JP4417142B2 - Air separation method and apparatus used therefor - Google Patents
Air separation method and apparatus used therefor Download PDFInfo
- Publication number
- JP4417142B2 JP4417142B2 JP2004066272A JP2004066272A JP4417142B2 JP 4417142 B2 JP4417142 B2 JP 4417142B2 JP 2004066272 A JP2004066272 A JP 2004066272A JP 2004066272 A JP2004066272 A JP 2004066272A JP 4417142 B2 JP4417142 B2 JP 4417142B2
- Authority
- JP
- Japan
- Prior art keywords
- waste gas
- air
- pulse tube
- compressed air
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/044—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04812—Different modes, i.e. "runs" of operation
- F25J3/04818—Start-up of the process
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/72—Refluxing the column with at least a part of the totally condensed overhead gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/90—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
- F25J2270/908—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by regenerative chillers, i.e. oscillating or dynamic systems, e.g. Stirling refrigerator, thermoelectric ("Peltier") or magnetic refrigeration
- F25J2270/91—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by regenerative chillers, i.e. oscillating or dynamic systems, e.g. Stirling refrigerator, thermoelectric ("Peltier") or magnetic refrigeration using pulse tube refrigeration
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Separation By Low-Temperature Treatments (AREA)
Description
本発明は、空気分離方法およびそれに用いる装置に関するものである。 The present invention relates to an air separation method and an apparatus used therefor.
一般に、深冷空気分離装置は、寒冷により空気を液化して各成分(N2 ,O2 ,Ar等)に精留分離したのち、所望の成分を気体状態または液体状態で取り出すようにしており、寒冷源として、膨張タービン等の冷熱エネルギーを利用している。このような深冷空気分離装置として、図9に示すような、膨張タービン30を用いた高純度窒素ガス製造装置がある。図において、11は原料空気を圧縮する原料空気圧縮機であり、12は2個一対の吸着塔であり、原料空気圧縮機11により圧縮された圧縮空気中の水分(H2 O),炭酸ガス(CO2 )等の不純物を吸着除去する作用をする。13は吸着塔12を経た圧縮空気を熱交換器14に供給する圧縮空気供給パイプである。 Generally, a cryogenic air separation device liquefies air by cold and rectifies and separates each component (N 2 , O 2 , Ar, etc.), and then takes out the desired component in a gaseous or liquid state. As a cold source, cold energy such as an expansion turbine is used. As such a cryogenic air separation apparatus, there is a high-purity nitrogen gas production apparatus using an expansion turbine 30 as shown in FIG. In the figure, 11 is a raw material air compressor for compressing raw material air, 12 is a pair of two adsorption towers, and water (H 2 O) and carbon dioxide in compressed air compressed by the raw material air compressor 11 It acts to adsorb and remove impurities such as (CO 2 ). Reference numeral 13 denotes a compressed air supply pipe that supplies the compressed air that has passed through the adsorption tower 12 to the heat exchanger 14.
14は熱交換器であり、この内部に、吸着塔12によりH2 O,CO2 等が吸着除去された圧縮空気が送り込まれ、超低温に冷却される。16は精留塔であり、熱交換器14により超低温に冷却され圧縮空気導入パイプ15を経て送り込まれた圧縮空気をさらに冷却し、その一部を液化し液体空気21として底部に溜め、N2 を気体状態で上部に溜めるようになっている。17は精留塔16の上方に配設された凝縮器18内蔵のコンデンサー(分縮器)である。上記凝縮器18には、精留塔16の上部に溜るN2 ガスの一部が第1還流液パイプ19を介して送入される。また、上記コンデンサー17内は、精留塔16内よりも減圧状態になっており、精留塔16の底部の貯留液体空気(N2 ;50〜70%,O2 ;30〜50%)21が膨脹弁22a付き送給パイプ22を経て送り込まれ、気化して内部温度を液体窒素(LN2 )の沸点以下の温度に冷却するようになっている。この冷却により、精留塔16から第1還流液パイプ19を介して凝縮器18内に送入されたN2 ガスが液化し、この凝縮器18で液化,生成したLN2 が第2還流液パイプ20を流下し、精留塔16の上部に還流供給される。そして、この精留塔16の上部に還流供給された還流液が精留塔16内を下方に流下し、精留塔16の底部から上昇する圧縮空気と向流的に接触し冷却してその一部を液化するようになっている。この過程で圧縮空気中の高沸点成分(O2 )は液化されて精留塔16の底部に溜り、低沸点成分のN2 ガスが精留塔16の上部に溜る。 Reference numeral 14 denotes a heat exchanger, into which compressed air from which H 2 O, CO 2 and the like are adsorbed and removed by the adsorption tower 12 is sent and cooled to an ultra-low temperature. Reference numeral 16 denotes a rectifying tower, which further cools the compressed air cooled to an ultra-low temperature by the heat exchanger 14 and sent through the compressed air introduction pipe 15, liquefies a part thereof, and stores it as liquid air 21 at the bottom, and N 2 Is stored in the upper part in a gaseous state. Reference numeral 17 denotes a condenser (condenser) with a condenser 18 disposed above the rectifying column 16. A part of the N 2 gas accumulated in the upper part of the rectifying column 16 is fed into the condenser 18 via a first reflux liquid pipe 19. Further, the inside of the condenser 17 is in a depressurized state as compared with the inside of the rectifying column 16, and the stored liquid air (N 2 ; 50 to 70%, O 2 ; 30 to 50%) 21 at the bottom of the rectifying column 16. Is fed through a feed pipe 22 with an expansion valve 22a and is vaporized to cool the internal temperature to a temperature below the boiling point of liquid nitrogen (LN 2 ). By this cooling, the N 2 gas sent from the rectification column 16 through the first reflux pipe 19 into the condenser 18 is liquefied, and the LN 2 liquefied and generated in the condenser 18 is converted into the second reflux liquid. The pipe 20 flows down and is supplied to the upper part of the rectifying column 16 by reflux. Then, the reflux liquid supplied to the upper part of the rectifying column 16 flows down in the rectifying column 16, contacts the compressed air rising from the bottom of the rectifying column 16, and cools by cooling. A part is liquefied. In this process, the high boiling point component (O 2 ) in the compressed air is liquefied and collected at the bottom of the rectification column 16, and the low boiling point component N 2 gas is collected at the top of the rectification column 16.
23は精留塔16の底部の貯留液体空気21の液面を制御する液面コントローラーであり、後述する流量調節弁28aの開閉を行い、膨張タービン30に供給する廃ガス量を制御している。すなわち、上記液面が所定値を上回ると、流量調節弁28aの開度を小さくして、膨張タービン30に供給する廃ガス量を減少させ、上記液面が所定値を下回ると、流量調節弁28aの開度を大きくして、膨張タービン30に供給する廃ガス量を増大させるようになっている。 23 is a liquid level controller for controlling the liquid level of the stored liquid air 21 at the bottom of the rectifying column 16, and controls the amount of waste gas supplied to the expansion turbine 30 by opening and closing a flow rate adjusting valve 28 a described later. . That is, when the liquid level exceeds a predetermined value, the opening degree of the flow control valve 28a is reduced to reduce the amount of waste gas supplied to the expansion turbine 30, and when the liquid level falls below the predetermined value, the flow control valve The amount of waste gas supplied to the expansion turbine 30 is increased by increasing the opening of 28a.
25は精留塔16の上部に溜まるN2 ガスを製品N2 ガスとして取り出すN2 ガス取出パイプであり、低温のN2 ガスを熱交換器14内に案内し、そこに送り込まれた圧縮空気と熱交換させて常温にしメインパイプ26に送り込む作用をする。27はコンデンサー17の上部に溜まる気化液体空気を廃ガスとして取り出す廃ガス取出パイプであり、低温の廃ガスの全部もしくは一部(全く無い場合を含む)を分岐パイプ28を経て膨脹タービン30の駆動部に送り込み、一方、残部を熱交換器14内に案内する作用をする。上記熱交換器14内に案内された廃ガスは、そこに送り込まれた圧縮空気と熱交換されて常温にされたのち、熱交換器14から導出され、放出パイプ29を経て外部に放出される。27aは廃ガス取出パイプ27に設けた圧力調節弁であり、27bは廃ガス取出パイプ27に設けた圧力コントローラーであり、(膨張タービン30への廃ガスの供給量の変動に起因する)廃ガスの流量変動による圧力変動を抑えるために圧力調節弁27aを開閉して廃ガスラインの圧力を保持する作用をする。 25 is a N 2 gas takeout pipe for taking out the N 2 gas accumulated in the upper part of the rectification column 16 as product N 2 gas, compressed air and low-temperature N 2 gas was guided into the heat exchanger 14, fed therein Heat-exchanged to normal temperature and sent to the main pipe 26. 27 is a waste gas extraction pipe that takes out the vaporized liquid air accumulated in the upper part of the condenser 17 as waste gas, and drives the expansion turbine 30 through the branch pipe 28 through all or part of the low temperature waste gas (including the case where there is no waste gas). In the meantime, it acts to guide the remainder into the heat exchanger 14. The waste gas guided into the heat exchanger 14 is heat-exchanged with the compressed air sent into the heat exchanger 14 to reach room temperature, and then is led out from the heat exchanger 14 and discharged to the outside through the discharge pipe 29. . 27a is a pressure control valve provided in the waste gas extraction pipe 27, 27b is a pressure controller provided in the waste gas extraction pipe 27, and is a waste gas (due to fluctuations in the amount of waste gas supplied to the expansion turbine 30). In order to suppress the pressure fluctuation due to the flow rate fluctuation, the pressure control valve 27a is opened and closed to maintain the pressure of the waste gas line.
30は膨脹タービンであり、分岐パイプ28から供給された廃ガスを膨脹させてさらに低温の廃ガスを得たのち、戻しパイプ31を経て廃ガス取出パイプ27の圧力調節弁27a下流側部分に合流させる。これにより、廃ガス取出パイプ27を通る廃ガス(廃ガス取出パイプ27から分岐しなかった低温の廃ガス、および廃ガス取出パイプ27から分岐して膨張タービン30を経由したさらに低温の廃ガス)、分岐パイプ28を通る廃ガスおよびN2 ガス取出パイプ25から送り込まれた製品N2 ガスにより、熱交換器14内へ送り込まれた圧縮空気を低温に冷却するようになっている。28aは膨脹タービン30のタービン入口に設けた流量調節弁であり、膨脹タービン30に供給する廃ガス量を制御することにより膨脹タービン30で発生する寒冷量の調節を行う作用をする。図において、32は真空保冷箱である。 An expansion turbine 30 expands the waste gas supplied from the branch pipe 28 to obtain a lower temperature waste gas, and then joins the downstream side portion of the pressure control valve 27a of the waste gas extraction pipe 27 via the return pipe 31. Let Thereby, waste gas passing through the waste gas extraction pipe 27 (low-temperature waste gas not branched from the waste gas extraction pipe 27 and further low-temperature waste gas branched from the waste gas extraction pipe 27 and passed through the expansion turbine 30) The compressed air sent into the heat exchanger 14 is cooled to a low temperature by the waste gas passing through the branch pipe 28 and the product N 2 gas sent from the N 2 gas extraction pipe 25. A flow control valve 28 a provided at the turbine inlet of the expansion turbine 30 controls the amount of cold generated in the expansion turbine 30 by controlling the amount of waste gas supplied to the expansion turbine 30. In the figure, 32 is a vacuum cold box.
この装置は、つぎのようにして製品窒素ガスを製造する。すなわち、まず、空気圧縮機11により空気を圧縮し、ドレン分離器(図示せず)により圧縮された空気中のH2 Oを除去してフロン冷却器(図示せず)により冷却し、その状態で吸着筒12に送り込み、圧縮空気中のH2 O,CO2 等を吸着除去する。ついで、H2 O,CO2 等が吸着除去された圧縮空気を、精留塔16からN2 ガス取出パイプ25を経て送り込まれる製品N2 ガス、膨脹タービン30から送り込まれる廃ガス等の冷媒によって冷やされている熱交換器14に送り込んで超低温に冷却し、その状態で精留塔16の下部内に投入する。つぎに、この投入圧縮空気を、凝縮器18で液化,生成した還流液と接触させて冷却し、一部を液化して精留塔16の底部に液体空気21として溜める。この過程において、N2 とO2 の沸点の差により、圧縮空気中の高沸点成分であるO2 が液化し、N2 が気体のまま残る。つぎに、この気体のまま残ったN2 をN2 ガス取出パイプ25から取り出して熱交換器14に送り込み、常温近くまで昇温させメインパイプ26から製品N2 ガスとして送り出す。一方、精留塔16の下部に溜った液体空気21については、これをコンデンサー17内に送り込み凝縮器18を冷却させる。この冷却により、精留塔16の上部から凝縮器18に送入されたN2 ガスが液化して精留塔16用の還流液となり、第2還流液パイプ20を経て精留塔16に戻る。また、凝縮器18を冷却し終えた液体空気21は気化し、廃ガスとして廃ガス取出パイプ27により取り出される。そして、その全部もしくは一部は分岐パイプ28を経て膨脹タービン30に導入され、ここで寒冷を発生させて熱交換器14に送り込まれ、この熱交換器14内へ送り込まれる圧縮空気を冷却するようになっている。また、その残部は、直接に熱交換器14に送り込まれ、この熱交換器14内へ送り込まれる圧縮空気を冷却するようになっている。このような廃ガスは熱交換器14から導出されたのち、放出パイプ29により空気中に放出される。
しかしながら、上記の膨張タービン30は、そのガス処理変動可能量が一般的に2割程度であるため、そのガス処理量を大幅に変化させることができない。したがって、起動時のように、定常運転時と比べて、製品N2 ガスの発生量が少なく、廃ガスの発生量が多いときにも、多量の廃ガスを膨張タービン30に導入して大きな寒冷を得ることができず、起動に長時間を要する。しかも、上記の膨張タービン30は、単独では流量調節が困難であるため、膨脹タービン30のタービン入口に流量調節弁28aを設ける必要があり、その分高価になる。 However, since the above-described expansion turbine 30 has a gas processing variable amount of about 20% in general, the gas processing amount cannot be changed greatly. Therefore, even when the amount of product N 2 gas generated is small and the amount of waste gas generated is large compared to during steady operation, such as during startup, a large amount of waste gas is introduced into the expansion turbine 30 to cause a large amount of cooling. It takes a long time to start. Moreover, since it is difficult to adjust the flow rate of the expansion turbine 30 alone, it is necessary to provide the flow rate adjustment valve 28 a at the turbine inlet of the expansion turbine 30, which increases the cost.
本発明は、このような事情に鑑みなされたもので、起動時間を短縮することができ、しかも、安価な空気分離方法およびそれに用いる装置の提供をその目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide an inexpensive air separation method and an apparatus used therefor, which can shorten the startup time.
上記の目的を達成するため、本発明は、外部より取り入れた空気を空気圧縮手段で圧縮し、この空気圧縮手段により圧縮された圧縮空気中の不純物を除去手段で除去し、この除去手段を経た圧縮空気を熱交換器で冷却し、上記熱交換器を経由し低温に冷却された圧縮空気を各成分の沸点差を利用して分離し所望の成分を気体状態で精留手段の上部に溜め、残りを液体空気として上記精留手段の底部に溜め、上記精留手段内で生成される廃ガスを廃ガス取出路に取り出して上記熱交換器に導入し、この熱交換器から導出した廃ガスを放出路により外部に放出するようにした空気分離方法であって、上記精留手段の上部に溜る気体の一部を取り出し凝縮器により冷却して液化させた後、上記精留手段の上部に還流し、その還流液を上記精留手段内で下方に流下させ、上記精留手段の底部から上昇する圧縮空気と向流的に接触させ、この接触により上記還流液と圧縮空気との間で熱交換させ、その圧縮空気の一部を液化させて上記精留手段の底部に流下させるとともに、上記還流液の一部を気化させて上記精留手段の上部に上昇させるようにし、一方、パルスチューブ式膨張器を設け、このパルスチューブ式膨張器に廃ガス取出路内の廃ガスを導入しここで断熱膨張させて冷却したのち上記パルスチューブ式膨張器から取り出し、上記廃ガス取出路に戻すようにした空気分離方法を第1の要旨とし、外部より取り入れた空気を圧縮する空気圧縮手段と、この空気圧縮手段により圧縮された圧縮空気中の不純物を除去する除去手段と、この除去手段を経た圧縮空気を冷却する熱交換器と、この熱交換器を経由し低温に冷却された圧縮空気を各成分の沸点差を利用して分離し所望の成分を気体状態でその上部に溜め,残りを液体空気としてその底部に溜める精留手段と、上記精留手段内で生成される廃ガスを取り出して上記熱交換器に導入する廃ガス取出路と、上記熱交換器から導出した廃ガスを外部に放出する放出路とを備えた空気分離装置であって、上記精留手段の外側に設けた凝縮器と、上記精留手段の上部に溜る気体の一部を取り出して上記凝縮器に挿入する第1還流パイプと、上記凝縮器で液化された上記気体を上記精留手段の上部に還流する第2還流パイプとを備え、その第2還流パイプからの還流液が上記精留手段内で下方に流下し、上記精留手段の底部から上昇する圧縮空気と向流的に接触し、この接触により上記還流液と圧縮空気との間で熱交換され、その圧縮空気の一部が液化して上記精留手段の底部に流下するとともに、上記還流液の一部が気化して上記精留手段の上部に上昇するように構成し、一方、パルスチューブ式膨張器を設け、このパルスチューブ式膨張器に廃ガス取出路内の廃ガスを導入しここで断熱膨張させて冷却したのち上記パルスチューブ式膨張器から取り出し、上記廃ガス取出路に戻すように構成した空気分離装置を第2の要旨とする。 In order to achieve the above object, the present invention compresses air taken in from the outside by air compression means, removes impurities in the compressed air compressed by the air compression means by removal means, and passes through this removal means. the compressed air is cooled in the heat exchanger, the compressed air which has been cooled to a low temperature through the upper Symbol heat exchanger was separated by utilizing a boiling point difference of each component desired component at the top of the rectification means in the gaseous state Reserved, the remainder is stored as liquid air at the bottom of the rectifying means, and the waste gas generated in the rectifying means is taken out into the waste gas extraction path and introduced into the heat exchanger, and derived from the heat exchanger. An air separation method in which waste gas is discharged to the outside through a discharge path, wherein a part of the gas accumulated in the upper part of the rectifying means is taken out, cooled by a condenser and liquefied, and then the rectifying means Reflux to the upper part, and the refluxed liquid in the rectification means Flowing downward and making countercurrent contact with the compressed air rising from the bottom of the rectifying means, and by this contact, heat exchange is performed between the reflux liquid and the compressed air, and a part of the compressed air is liquefied. The rectifying means is allowed to flow down to the bottom of the rectifying means, and a part of the reflux liquid is vaporized to rise to the upper part of the rectifying means. On the other hand, a pulse tube type inflator is provided. The first gist is an air separation method in which waste gas in the waste gas take-out path is introduced, cooled and adiabatically expanded and then taken out from the pulse tube expander, and returned to the waste gas take-out path. An air compressing means for compressing air taken from the outside, a removing means for removing impurities in the compressed air compressed by the air compressing means, a heat exchanger for cooling the compressed air that has passed through the removing means, The via heat exchanger the compressed air which has been cooled to a low temperature and separated by utilizing the difference in boiling point components desired ingredient reservoir on top in a gaseous state, a rectification means for accumulating at the bottom and the remaining as liquid air , An air separation unit having a waste gas extraction path for extracting waste gas generated in the rectification means and introducing it into the heat exchanger, and a discharge path for discharging the waste gas derived from the heat exchanger to the outside A condenser provided outside the rectifying means, a first reflux pipe for taking out a part of the gas accumulated in the upper part of the rectifying means and inserting it into the condenser; and liquefying by the condenser And a second reflux pipe for refluxing the gas to the upper part of the rectification means, and a reflux liquid from the second reflux pipe flows down in the rectification means, and from the bottom of the rectification means. Contact with the rising compressed air countercurrently, and this contact Heat exchange is performed between the flowing liquid and the compressed air, and a part of the compressed air is liquefied and flows down to the bottom of the rectifying means, and a part of the reflux liquid is vaporized to be an upper part of the rectifying means. On the other hand, a pulse tube type expander is provided, and the pulse tube type expander introduces the waste gas in the waste gas take-out path into the pulse tube type expander, adiabatically expands and cools the pulse tube type expander. An air separation device configured to be taken out from the vessel and returned to the waste gas extraction path is a second gist.
すなわち、本発明の空気分離方法では、その寒冷源として、パルスチューブ式膨張器の冷熱エネルギーを利用している。このパルスチューブ式膨張器は、これに設けた廃ガス吸入用開閉弁,廃ガス吐出用開閉弁等の開閉弁の開閉時間,開閉回数等を適宜変更することにより、廃ガスの吸入量,吐出量を適宜変化させることができ、ガス処理変動可能量が大きい。したがって、起動時のように、製品ガスの発生量が少なく、廃ガスの発生量が多いときには、多量の廃ガスをパルスチューブ式膨張器に供給することができるため、大きな寒冷を得ることができ、起動時間を短縮させることができる。しかも、パルスチューブ式膨張器は、単独で流量調節が可能であるため、従来例のように、膨脹タービンのタービン入口に流量調節弁を設ける必要がなく、その分安価になる。また、本発明の空気分離装置によれば、上記優れた空気分離方法を行うことができる。 That is, in the air separation method of the present invention, the cold energy of the pulse tube expander is used as the cold source. This pulse tube expander is designed to change the open / close time and the number of open / close times of the open / close valve for waste gas suction and the open / close valve for discharge of the waste gas, etc. The amount can be changed as appropriate, and the amount of gas processing fluctuation is large. Therefore, a large amount of waste gas can be supplied to the pulse tube expander when the amount of product gas generated is small and the amount of waste gas generated is large, such as at the time of startup. , The startup time can be shortened. Moreover, since the flow rate of the pulse tube expander can be adjusted independently, it is not necessary to provide a flow rate control valve at the turbine inlet of the expansion turbine as in the conventional example, and the cost is reduced accordingly. Moreover, according to the air separation apparatus of the present invention, the above excellent air separation method can be performed.
つぎに、本発明の実施の形態を図面にもとづいて詳しく説明する。 Next, embodiments of the present invention will be described in detail with reference to the drawings.
図1は本発明の空気分離装置の一実施の形態を示す構成図である。この実施の形態では、図9の深冷空気分離装置において用いた膨脹タービン30に代えて、パルスチューブエキスパンダ(パルスチューブ式膨張器)1を用いている。このパルスチューブエキスパンダ1は、単独で流量調節が可能であるため、図9の深冷空気分離装置では設けていた、膨脹タービン30のタービン入口の流量調節弁28aを設けていない。また、液面コントローラー23は、図9に示す深冷空気分離装置と同様に、精留塔16の底部に溜まる液体空気21の液面を制御するものであるが、この実施の形態では、後述するパルスチューブエキスパンダ1の各開閉弁3,4,7a,8aの開閉を行い、そのパルスチューブ2に供給する廃ガス量を制御している。すなわち、上記液面が所定値を上回ると、パルスチューブエキスパンダ1に設けたガス吸入用開閉弁3、廃ガス吐出用開閉弁4(図2参照)の開閉回数を少なくして、パルスチューブエキスパンダ1に供給する廃ガス量を減少させ、上記液面が所定値を下回ると、上記ガス吸入用開閉弁3,廃ガス吐出用開閉弁4の開閉回数を多くして、パルスチューブエキスパンダ1に供給する廃ガス量を増大させるようになっている。このとき、上記両開閉弁7a,8aも適宜に開閉制御される。それ以外の部分は図9に示す空気分離装置と同様であり、同様の部分には同じ符号を付している。 FIG. 1 is a block diagram showing an embodiment of an air separation device of the present invention. In this embodiment, a pulse tube expander (pulse tube expander) 1 is used instead of the expansion turbine 30 used in the cryogenic air separation device of FIG. Since the pulse tube expander 1 can adjust the flow rate independently, the flow rate adjustment valve 28a at the turbine inlet of the expansion turbine 30 provided in the cryogenic air separation device of FIG. 9 is not provided. The liquid level controller 23 controls the liquid level of the liquid air 21 collected at the bottom of the rectifying column 16, as in the chilled air separation apparatus shown in FIG. The on-off valves 3, 4, 7 a, 8 a of the pulse tube expander 1 are opened and closed, and the amount of waste gas supplied to the pulse tube 2 is controlled. That is, when the liquid level exceeds a predetermined value, the number of times of opening and closing of the gas suction on-off valve 3 and the waste gas discharge on-off valve 4 (see FIG. 2) provided in the pulse tube expander 1 is reduced, When the amount of waste gas supplied to the panda 1 is decreased and the liquid level falls below a predetermined value, the number of times of opening and closing the gas suction on-off valve 3 and the waste gas discharge on-off valve 4 is increased, and the pulse tube expander 1 The amount of waste gas supplied to the system is increased. At this time, both the on-off valves 7a and 8a are appropriately controlled to open and close. The other parts are the same as those of the air separation device shown in FIG. 9, and the same reference numerals are given to the same parts.
上記パルスチューブエキスパンダ1は、この実施の形態では、図2に示すように、アクティブバッファ型のものが用いられており、それ自体の低温端部に分岐パイプ28と戻しパイプ31とが連結されるパルスチューブ2と、上記分岐パイプ28に設けたガス吸入用開閉弁3と、上記戻しパイプ31に設けた廃ガス吐出用開閉弁4と、上記パルスチューブ2の高温端部に開閉弁7a,8a付き接続パイプ7,8を介して連結される2つのアクティブバッファタンク5,6とを備えている。そして、分岐パイプ28からパルスチューブ2内に吸入した低温の廃ガスを、パルスチューブ2内で断熱膨張させて冷却することにより、さらに低温にしたのち戻しパイプ31に吐出し、この吐出された廃ガスを寒冷として、熱交換器14に送給するようになっている。上記パルスチューブエキスパンダ1では、上記両開閉弁3,4の開閉時間,開閉回数等を適宜設定することにより、パルスチューブ2に吸入,吐出する廃ガス量を変動させることができる。このため、起動時のように、製品ガスの発生量が少なく、廃ガスの発生量が多いときには、多量の廃ガスをパルスチューブ2に供給することができ、起動時間を短縮することができる。なお、この実施の形態では、パルスチューブ2の低温端部に第一連結パイプ2aを介して分岐パイプ28と戻しパイプ31とが連結しているが、それぞれ別々に連結してもよい。また、パルスチューブ2の高温端部に第2連結パイプ2bを介して2つの接続パイプ7,8が連結しているが、それぞれ別々に連結してもよい。 In this embodiment, the pulse tube expander 1 is an active buffer type as shown in FIG. 2, and a branch pipe 28 and a return pipe 31 are connected to a low temperature end portion of the pulse tube expander 1 itself. Pulse tube 2, gas suction on-off valve 3 provided on the branch pipe 28, waste gas discharge on-off valve 4 provided on the return pipe 31, and on-off valve 7 a, Two active buffer tanks 5 and 6 connected via connecting pipes 7 and 8 with 8a are provided. Then, the low-temperature waste gas sucked into the pulse tube 2 from the branch pipe 28 is adiabatically expanded and cooled in the pulse tube 2 to be further cooled, and then discharged to the return pipe 31. The gas is cooled and supplied to the heat exchanger 14. In the pulse tube expander 1, the amount of waste gas sucked into and discharged from the pulse tube 2 can be varied by appropriately setting the opening / closing time, the number of times of opening / closing, and the like of both the opening / closing valves 3 and 4. For this reason, a large amount of waste gas can be supplied to the pulse tube 2 when the amount of generated product gas is small and the amount of generated waste gas is large, such as during start-up, and the start-up time can be shortened. In this embodiment, the branch pipe 28 and the return pipe 31 are connected to the low temperature end portion of the pulse tube 2 via the first connection pipe 2a, but may be connected separately. Moreover, although the two connection pipes 7 and 8 are connected with the high temperature end part of the pulse tube 2 via the 2nd connection pipe 2b, you may connect separately, respectively.
上記の構成において、上記パルスチューブエキスパンダ1の作動を、つぎのサイクルを繰り返すことにより行う。すなわち、まず、図3に示すように、ガス吸入用開閉弁3,廃ガス吐出用開閉弁4および第2開閉弁7aを閉弁する。この状態で、パルスチューブ2内は低圧廃ガス源の内圧と同一圧力となっている。ついで、第1開閉弁8aを開弁すると、高圧アクティブバッファタンク6内の高圧廃ガスがパルスチューブ2の高温端部に流れ込み、パルスチューブ2内のガス圧は高圧アクティブバッファタンク6の圧力近くまで上昇する。この過程Pのパルスチューブ2内の気体分布が図3に示されている。図3において、Dは高圧アクティブバッファタンク6から導入された高圧廃ガスで、B,Cは低圧から高圧になったパルスチューブ2内の廃ガスである。また、図3において、2c,2dはパルスチューブ2の低温端部および高温端部に配設される円盤状の層流化部材である。 In the above configuration, the operation of the pulse tube expander 1 is performed by repeating the following cycle. That is, first, as shown in FIG. 3, the gas intake on-off valve 3, the waste gas discharge on-off valve 4 and the second on-off valve 7a are closed. In this state, the inside of the pulse tube 2 is the same pressure as the internal pressure of the low-pressure waste gas source. Next, when the first on-off valve 8 a is opened, the high-pressure waste gas in the high-pressure active buffer tank 6 flows into the high temperature end of the pulse tube 2, and the gas pressure in the pulse tube 2 is close to the pressure of the high-pressure active buffer tank 6. To rise. The gas distribution in the pulse tube 2 in the process P is shown in FIG. In FIG. 3, D is high-pressure waste gas introduced from the high-pressure active buffer tank 6, and B and C are waste gas in the pulse tube 2 that has been changed from low pressure to high pressure. In FIG. 3, reference numerals 2 c and 2 d denote disk-like laminar flow members disposed at the low temperature end and the high temperature end of the pulse tube 2.
つぎに、図4に示すように、第1開閉弁8aを開弁した状態でガス吸入用開閉弁3のみを開弁する(その他の開閉弁4,7aは元のまま)と、高圧廃ガス源から高圧廃ガスが供給されてパルスチューブ2の低温端部に流入する。このとき、高圧廃ガス源の給気圧力が高圧アクティブバッファタンク6の圧力よりやや高く設定されており、上記過程Pでパルスチューブ2の高温端部に流れ込んだ高圧アクティブバッファタンク6の高圧廃ガスD(図3参照)はただちに高圧アクティブバッファタンク6内に戻される。この過程Qは基本的には等圧給気過程であり、パルスチューブ2内の気体分布が図4に示されている。図4において、Aは高圧廃ガス源からパルスチューブ2内に導入された高圧廃ガスである。 Next, as shown in FIG. 4, when only the gas intake on-off valve 3 is opened with the first on-off valve 8a opened (the other on-off valves 4 and 7a remain unchanged), the high-pressure waste gas High pressure waste gas is supplied from the source and flows into the low temperature end of the pulse tube 2. At this time, the supply pressure of the high-pressure waste gas source is set slightly higher than the pressure of the high-pressure active buffer tank 6, and the high-pressure waste gas of the high-pressure active buffer tank 6 that has flowed into the high-temperature end of the pulse tube 2 in the above process P. D (see FIG. 3) is immediately returned to the high pressure active buffer tank 6. This process Q is basically an isobaric supply process, and the gas distribution in the pulse tube 2 is shown in FIG. In FIG. 4, A is high-pressure waste gas introduced into the pulse tube 2 from the high-pressure waste gas source.
つぎに、図5に示すように、第1開閉弁8aとガス吸入用開閉弁3を閉弁したのち(廃ガス吐出用開閉弁4は閉弁したたまま)、第2開閉弁7aを開弁すると、パルスチューブ2の高温端部のガスC(図4参照)が低圧アクティブバッファタンク5に流入する(戻る)ため、パルスチューブ2内の圧力が低圧アクティブバッファタンク5の圧力まで低下する。すなわち、上記過程Qにおいてパルスチューブ2の低温端部に入った高圧廃ガスAは、廃ガスBとともに低圧アクティブバッファタンク5の圧力まで膨脹し、温度降下してパルスチューブ2の低温端部側を冷却する。この過程Rのパルスチューブ2内の気体分布が図5に示されている。 Next, as shown in FIG. 5, after the first on-off valve 8a and the gas intake on-off valve 3 are closed (the waste gas discharge on-off valve 4 remains closed), the second on-off valve 7a is opened. When the valve is operated, the gas C (see FIG. 4) at the high temperature end of the pulse tube 2 flows (returns) into the low-pressure active buffer tank 5, so that the pressure in the pulse tube 2 decreases to the pressure of the low-pressure active buffer tank 5. That is, the high-pressure waste gas A that has entered the low-temperature end of the pulse tube 2 in the above process Q expands to the pressure of the low-pressure active buffer tank 5 together with the waste gas B, drops in temperature, and reaches the low-temperature end side of the pulse tube 2. Cooling. The gas distribution in the pulse tube 2 in the process R is shown in FIG.
つぎに、図6に示すように、廃ガス吐出用開閉弁4を開弁する(その他の開閉弁3,7a,8aは元のまま)と、上記過程Rにおいてパルスチューブ2内で膨脹した廃ガスAが低圧廃ガス源に排出され、低圧アクティブバッファタンク5の低圧廃ガスがパルスチューブ2内に流入する。 Next, as shown in FIG. 6, when the waste gas discharge on-off valve 4 is opened (the other on-off valves 3, 7 a, 8 a remain unchanged), the waste expanded in the pulse tube 2 in the process R described above. The gas A is discharged to the low pressure waste gas source, and the low pressure waste gas from the low pressure active buffer tank 5 flows into the pulse tube 2.
こうして1サイクルが終わり、ついで新たに上記過程Pが始まる。このように循環してワークするので、高圧廃ガスは、不断に膨脹して低圧となる。気体のパルスチューブ2内における熱伝導,混合と、流動によるロスとを考慮しない場合、高圧アクティブバッファタンク6内の圧力は高圧廃ガス源の給気圧力に、また低圧アクティブバッファタンク5内の圧力は低圧廃ガス源の内圧にそれぞれ等しい。そして、上記の1サイクルが終わると、結局、廃ガスAが高圧廃ガス源からパルスチューブ2内に入り、このパルスチューブ2内で断熱膨脹し寒冷を発生したのち、低圧廃ガス源内に排出されたことになる。また、廃ガスBは常にパルスチューブ2内でガスピストンの役割を演じ、C,Dはそれぞれ各アクティブバッファタンク5,6から出入りしているだけである。 Thus, one cycle is completed, and then the above process P is newly started. Since the workpiece is circulated in this way, the high-pressure waste gas expands constantly and becomes a low pressure. When heat conduction and mixing in the gas pulse tube 2 and loss due to flow are not considered, the pressure in the high-pressure active buffer tank 6 is the supply pressure of the high-pressure waste gas source, and the pressure in the low-pressure active buffer tank 5. Is equal to the internal pressure of the low-pressure waste gas source. When the above cycle is completed, the waste gas A eventually enters the pulse tube 2 from the high pressure waste gas source, adiabatically expands in the pulse tube 2 and generates cold, and then is discharged into the low pressure waste gas source. That's right. Further, the waste gas B always plays the role of a gas piston in the pulse tube 2, and C and D only enter and exit from the respective active buffer tanks 5 and 6, respectively.
図1および図9に示す装置のガス処理量の目安を、下記の表1に示す。まず、前提は、上記両装置において、寒冷として利用されるのは、廃ガスラインの低温の廃ガスのみである。また、スタートしてから定常運転になるまでの時間(起動時間)は、廃ガスラインで熱交換する量で決まる。この廃ガスラインの廃ガスのうち、ある割合の廃ガスは、膨張タービン30(図9参照)もしくはパルスチューブエキスパンダ1(図1参照)で自己膨張し、さらに低温になり、さらなる寒冷を得る。そして、より多くの廃ガスを膨張タービン30もしくはパルスチューブエキスパンダ1に供給することで、より多くの寒冷を得ることができる。すなわち、膨張タービン30もしくはパルスチューブエキスパンダ1への廃ガスの供給量が多いほど、より多くの寒冷が得られる。 Table 1 below shows an indication of the gas throughput of the apparatus shown in FIGS. First, the premise is that only the low temperature waste gas in the waste gas line is used as cold in both the above-mentioned apparatuses. Further, the time (start-up time) from the start to the steady operation is determined by the amount of heat exchange in the waste gas line. A certain percentage of the waste gas in the waste gas line is self-expanded by the expansion turbine 30 (see FIG. 9) or the pulse tube expander 1 (see FIG. 1), and is further cooled to obtain further coldness. . And more cold can be obtained by supplying more waste gas to the expansion turbine 30 or the pulse tube expander 1. That is, the greater the amount of waste gas supplied to the expansion turbine 30 or the pulse tube expander 1, the more cold is obtained.
上記両装置において、原料空気の全量を100体積%(以下「%」と略す)とする。また、上記両装置において、定常運転時,スタート時の製品N2 ガス量および廃ガスラインの廃ガス量を同等と仮定する。すなわち、上記両装置がともに、定常運転時には、製品N2 ガス量が上記全量の50%で、廃ガスラインの廃ガス量が上記全量の50%であるとし、スタート時には、製品N2 ガス量が上記全量の20%で、廃ガスラインの廃ガス量が上記全量の80%であると仮定する。また、上記したように、膨張タービン30のガス処理変動可能量は、一般的に2割程度である。 In both apparatuses, the total amount of raw material air is 100% by volume (hereinafter abbreviated as “%”). In both the above devices, it is assumed that the amount of product N 2 gas at the time of steady operation and at the start and the amount of waste gas in the waste gas line are equal. That is, the two devices together, at the time of steady operation, the product N 2 gas amount of 50% of the total amount of waste gas quantity of the waste gas line is to be 50% of the total amount, at the time of start, the product N 2 gas amount Is 20% of the total amount, and the waste gas amount of the waste gas line is 80% of the total amount. Further, as described above, the gas processing fluctuation possible amount of the expansion turbine 30 is generally about 20%.
下記の表1に示すように、定常運転時には、上記両装置がともに、50%の廃ガスのうち、45%が膨張タービン30もしくはパルスチューブエキスパンダ1に供給されたのち熱交換器14に送り込まれ、5%が直接に(すなわち、膨張タービン30もしくはパルスチューブエキスパンダ1を経由せずに)熱交換器14に送り込まれている。 As shown in Table 1 below, at the time of steady operation, both of the above devices are supplied to the heat exchanger 14 after 45% of the 50% waste gas is supplied to the expansion turbine 30 or the pulse tube expander 1. 5% is fed directly into the heat exchanger 14 (that is, not via the expansion turbine 30 or the pulse tube expander 1).
一方、スタート時には、図9の深冷空気分離装置では、80%の廃ガスのうち50%しか膨張タービン30に供給することができない。このため、50%の廃ガスだけが膨張タービン30に供給されたのち熱交換器14に送り込まれ、30%の廃ガスが直接に熱交換器14に送り込まれている。したがって、30%の低温の廃ガスと、50%の(膨張タービン30を経由した)さらに低温の廃ガスとにより、寒冷を得ている。一方、図1の空気分離装置では、80%の廃ガスをすべてパルスチューブエキスパンダ1に供給することができる。したがって、80%の(パルスチューブエキスパンダ1を経由した)さらに低温の廃ガスにより、寒冷を得ている。このように、図1の空気分離装置では、熱交換器14に送り込まれる廃ガス中に、よく冷えた廃ガスの量が多いため、寒冷量が多く、これにより、系全体が冷えるまでの時間(すなわち、スタートしてから定常運転になるまでの時間〔起動時間〕)が短縮される。 On the other hand, at the start, only 50% of the 80% waste gas can be supplied to the expansion turbine 30 in the cryogenic air separation device of FIG. For this reason, only 50% of the waste gas is supplied to the expansion turbine 30 and then sent to the heat exchanger 14, and 30% of the waste gas is sent directly to the heat exchanger 14. Therefore, cold is obtained by 30% of the low temperature waste gas and 50% of the lower temperature waste gas (via the expansion turbine 30). On the other hand, in the air separation device of FIG. 1, 80% of all waste gas can be supplied to the pulse tube expander 1. Therefore, chilling is obtained by 80% of the lower temperature waste gas (via the pulse tube expander 1). As described above, in the air separation device of FIG. 1, the amount of cold gas is large in the waste gas sent to the heat exchanger 14, and thus the amount of cold is large, thereby the time until the entire system cools down. (That is, the time from start to steady operation [starting time]) is shortened.
上記のように、この実施の形態では、寒冷源として、パルスチューブエキスパンダ1を用いているため、起動時のように、製品N2 ガスの発生量が少なく、廃ガスの発生量が多いときには、この多量の廃ガスをパルスチューブエキスパンダ1に供給することで、起動時間を短縮することができる。しかも、パルスチューブエキスパンダ1は、単独で流量調節が可能であるため、従来例のように、膨脹タービンのタービン入口に流量調節弁を設ける必要がなく、安価になる。 As described above, in this embodiment, since the pulse tube expander 1 is used as a cold source, when the amount of product N 2 gas generated is small and the amount of waste gas generated is large as at the time of startup. By supplying this large amount of waste gas to the pulse tube expander 1, the start-up time can be shortened. In addition, since the flow rate of the pulse tube expander 1 can be adjusted independently, it is not necessary to provide a flow rate control valve at the turbine inlet of the expansion turbine as in the conventional example, and the cost is reduced.
図7は本発明の空気分離装置の他の実施の形態を示している。この実施の形態では、廃ガス取出パイプ27は、低温の廃ガスの全部もしくは一部(全く無い場合を含む)を分岐パイプ28を経てパルスチューブエキスパンダ1に送り込み、一方、残部を熱交換器14内に案内したのち外部に放出する作用をする。また、パルスチューブエキスパンダ1を経由した廃ガスを、戻しパイプ31で熱交換器14内に案内したのち、放出パイプ29から外部に放出するようにしている。それ以外の部分は図1に示す空気分離装置と同様であり、同様の部分には同じ符号を付している。この実施の形態でも、上記実施の形態と同様に作用し、同様の効果を奏する。 FIG. 7 shows another embodiment of the air separation device of the present invention. In this embodiment, the waste gas extraction pipe 27 sends all or part of the low-temperature waste gas (including the case where there is no waste gas) to the pulse tube expander 1 via the branch pipe 28, while the remainder is the heat exchanger. After being guided into 14, it acts to be released to the outside. Further, after the waste gas that has passed through the pulse tube expander 1 is guided into the heat exchanger 14 by the return pipe 31, it is discharged from the discharge pipe 29 to the outside. Other parts are the same as those of the air separation device shown in FIG. 1, and the same reference numerals are given to the same parts. This embodiment also acts in the same manner as the above embodiment and produces the same effects.
図8は本発明の空気分離装置のさらに他の実施の形態を示している。この実施の形態では、図7の空気分離装置において、熱交換器14内で廃ガス取出パイプ27から分岐パイプ28を分岐している。それ以外の部分は図7に示す空気分離装置と同様であり、同様の部分には同じ符号を付している。この実施の形態でも、図7の実施の形態と同様に作用し、同様の効果を奏する。 FIG. 8 shows still another embodiment of the air separation device of the present invention. In this embodiment, the branch pipe 28 is branched from the waste gas extraction pipe 27 in the heat exchanger 14 in the air separation device of FIG. The other parts are the same as those of the air separation device shown in FIG. 7, and the same reference numerals are given to the same parts. This embodiment also acts in the same manner as the embodiment of FIG. 7 and produces the same effects.
1 パルスチューブエキスパンダ
11 原料空気圧縮機
12 吸着塔
14 熱交換器
27 廃ガス取出パイプ
29 放出パイプ
DESCRIPTION OF SYMBOLS 1 Pulse tube expander 11 Raw material air compressor 12 Adsorption tower 14 Heat exchanger 27 Waste gas extraction pipe 29 Release pipe
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004066272A JP4417142B2 (en) | 2004-03-09 | 2004-03-09 | Air separation method and apparatus used therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004066272A JP4417142B2 (en) | 2004-03-09 | 2004-03-09 | Air separation method and apparatus used therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005257108A JP2005257108A (en) | 2005-09-22 |
JP4417142B2 true JP4417142B2 (en) | 2010-02-17 |
Family
ID=35083004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004066272A Expired - Fee Related JP4417142B2 (en) | 2004-03-09 | 2004-03-09 | Air separation method and apparatus used therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4417142B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102052105A (en) * | 2010-12-30 | 2011-05-11 | 上海加力气体有限公司 | Brake method of expansion machine and air separation unit |
-
2004
- 2004-03-09 JP JP2004066272A patent/JP4417142B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005257108A (en) | 2005-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102493917B1 (en) | gas production system | |
JPH04283390A (en) | Air rectification method and equipment for producing gaseous oxygen in variable amount | |
JP2005134036A (en) | Air separator, and its operating method | |
JP2005083588A (en) | Helium gas liquefying device, and helium gas recovering, refining and liquefying device | |
JP2016080296A (en) | Cryogenic air separation device and cryogenic air separation method | |
CN100416197C (en) | Method and apparatus for removing nitrogen | |
JP6354517B2 (en) | Cryogenic air separation device and cryogenic air separation method | |
JP4417142B2 (en) | Air separation method and apparatus used therefor | |
EP1903290A1 (en) | Nitrogen generating device and apparatus for use therefor | |
JP3644918B2 (en) | Air separation device and air separation method | |
CN100357684C (en) | Method and device for separating air | |
JP2001141359A (en) | Air separator | |
JP3609009B2 (en) | Air separation device | |
JP2007147113A (en) | Nitrogen manufacturing method and device | |
JP4408211B2 (en) | Pressure adjusting device for liquefied natural gas tank and pressure adjusting method thereof | |
JP7105085B2 (en) | Air-to-liquid separation device and method for stopping operation of air-to-liquid separation device | |
JPH08296961A (en) | Air separation method and apparatus used therefor | |
JP3976188B2 (en) | Product gas production method using air separation device | |
KR102139990B1 (en) | Method for operating air separation plant | |
JPS6044587B2 (en) | Totally low pressure air separation method and device | |
JPH09318244A (en) | Air liquefying and separating device and method therefor | |
JP2001336876A (en) | Method and system for producing nitrogen | |
JP3026098B2 (en) | Air liquefaction separation method and apparatus suitable for fluctuations in demand | |
JP7458226B2 (en) | Air separation equipment and oxygen gas production method | |
JP5244491B2 (en) | Air separation device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070206 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081209 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090204 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091117 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091125 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121204 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |