JP4420371B2 - Manufacturing method of screw member made of C / C material - Google Patents
Manufacturing method of screw member made of C / C material Download PDFInfo
- Publication number
- JP4420371B2 JP4420371B2 JP2001061612A JP2001061612A JP4420371B2 JP 4420371 B2 JP4420371 B2 JP 4420371B2 JP 2001061612 A JP2001061612 A JP 2001061612A JP 2001061612 A JP2001061612 A JP 2001061612A JP 4420371 B2 JP4420371 B2 JP 4420371B2
- Authority
- JP
- Japan
- Prior art keywords
- impregnated
- resin
- composite
- composite material
- mpa
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Ceramic Products (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、C/C複合材(炭素繊維強化炭素複合材)からなるボルト、ナットなどのネジ部材の製造方法に関する。
【0002】
【従来の技術】
C/C複合材は、炭素繊維の複合化による卓越した比強度、比弾性率を有し、特に1000℃を超える高温においても比強度、比弾性率に優れ、また、炭素材特有の軽量性と優れた耐熱性および化学的安定性を備えているため、航空・宇宙機用の構造材料をはじめ、高温苛酷な条件下で使用される各種部材、例えばCZ法による単結晶引上用のルツボ、ヒータ、炉材などの各種高温用の部材として有用されている。
【0003】
また、これらの高温用の構造部材を固定したり、締結するためのネジ部材にも高い比強度や比弾性率が要求され、C/C複合材からなるボルト、ナットなどが使用されている(例えば、特開平4−16331号公報、同4−54306号公報、同7−19220号公報など)。
【0004】
一般に、C/C複合材はマトリックスとなる熱硬化性樹脂などの炭化性樹脂を含浸した炭素繊維の織布を積層し、所定の圧力および温度を加えて圧縮成形したプリプレグ成形体を非酸化性雰囲気下で焼成炭化、更には黒鉛化することにより製造されている。この製造プロセスにおいて、圧縮成形時に相当量の炭化性樹脂が外部に圧出したり、プリプレグ成形体を焼成炭化する過程で炭化性樹脂に含まれる揮発性成分が揮散するために、得られるC/C複合材の材質組織には微細な空孔が生じ、低密度化、低強度化する難点がある。そのため、これらの空孔中に炭化性樹脂を再含浸して焼成したり、気相熱分解法により熱分解炭素を析出充填させる二次的な緻密化処理が行われている。
【0005】
【発明が解決しようとする課題】
このようにして製造されるC/C複合材に繰り返し荷重を掛けると、C/C複合材のマトリックス炭素と炭素繊維の結着の弱い部分のマトリックス炭素が炭素繊維から脱離し易い難点がある。したがって、C/C複合材にネジ切り加工を行ってボルト、ナットなどのネジ部材を製造する場合、割れ、欠け、毛羽立ちなどが発生し易く、精度良く加工することが困難となり、またネジ山強度なども低くなる問題点がある。
【0006】
そこで、本発明者らは上記の問題点を解決するために鋭意研究を行った結果、C/C複合材の微細な空孔組織中に熱硬化性樹脂を含浸して硬化した樹脂含浸C/C複合材にネジ切り加工を施し、次いで、加熱処理して含浸した樹脂成分を焼成炭化することにより、加工精度が高く、ネジ山強度も優れたネジ部材を製造することができることを見出した。
【0007】
本発明は、この知見に基づいて開発に至ったものであり、その目的は加工寸法精度が高く、また材質強度、特にネジ山強度を改善したC/C材から作製されたネジ部材の製造方法を提供することにある。
【0008】
【課題を解決するための手段】
上記の目的を達成するための本発明によるC/C材製ネジ部材の製造方法は、炭素繊維に炭化性樹脂を含浸して複合成形したのち非酸化性雰囲気中で焼成して得られたC/C複合材を基材とし、該C/C複合基材に熱硬化性樹脂を含浸し、硬化して作製した樹脂含浸C/C複合材にネジ加工を施し、次いで、非酸化性雰囲気中で加熱処理することを構成上の特徴とする。
【0009】
また、C/C複合基材に含浸した熱硬化性樹脂は0.5〜30 MPaの加圧下に硬化し、作製した樹脂含浸C/C複合材は嵩比重が1.50〜1.65、気孔率が1〜10%、層間剪断強度が13〜25 MPa、曲げ強度が100〜280 MPaの物性を有することを特徴とする。
【0010】
【発明の実施の形態】
樹脂含浸C/C複合材の基材となるC/C複合材は、公知の方法により作製されたものが用いられる。すなわち、強化材となる炭素繊維にはアクリル系、レーヨン系、ピッチ系などの原料系から製造された平織り、朱子織り、綾織り等の織布、これを一次元または多次元方向に配向した繊維成形体、フェルト、トウなどが使用され、C/C複合材のマトリックスを構成する炭化性樹脂にはフェノール系、フラン系、エポキシ系等の残炭率が50重量%以上の熱硬化性樹脂あるいはタール、ピッチなどが用いられる。
【0011】
これらの炭化性樹脂を浸漬や塗布などの手段により炭素繊維に含浸してプリプレグシートを作製したのち、このプリプレグシートを積層し、加熱硬化して炭素繊維が積層された複合成形体を作製する。次いで、窒素、アルゴンなどの非酸化性雰囲気中で800℃以上の温度、好ましくは1000〜1500℃の温度で加熱処理して一次焼成体を得、更に1600℃以上の温度、好ましくは2000〜3000℃の温度で焼成または黒鉛化してC/C複合材が作製される。
【0012】
このC/C複合材を基材として、該C/C複合基材の空孔中に熱硬化性樹脂を含浸したのち、樹脂成分を加熱硬化することにより樹脂含浸C/C複合材が作製される。炭化性樹脂にはフェノール系、フラン系、エポキシ系等の残炭率が50重量%以上の熱硬化性樹脂が好ましく用いられる。
【0013】
C/C複合基材に熱硬化性樹脂を含浸する方法は、例えばC/C複合基材を容器に入れ、1300Pa以下に減圧してC/C複合基材の空孔中に吸蔵されているガスを脱気したのち、熱硬化性樹脂を容器内に流入させ、500〜2000kPa 程度に加圧して含浸する方法により行われる。この場合、熱硬化性樹脂に適宜な有機溶媒を加えて粘度調整することもできるが、この場合、含浸したC/C複合基材中の有機溶媒を揮散除去することによりC/C複合基材としての強度などの特性値を高度に維持することができる。
【0014】
含浸した樹脂成分を硬化する方法は、例えばプレス機で上下面方向から圧力を付加し、0.5〜30 MPa、好ましくは10〜30 MPaの加圧下に、100〜300℃程度の温度に加熱することにより行われる。このように加圧下に加熱硬化する理由は、圧力が0.5 MPa未満では含浸した樹脂が硬化する際に発生する揮発ガスのガス圧に、C/C複合材の積層層間部分の密着する力、すなわち層間強度が耐えきれず、層間剥離が起こり易くなる。一方、圧力が30 MPaを越えるとC/C複合材の骨格である炭素繊維束自体が荷重に耐えきれず破断してしまい、更に層間の剥離などにより強度低下が生じるためである。加熱温度が100℃未満では含浸した樹脂が完全に硬化せず、ネジ切り加工に耐え得る充分な強度が得られず、また加熱温度が300℃を越えると含浸した樹脂の硬化が進み過ぎて樹脂硬化物の組織がポーラスになり、ネジ切り加工に必要な強度が得られなくなるためである。
【0015】
このようにして作製した樹脂含浸C/C複合材は切削によりネジ切り加工が施される。樹脂含浸C/C複合材は、C/C複合材に比べて材質的に切削加工し易いが、一方切削加工に耐える充分な材質強度を備えることが必要である。そのため、ネジ切り加工を施す樹脂含浸C/C複合材は嵩比重が1.50〜1.65、気孔率が1〜10%、層間剪断強度が13〜25 MPa、曲げ強度が100〜280 MPaの物性を有していることが好ましい。これらの物性を備えることによってネジ切り加工時に、割れ、欠け、毛羽立ちなどの現象を招くことなく、精密に加工することが可能となる。
【0016】
ネジ切り加工を施した樹脂含浸C/C複合材は、次いで、窒素ガス、アルゴンガスなどの非酸化性雰囲気中で加熱処理して樹脂成分を炭化または黒鉛化する。この場合、加熱処理温度を、C/C複合基材を作製した時の温度以下の温度に設定することがより好ましく、ネジ切り加工後の寸法変化が抑制され、寸法精度の高いネジ部材を製造することができる。
【0017】
このように、本発明のC/C材製ネジ部材の製造方法は、C/C複合基材に熱硬化性樹脂を含浸して硬化した樹脂含浸C/C複合材にネジ切り加工を施し、その後、樹脂成分を焼成炭化または黒鉛化することにより、加工時における割れ、欠け、毛羽立ちなどの加工不良を防止することができるとともに、ネジ加工精度およびネジ山強度の向上、改善を図ることが可能となる。
【0018】
【実施例】
以下、本発明の実施例を比較例と対比して説明する。
【0019】
実施例1
(1)C/C複合基材の作製;
ポリアクリロニトリル系高強度タイプの炭素繊維の平織り織布にフェノール樹脂初期縮合物(残炭率50%)を塗布して充分に含浸させ、48時間風乾してプリプレグシートを調製した。このプリプレグシートを50枚積層してモールド(縦 300mm、横 300mm)に入れ、温度150℃、圧力2MPa の熱圧条件で5時間プレスして一次硬化したのち、250℃の温度に加熱して完全に硬化させて複合成形体を作製した。次いで、この複合成形体を窒素雰囲気に保持した焼成炉に移し、5℃/hrの昇温速度で1000℃まで加熱し、5時間保持して一次焼成したのち2000℃に昇温し加熱処理して黒鉛化し、C/C複合基材を作製した。
【0020】
(2)ネジ部材の製造;
このC/C複合基材を密閉容器に入れ、400Paに減圧したのち、室温でフェノール樹脂初期縮合物を注入し、750Paに加圧して含浸させた。次いで、容器から取り出し、プレス機にセットして0.5MPa の加圧下に、250℃の温度で24時間加熱して、フェノール樹脂を硬化させ、樹脂含浸C/C複合材を作製した。この樹脂含浸C/C複合材より長さ250mmの角材を切り出し、旋盤によりネジ切り加工を行って、M12スタッドボルトφ12× L240 (× S50×S50 )を製造し、その後窒素雰囲気中で2000℃の温度で加熱処理した。
【0021】
実施例2
C/C複合基材に含浸したフェノール樹脂初期縮合物を、10MPa の加圧下に硬化した以外は、全て実施例1と同じ方法によりM12スタッドボルトを製造した。
【0022】
実施例3
C/C複合基材に含浸したフェノール樹脂初期縮合物を、100MPa の加圧下に硬化した以外は、全て実施例1と同じ方法によりM12スタッドボルトを製造した。
【0023】
実施例4
C/C複合基材に含浸したフェノール樹脂初期縮合物を、300MPa の加圧下に硬化した以外は、全て実施例1と同じ方法によりM12スタッドボルトを製造した。
【0024】
実施例5
実施例1と同じ方法により作製したC/C複合材を用いて、ネジ切り加工を施し、実施例1と同じM12スタッドボルトを製造し、その後、窒素雰囲気中で1800℃の温度で加熱処理した。
【0025】
比較例1
実施例1と同じ方法により作製したC/C複合基材を用いて、ネジ切り加工を施し、実施例1と同じM12スタッドボルトを製造した。
【0026】
比較例2
実施例1と同じ方法により作製したC/C複合基材を密閉容器に入れ、400Paに減圧したのち、室温でフェノール樹脂初期縮合物を注入し785KPa に加圧して含浸させた。次いで、容器から取り出し、10℃/hrの昇温速度で1000℃に加熱処理した。このようにして、緻密化処理を1回行ったC/C複合材を用いてネジ切り加工を施し、実施例1と同じM12スタッドボルトを製造した。
【0027】
比較例3
比較例2において、緻密化処理を3回繰り返し行って作製したC/C複合基材を用いた他は、比較例2と同じ方法によりM12スタッドボルトを製造した。
【0028】
比較例4
比較例2において、緻密化処理を5回繰り返し行って作製したC/C複合基材を用いた他は、比較例2と同じ方法によりM12スタッドボルトを製造した。
【0029】
比較例5
長さ6mmの炭素繊維チョップとフェノール樹脂初期縮合物を60対40の重量比で混合し、混合物をスタッドボルト形状のモールドに入れ、温度150℃、圧力2MPa の熱圧条件で5時間処理して一次硬化したのち、250℃で完全に硬化させた。次いで、窒素雰囲気中、2000℃の温度で加熱処理して、M12スタッドボルトφ12× L240 (× S50×S50 )を製造した。
【0030】
このようにして製造したM12スタッドボルトのサンプルについて、下記の方法によりネジ山部の引張強度、加工時のネジ山の欠け状況、嵌合状態などを測定して、その結果を表1に示した。なお、表2には樹脂含浸C/C複合材の物性を示した。
(1)ネジ山部の引張強度;
試験片の両端ネジ部にM12ナットを嵌合し、ナット間の距離を200mmに設定して、クロスヘッドスピード1mm/min.の条件で測定した。
(2)ネジ山の欠け状況;
加工後にネジ山の欠けているヶ所を計測した。
(3)嵌合状態;
嵌合確認用のM12ナットを用意して、製造したM12ボルトとの嵌合状態を評価した。
【0031】
【表1】
【0032】
【表2】
【0033】
表1の結果から、樹脂含浸C/C複合材を素材として、強度の高い状態でネジ切り加工してボルトを作製し、その後加熱処理して焼成炭化または黒鉛化した実施例のC/C材製のボルトは、ネジ山部の引張強度が高く、またネジ山の加工時に欠け落ちなどの加工不良を発生することがなく、更に、寸法変化によるネジ部の嵌合不良の発生も大幅に改善されることが判る。
【0034】
【発明の効果】
以上のとおり、本発明のC/C材製ネジ部材の製造方法によれば、C/C複合基材の微細な空孔組織中に熱硬化性樹脂を含浸して硬化した樹脂含浸C/C複合材にネジ切り加工を施し、次いで、加熱処理して含浸した樹脂成分を焼成炭化することにより、加工寸法精度が高く、ネジ山強度も優れたネジ部材を製造することができ、また加工不良の発生を大幅に改善することも可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing screw members such as bolts and nuts made of a C / C composite material (carbon fiber reinforced carbon composite material).
[0002]
[Prior art]
C / C composite material has excellent specific strength and specific elastic modulus due to the composite of carbon fiber, and is excellent in specific strength and specific elastic modulus even at high temperature exceeding 1000 ° C. Excellent heat resistance and chemical stability, such as structural materials for aircraft and spacecraft, as well as various parts used under severe conditions at high temperatures, such as crucibles for pulling single crystals by the CZ method It is useful as various high-temperature members such as heaters and furnace materials.
[0003]
Further, high specific strength and specific elastic modulus are required for screw members for fixing or fastening these high-temperature structural members, and bolts and nuts made of C / C composite materials are used ( For example, JP-A-4-16331, 4-54306, 7-19220, etc.).
[0004]
In general, a C / C composite material is a non-oxidizing prepreg molded body in which a woven fabric of carbon fibers impregnated with a carbonized resin such as a thermosetting resin as a matrix is laminated and compression molded by applying a predetermined pressure and temperature. It is manufactured by firing carbonization and further graphitizing in an atmosphere. In this manufacturing process, a considerable amount of the carbonized resin is pressed out during compression molding, or volatile components contained in the carbonized resin are volatilized in the process of firing and carbonizing the prepreg molded body. In the material structure of the composite material, fine pores are generated, and there is a difficulty in reducing the density and the strength. Therefore, a secondary densification process is performed in which these pores are re-impregnated with a carbonized resin and fired, or pyrolytic carbon is deposited and filled by vapor phase pyrolysis.
[0005]
[Problems to be solved by the invention]
When a load is repeatedly applied to the C / C composite material produced in this manner, there is a difficulty in that the matrix carbon of the C / C composite material where the matrix carbon and the carbon fiber are weakly bonded is easily detached from the carbon fiber. Therefore, when producing threaded members such as bolts and nuts by threading a C / C composite material, cracks, chips, fluffing, etc. are likely to occur, making it difficult to process accurately, and thread strength. There is a problem that it becomes low.
[0006]
Therefore, as a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a resin-impregnated C / C obtained by impregnating a thermosetting resin into a fine pore structure of a C / C composite material and curing it. It was found that a threaded member having high processing accuracy and excellent thread strength can be produced by subjecting a C composite material to threading and then baking and carbonizing the impregnated resin component.
[0007]
The present invention has been developed on the basis of this knowledge, and the object thereof is a method for producing a screw member made of a C / C material having high machining dimensional accuracy and improved material strength, particularly thread strength. Is to provide.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a method for producing a C / C material screw member according to the present invention is obtained by impregnating a carbon fiber with a carbonized resin and performing composite molding, followed by firing in a non-oxidizing atmosphere. / C composite material as a base material, the C / C composite base material is impregnated with a thermosetting resin and cured, and then the resin-impregnated C / C composite material is threaded, and then in a non-oxidizing atmosphere. It is a feature of the construction that the heat treatment is performed.
[0009]
Further, the thermosetting resin impregnated in the C / C composite base material is cured under a pressure of 0.5 to 30 MPa, and the produced resin-impregnated C / C composite material has a bulk specific gravity of 1.50 to 1.65, It has the physical properties of a porosity of 1 to 10%, an interlaminar shear strength of 13 to 25 MPa, and a bending strength of 100 to 280 MPa.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
As the C / C composite material used as the base material of the resin-impregnated C / C composite material, one produced by a known method is used. In other words, the carbon fiber used as a reinforcing material is a woven fabric such as plain weave, satin weave and twill weave manufactured from raw materials such as acrylic, rayon, and pitch, and fibers in which this is oriented in one or more dimensions. Molded bodies, felts, tows, etc. are used, and the carbonized resin constituting the matrix of the C / C composite material is a thermosetting resin having a residual carbon ratio of 50% by weight or more such as phenolic, furanic or epoxy type. Tar, pitch, etc. are used.
[0011]
A carbon fiber is impregnated with such a carbonized resin by means of dipping or coating to produce a prepreg sheet, and then this prepreg sheet is laminated and cured by heating to produce a composite molded body in which carbon fibers are laminated. Next, a primary fired body is obtained by heat treatment at a temperature of 800 ° C. or higher, preferably 1000 to 1500 ° C. in a non-oxidizing atmosphere such as nitrogen or argon, and further a temperature of 1600 ° C. or higher, preferably 2000 to 3000. A C / C composite material is produced by firing or graphitizing at a temperature of ° C.
[0012]
Using this C / C composite as a base material, the pores of the C / C composite base material are impregnated with a thermosetting resin, and then the resin component is heated and cured to produce a resin-impregnated C / C composite material. The As the carbonized resin, a thermosetting resin having a residual carbon ratio of 50% by weight or more such as phenol, furan or epoxy is preferably used.
[0013]
The method of impregnating the C / C composite base material with the thermosetting resin is, for example, putting the C / C composite base material in a container and reducing the pressure to 1300 Pa or less and occluded in the pores of the C / C composite base material. After the gas is degassed, the thermosetting resin is allowed to flow into the container and pressurized to about 500 to 2000 kPa for impregnation. In this case, the viscosity can be adjusted by adding an appropriate organic solvent to the thermosetting resin. In this case, the organic solvent in the impregnated C / C composite substrate is removed by volatilization and removal. It is possible to maintain a high characteristic value such as strength.
[0014]
The impregnated resin component is cured by, for example, applying pressure from above and below with a press machine and heating to a temperature of about 100 to 300 ° C. under a pressure of 0.5 to 30 MPa, preferably 10 to 30 MPa. Is done. The reason for heat-curing under pressure in this way is that, when the pressure is less than 0.5 MPa, the adhesion force of the laminated interlayer portion of the C / C composite material to the gas pressure of the volatile gas generated when the impregnated resin is cured. That is, the interlayer strength cannot be withstood, and delamination tends to occur. On the other hand, if the pressure exceeds 30 MPa, the carbon fiber bundle itself, which is the skeleton of the C / C composite material, cannot withstand the load and breaks, and the strength is further reduced due to delamination. If the heating temperature is less than 100 ° C., the impregnated resin is not completely cured, and sufficient strength to withstand threading cannot be obtained. If the heating temperature exceeds 300 ° C., the impregnated resin is excessively cured. This is because the structure of the cured product becomes porous and the strength required for threading cannot be obtained.
[0015]
The resin-impregnated C / C composite material thus produced is threaded by cutting. The resin-impregnated C / C composite material is easy to cut in terms of material as compared with the C / C composite material, but it is necessary to have sufficient material strength to withstand the cutting work. Therefore, the resin-impregnated C / C composite material to be threaded has a bulk specific gravity of 1.50 to 1.65, a porosity of 1 to 10%, an interlayer shear strength of 13 to 25 MPa, and a bending strength of 100 to 280 MPa. It is preferable to have these physical properties. By providing these physical properties, it is possible to perform precise processing without causing phenomena such as cracking, chipping, and fluffing during threading.
[0016]
The resin-impregnated C / C composite material that has been subjected to threading is then heat-treated in a non-oxidizing atmosphere such as nitrogen gas or argon gas to carbonize or graphitize the resin component. In this case, it is more preferable to set the heat treatment temperature to a temperature equal to or lower than the temperature at which the C / C composite base material is produced, and the dimensional change after threading is suppressed, and a screw member with high dimensional accuracy is manufactured. can do.
[0017]
Thus, in the method for producing a C / C material screw member of the present invention, the C / C composite base material is impregnated with a thermosetting resin and cured, and the resin-impregnated C / C composite material is threaded, After that, by firing carbonization or graphitization of the resin component, it is possible to prevent processing defects such as cracks, chips and fluff during processing, and to improve and improve screw processing accuracy and thread strength. It becomes.
[0018]
【Example】
Examples of the present invention will be described below in comparison with comparative examples.
[0019]
Example 1
(1) Production of C / C composite substrate;
A polyacrylonitrile-based high-strength carbon fiber plain woven fabric was coated with a phenol resin initial condensate (residual carbon ratio 50%) and sufficiently impregnated, and air-dried for 48 hours to prepare a prepreg sheet. 50 prepreg sheets were stacked and placed in a mold (length 300mm, width 300mm), pressed for 5 hours under hot pressure conditions of 150 ° C and 2MPa, and first cured, then heated to 250 ° C and completely heated. To form a composite molded body. Next, the composite molded body is transferred to a firing furnace maintained in a nitrogen atmosphere, heated to 1000 ° C. at a temperature increase rate of 5 ° C./hr, held for 5 hours, subjected to primary firing, and then heated to 2000 ° C. for heat treatment. Graphitized to produce a C / C composite substrate.
[0020]
(2) Manufacture of screw members;
This C / C composite base material was put in a sealed container and reduced in pressure to 400 Pa, and then a phenol resin initial condensate was injected at room temperature and impregnated by pressurizing to 750 Pa. Subsequently, it was taken out from the container, set in a press machine, heated under a pressure of 0.5 MPa at a temperature of 250 ° C. for 24 hours to cure the phenol resin, and a resin-impregnated C / C composite material was produced. A square material having a length of 250 mm is cut out from this resin-impregnated C / C composite material and threaded with a lathe to produce M12 stud bolt φ12 × L 240 (× S50 × S50), and then 2000 ° C. in a nitrogen atmosphere. Heat treatment at a temperature of
[0021]
Example 2
M12 stud bolts were produced by the same method as in Example 1 except that the phenol resin initial condensate impregnated in the C / C composite substrate was cured under a pressure of 10 MPa.
[0022]
Example 3
M12 stud bolts were produced by the same method as in Example 1 except that the phenol resin initial condensate impregnated in the C / C composite substrate was cured under a pressure of 100 MPa.
[0023]
Example 4
M12 stud bolts were produced by the same method as in Example 1 except that the phenol resin initial condensate impregnated in the C / C composite substrate was cured under a pressure of 300 MPa.
[0024]
Example 5
Using the C / C composite material produced by the same method as in Example 1, threading was performed to produce the same M12 stud bolt as in Example 1, and then heat-treated at a temperature of 1800 ° C. in a nitrogen atmosphere. .
[0025]
Comparative Example 1
Using the C / C composite substrate produced by the same method as in Example 1, threading was performed to produce the same M12 stud bolt as in Example 1.
[0026]
Comparative Example 2
The C / C composite base material produced by the same method as in Example 1 was put in a sealed container, and the pressure was reduced to 400 Pa. Then, a phenol resin initial condensate was injected at room temperature and pressurized to 785 KPa for impregnation. Subsequently, it took out from the container and heat-processed to 1000 degreeC with the temperature increase rate of 10 degreeC / hr. In this way, threading was performed using the C / C composite material that had been densified once, and the same M12 stud bolt as in Example 1 was manufactured.
[0027]
Comparative Example 3
In Comparative Example 2, an M12 stud bolt was produced by the same method as in Comparative Example 2, except that a C / C composite base material produced by repeating the densification treatment three times was used.
[0028]
Comparative Example 4
In Comparative Example 2, an M12 stud bolt was produced by the same method as Comparative Example 2, except that a C / C composite base material produced by repeating the densification treatment five times was used.
[0029]
Comparative Example 5
A 6 mm long carbon fiber chop and a phenol resin initial condensate are mixed at a weight ratio of 60:40, and the mixture is placed in a stud bolt-shaped mold and treated at a temperature of 150 ° C. and a pressure of 2 MPa for 5 hours. After primary curing, it was completely cured at 250 ° C. Then, in a nitrogen atmosphere, and heated at a temperature of 2000 ° C., to produce the M12 studs φ12 × L 240 (× S50 × S50).
[0030]
About the sample of the M12 stud bolt thus manufactured, the tensile strength of the thread portion, the chipped state of the thread during processing, the fitting state, and the like were measured by the following method, and the results are shown in Table 1. . Table 2 shows the physical properties of the resin-impregnated C / C composite material.
(1) Tensile strength of thread part;
M12 nuts were fitted to both end thread portions of the test piece, the distance between the nuts was set to 200 mm, and the measurement was performed at a crosshead speed of 1 mm / min.
(2) Missing thread
The location where the thread was missing was measured after processing.
(3) Mated state;
M12 nuts for confirmation of fitting were prepared, and the fitting state with the manufactured M12 bolt was evaluated.
[0031]
[Table 1]
[0032]
[Table 2]
[0033]
From the results shown in Table 1, using a resin-impregnated C / C composite material as a raw material, threading was performed in a high strength state to produce a bolt, followed by heat treatment to calcined carbonized or graphitized C / C material of Example The bolts made of the screw have high tensile strength at the thread part, do not cause machining defects such as chipping during thread machining, and greatly reduce the occurrence of thread fitting failure due to dimensional changes. It can be seen that
[0034]
【The invention's effect】
As described above, according to the method for producing a C / C material screw member of the present invention, a resin-impregnated C / C obtained by impregnating a thermosetting resin into a fine pore structure of a C / C composite base material and curing it. By threading the composite material and then baking and carbonizing the resin component impregnated by heat treatment, it is possible to produce screw members with high processing dimensional accuracy and excellent thread strength, and processing defects It is also possible to greatly improve the occurrence of.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001061612A JP4420371B2 (en) | 2001-03-06 | 2001-03-06 | Manufacturing method of screw member made of C / C material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001061612A JP4420371B2 (en) | 2001-03-06 | 2001-03-06 | Manufacturing method of screw member made of C / C material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002265268A JP2002265268A (en) | 2002-09-18 |
JP4420371B2 true JP4420371B2 (en) | 2010-02-24 |
Family
ID=18920877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001061612A Expired - Lifetime JP4420371B2 (en) | 2001-03-06 | 2001-03-06 | Manufacturing method of screw member made of C / C material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4420371B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112794718B (en) * | 2021-01-27 | 2022-11-04 | 巩义市泛锐熠辉复合材料有限公司 | Ceramic matrix composite material stud and preparation method thereof |
JP7320578B2 (en) * | 2021-11-09 | 2023-08-03 | 株式会社Cfcデザイン | Screw part made of two-dimensional carbon/carbon composite material laminated with anisotropic nonwoven fabric |
-
2001
- 2001-03-06 JP JP2001061612A patent/JP4420371B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002265268A (en) | 2002-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7871592B2 (en) | Method for preparing a carbon/carbon composite | |
US5665464A (en) | Carbon fiber-reinforced carbon composite material and process for the preparation thereof | |
DE68916086T2 (en) | Process for the production of carbon / carbon composites. | |
US5061414A (en) | Method of making carbon-carbon composites | |
JP2019501849A (en) | Carbon fiber reinforced carbide-ceramic composite | |
KR100307509B1 (en) | Ceramic-Containing Carbon / Carbon Composites and Manufacturing Method Thereof | |
JP4420371B2 (en) | Manufacturing method of screw member made of C / C material | |
ZHENG et al. | Preparation and fracture behavior of carbon fiber/SiC composites by multiple impregnation and pyrolysis of polycarbosilane | |
WO2021206168A1 (en) | C/c composite and method for producing same, and heat-treatment jig and method for producing same | |
JP3829964B2 (en) | Method for producing carbon fiber reinforced carbon composite | |
JP3983459B2 (en) | Carbon fiber reinforced carbon composite screw | |
JP2002255664A (en) | C/c composite material and production method therefor | |
JP2607409B2 (en) | Oxidation-resistant treatment of carbon fiber reinforced carbon composites. | |
DE69709976T2 (en) | Process for making a carbon preform | |
JP3288408B2 (en) | Manufacturing method of general-purpose carbon fiber reinforced carbon material | |
JP2001181062A (en) | Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same | |
JP2003012374A (en) | Method of manufacturing carbon fiber reinforcing carbon material | |
JPH0532457A (en) | Carbon fiber-reinforced carbon composite material and its production | |
JPH08245273A (en) | Production of carbon fiber reinforced carbon composite material | |
JP3853058B2 (en) | Oxidation resistant C / C composite and method for producing the same | |
KR970007019B1 (en) | Process for the preparation of carbon fiber reinforced carbon composite using pitch | |
CN117229068A (en) | Preparation method and application of high-fiber volume fraction composite material | |
JPH0352426B2 (en) | ||
JP3599791B2 (en) | Oxidation-resistant treatment of carbon fiber reinforced carbon composites | |
JPH05139832A (en) | Production of carbon material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060804 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090818 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091125 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091127 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121211 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4420371 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131211 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |