療を受けようとする全患者についての治療計画データが格納蓄積されている。この記憶装置110に記憶されている各患者毎の上記治療計画データ(患者データ)の一例を、図4を用いて説明する。この治療計画データは、患者IDナンバー、照射線量(一回当たり)、照射エネルギー、ガントリー角度、照射野径(図示せず)、照射位置(図示せず)等のデータを含んでいる。なお、ここでは治療計画データにビームエネルギーを含めているが、例えば治療計画データには飛程情報が含まれており、中央制御装置100側でこの飛程情報からビームエネルギーを算出するようにしてもよい。
中央制御装置100内に設けたCPU101は、これから照射治療を行う患者に関する上記の治療計画データを記憶装置110から読み込む。そして、この読み込んだ治療計画データのうち、必要なデータ(ガントリー角度、照射野径、照射位置等)を照射制御装置40を介して各コントローラ(ガントリーコントローラ34、照射ノズルコントローラ35、ベッドコントローラ36)に出力する。これにより、ガントリーコントローラ34は、この治療計画データ中のガントリー角度情報に基づき、回転ガントリーを回転させる。また照射ノズルコントローラ35は、治療計画データ中の照射野径情報等に基づき、照射装置15A内の偏向電磁石、散乱体装置、リングコリメータ等の設定を行う。またベッドコントローラ36は、治療計画データ中の照射位置情報に基づき、治療用ベッド29Aの位置決めを行う。
このようにして、照射前の準備が完了してイオンビームの照射を待つばかりの状態となったとき、オペレータは、治療室2Aを退出して最寄りの照射制御室33内へ行き、オペレータコンソール37の準備完了スイッチ(ボタンでも良い)38を押す。この準備完了スイッチ38を押すことによって発生する患者準備完了信号は、治療順序制御装置120へと出力される。
治療順序制御装置120では、治療室2A,2B,2C,3の治療順序の設定が行われる。ここでは、各治療室2A〜2C、3に対応する各照射制御室33内のそれぞれの準備完了スイッチ38からの患者準備完了信号の入力順に、各治療室に対する治療順序が決定される。この治療順序制御装置120で選択された最先順番の治療室番号(これから照射を行うために選択された治療室の番号)は、中央制御装置100のCPU101へ入力される。以下の説明の都合上、その治療室番号を「No.1」とする。すなわち、治療室2Aが選択された治療室である。
CPU101は、上記選択された治療室番号(すなわちビームコース情報)及び治療計画データ中のビームを特定するのに必要なパラメータ(照射エネルギー、照射線量、ガントリー角度等)を用いて、中央制御装置100内に設けたディスク103(例えばハードディスク。又はCD−ROM等でもよい。)に予め格納されている電力供給制御テーブルから各電磁石への励磁電力供給の制御指令データ(指令値群)を生成する。この電力供給制御テーブルの一例を図5を用いて説明する。これに示すように、照射エネルギーの各種の値(この例では70,80,90,…[Mev])に応じて、シンクロトロン12を含む荷電粒子ビーム発生装置1における四極電磁石9,13及び偏向電磁石10,14、第1ビーム輸送系4の四極電磁石18,19,20及び偏向電磁石17、治療室2Aに係わる第2ビーム輸送系5Aの四極電磁石22A,24A、ステアリング電磁石7HA,7VA,8HA,8VA、治療室2Bに係わる第2ビーム輸送系5Bの四極電磁石22B,24B、ステアリング電磁石7HB,7VB,8HB,8VB、治療室2Cに係わる第2ビーム輸送系5Cの四極電磁石22C,24C、ステアリング電磁石7HC,7VC,8HC,8VC、治療室3に係わる第2ビーム輸送系5Dの四極電磁石28に対する供給励磁電力値(図中では「…」で図示省略しているが、実際は具体的な数値である)又はそのパターン、及びスイッチング電源162−1、162−2、162−3、162−4における起電力値(図中では「…」で図示省略しているが、実際は具体的な数値である)が予め設定されている。なお、実際には荷電粒子ビーム発生装置1や各輸送系に設けられた電磁石はもっと多いが、ここでは主要なもののみ図示している。また、本実施の形態では、これらの電力供給制御テーブル(制御指令データ)は2つのグループに分けてディスク103に格納されている(詳細は後述する)。
CPU101は、このようにして生成した制御指令データを、電磁石電源制御装置130へ出力する。電磁石電源制御装置130は、このCPU101から入力した制御指令データを、加速器電源140、ビームパス電源150、スイッチング電源160、及び経路切替制御装置170にそれぞれ分配する。
すなわち、電磁石電源制御装置130は、加速器電源140に、生成した制御指令データのうちの荷電粒子ビーム発生装置1の四極電磁石9,13、偏向電磁石10,14に対する指令データを分配する。加速器電源140は、所望値の定電流制御機能を備えた制御装置(いわゆるACR、図示せず)及びこのACRに対応した電源装置(図示せず)を各電磁石ごとに有しており、各ACRが上記電磁石電源制御装置130から入力された制御指令データに基づき各電源装置を制御することにより、各電源装置から四極電磁石9,13、偏向電磁石10,14のそれぞれに供給される電流の大きさが制御される。
また電磁石電源制御装置130は、ビームパス電源150に、生成した制御指令データのうちの荷電粒子ビーム発生装置1以外の部分、すなわち第1ビーム輸送系4の四極電磁石18,19,20及び偏向電磁石17、第1治療室2Aに係わる第2ビーム輸送系5Aの四極電磁石22A,24A、ステアリング電磁石7HA,7VA,8HA,8VA、第2治療室2Bに係わる第2ビーム輸送系5Bの四極電磁石22B,24B、ステアリング電磁石7HB,7VB,8HB,8VB、第3治療室2Cに係わる第2ビーム輸送系5Cの四極電磁石22C,24C、ステアリング電磁石7HC,7VC,8HC,8VC、第4治療室3に係わる第2ビーム輸送系5Dの四極電磁石28に対するそれぞれの制御指令データを分配する。このビームパス電源150に分配される制御指令データは、治療順序制御装置120で決定された最先の治療室情報、すなわち治療室番号の情報によって異なる。例えば、これから治療を行う治療室番号が前述したように「No.1」である場合には、電磁石電源制御装置130は、その治療室番号で指定された治療室にシンクロトロン12からイオンビームを導くビーム経路に配置された四極電磁石18,22A,24A、ステアリング電磁石7HA,7VA,8HA,8VA及び偏向電磁石17に係る各制御指令データをビームパス電源150に分配する。治療を行う治療室番号が別である場合には、同様に該当する電磁石に係る各制御指令データを分配する。ビームパス電源150は、加速器電源140と同様に所望値の定電流制御機能を備えた制御装置(いわゆるACR、図示せず)及びこのACRに対応した電源装置(図示せず)を各電磁石ごとに有しており、各ACRが上記電磁石電源制御装置130から入力された制御指令データに基づき各電源装置を制御することにより、各電源装置から各電磁石のそれぞれに供給される電流の大きさが制御される。
また電磁石電源制御装置130は、スイッチング電源160に生成した制御指令データのうちのスイッチング用電源162−1〜162−4の電力供給制御データを分配すると共に、経路切替制御装置170には治療室番号データ(図4ではNO.1)を出力する。経路切替制御装置170は、電磁石電源制御装置130からの治療室番号データに基づき、スイッチ切替盤180に備えられた各スイッチ(図示せず)の切替制御を行う。スイッチング電源160は、加速器電源140と同様に所望値の定電流制御機能を備えた制御装置(いわゆるACR、図示せず)及びこのACRに対応した電源装置(図5に示すスイッチング用電源162−1〜162−4)を4つ有している。電源162−1は治療室2Aにおける切替え電磁石6A及び偏向電磁石21A、電源162−2は偏向電磁石23A、電源162−3は偏向電磁石25A、電源162−4は偏向電磁石26Aへ電流を供給する。他の治療室2B,2Cで治療を行う場合も同様である。すなわち、各ACRが上記電磁石電源制御装置130から入力された電力供給制御データに基づき各電源装置を制御することにより、各電源装置から各電磁石にそれぞれ供給される電流の大きさが制御され、且つ、経路切替制御装置170が治療室番号データに基づきスイッチ切替盤180の各スイッチの切替制御を行うことにより、各電源装置から供給される電流の供給先(治療室番号)が制御される。
以上のようにして、加速器用電源140、ビームパス電源150、ビームスイッチング電源160、及び経路切替制御装置170による各電磁石の励磁電流の設定が終了すると、電磁石電源制御装置130は中央制御装置100のCPU101に設定が完了したことを表す信号を出力し、これによりCPU101は機械側の最終準備が完了したことを表す信号をオペレータコンソール37のディスプレイ39へ出力する。ディスプレイ39では、上記表示信号に応じて、機械側最終準備完了の表示(言い換えれば最終的に照射開始する意志があるかどうかの確認表示)を行う。そして、例えば医者(海外ではオペレータの場合もあり得るが、日本では法令上の規制により安全上・人道上の観点から現状では医者に限定される)によって照射指示スイッチ(又はボタンでもよい)42が操作されると、これに対応した照射開始指示信号が中央制御装置100のCPU101に入力される。
これにより、中央制御装置100は出射指示信号及び加速指示信号をライナック11及びシンクロトロン12の前述した高周波加速空胴へ出力する。これにより、荷電粒子ビーム発生装置1から出射されたイオンビームがシンクロトロン12で加速され、さらにシンクロトロン12から出射されたイオンビームが、第1ビーム輸送系4を輸送される。そして、イオンビームは、照射対象の患者が在室する治療室2A〜2C,3に対応する第2ビーム輸送系5A〜5Dに導入され、治療室2A〜2C,3の照射装置15A〜15C,16を介し、当該患者30Aの患部に治療計画通りの最適な態様で照射される。
以上のような基本構成である粒子線治療システムにおいて、本実施の形態の最も大きな特徴は、中央制御装置100において、前述した図5の電力供給制御テーブルに示す制御指令データを2つのグループに分けてディスク103に格納するようにしたことである。以下、この詳細について述べる。
図6は中央制御装置100の機能のうち、制御指令データの保存処理に係わる機能を表す機能ブロック図である。この図6に示すように、ディスク103は、前述の図5に一例を示した制御指令データのうちグループ1に属する制御指令データ(以下、グループ1データ。第1の指令値群)を記憶するグループ1データ格納部(第1指令値保存手段)103Aと、制御指令データのうちグループ2に属する制御指令データ(以下、グループ2データ。第2の指令値群)を記憶するグループ2データ格納部(第2指令値保存手段)103Bと、これらグループ1データとグループ2データとを対応付けるインデックスデータ(インデックス情報)を格納するインデックスデータ格納部(インデックス情報保存手段)103Cとを有する。また、メモリ102は、後述のデータ保存読出処理部101Cがデータの書込み・読出しを行うときに必要な電磁石情報が記憶された電磁石情報記憶部102Aと、エネルギー展開アルゴリズムが記憶されたエネルギー特性パラメータ記憶部102Bと、ガントリー角度展開アルゴリズムが記憶されたガントリー構造パラメータ記憶部102Cとを有する。また、CPU101は、前記コンソール37のディスプレイ39が表示する表示情報を処理する表示処理部101Aと、電磁石電源制御装置130に出力する制御指令データを設定するデータ設定部101Bと、グループ1データ格納部103A、グループ2データ格納部103B、及びインデックスデータ格納部103Cへのデータの書込み・読出しを行うデータ保存読出処理部(読出し手段)101Cと、上記エネルギー特性パラメータ記憶部102Bに記憶されたエネルギー展開アルゴリズムを用いてビームエネルギーに応じたグループ1データ及びグループ2データを新たに算出するエネルギー展開処理部(エネルギー展開算出手段)101Dと、上記ガントリー構造パラメータ記憶部102Cに記憶されたガントリー角度展開アルゴリズムを用いて回転ガントリーの回転角度に応じたグループ2データを新たに算出するガントリー角度展開処理部(角度展開算出手段)101Eとを有する。なお、上記ガントリー構造パラメータ記憶部102Cに記憶されたガントリー角度展開アルゴリズムは、回転ガントリーの構造やその特性により経験的に分かる類のパラメータであり、また上記エネルギー特性パラメータ記憶部102Bに記憶されたエネルギー展開アルゴリズムは、イオン源(図示せず)、前段荷電粒子ビーム発生装置11及びシンクロトロン12の構造や荷電粒子ビーム発生装置1全体の特性により経験的に分かる類のパラメータである。
前述した図5に、グループ1データ格納部103Aに格納されるグループ1データとグループ2データ格納部103Bに格納されるグループ2データとの分類を示す。本実施の形態では、この図5に示すようにガントリー輸送系に設けられたステアリング電磁石7VA〜7VC,7HA〜7HC,8VA〜8VC,8HA〜8HCに対する制御指令データをグループ2データに分類し、それ以外の電磁石に対する制御指令データをグループ1データに分類する。上記ステアリング電磁石7VA〜7VC,7HA〜7HC,8VA〜8VC,8HA〜8HCに対する制御指令データは、回転ガントリーの回転角度に依存する指令データである。これは、回転ガントリーの回転胴50を回転した際に、回転胴50の自重によりビーム経路に歪みが生じ、ステアリング電磁石7VA〜7VC,7HA〜7HC,8VA〜8VC,8HA〜8HCによってビーム位置を微調整する必要があるからである。なお、その他の電磁石に対する制御指令データはガントリー角度に依存しない指令データである。
インデックスデータ格納部103Cに格納されるインデックスデータは、1つの制御指令データ(すなわち図5に示す各ビームエネルギーにおける全電磁石に対する指令データ)に対して1つ付加される。図7はコンソール37のディスプレイ39によるインデックスデータの表示の一例を示す図である。この図7に示すように、インデックスデータは、制御指令データのファイル名、データの作成者名、及び承認者名を含む。これらの情報により、オペレータは制御指令データの内容を容易に把握できる。またインデックスデータは、ビームエネルギー、コース(すなわち治療室番号。ここでは、コース1,2,3,4はそれぞれ治療室2A,2B,2C,3に対応している)、ビーム強度(治療計画データ中の照射線量に対応)、及びガントリー角度を含んでいる。これらはビームを特定するのに必要なパラメータである。なお、このインデックスデータにオペレータの理解を向上するためのその他のパラメータを含んでよいことは言うまでもない。
図8は中央制御装置100のディスク103の電力供給制御テーブルを作成するための制御指令データの保存処理の流れを示すフローチャートである。
まずステップ10では、オペレータが実際にビームを照射しながら各電磁石への制御指令データの調整を行うことにより、制御指令データが生成される。また、この生成された制御指令データに基づき、エネルギー展開処理部101Dによりエネルギー特性パラメータ記憶部102Bに記憶されたエネルギー展開アルゴリズムを用いて制御指令データが算出される(詳細後述)。またさらに、ガントリー角度展開処理部101Eによりガントリー構造パラメータ記憶部102Cに記憶されたガントリー角度展開アルゴリズムを用いて制御指令データが算出される(詳細後述)。
次のステップ20では、オペレータが例えば図7に示すようなディスプレイ39の表示を見つつコンソール37から各パラメータの入力を行い、上記ステップ10で作成した制御指令データのうちの保存するデータに関するインデックスデータを作成する。作成されたインデックスデータは、データ保存読出処理部101Cによってインデックスデータ格納部103Cに保存される。
次のステップ30では、データ保存読出処理部101Cにより、上記ステップ20で作成されたインデックスデータに対応するインデックス番号が採番される。
次のステップ40では、データ保存読出処理部101Cにより、上記ステップ30で採番されたインデックス番号がグループ1データ格納部103A及びグループ2データ格納部103Bにそれぞれ保存される。これらは、データ保存読出処理部101Cによりグループ1データ及びグループ2データの読出しが行われる際に、対応するグループ1データ及びグループ2データを特定するキーとして使用される。すなわち、グループ1データ格納部103A及びグループ2データ格納部103Bにそれぞれ保存されたインデックス番号は、同一の制御指令データであるグループ1データとグループ2データとを対応付けるためのものである。
次のステップ50では、データ保存読出処理部101Cにより、電磁石情報記憶部102Aに記憶されたパラメータを用いて制御指令データが該当するコースに必要な指令データであるかどうかを1つ1つ判定される。該当コースに不要な指令データであれば判定が満たされず、次のステップ60で指令データが「0」に設定されて後述のステップ100に移る。具体的には、例えば治療室2Aで治療が行われる場合において、四極電磁石19より下流側の電磁石は「0」に設定される。該当コースに必要な指令データである場合には、判定が満たされて次のステップ70に移る。
ステップ70では、データ保存読出処理部101Cにより、電磁石情報記憶部102Aに記憶されたパラメータを用いて制御指令データがグループ1データであるかどうかを判定される。具体的には、出力対象の電磁石がステアリング電磁石7VA〜7VC,7HA〜7HC,8VA〜8VC,8HA〜8HCであるかどうかを判定される。出力対象の電磁石が上記ステアリング電磁石である場合には、判定が満たされずに次のステップ80に移り、グループ2データとしてグループ2データ格納部103Bに格納され、後述のステップ100に移る。出力対象の電磁石が上記ステアリング電磁石でない場合には、判定が満たされて次のステップ90に移り、グループ1データとしてグループ1データ格納部103Aに格納され、次のステップ100に移る。
ステップ100では、データ保存読出処理部101Cにより、先のステップ50〜ステップ90の手順が制御指令データ中の全ての指令データについて行われたかどうかを判定される。終わっていなければ先のステップ50に戻り、ステップ50〜ステップ90を繰り返す。全ての指令データの保存が終了した場合には、判定が満たされて本フローを終了する。
図9はガントリー角度展開処理部101Eによってガントリー角度展開アルゴリズムを用いて新たに算出された制御指令データの一例を示す図である。
前述したように、まずオペレータは実際にビームを照射しながら各電磁石への制御指令データの調整を行うことにより、制御指令データを生成する。ここでは、図9中51に示す制御指令データ、すなわちエネルギー50MeV、ビーム強度100%、コース1(治療室2A)、ガントリー角度0度の制御指令データがオペレータにより作成されたことを意味する。ガントリー角度展開処理部101Eは、この生成された制御指令データ51を基に、ガントリー角度展開アルゴリズムを用いてガントリー角度に応じたグループ2データ(例えば、ガントリー角度0.5度から359.5度までの範囲における0.5度刻みのグループ2データ)を自動的に算出する。図9中両矢印52の範囲がこのとき新たに作成されたグループ2データである。この新たに生成されたグループ2データはデータ保存読出処理部101Cに送られ、前述した図8に示すフローにしたがってグループ2データ格納部103Bに保存される。このとき、オペレータのコンソール37からの入力等によりインデックスデータが新たに作成され、データ保存読出処理部101Cによりインデックスデータ格納部103Cに格納されると共に、インデックス番号も併せて採番される。なお、前述したようにグループ1データはガントリー角度に依存しないデータであるので、制御指令データ51中のグループ1データについては、上記新たに算出した全てのグループ2データについて共用することができる。
一方、図10はエネルギー展開処理部101Dによってエネルギー展開アルゴリズムを用いて新たに算出される制御指令データの一例を示す図である。
前述したように、まずオペレータは実際にビームを照射しながら各電磁石への制御指令データの調整を行うことにより、制御指令データを生成する。ここでは、図9中61,62の制御指令データ、すなわちエネルギー50MeV、ビーム強度100%、コース1(治療室2A)、ガントリー角度0度の制御指令データ、及びエネルギー100MeV、ビーム強度100%、コース1(治療室2A)、ガントリー角度0度の制御指令データがオペレータにより作成されたことを意味する。エネルギー展開処理部101Dは、この生成された制御指令データ61,62を基に、エネルギー展開アルゴリズムを用いてエネルギーに応じたグループ1データ及びグループ2データ(例えば、エネルギー50.5MeVから100MeVまでの範囲における0.5MeV刻みのグループ1データ及びグループ2データ)を自動的に算出する。図10中両矢印63の範囲がこのとき新たに作成されたグループ1データ及びグループ2データである。この新たに生成されたグループ1データ及びグループ2データはデータ保存読出処理部101Cに送られ、図8に示すフローにしたがってグループ1データ格納部103A及びグループ2データ格納部103Bに格納される。このとき、オペレータのコンソール37からの入力等によりインデックスデータが新たに作成され、データ保存読出処理部101Cによりインデックスデータ格納部103Cに格納されると共に、インデックス番号も併せて採番される。以上のようにして、中央制御装置100のディスク103には電力供給制御テーブルが作成され保存される。
次に、上記構成の本実施の形態の粒子線治療システムの動作を図11を用いて説明する。図11は本実施の形態の粒子線治療システムにおける操作・制御の流れを経時的に示す図である。
中央制御装置100のCPU101は、照射治療を行う患者に関する治療計画データを記憶装置110から読み込み、必要なデータを照射制御装置40を介して各コントローラに出力する。各コントローラは、ガントリー角度調整、照射装置15の設定、及び治療用ベッド29の位置決め等を行う。これら患者準備作業が終了すると、オペレータがコンソール37の準備完了スイッチ38を押し、患者準備完了信号が治療順序制御装置120へと出力される。治療順序制御装置120では患者準備完了信号の入力順に各治療室2A〜2C,3に対する治療順序が決定される。決定された治療室信号は中央制御装置100のCPU101に入力される。CPU101は、この入力された治療室信号(すなわちビームコース情報)と、治療計画データ中のビームを特定するのに必要なパラメータ(照射エネルギー、照射線量(ビーム強度)、ガントリー角度等)を用いて、中央制御装置100内に設けたディスク103に格納されている電力供給制御テーブルから各電磁石への励磁電力供給に関する制御指令データを生成する。このようにして作成された制御指令データは電磁石電源制御装置130へ出力され、この電磁石電源制御装置130によって、加速器電源140、ビームパス電源150、スイッチング電源160、及び経路切替制御装置170にそれぞれ分配される。これら各電源装置140,150,160及び経路切替制御装置170によって各電磁石の励磁電流の設定が終了すると、電磁石電源制御装置130は中央制御装置100のCPU101に機器設定が完了したことを表す信号を出力し、これによりCPU101は機械側の最終準備が完了したことを表す信号をオペレータコンソール37のディスプレイ39へ出力する。これにより、ディスプレイ39では機械側最終準備完了の表示が行われ、例えば医者によって照射指示スイッチ42が操作されると、これに対応した照射開始指示信号が中央制御装置100のCPU101に入力される。これにより、CPU101は出射指示信号及び加速指示信号をライナック11及びシンクロトロン12の前述した高周波加速空胴へ出力し、その結果、荷電粒子ビーム発生装置1からイオンビームが出射されて該当する治療室の照射装置から患者30の患部に照射される。
この図11に示すように、各治療室における患者準備作業からビーム照射終了までの治療時間は、主に、患者準備作業時間(以下、患者セットアップ時間)T1、ビームセットアップ時間T2、及びビーム照射時間T3に分けることができる。この図11では信号の流れの理解を容易とするために短く表示されているが、ビームセットアップ時間T2の多くは制御指令データの生成時間によって消費される。
以上詳述した本実施の形態の粒子線治療システムによれば、以下のような作用が得られる。
すなわち本実施の形態では、荷電粒子ビーム発生装置1、及び荷電粒子ビーム発生装置1から出射されたイオンビームを照射装置15A〜15C,16に輸送するビーム輸送系4,5A,5B,5C,5Dに設けられた各電磁石のうち、ステアリング電磁石7HA〜7HC,7VA〜7VC,8HA〜8HC,8VA〜8VCに対する制御指令データをグループ2データ、その他の電磁石に対する制御指令データをグループ1データとして2グループに分類して保存する。このように、ガントリー角度に依存する制御指令データのみを別グループに分類することにより、回転ガントリーの角度のみが相違するビーム種類の制御指令データについては、グループ2データのみをグループ2データ格納部103Bに保存すれば足り、グループ1データについては共用することができる。ここで、グループ2データに分類されるガントリー輸送系のステアリング電磁石の数は各治療室(各コース)について高々数個(本実施の形態では4個)であるが、グループ1データに属するその他の電磁石についてはコースによっても変化するが、通常30〜150個程度である(なお、図5では主要な電磁石のみしか図示していないため、数は少ない)。したがって本実施の形態によれば、回転ガントリーの角度のみが相違するビーム種類の制御指令データに関しては、30〜150個程度の個数を有するグループ1データについては共用し、高々数個のグループ2データのみをガントリー角度に応じて保存すればよいことになり、各電磁石への制御指令データを全て丸ごと保存していた従来方式に比べ、保存する指令データの量を大幅に削減することができる。その結果、保存されている制御指令データから要求されたビームに応じた必要な指令データを読み出す検索時間を短縮することができる。すなわち、図11に示す制御指令データ生成に要する時間を短縮することができ、その結果、ビームセットアップ時間T2を短縮できる。通常、本実施形態のように複数の治療室を有する粒子線治療システムの場合、1つの治療室においてビームセットアップ及びビーム照射が行われている最中に、次の治療室は患者セットアップを完了し待機状態となる。これにより、ビーム照射が終了したら直ちに次の治療室のビームセットアップが行われるようになっている。したがって、ビームセットアップ時間T2が長くなると、次の治療室の待機時間が長くなってしまい、治療効率が低下する。したがって、本実施の形態によれば、ビームセットアップ時間T2を短縮することができる結果、一治療室における単位時間当たりの治療人数を増加することができる。また、このように保存する指令データの量を大幅に削減することができる結果、指令データを保存するリソース(例えばハードディスクやCD-ROM等)の削減が可能となり、データの取り扱い性の向上及びコストの削減を図ることができる。
また本実施の形態によれば、エネルギー展開処理部101D及びガントリー角度展開処理部101Eにより、ビームエネルギー及びガントリー角度に応じた制御指令データを自動的に作成し保存する。これにより、各治療室からどのようなビームエネルギー及びガントリー角度が要求されても、それに応じて自動でビームの設定を行うことができ、中央制御装置100によるビームの自動設定が可能となる範囲を飛躍的に拡大することができる。
さらに本実施の形態によれば、1つの制御指令データに対して1つのインデックスデータを付加し、グループ1データとグループ2データとに分類する際にはそのインデックスデータに対応するインデックス番号をそれぞれ採番した上で保存する。このインデックスデータにより、オペレータは制御指令データの内容を容易に把握できると共に、制御指令データが2つのグループに分類して保存されていることを意識せずに、1つの指令データとして書込み・読出しを行うことができる。すなわち、2グループに分類することによるデータの取り扱い性の低下を防止することができる。さらに、両グループの指令データを読み込む際には、採番されたインデックス番号を対応するグループ1データとグループ2データを特定するキーとして用いるので、グループ1データとグループ2データとが誤った組み合わせで読み出されることを防止することができる。
なお、以上に述べた本発明の一実施形態では、照射装置のビーム照射方式を特に限定しなかったが、例えば複数のエネルギーを自動的に変更しながら照射する方式(エネルギースキャン方式)の照射装置を有する粒子線治療システムに本発明を採用した場合には、各治療室からの要求ビームに対し複数のエネルギーに対応した複数の制御指令データをディスク103の電力供給制御テーブルから選択する必要がある。この場合には、上記一実施の形態で述べた制御指令データの検索をエネルギー数に応じて複数回実行する必要があるため、検索時間を短縮できることにより一治療室における単位時間当たりの治療人数を増加することができるという本発明の効果をさらに発揮することができる。
また、以上に述べた本発明の一実施形態は、シンクロトロンを含む粒子線治療システムを対象としているが、サイクロトロンを含む粒子線治療システムに対しても適用可能である。
本発明の一実施形態の粒子線治療システムの全体概略構成を表す概念図である。 図1に示した治療室の詳細構成を表す概念的平面図である。 本発明の一実施形態の粒子線治療システムにおける制御系を表すブロック図である。 各患者毎の治療計画データの一例を表す図である。 中央制御装置内に設けたディスクに予め格納されている電力供給制御テーブルを表す図である。 中央制御装置の機能のうち、制御指令データの保存処理に係わる機能を表す機能ブロック図である。 コンソールのディスプレイによるインデックスデータの表示の一例を示す図である。 中央制御装置のディスクの電力供給制御テーブルを作成するための制御指令データの保存処理の流れを示すフローチャートである。 ガントリー角度展開処理部によってガントリー角度展開アルゴリズムを用いて新たに算出される制御指令データの一例を示す図である。 エネルギー展開処理部によってエネルギー展開アルゴリズムを用いて新たに算出される制御指令データの一例を示す図である。 本実施の形態の粒子線治療システムにおける操作・制御の流れを経時的に示す図である。
符号の説明
1 荷電粒子ビーム発生装置
4 第1ビーム輸送系(ビーム輸送系)
5A,5B,5C,5D 第2ビーム輸送系(ビーム輸送系)
7HA〜7HC,7VA〜7VC ステアリング電磁石(電磁石)
8HA〜8HC,8VA〜8VC ステアリング電磁石(電磁石)
9,13,18,19,20 四極電磁石(電磁石)
22A〜22C,24A〜24C 四極電磁石(電磁石)
27,28 四極電磁石(電磁石)
15A,15B,15C,16 照射装置
100 中央制御装置(制御装置)
101C データ保存読出処理部(読出し手段)
101D エネルギー展開処理部(エネルギー展開算出手段)
101E ガントリー角度展開処理部(角度展開算出手段)
103A グループ1データ格納部(第1指令値保存手段)
103B グループ2データ格納部(第2指令値保存手段)
103C インデックスデータ格納部(インデックス情報保存手段)

Claims (6)

  1. 荷電粒子ビームを出射する荷電粒子ビーム発生装置と、
    前記荷電粒子ビーム発生装置から出射された前記荷電粒子ビームを照射対象に照射する照射装置と、
    前記照射装置を有し、回転可能に設けられた回転ガントリーと、
    前記荷電粒子ビーム発生装置から出射された前記荷電粒子ビームを前記照射装置に輸送するビーム輸送系であって、前記回転ガントリーに位置するガントリー部分を有するビーム輸送系と、
    前記荷電粒子ビーム発生装置及び前記ビーム輸送系に設けられた電磁石の励磁電流をそれぞれ指令する指令値群を、前記回転ガントリーの回転角度に依存しない第1の指令値群と前記回転ガントリーの回転角度に依存する第2の指令値群分けて格納した記憶装置と、
    前記記憶装置に記憶した前記第1の指令値群及び前記第2の指令値群のそれぞれから該当する指令値を読み出して、前記ビーム輸送系のガントリー部分の電磁石の一部を前記第2の指令値群の指令値を用いて制御し、前記ビーム輸送系の残りの電磁石と前記荷電粒子ビーム発生装置の電磁石とを前記第1の指令値群の指令値を用いて制御する制御装置とを備えたことを特徴とする粒子線治療装置。
  2. 前記第2の指令値群の指令値を用いて制御される前記ガントリー部分の電磁石の一部は、ステアリング電磁石であることを特徴とする請求項記載の粒子線治療装置。
  3. 前記回転ガントリーの回転角度に応じて前記第2の指令値群を算出する角度展開算出手段を有することを特徴とする請求項1又は2記載の粒子線治療装置。
  4. 前記荷電粒子ビーム発生装置から出射される前記荷電粒子ビームのエネルギーに応じ前記第1及び第2の指令値群を算出するエネルギー展開算出手段を有することを特徴とする請求項1乃至請求項のいずれかに記載の粒子線治療装置。
  5. 前記制御装置は、
    前記第1の指令値群を保存する第1指令値保存手段と、前記第2の指令値群を保存する第2指令値保存手段と、前記第1の指令値群と前記第2の指令値群を対応付けるインデックス情報を保存するインデックス情報保存手段とを有することを特徴とする請求項1乃至請求項のいずれかに記載の粒子線治療装置。
  6. 前記制御装置は、
    前記インデックス情報保存手段から読み出した前記インデックス情報を用い、前記第1指令値保存手段及び前記第2指令値保存手段から対応付けられた前記第1の指令値群及び前記第2の指令値群を読み出す読出し手段を有することを特徴とする請求項記載の粒子線治療装置。
JP2003433617A 2003-12-26 2003-12-26 粒子線治療装置 Expired - Fee Related JP4443917B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003433617A JP4443917B2 (ja) 2003-12-26 2003-12-26 粒子線治療装置
US11/018,320 US20050139787A1 (en) 2003-12-26 2004-12-22 Particle therapy system
US11/339,842 US7586112B2 (en) 2003-12-26 2006-01-26 Particle therapy system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003433617A JP4443917B2 (ja) 2003-12-26 2003-12-26 粒子線治療装置

Publications (2)

Publication Number Publication Date
JP2005185703A JP2005185703A (ja) 2005-07-14
JP4443917B2 true JP4443917B2 (ja) 2010-03-31

Family

ID=34697733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003433617A Expired - Fee Related JP4443917B2 (ja) 2003-12-26 2003-12-26 粒子線治療装置

Country Status (2)

Country Link
US (2) US20050139787A1 (ja)
JP (1) JP4443917B2 (ja)

Families Citing this family (140)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004027071A1 (de) * 2004-05-19 2006-01-05 Gesellschaft für Schwerionenforschung mbH Strahlzuteilungsvorrichtung und Strahlzuteilungsverfahren für medizinische Teilchenbeschleuniger
CN101061759B (zh) 2004-07-21 2011-05-25 斯蒂尔瑞弗系统有限公司 用于同步回旋加速器的可编程的射频波形发生器
JP4489529B2 (ja) * 2004-07-28 2010-06-23 株式会社日立製作所 粒子線治療システム及び粒子線治療システムの制御システム
US9077022B2 (en) * 2004-10-29 2015-07-07 Medtronic, Inc. Lithium-ion battery
DE112005002154T5 (de) * 2005-02-04 2008-04-10 Mitsubishi Denki K.K. Teilchenstrahlbestrahlungsverfahren und Teilchenstrahlbestrahlungsvorrichtung für ein derartiges Verfahren
US7728311B2 (en) 2005-11-18 2010-06-01 Still River Systems Incorporated Charged particle radiation therapy
EP2063768B1 (en) * 2006-09-07 2018-02-28 Magnacoustics Inc. Initiating a scan in a medical imaging system
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
EP2247339B1 (de) * 2008-02-27 2014-04-02 Cryoelectra Gmbh Protonenstrahl-therapiesystem
US8129699B2 (en) 2008-05-22 2012-03-06 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration
US8309941B2 (en) 2008-05-22 2012-11-13 Vladimir Balakin Charged particle cancer therapy and patient breath monitoring method and apparatus
US8399866B2 (en) 2008-05-22 2013-03-19 Vladimir Balakin Charged particle extraction apparatus and method of use thereof
US8378311B2 (en) 2008-05-22 2013-02-19 Vladimir Balakin Synchrotron power cycling apparatus and method of use thereof
EP2283713B1 (en) 2008-05-22 2018-03-28 Vladimir Yegorovich Balakin Multi-axis charged particle cancer therapy apparatus
MX2010012714A (es) 2008-05-22 2011-06-01 Vladimir Yegorovich Balakin Metodo y aparato de control de la trayectoria de haces para la terapia contra el cancer mediante particulas cargadas.
US10143854B2 (en) 2008-05-22 2018-12-04 Susan L. Michaud Dual rotation charged particle imaging / treatment apparatus and method of use thereof
US8642978B2 (en) 2008-05-22 2014-02-04 Vladimir Balakin Charged particle cancer therapy dose distribution method and apparatus
US8637833B2 (en) 2008-05-22 2014-01-28 Vladimir Balakin Synchrotron power supply apparatus and method of use thereof
EP2283711B1 (en) 2008-05-22 2018-07-11 Vladimir Yegorovich Balakin Charged particle beam acceleration apparatus as part of a charged particle cancer therapy system
US8198607B2 (en) 2008-05-22 2012-06-12 Vladimir Balakin Tandem accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US9737272B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle cancer therapy beam state determination apparatus and method of use thereof
US9616252B2 (en) 2008-05-22 2017-04-11 Vladimir Balakin Multi-field cancer therapy apparatus and method of use thereof
US9177751B2 (en) 2008-05-22 2015-11-03 Vladimir Balakin Carbon ion beam injector apparatus and method of use thereof
US9168392B1 (en) 2008-05-22 2015-10-27 Vladimir Balakin Charged particle cancer therapy system X-ray apparatus and method of use thereof
US7939809B2 (en) 2008-05-22 2011-05-10 Vladimir Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8178859B2 (en) 2008-05-22 2012-05-15 Vladimir Balakin Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system
US8144832B2 (en) 2008-05-22 2012-03-27 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US9155911B1 (en) 2008-05-22 2015-10-13 Vladimir Balakin Ion source method and apparatus used in conjunction with a charged particle cancer therapy system
US8378321B2 (en) 2008-05-22 2013-02-19 Vladimir Balakin Charged particle cancer therapy and patient positioning method and apparatus
US8373143B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy
US8188688B2 (en) 2008-05-22 2012-05-29 Vladimir Balakin Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system
US8896239B2 (en) 2008-05-22 2014-11-25 Vladimir Yegorovich Balakin Charged particle beam injection method and apparatus used in conjunction with a charged particle cancer therapy system
CN102119585B (zh) 2008-05-22 2016-02-03 弗拉迪米尔·叶戈罗维奇·巴拉金 带电粒子癌症疗法患者定位的方法和装置
US10092776B2 (en) 2008-05-22 2018-10-09 Susan L. Michaud Integrated translation/rotation charged particle imaging/treatment apparatus and method of use thereof
US8624528B2 (en) 2008-05-22 2014-01-07 Vladimir Balakin Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods
US10029122B2 (en) * 2008-05-22 2018-07-24 Susan L. Michaud Charged particle—patient motion control system apparatus and method of use thereof
US9095040B2 (en) 2008-05-22 2015-07-28 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US9682254B2 (en) 2008-05-22 2017-06-20 Vladimir Balakin Cancer surface searing apparatus and method of use thereof
US10070831B2 (en) 2008-05-22 2018-09-11 James P. Bennett Integrated cancer therapy—imaging apparatus and method of use thereof
US9044600B2 (en) 2008-05-22 2015-06-02 Vladimir Balakin Proton tomography apparatus and method of operation therefor
US8969834B2 (en) 2008-05-22 2015-03-03 Vladimir Balakin Charged particle therapy patient constraint apparatus and method of use thereof
US9737733B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle state determination apparatus and method of use thereof
US8373145B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Charged particle cancer therapy system magnet control method and apparatus
US9782140B2 (en) 2008-05-22 2017-10-10 Susan L. Michaud Hybrid charged particle / X-ray-imaging / treatment apparatus and method of use thereof
US9737734B2 (en) 2008-05-22 2017-08-22 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US8718231B2 (en) 2008-05-22 2014-05-06 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US9855444B2 (en) 2008-05-22 2018-01-02 Scott Penfold X-ray detector for proton transit detection apparatus and method of use thereof
US9981147B2 (en) 2008-05-22 2018-05-29 W. Davis Lee Ion beam extraction apparatus and method of use thereof
US8089054B2 (en) 2008-05-22 2012-01-03 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8129694B2 (en) 2008-05-22 2012-03-06 Vladimir Balakin Negative ion beam source vacuum method and apparatus used in conjunction with a charged particle cancer therapy system
EP2283712B1 (en) 2008-05-22 2018-01-24 Vladimir Yegorovich Balakin X-ray apparatus used in conjunction with a charged particle cancer therapy system
US8288742B2 (en) 2008-05-22 2012-10-16 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
US9498649B2 (en) 2008-05-22 2016-11-22 Vladimir Balakin Charged particle cancer therapy patient constraint apparatus and method of use thereof
US9056199B2 (en) 2008-05-22 2015-06-16 Vladimir Balakin Charged particle treatment, rapid patient positioning apparatus and method of use thereof
US8907309B2 (en) 2009-04-17 2014-12-09 Stephen L. Spotts Treatment delivery control system and method of operation thereof
US8519365B2 (en) 2008-05-22 2013-08-27 Vladimir Balakin Charged particle cancer therapy imaging method and apparatus
US8975600B2 (en) 2008-05-22 2015-03-10 Vladimir Balakin Treatment delivery control system and method of operation thereof
US9937362B2 (en) 2008-05-22 2018-04-10 W. Davis Lee Dynamic energy control of a charged particle imaging/treatment apparatus and method of use thereof
US8841866B2 (en) 2008-05-22 2014-09-23 Vladimir Yegorovich Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8368038B2 (en) 2008-05-22 2013-02-05 Vladimir Balakin Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron
US8374314B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system
US9579525B2 (en) 2008-05-22 2017-02-28 Vladimir Balakin Multi-axis charged particle cancer therapy method and apparatus
US8710462B2 (en) 2008-05-22 2014-04-29 Vladimir Balakin Charged particle cancer therapy beam path control method and apparatus
US8598543B2 (en) 2008-05-22 2013-12-03 Vladimir Balakin Multi-axis/multi-field charged particle cancer therapy method and apparatus
US9974978B2 (en) 2008-05-22 2018-05-22 W. Davis Lee Scintillation array apparatus and method of use thereof
US9910166B2 (en) 2008-05-22 2018-03-06 Stephen L. Spotts Redundant charged particle state determination apparatus and method of use thereof
US10548551B2 (en) 2008-05-22 2020-02-04 W. Davis Lee Depth resolved scintillation detector array imaging apparatus and method of use thereof
US8093564B2 (en) 2008-05-22 2012-01-10 Vladimir Balakin Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system
US10684380B2 (en) 2008-05-22 2020-06-16 W. Davis Lee Multiple scintillation detector array imaging apparatus and method of use thereof
US8569717B2 (en) 2008-05-22 2013-10-29 Vladimir Balakin Intensity modulated three-dimensional radiation scanning method and apparatus
US8373146B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin RF accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
CN102119586B (zh) 2008-05-22 2015-09-02 弗拉迪米尔·叶戈罗维奇·巴拉金 多场带电粒子癌症治疗方法和装置
US9744380B2 (en) 2008-05-22 2017-08-29 Susan L. Michaud Patient specific beam control assembly of a cancer therapy apparatus and method of use thereof
US8436327B2 (en) 2008-05-22 2013-05-07 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus
US8229072B2 (en) * 2008-07-14 2012-07-24 Vladimir Balakin Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
US8627822B2 (en) 2008-07-14 2014-01-14 Vladimir Balakin Semi-vertical positioning method and apparatus used in conjunction with a charged particle cancer therapy system
US8625739B2 (en) 2008-07-14 2014-01-07 Vladimir Balakin Charged particle cancer therapy x-ray method and apparatus
KR101316438B1 (ko) 2009-03-04 2013-10-08 자크리토에 악치오네르노에 오브쉐스트보 프로톰 다중-필드 하전 입자 암 치료 방법 및 장치
US8427148B2 (en) * 2009-12-31 2013-04-23 Analogic Corporation System for combining magnetic resonance imaging with particle-based radiation systems for image guided radiation therapy
US10086214B2 (en) 2010-04-16 2018-10-02 Vladimir Balakin Integrated tomography—cancer treatment apparatus and method of use thereof
US10555710B2 (en) 2010-04-16 2020-02-11 James P. Bennett Simultaneous multi-axes imaging apparatus and method of use thereof
US11648420B2 (en) 2010-04-16 2023-05-16 Vladimir Balakin Imaging assisted integrated tomography—cancer treatment apparatus and method of use thereof
US10751551B2 (en) 2010-04-16 2020-08-25 James P. Bennett Integrated imaging-cancer treatment apparatus and method of use thereof
US20170216632A1 (en) * 2010-04-16 2017-08-03 W. Davis Lee Dispersive force corrected gantry based radiation treatment apparatus and method of use thereof
US10518109B2 (en) 2010-04-16 2019-12-31 Jillian Reno Transformable charged particle beam path cancer therapy apparatus and method of use thereof
US10349906B2 (en) 2010-04-16 2019-07-16 James P. Bennett Multiplexed proton tomography imaging apparatus and method of use thereof
US10589128B2 (en) 2010-04-16 2020-03-17 Susan L. Michaud Treatment beam path verification in a cancer therapy apparatus and method of use thereof
US9737731B2 (en) 2010-04-16 2017-08-22 Vladimir Balakin Synchrotron energy control apparatus and method of use thereof
US10188877B2 (en) 2010-04-16 2019-01-29 W. Davis Lee Fiducial marker/cancer imaging and treatment apparatus and method of use thereof
US10376717B2 (en) 2010-04-16 2019-08-13 James P. Bennett Intervening object compensating automated radiation treatment plan development apparatus and method of use thereof
US10556126B2 (en) 2010-04-16 2020-02-11 Mark R. Amato Automated radiation treatment plan development apparatus and method of use thereof
US10179250B2 (en) 2010-04-16 2019-01-15 Nick Ruebel Auto-updated and implemented radiation treatment plan apparatus and method of use thereof
US10638988B2 (en) 2010-04-16 2020-05-05 Scott Penfold Simultaneous/single patient position X-ray and proton imaging apparatus and method of use thereof
US10625097B2 (en) 2010-04-16 2020-04-21 Jillian Reno Semi-automated cancer therapy treatment apparatus and method of use thereof
WO2012008025A1 (ja) * 2010-07-14 2012-01-19 三菱電機株式会社 粒子線照射装置および粒子線治療装置
EP2952226B1 (en) * 2010-09-09 2017-11-15 Mitsubishi Electric Corporation Particle beam therapy system
US9539442B2 (en) * 2011-03-08 2017-01-10 Varian Medical Systems Particle Therapy Gmbh Proton irradiation using spot scanning
US8963112B1 (en) 2011-05-25 2015-02-24 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
JP5868249B2 (ja) * 2012-04-10 2016-02-24 株式会社日立製作所 粒子線治療システム
US9308394B2 (en) * 2012-07-19 2016-04-12 Hitachi, Ltd. Particle beam irradiation system and operating method
JP6121545B2 (ja) 2012-09-28 2017-04-26 メビオン・メディカル・システムズ・インコーポレーテッド 粒子ビームのエネルギーの調整
EP3581243A1 (en) 2012-09-28 2019-12-18 Mevion Medical Systems, Inc. Controlling particle therapy
JP6121544B2 (ja) 2012-09-28 2017-04-26 メビオン・メディカル・システムズ・インコーポレーテッド 粒子ビームの集束
EP2901820B1 (en) 2012-09-28 2021-02-17 Mevion Medical Systems, Inc. Focusing a particle beam using magnetic field flutter
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
CN105103662B (zh) 2012-09-28 2018-04-13 梅维昂医疗系统股份有限公司 磁场再生器
TW201433331A (zh) 2012-09-28 2014-09-01 Mevion Medical Systems Inc 線圈位置調整
TW201424467A (zh) 2012-09-28 2014-06-16 Mevion Medical Systems Inc 一粒子束之強度控制
WO2014052721A1 (en) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Control system for a particle accelerator
US8933651B2 (en) 2012-11-16 2015-01-13 Vladimir Balakin Charged particle accelerator magnet apparatus and method of use thereof
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
JP6150650B2 (ja) * 2013-07-26 2017-06-21 株式会社日立製作所 粒子線照射システムとその運転方法
JP2015047260A (ja) * 2013-08-30 2015-03-16 株式会社日立製作所 粒子線照射システムとその運転方法
ES2768659T3 (es) 2013-09-27 2020-06-23 Mevion Medical Systems Inc Exploración de haces de partículas
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
WO2016138083A1 (en) * 2015-02-24 2016-09-01 Massachusetts Institute Of Technology Toroidal bending magnets for hadron therapy gantries
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
US9907981B2 (en) 2016-03-07 2018-03-06 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US10037863B2 (en) 2016-05-27 2018-07-31 Mark R. Amato Continuous ion beam kinetic energy dissipater apparatus and method of use thereof
US10925147B2 (en) 2016-07-08 2021-02-16 Mevion Medical Systems, Inc. Treatment planning
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
JP6636473B2 (ja) * 2017-03-16 2020-01-29 株式会社日立製作所 粒子線治療システム
US10653892B2 (en) 2017-06-30 2020-05-19 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
CN110915126B (zh) * 2017-07-19 2023-10-20 株式会社捷太格特 马达控制装置
CN113811356A (zh) 2019-03-08 2021-12-17 美国迈胜医疗系统有限公司 用于粒子治疗系统的准直器和射程调节器
JP7317618B2 (ja) * 2019-07-30 2023-07-31 東芝エネルギーシステムズ株式会社 粒子線治療システム
US11654303B2 (en) 2020-12-30 2023-05-23 Varian Medical Systems, Inc. Radiotherapy methods, systems, and workflow-oriented graphical user interfaces
US11786756B2 (en) 2020-12-30 2023-10-17 Varian Medical Systems, Inc. Radiotherapy methods, systems, and workflow-oriented graphical user interfaces
US11844962B2 (en) 2020-12-30 2023-12-19 Varian Medical Systems, Inc. Radiotherapy methods, systems, and workflow-oriented graphical user interfaces
US11604564B2 (en) 2020-12-30 2023-03-14 Varian Medical Systems, Inc. Radiotherapy methods, systems, and workflow-oriented graphical user interfaces
US11759656B2 (en) 2020-12-30 2023-09-19 Varian Medical Systems, Inc. Radiotherapy methods, systems, and workflow-oriented graphical user interfaces
US11817210B2 (en) 2020-12-30 2023-11-14 Varian Medical Systems, Inc. Radiotherapy methods, systems, and workflow-oriented graphical user interfaces
US11638840B2 (en) * 2020-12-30 2023-05-02 Varian Medical Systems, Inc. Radiotherapy methods, systems, and workflow-oriented graphical user interfaces
US11660473B2 (en) 2020-12-30 2023-05-30 Varian Medical Systems, Inc. Radiotherapy methods, systems, and workflow-oriented graphical user interfaces
US11712587B2 (en) 2020-12-30 2023-08-01 Varian Medical Systems, Inc. Radiotherapy methods, systems, and workflow-oriented graphical user interfaces

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63141300A (ja) 1986-12-02 1988-06-13 株式会社東芝 シンクロトロン加速装置
US5363008A (en) 1991-10-08 1994-11-08 Hitachi, Ltd. Circular accelerator and method and apparatus for extracting charged-particle beam in circular accelerator
US5541971A (en) * 1993-09-06 1996-07-30 Kabushiki Kaisha Toshiba X-ray computerized tomography apparatus
US5585642A (en) * 1995-02-15 1996-12-17 Loma Linda University Medical Center Beamline control and security system for a radiation treatment facility
JP3859605B2 (ja) * 2003-03-07 2006-12-20 株式会社日立製作所 粒子線治療システム及び粒子線出射方法

Also Published As

Publication number Publication date
US20070053484A1 (en) 2007-03-08
JP2005185703A (ja) 2005-07-14
US20050139787A1 (en) 2005-06-30
US7586112B2 (en) 2009-09-08

Similar Documents

Publication Publication Date Title
JP4443917B2 (ja) 粒子線治療装置
EP2653191B1 (en) Particle beam therapy system
KR100602029B1 (ko) 입자선 치료 시스템
JP6109702B2 (ja) 荷電粒子線照射装置
JP4873563B2 (ja) 粒子加速器およびその運転方法、ならびに粒子線照射装置
JP5496414B2 (ja) 粒子線治療装置
JP6523929B2 (ja) 粒子線加速システム、粒子線加速制御方法、及び粒子線治療装置
US9199095B2 (en) Particle beam irradiation system and operating method
JP4726869B2 (ja) 荷電粒子ビーム照射システム及びその制御方法
JP2002113118A (ja) 荷電粒子ビーム照射装置
EP2750484A1 (en) Particle beam therapy system
JP4864787B2 (ja) 粒子線照射システムおよびその制御方法
WO2013145117A1 (ja) 粒子線治療装置および粒子線治療装置の運転方法
WO2015071430A1 (en) Particle therapy system
JP2014028061A (ja) 粒子線照射システムとその運転方法
JP5885844B2 (ja) 加速器の高周波制御装置および粒子線治療装置
US10039937B2 (en) Charged-particle beam therapy apparatus and method for controlling charged-particle beam therapy apparatus
TWI537023B (zh) 粒子線治療裝置
JP2017153910A (ja) 粒子線治療システム
JP2006006960A (ja) 粒子線治療システム
JP7352417B2 (ja) 粒子線治療装置およびコンピュータプログラム
JP6509980B2 (ja) 荷電粒子線治療装置、及び荷電粒子線治療装置の制御方法
WO2015145705A1 (ja) 荷電粒子ビーム照射システムおよび治療計画装置
JP2006006961A (ja) 粒子線治療システム
JP2016119236A (ja) 粒子線照射装置および粒子線照射装置の制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4443917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees