JP4416997B2 - Electrode substrate for dye-sensitized solar cell, photoelectric conversion element, and dye-sensitized solar cell - Google Patents

Electrode substrate for dye-sensitized solar cell, photoelectric conversion element, and dye-sensitized solar cell Download PDF

Info

Publication number
JP4416997B2
JP4416997B2 JP2002328109A JP2002328109A JP4416997B2 JP 4416997 B2 JP4416997 B2 JP 4416997B2 JP 2002328109 A JP2002328109 A JP 2002328109A JP 2002328109 A JP2002328109 A JP 2002328109A JP 4416997 B2 JP4416997 B2 JP 4416997B2
Authority
JP
Japan
Prior art keywords
layer
dye
metal wiring
electrode substrate
sensitized solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002328109A
Other languages
Japanese (ja)
Other versions
JP2004164950A (en
Inventor
浩志 松井
信夫 田辺
顕一 岡田
卓也 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002328109A priority Critical patent/JP4416997B2/en
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to PCT/JP2003/012738 priority patent/WO2004032274A1/en
Priority to KR1020057005613A priority patent/KR100689229B1/en
Priority to US10/529,818 priority patent/US8629346B2/en
Priority to AU2003275542A priority patent/AU2003275542B2/en
Priority to TW092127615A priority patent/TWI326920B/en
Priority to EP03758711A priority patent/EP1548868A4/en
Priority to CN 200810126942 priority patent/CN101312096B/en
Publication of JP2004164950A publication Critical patent/JP2004164950A/en
Application granted granted Critical
Publication of JP4416997B2 publication Critical patent/JP4416997B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、色素増感太陽電池用電極基板、光電変換素子、並びに色素増感太陽電池に関する。
【0002】
【従来の技術】
環境問題・資源問題などを背景に、クリーンエネルギーとしての太陽電池が注目を集めている。しかしながら、従来のシリコン系太陽電池は、製造コストが高い、原料供給が不十分などの課題が残されており、大幅普及には至っていない。また、CIS系などの化合物系太陽電池は、極めて高い変換効率を示すなど優れた特徴を有しているが、コストや環境負荷などの問題がやはり大幅普及への障害となっている。
【0003】
一方、色素増感型太陽電池は、安価で高い変換効率を得られる光電変換素子として着目されている(例えば、非特許文献1参照。)。この光電変換素子の一般的な構造としては、透明な導電性基板の上に、二酸化チタンなどの酸化物半導体ナノ粒子を用いた多孔膜を形成し、これに増感色素を担持させた半導体電極と、白金スパッタした導電性ガラスなどの対極とを組み合わせ、両極間にヨウ素・ヨウ化物イオンなどの酸化・還元種を含む有機電解液を電荷移送層として充填したものなどを挙げることができる。半導体極をラフネスファクタ>1000という大きな比表面を有する多孔膜構造とすることで光吸収率を高め、10%以上の光電変換効率も報告されている。コスト面でも、現行のシリコン系太陽電池の1/2〜1/6程度と予想されており、必ずしも複雑・大規模な製造設備を必要とせず、更に有害物質も含まないため、大量普及に対応できる安価・大量生産型太陽電池として、高い可能性を有するといえる。
【0004】
ここで用いる透明基板としては、ガラス基板表面にスズ添加酸化インジウム(ITO)、フッ素添加酸化スズ(FTO)などの透明導電膜を予め蒸着、スパッタなどの手法により被覆したものが一般的である。しかしながら、ITOやFTOの比抵抗は10−4〜10−3Ω・cm程度と、銀、金といった金属の比抵抗の約100倍もの値を示すことから、市販されている透明導電ガラスは抵抗値が高く、太陽電池に用いた場合、特に大面積セルとした場合に、光電変換効率の低下が著しくなる。
透明導電ガラスの抵抗を下げる手法としては、透明導電層(ITO、FTOなど)の形成厚さを厚くすることが考えられるが、十分な抵抗値を得られるほどの厚さで膜形成すると透明導電層による光吸収が大きくなって、入射光の窓材透過効率が著しく低下し、結果として、やはり太陽電池の光電変換効率が低下することになる。
【0005】
このような問題点に対する解決策として、例えば、太陽電池の窓極などとして使用する透明導電層付き基板の表面に開口率を著しく損なわない程度に金属配線層を設け、基板の抵抗を下げようとする検討がなされている(例えば、特願2001−400593号参照。)。また、このように基板表面に金属配線層を設ける場合には、電解液による金属配線の腐食、金属配線層からの電解液への逆電子移動を防止するため、少なくとも金属配線層表面部分が、何らかの遮蔽層により保護されている必要がある。この遮蔽層の厚さは、必ずしも要求されるものではないが、回路表面を緻密に被覆されていなければならない。
【0006】
【特許文献1】
特開平1−220380号
【非特許文献1】
ビー・オレガン(B.O’Regan)、エム・グラツェル(M.Graetzel)著、ネイチャー(nature)、vol.353、Oct.24、1991、p737
【0007】
【発明が解決しようとする課題】
しかしながら、金属回路表面にピンホールや亀裂などの影になる部分がある場合、遮蔽層によって被覆されない部分が生じる可能性があり、これは回路の腐食、電解液への逆電子移動を招き、セル特性を著しく損ねることになる。特に、遮蔽層として一般的なFTO、ITO、酸化チタンを用いた膜の形成方法としては、スパッタ法やスプレー熱分解法などが好適であるが、この手法では影部分の製膜が困難であり、また、欠陥部分を修正しようと遮蔽層膜厚を厚くすれば、光透過性を損ねることになるので、やはり好ましくない。
【0008】
例えば、導電粒子とガラスフリットバインダとを主成分とするペーストを印刷し、500℃程度で焼結した回路の場合、導電粒子同士の融着を妨げず、高い導電性を得ようとするには、ガラスフリットの配合量を少なくするため、一般に塗膜表面、内部にボイドやピンホールなど急激な凹凸や影が生じ、遮蔽層形成が極めて困難となる。逆に、このような塗膜表面の欠陥を抑制するために、バインダとなるガラスフリットの配合量を増した場合、塗膜導電率が著しく低下し、回路本来の機能を発揮できなくなる傾向にある。
【0009】
【課題を解決するための手段】
本発明は上記事情に鑑みてなされたものであり、金属配線層の表面粗さ(ラフネス)を小さくし、ピンホールなどの無い緻密な遮蔽層を形成する手法を提供する。ここでは特に、製造コスト、製造効率を向上させるために回路形成工程の少なくとも一部にスクリーン印刷をはじめとする印刷法を適用する手法に着目した。
【0010】
即ち、本発明の色素増感太陽電池用電極基板は、透明基板上に金属配線層と透明導電層とを有する電極基板であって、前記金属配線層と透明導電層の重なり部において、前記金属配線層が透明導電層の下又は上に配置され、金属配線層が少なくとも内層と外層との2層から構成され、前記内層の体積抵抗率が、外層の体積抵抗率に比べて小さく、前記外層が少なくとも導電粒子とバインダ材とを含有するペースト組成物で形成され、該ペースト組成物のバインダ材の配合比が、金属配線層中の他の層を形成する組成物中のバインダ材配合比に比べて、大きく、前記金属配線層及び/又は透明導電層からなる導電層の表面に、遮蔽層を有することを特徴とする。
また、上記外層が印刷法により形成されることが好ましい
また、上記金属配線層を形成する組成物が銀、又はニッケルを含有することが好ましい
本発明の光電変換素子は、上述の色素増感太陽電池用電極基板を有することを特徴とする。
本発明の色素増感太陽電池は、上述の光電変換素子からなることを特徴とする。
【0011】
【発明の実施の形態】
本発明の電極基板は、透明基板上に金属配線層と透明導電層とを有する電極基板であって、金属配線層が少なくとも内層と外層との2層から構成されている。また、上記電極基板は、図1に示すように、透明基板2一面に形成された透明導電層3上に、金属配線層4が配置された構造でもよいし、或いは、図2に示すように、金属配線層4が配置された透明基板2上に、透明導電層3が形成された構造でもよい。なお、図2中、図1で用いた符号と同一の符号は、図1の構成と同様のものであることを意味する。
【0012】
透明基板2の材料としては、耐熱ガラスなどのガラスを使用することが一般的であるが、ガラス以外にも、例えばポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリエーテルスルホン(PES)などの透明プラスチックや、酸化チタン、アルミナといったセラミクスの研磨板などを挙げることができ、光透過性の高いものが好ましい。
【0013】
透明導電層3を形成する材料としては、特に制限されないが、例えばスズ添加酸化インジウム(ITO)、酸化スズ(SnO)、フッ素添加酸化スズ(FTO)などを挙げることができ、できるだけ光透過率が高いものを材料の組み合わせや用途に応して適宜選定することが好ましい。
【0014】
透明導電層3を透明基板2上に形成する方法としては、例えばスパッタ法、蒸着法などの公知の方法から、透明導電層3を形成する材料などに応じて、適切な方法を用いればよい。
【0015】
金属配線層4の内層4aを形成する材料としては、特に制限はないが、例えば金、銀、白金、アルミニウム、ニッケル、チタンなどを用いることができる。これらの中でも、汎用の印刷ペーストとして比較的安価で、容易に入手できることから、銀、又はニッケルを好適に用いることができる。
また、導電率などの特性を損ねない範囲で、バインダ材や適当な添加剤を加えることができる。
【0016】
内層4aを形成する方法としては、特に制限はなく、印刷法、スパッタ法、蒸着法、メッキ法などが挙げられ、これらの中でも特に印刷法が望ましい。
【0017】
このように形成される内層4aは、その体積抵抗率が外層4bの体積抵抗率に比べて小さいことが好ましい。本発明において、内層4aの塗膜表面は滑らかであるほうが好ましいが、この層は電極基板1の抵抗を下げる金属配線層4としての本来の目的に従って形成されるため、高い導電率を有することが優先される。一方、後段で説明する外層4bは、導電層ではあるが、その主目的は配線表面を滑らかにし、遮蔽層5の形成を容易にするものであるため、内層4aと比較して体積抵抗率が大きくても構わない。
また、内層4aの体積抵抗率としては、少なくとも5×10−5Ω・cm以下であることが望ましい。この条件であれば、塗膜表面に多少のピンホールや亀裂が生じたとしても、外層4bにより補正できるので問題にならない。なお、金属配線層4中に、この層を有していれば、何らかの目的で、内層4a内外に外層4bとは異なる別層を形成しても構わない。
【0018】
金属配線層4の外層4bは、少なくとも導電粒子とバインダ材とを含有するペースト組成物で形成されていることが望ましい。導電粒子としては、特に制限されるものではなく、例えば銀、ニッケル、金、白金などが挙げられる。これらの中でも、汎用の印刷ペーストとして比較的安価で、容易に入手できることから、銀、又はニッケルを好適に用いることができる。
バインダ材としては、特に制限はないが、例えば色素増感太陽電池の電極基板1として用いる場合には、製造工程中に400〜500℃程度の熱処理を含むことから、ペースト組成物は焼成型のものが選定され、例えばガラスフリットなどが望ましい。バインダ材となるガラスフリットは、上記焼成温度以下で溶融可能であるものならば、特に限定されるものではない。
【0019】
外層4bを形成するペースト組成物中のバインダ材の配合比は、金属配線層4中の他の層を形成する組成物中のバインダ材配合比に比べて大きいことが好ましい。このようにバインダ材の配合比を調整することによって、外層4b塗膜表面にピンホールや亀裂などを含まず、上面から見た際に影になるような著しい凹凸の発生を抑制して、遮蔽層5の形成を容易にすることができる。
【0020】
また、外層4bを形成するペースト組成物中のバインダ材の配合比は、導電粒子に対して質量比で10%以上が好ましく、より好ましくは20%以上である。ただし、バインダ材の配合比の増大に伴い、膜(外層4b)の導電率が顕著に低下するため、表面状態が上記要求を満たす範囲でバインダ材の配合比は少ないほうが好適であり、90%以下であることが好ましく、更に好ましくは70%以下である。
【0021】
外層4bを形成する方法としては、印刷法が好ましい。また、印刷法であれば、特に制限はなく、例えばスクリーン印刷法、インクジェット法、メタルマスク方式等が挙げられる。
このように、外層4bを印刷法により形成することによって、表面粗さ(ラフネス)が小さく、亀裂やピンホールが生じないため、金属配線層4の表面を滑らかにし、遮蔽層5の形成を容易にすることができる。
更に、印刷法によれば、製造コストを低減でき、製造効率を向上させることができる。
【0022】
なお、本明細書における外層4bとは、前述の目的で印刷法により形成される印刷層を意味し、必ずしも金属配線層4において最表面に配置されることはなく、必要に応じて、更なる外側に何らかの目的で別層を形成してもよい。
【0023】
内層4aと外層4bとの塗膜の厚さを比較した場合、外層4b厚さは、内層4aの厚さの100%を上回らないことが望ましい。外層4b厚さが、内層4a厚さの100%を上回ると、回路の体積当たりの導電率が低くなるために、回路厚さが厚くなり過ぎる、又は導電率が不足するなどの不都合を生じ易い傾向にある。
【0024】
なお、内層4a、外層4bいずれに関しても、例えば導電粒子の融着などを目的とした焼成工程を要する場合、ガラス基材等への適用を考えれば、600℃(好適には550℃)以下での焼成温度にて、必要な特性を得られることが好ましい。
【0025】
本発明において、金属配線層4及び/又は透明導電層3からなる導電層の表面に遮蔽層5を有することが好ましい。
遮蔽層5を形成する材料としては、太陽電池とした際に接触する酸化還元対含有電解液との電子移動反応速度の遅く、光透過性に優れ、且つ、発生した光電子の移動を妨げないといった特性を有するものであれば、特に限定されるものではないが、例えば、酸化チタン、酸化亜鉛、酸化ニオブ、酸化スズ、フッ素添加酸化スズ(FTO)、スズ添加酸化インジウム(ITO)などを挙げることができる。
【0026】
遮蔽層5を形成する方法としては特に制限はなく、例えば、目的の化合物、或いは、その前駆体をスパッタ法、蒸着法、CVD法などの乾式法(気相法)により製膜する方法が挙げられる。また、金属などの前駆体を製膜した場合には、加熱処理または化学処理などにより酸化させることにより遮蔽層5を形成することができる。
【0027】
また、湿式法の場合、目的の化合物またはその前駆体を溶解、分散させた溶液をスピンコート法、ディッピング法、ブレードコート法などの方法により塗布した後、加熱処理や化学処理などにより目的の化合物に化学変化させることにより、遮蔽層5を形成することができる。前駆体としては、目的化合物の構成金属元素を有する塩類、錯体などが例示される。また、緻密な膜(遮蔽層5)を得るという目的から、分散状態より溶解状態であることが好ましい。
【0028】
また、スプレー熱分解法(SPD)などの場合、透明導電層3を有する透明基板2を加熱した状態で、これに向けて遮蔽層5の前駆体となる物質を噴霧し、熱分解させることにより、目的とする酸化物半導体に変化させて、遮蔽層5を形成することができる。
【0029】
遮蔽層5の厚さとしては、特に制限はないが、効果を発揮できる範囲で薄いほうが好ましく、10〜3000mm程度が好ましい。
【0030】
なお、本発明の電極基板1において、図2に示すように、金属配線層4を形成後、透明導電層3を基板上に形成した構造のものでは、透明導電層3が遮蔽層5を兼ねていても構わない。
【0031】
以上説明したように、本発明の電極基板1は、金属配線層4の外層4b表面に、ピンホールや亀裂などの影になる部分が生じないため、その表面を遮蔽層5によって緻密に被覆することができる。
【0032】
次に、上記電極基板1を用いた色素増感太陽電池について説明する。
本発明の色素増感太陽電池は、上述の電極基板1の上に、色素担持された酸化物半導体多孔膜を備える作用極と、この作用極に対向して配置された対極とを具備し、作用極と対極との間に、酸化還元対を含む電解質層が設けられている。
【0033】
半導体多孔膜の材料としては、酸化チタン(TiO)、酸化スズ(SnO)、酸化タングステン(WO)、酸化亜鉛(ZnO)、酸化ニオブ(Nb)などが挙げられ、これらを単独で又は2種以上を組み合わせて用いることができる。また、市販の微粒子や、ゾル−ゲル法により得られるコロイド溶液などから得ることもできる。
【0034】
半導体多孔膜の製造方法としては、例えば、コロイド溶液や分散液(必要に応じて添加剤を含む)をスクリーンプリント法、インクジェットプリント法、ロールコート法、ドクターブレード法、スピンコート法、スプレー塗布など種々の塗布法を用いて塗布するほか、微粒子の泳動電着、発泡剤の併用、ポリマービーズなどと複合化(後に鋳型成分のみ除去)などを適用することができる。
【0035】
半導体多孔膜に担持される色素としては、ビピリジン構造、ターピリジン構造などを配位子に含むルテニウム錯体、ポルフィリン、フタロシアニンなどの含金属錯体をはじめ、エオシン、ローダミン、メロシアニンなどの有機色素なども用いることができ、用途、使用半導体に適した励起挙動をとるものを特に限定されることなく選択することができる。
【0036】
電解質層を形成する電解液としては、酸化還元対を含む有機溶媒、室温溶融塩などを用いることができ、例えば、アセトニトリル、メトキシアセトニトリル、プロピオニトリル、プロピレンカーボネート、ジエチルカーボネート、γ−ブチロラクトンなどの有機溶媒、四級化イミダゾリウム系カチオンとヨウ化物イオン、ビストリフルオロメチルスルホニルイミドアニオンなどからなる室温溶融塩などを挙げることができる。
また、このような電解液に適当なゲル化剤を導入することにより、疑似固体化したもの、いわゆるゲル電解質を用いても構わない。
【0037】
酸化還元対としては、特に制限されるものではなく、例えば、ヨウ素/ヨウ化物イオン、臭素/臭化物イオンなどが挙げられ、例えば、前者の具体的としては、ヨウ化物塩(リチウム塩、四級化イミダゾリウム塩、テトラブチルアンモニウム塩などを単独で又は複合して用いることができる)とヨウ素との組み合わせが挙げられる。電解液には、更に、必要に応じて、tert−ブチルピリジンなど種々の添加物を添加することができる。
【0038】
電解液から形成される電解質層の代わりに、p型半導体などを電荷移送層として用いることも可能である。p型半導体としては、特に制限はないが、例えば、ヨウ化銅、チオシアン化銅などの1価銅化合物を好適に用いることができる。また、機能上、製膜上の必要に応じて、各種の添加剤を含有することができる。
電荷移送層の形成方法としては、特に制限はなく、例えば、キャスティング法、スパッタ法、蒸着法などの製膜方法が挙げられる。
【0039】
対極としては、例えば、導電性又は非導電性の基板上に、各種炭素系材料や白金、金などを蒸着、スパッタなどの方法で形成することができる。
更に、固体系の電荷移送層を用いる場合は、その表面に、直接スパッタ、塗布するなどの手法を用いても構わない。
【0040】
本発明の色素増感太陽電池は、本発明の電極基板1を有するため、電解液による金属配線の腐食や、金属配線層4から電解液への逆電子移動が抑制され、光電変換素子の出力効果が一層向上する。
【0041】
【実施例】
(実施例1)
100×100mmのFTO膜付きガラスの表面に、内層4aを形成する銀ペースト(銀粒子92/ガラスフリット8(質量比))を格子状にスクリーン印刷した。これを10分間のレベリング時間をおいて、135℃、20分間熱風循環炉で乾燥後、550℃、15分間焼成した。次いで、CCDカメラを用い、位置合わせをしながら外層4bを形成する銀ペースト(銀粒子55/ガラスフリット45(質量比))を重ね印刷し、10分間のレベリング時間をおいて、135℃、20分間熱風循環炉で乾燥後、550℃、15分間焼成して銀回路を形成した。なお、回路巾250μm(外層4b)、150μm(内層4a)、膜厚8μm(外層3μm+内層5μm)とした。
このようにして作製した配線付き基板表面に、スプレー熱分解法によりFTO層を300nm形成して遮蔽層5とし、電極基板(i)を得た。
【0042】
電極基板(i)の銀回路の内層4a表面、外層4b表面をそれぞれSEMにて観察したところ、内層4a表面には、ガラスフリットが流れ込まなかった部分、約1〜8μmの小孔が無数に観察されたのに対し、外層4b表面では、小孔がほとんど認められず、Ra0.4μmの比較的滑らかな膜面が得られた。
【0043】
電極基板(i)に、平均粒径25nmの酸化チタン分散液を塗布、乾燥し、450℃で1時間加熱・焼結した。これをルテニウムビピリジン錯体(N3色素)のエタノール溶液中に一晩浸漬して色素担持させた。これを50μm厚の熱可塑性ポリオレフィン樹脂シートを介して、白金スパッタFTO基板と対向して配置し、樹脂シートを熱溶融させて両極板を固定した。予め、白金スパッタ極側に電解液の注入口を開けておき、電極間に0.5Mのヨウ化物塩と、0.05Mのヨウ素とを主成分として含むメトキシアセトニトリル溶液を注液した。そして、周辺部及び電解液注入口をエポキシ系封止樹脂を用いて本封止し、集電端子部に銀ペーストを塗布して配線型セル(i)とした。
AM1.5の疑似太陽光を用いて、光電変換特性を評価したところ、配線型セル(i)の変換効率は2.7%であった。
【0044】
(実施例2)
耐熱ガラス基板上に、実施例1と同様に銀回路を形成し、この基板表面にFTO膜を形成した。これを透明導電層3、兼遮蔽層5として電極基板(ii)を得た。
この電極基板(ii)を用いて、実施例1と同様の要領で配線型セル(ii)を得た。AM1.5の疑似太陽光を用いて光電変換特性を評価したところ、配線型セル(ii)の変換効率は2.5%であった。
【0045】
(実施例3)
100mm角のFTOガラス基板上に、アディティブめっき法により金回路を形成した。金回路は、基板表面上に格子状に形成され、回路巾50μmとした。この上から、外層4bとして銀印刷回路を重ね印刷し、実施例1と同様の要領で乾燥・焼結した。なお、銀ペーストは、銀粒子55/ガラスフリット45(質量比)で含むものを用い、膜厚8μm(外層3μm+内層5μm)とした。この表面に、実施例1と同様に300nmのFTO層を形成して遮蔽層5とし、電極基板(iii)を得た。
この電極基板(iii)を用い、実施例1と同様の要領で配線型セル(iii)を得た。AM1.5の疑似太陽光を用いて光電変換特性を評価したところ、配線型セル(iii)の変換効率は3.1%であった。
【0046】
(比較例1)
100mm角のFTOガラス基板上に、銀ペースト(銀粒子92/ガラスフリット8(質量比))を回路巾250μm、膜厚8μmとなるように印刷し、実施例1と同様の要領で乾燥・焼結した。この表面に、実施例1と同様に300nmのFTO層を形成して遮蔽層5とし、電極基板(iv)を得た。
この電極基板(iv)を用い、実施例1と同様の要領で配線型セル(iv)を得た。この配線型セル(iv)に注液した電解液に着目したところ、注液直後に茶褐色を呈していたものが、数分後にほぼ透明に変わっていた。これは、電解液中のI が、遮蔽されずに露出している銀と反応して、Iへと還元されたためだと思われる。
AM1.5の疑似太陽光を用いて光電変換特性を評価したところ、配線型セル(iv)の変換効率は0.29%であった。
【0047】
(比較例2)
100mm角のFTOガラス基板上に、銀ペースト(銀粒子55/ガラスフリット45(質量比))を回路巾250μm、膜厚8μmとなるように印刷し、実施例1と同様の要領で乾燥・焼結した。この表面に、実施例1と同様に300nmのFTO層を形成して遮蔽層5とし、電極基板(v)を得た。
この電極基板(v)を用い、実施例1と同様の要領で配線型セル(v)を得た。AM1.5の疑似太陽光を用いて光電変換特性を評価したところ、配線型セル(v)の変換効率は0.18%であった。
【0048】
(比較例3)
100mm角のFTOガラス基板上に、アディティブめっき法により金回路を形成した。金回路は、基板表面上に格子状に形成され、回路巾50μm、膜厚5μmとした。この表面に、実施例1と同様に300nmのFTO層を形成して遮蔽層5とし、電極基板(vi)を得た。この電極基板(vi)の断面をSEM、EDXを用いて確認したところ、回路(配線)底部でめっきレジストの裾引きに起因すると思われるもぐり込みがあり、影部分にはFTOが被覆されていなかった。電極基板(vi)を用い、実施例1と同様の要領で配線型セル(vi)を得た。AM1.5の疑似太陽光を用いて光電変換特性を評価したところ、配線型セル(vi)の変換効率は0.3%であった。
【0049】
(比較例4)
100mm角のFTOガラス基板を用い、未配線のまま、実施例1と同様の方法により、試験セル(vii)を得た。AM1.5の疑似太陽光を用いて光電変換特性を評価したところ、試験セル(vii)の変換効率は0.11%であった。
【0050】
実施例1〜3の配線型セルは、いずれも光電変換効率に優れるものであったのに対し、比較例1の配線型セル(iv)は、金属配線層4が1層から構成されており、遮蔽層5による遮蔽が不十分であったため、電極基板の特性を引き出すことができず、変換効率が良くなかった。また、比較例2の配線型セル(v)は、金属配線層4が1層から構成されており、その体積抵抗率が高いため、電極基板の抵抗を低減できず、高出力を得られないため、変換効率が良くなかった。また、比較例3の配線型セル(vi)は、金属配線層4が1層から構成されており、遮蔽層5による遮蔽が不十分であったため、電極基板の特性を引き出すことができず、変換効率が良くなかった。
【0051】
【発明の効果】
本発明の電極基板1は、金属配線層4の表面粗さ(ラフネス)を小さくし、ピンホールなどの無い緻密な遮蔽層5を形成できる基板表面を提供する。このような電極基板1を有する色素増感太陽電池によれば、電解液による金属配線の腐食や、金属配線層4から電解液への逆電子移動が抑制され、光電変換素子の出力効果が一層向上する。
【図面の簡単な説明】
【図1】 本発明の電極基板の一実施形態を示す概略断面図である。
【図2】 本発明の電極基板の一実施形態を示す概略断面図である。
【符号の説明】
1・・・電極基板、2・・・透明基板、3・・・透明導電層、4・・・金属配線層、4a・・・内層、4b・・・外層、5・・・遮蔽層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode substrate for a dye-sensitized solar cell , a photoelectric conversion element, and a dye-sensitized solar cell.
[0002]
[Prior art]
Against the backdrop of environmental issues and resource issues, solar cells as clean energy are attracting attention. However, conventional silicon-based solar cells still have problems such as high manufacturing costs and insufficient raw material supply, and have not yet been widely spread. In addition, although compound solar cells such as CIS have excellent characteristics such as extremely high conversion efficiency, problems such as cost and environmental load are still obstacles to widespread use.
[0003]
On the other hand, dye-sensitized solar cells are attracting attention as photoelectric conversion elements that are inexpensive and can obtain high conversion efficiency (see, for example, Non-Patent Document 1). As a general structure of this photoelectric conversion element, a semiconductor electrode in which a porous film using oxide semiconductor nanoparticles such as titanium dioxide is formed on a transparent conductive substrate and a sensitizing dye is supported on the porous film. And a counter electrode such as a platinum-sputtered conductive glass, and an organic electrolyte containing an oxidizing / reducing species such as iodine / iodide ions between the two electrodes as a charge transfer layer. It has been reported that the semiconductor electrode has a porous film structure having a large specific surface with a roughness factor> 1000, thereby increasing the light absorption rate and a photoelectric conversion efficiency of 10% or more. In terms of cost, it is expected to be about 1/2 to 1/6 that of current silicon-based solar cells, and does not necessarily require complicated and large-scale manufacturing facilities, and does not contain harmful substances. It can be said that it has high potential as an inexpensive and mass-produced solar cell that can be produced.
[0004]
As the transparent substrate used here, a glass substrate is generally coated with a transparent conductive film such as tin-added indium oxide (ITO) or fluorine-added tin oxide (FTO) in advance by a technique such as vapor deposition or sputtering. However, since the specific resistance of ITO or FTO is about 10 −4 to 10 −3 Ω · cm, which is about 100 times the specific resistance of metals such as silver and gold, commercially available transparent conductive glass is resistant. When the value is high and it is used for a solar cell, particularly when it is a large area cell, the photoelectric conversion efficiency is significantly lowered.
As a technique for lowering the resistance of the transparent conductive glass, it is conceivable to increase the formation thickness of the transparent conductive layer (ITO, FTO, etc.), but if the film is formed with a thickness sufficient to obtain a sufficient resistance value, the transparent conductive layer is transparent. The light absorption by the layer is increased, and the window material transmission efficiency of incident light is remarkably lowered. As a result, the photoelectric conversion efficiency of the solar cell is also lowered.
[0005]
As a solution to such problems, for example, a metal wiring layer is provided on the surface of a substrate with a transparent conductive layer used as a window electrode of a solar cell so as not to significantly impair the aperture ratio, and the resistance of the substrate is reduced. (For example, see Japanese Patent Application No. 2001-400593.) In addition, when the metal wiring layer is provided on the substrate surface in this way, at least the metal wiring layer surface portion is prevented in order to prevent corrosion of the metal wiring due to the electrolytic solution and reverse electron transfer from the metal wiring layer to the electrolytic solution. It needs to be protected by some kind of shielding layer. The thickness of the shielding layer is not always required, but the circuit surface must be densely coated.
[0006]
[Patent Document 1]
JP-A-1-220380 [Non-Patent Document 1]
By B. O'Regan, M. Graetzel, nature, vol. 353, Oct. 24, 1991, p737
[0007]
[Problems to be solved by the invention]
However, if there are shadowed parts such as pinholes or cracks on the surface of the metal circuit, parts that are not covered by the shielding layer may occur, which leads to corrosion of the circuit and back-electron transfer to the electrolyte. The characteristics will be significantly impaired. In particular, as a method for forming a film using general FTO, ITO, or titanium oxide as a shielding layer, a sputtering method, a spray pyrolysis method, or the like is preferable. However, it is difficult to form a shadow portion by this method. Further, if the thickness of the shielding layer is increased to correct the defective portion, the light transmittance is impaired, which is also not preferable.
[0008]
For example, in the case of a circuit printed with a paste mainly composed of conductive particles and a glass frit binder and sintered at about 500 ° C., in order to obtain high conductivity without preventing fusion between the conductive particles. In order to reduce the blending amount of the glass frit, generally, sudden irregularities and shadows such as voids and pinholes are generated on the surface and inside of the coating film, and it becomes extremely difficult to form a shielding layer. On the contrary, in order to suppress such defects on the coating film surface, when the blending amount of the glass frit serving as the binder is increased, the coating film conductivity is remarkably lowered and the original function of the circuit tends not to be exhibited. .
[0009]
[Means for Solving the Problems]
The present invention has been made in view of the above circumstances, and provides a technique for reducing the surface roughness (roughness) of a metal wiring layer and forming a dense shielding layer free from pinholes. Here, in particular, attention has been paid to a method of applying a printing method such as screen printing to at least a part of the circuit forming process in order to improve manufacturing cost and manufacturing efficiency.
[0010]
That is, the electrode substrate for a dye-sensitized solar cell of the present invention is an electrode substrate having a metal wiring layer and a transparent conductive layer on a transparent substrate, wherein the metal wiring layer and the transparent conductive layer are overlapped with each other at the overlapping portion. The wiring layer is disposed below or on the transparent conductive layer, the metal wiring layer is composed of at least two layers of an inner layer and an outer layer, and the volume resistivity of the inner layer is smaller than the volume resistivity of the outer layer, and the outer layer Is formed of a paste composition containing at least conductive particles and a binder material, and the binder ratio of the paste composition is equal to the binder ratio in the composition forming the other layers in the metal wiring layer. In comparison, it is characterized by having a shielding layer on the surface of the conductive layer composed of the metal wiring layer and / or the transparent conductive layer .
The outer layer is preferably formed by a printing method .
Moreover, it is preferable that the composition which forms the said metal wiring layer contains silver or nickel .
The photoelectric conversion element of this invention has the above-mentioned electrode substrate for dye-sensitized solar cells, It is characterized by the above-mentioned.
The dye-sensitized solar cell of the present invention comprises the above-described photoelectric conversion element.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The electrode substrate of the present invention is an electrode substrate having a metal wiring layer and a transparent conductive layer on a transparent substrate, and the metal wiring layer is composed of at least two layers of an inner layer and an outer layer. Further, as shown in FIG. 1, the electrode substrate may have a structure in which a metal wiring layer 4 is disposed on a transparent conductive layer 3 formed on one surface of the transparent substrate 2, or as shown in FIG. Alternatively, the transparent conductive layer 3 may be formed on the transparent substrate 2 on which the metal wiring layer 4 is disposed. In FIG. 2, the same reference numerals as those used in FIG. 1 mean the same configurations as those in FIG. 1.
[0012]
As a material for the transparent substrate 2, glass such as heat-resistant glass is generally used. Besides glass, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polyether Examples thereof include transparent plastics such as sulfone (PES) and ceramic polishing plates such as titanium oxide and alumina, and those having high light transmittance are preferable.
[0013]
As a material for forming the transparent conductive layer 3 is not particularly limited, for example, indium tin oxide (ITO), tin oxide (SnO 2), etc. can be mentioned fluorine-doped tin oxide (FTO), as much as possible light transmission It is preferable to select a material having a high value according to the combination of materials and applications.
[0014]
As a method for forming the transparent conductive layer 3 on the transparent substrate 2, an appropriate method may be used according to a material for forming the transparent conductive layer 3 from known methods such as a sputtering method and a vapor deposition method.
[0015]
The material for forming the inner layer 4a of the metal wiring layer 4 is not particularly limited, and for example, gold, silver, platinum, aluminum, nickel, titanium, or the like can be used. Among these, silver or nickel can be suitably used because it is relatively inexpensive and easily available as a general-purpose printing paste.
In addition, a binder material or an appropriate additive can be added as long as the characteristics such as conductivity are not impaired.
[0016]
The method for forming the inner layer 4a is not particularly limited, and examples thereof include a printing method, a sputtering method, a vapor deposition method, a plating method, and the like. Among these, the printing method is particularly desirable.
[0017]
The inner layer 4a formed in this way preferably has a smaller volume resistivity than the volume resistivity of the outer layer 4b. In the present invention, the coating layer surface of the inner layer 4a is preferably smooth. However, since this layer is formed according to the original purpose as the metal wiring layer 4 that lowers the resistance of the electrode substrate 1, it may have high conductivity. have priority. On the other hand, the outer layer 4b, which will be described later, is a conductive layer, but its main purpose is to smooth the wiring surface and facilitate the formation of the shielding layer 5, so that the volume resistivity is higher than that of the inner layer 4a. It does not matter if it is large.
The volume resistivity of the inner layer 4a is preferably at least 5 × 10 −5 Ω · cm. Under these conditions, even if some pinholes or cracks occur on the surface of the coating film, it can be corrected by the outer layer 4b, so that there is no problem. As long as this layer is included in the metal wiring layer 4, another layer different from the outer layer 4b may be formed inside and outside the inner layer 4a for some purpose.
[0018]
The outer layer 4b of the metal wiring layer 4 is preferably formed of a paste composition containing at least conductive particles and a binder material. The conductive particles are not particularly limited, and examples thereof include silver, nickel, gold, and platinum. Among these, silver or nickel can be suitably used because it is relatively inexpensive and easily available as a general-purpose printing paste.
Although there is no restriction | limiting in particular as binder material, For example, when using as the electrode substrate 1 of a dye-sensitized solar cell, since a heat processing of about 400-500 degreeC is included in a manufacturing process, a paste composition is a baking type. For example, glass frit is desirable. The glass frit used as the binder material is not particularly limited as long as it can be melted at the firing temperature or lower.
[0019]
The blending ratio of the binder material in the paste composition forming the outer layer 4b is preferably larger than the blending ratio of the binder material in the composition forming the other layers in the metal wiring layer 4. By adjusting the blending ratio of the binder material in this way, the outer layer 4b coating surface does not contain pinholes or cracks, and suppresses the occurrence of significant irregularities that become shadows when viewed from the top surface, thereby shielding the surface. Formation of the layer 5 can be facilitated.
[0020]
Further, the blending ratio of the binder material in the paste composition forming the outer layer 4b is preferably 10% or more, more preferably 20% or more, in terms of mass ratio with respect to the conductive particles. However, since the electrical conductivity of the film (outer layer 4b) significantly decreases with an increase in the blending ratio of the binder material, it is preferable that the blending ratio of the binder material is small as long as the surface condition satisfies the above requirements. Or less, more preferably 70% or less.
[0021]
As a method for forming the outer layer 4b, a printing method is preferable. Moreover, if it is a printing method, there will be no restriction | limiting in particular, For example, a screen printing method, an inkjet method, a metal mask method etc. are mentioned.
Thus, by forming the outer layer 4b by a printing method, the surface roughness (roughness) is small, and cracks and pinholes do not occur. Therefore, the surface of the metal wiring layer 4 is smoothed, and the shielding layer 5 can be easily formed. Can be.
Furthermore, according to the printing method, the manufacturing cost can be reduced and the manufacturing efficiency can be improved.
[0022]
In addition, the outer layer 4b in this specification means the printing layer formed by the printing method for the above-mentioned purpose, and is not necessarily arrange | positioned in the outermost surface in the metal wiring layer 4, and if needed, it is further Another layer may be formed outside for some purpose.
[0023]
When comparing the coating thicknesses of the inner layer 4a and the outer layer 4b, it is desirable that the thickness of the outer layer 4b does not exceed 100% of the thickness of the inner layer 4a. If the thickness of the outer layer 4b exceeds 100% of the thickness of the inner layer 4a, the conductivity per volume of the circuit will be low, so that the circuit thickness will be too thick or the conductivity will be insufficient. There is a tendency.
[0024]
For both the inner layer 4a and the outer layer 4b, when a firing step for the purpose of, for example, fusion of conductive particles is required, considering application to a glass substrate, the temperature is 600 ° C. (preferably 550 ° C.) or less. It is preferable that necessary characteristics can be obtained at the firing temperature.
[0025]
In this invention, it is preferable to have the shielding layer 5 on the surface of the conductive layer composed of the metal wiring layer 4 and / or the transparent conductive layer 3.
As a material for forming the shielding layer 5, the electron transfer reaction rate with the redox pair-containing electrolytic solution that is in contact with the solar cell is low, the light transmission is excellent, and the movement of the generated photoelectrons is not hindered. Although it will not specifically limit if it has a characteristic, For example, a titanium oxide, a zinc oxide, niobium oxide, a tin oxide, a fluorine addition tin oxide (FTO), a tin addition indium oxide (ITO) etc. are mentioned. Can do.
[0026]
There is no restriction | limiting in particular as the method of forming the shielding layer 5, For example, the method of forming the target compound or its precursor into a film by dry methods (vapor phase method), such as sputtering method, vapor deposition method, CVD method, is mentioned. It is done. Further, when a precursor such as a metal is formed, the shielding layer 5 can be formed by oxidation by heat treatment or chemical treatment.
[0027]
In the case of a wet method, a solution in which a target compound or a precursor thereof is dissolved and dispersed is applied by a method such as a spin coating method, a dipping method, or a blade coating method, followed by a heat treatment or a chemical treatment. The shielding layer 5 can be formed by chemically changing to. Examples of the precursor include salts and complexes having a constituent metal element of the target compound. For the purpose of obtaining a dense film (shielding layer 5), it is preferably in a dissolved state rather than a dispersed state.
[0028]
In the case of spray pyrolysis (SPD) or the like, by heating the transparent substrate 2 having the transparent conductive layer 3 and spraying a substance that becomes the precursor of the shielding layer 5 toward the substrate, the substrate is thermally decomposed. The shielding layer 5 can be formed by changing to the target oxide semiconductor.
[0029]
Although there is no restriction | limiting in particular as thickness of the shielding layer 5, The thinner one is preferable in the range which can exhibit an effect, and about 10-3000 mm is preferable.
[0030]
In the electrode substrate 1 of the present invention, as shown in FIG. 2, in the structure in which the transparent conductive layer 3 is formed on the substrate after forming the metal wiring layer 4, the transparent conductive layer 3 also serves as the shielding layer 5. It does not matter.
[0031]
As described above, the electrode substrate 1 of the present invention does not have a shadowed portion such as pinholes or cracks on the surface of the outer layer 4b of the metal wiring layer 4, so that the surface is densely covered with the shielding layer 5. be able to.
[0032]
Next, a dye-sensitized solar cell using the electrode substrate 1 will be described.
The dye-sensitized solar cell of the present invention comprises, on the electrode substrate 1 described above, a working electrode provided with a dye-supported oxide semiconductor porous film, and a counter electrode disposed opposite to the working electrode, An electrolyte layer including a redox pair is provided between the working electrode and the counter electrode.
[0033]
Examples of the material of the semiconductor porous film include titanium oxide (TiO 2 ), tin oxide (SnO 2 ), tungsten oxide (WO 3 ), zinc oxide (ZnO), niobium oxide (Nb 2 O 5 ), and the like. It can use individually or in combination of 2 or more types. It can also be obtained from commercially available fine particles, colloidal solutions obtained by the sol-gel method, and the like.
[0034]
As a method for producing a semiconductor porous film, for example, a colloidal solution or a dispersion liquid (including additives as required) is screen printing, ink jet printing, roll coating, doctor blade, spin coating, spray coating, etc. In addition to coating using various coating methods, it is possible to apply electrophoretic electrodeposition of fine particles, combined use of a foaming agent, complexation with polymer beads and the like (only the template component is removed later), and the like.
[0035]
As dyes supported on the semiconductor porous film, metal-containing complexes such as ruthenium complexes, porphyrins, and phthalocyanines containing bipyridine structure and terpyridine structure as ligands, and organic dyes such as eosin, rhodamine, and merocyanine should also be used. It is possible to select a material having an excitation behavior suitable for the application and the semiconductor used without any particular limitation.
[0036]
As the electrolytic solution for forming the electrolyte layer, an organic solvent containing a redox pair, a room temperature molten salt, and the like can be used. For example, acetonitrile, methoxyacetonitrile, propionitrile, propylene carbonate, diethyl carbonate, γ-butyrolactone, etc. Examples thereof include room temperature molten salts composed of organic solvents, quaternized imidazolium-based cations and iodide ions, bistrifluoromethylsulfonylimide anions, and the like.
Moreover, you may use what was quasi-solidified by introduce | transducing a suitable gelatinizer into such electrolyte solution, what is called a gel electrolyte.
[0037]
The oxidation-reduction pair is not particularly limited, and examples thereof include iodine / iodide ions, bromine / bromide ions, and the like. Specific examples of the former include iodide salts (lithium salts, quaternizations). A combination of iodine and imidazolium salt, tetrabutylammonium salt or the like can be used alone or in combination. Further, various additives such as tert-butylpyridine can be added to the electrolytic solution as necessary.
[0038]
A p-type semiconductor or the like can be used as the charge transport layer instead of the electrolyte layer formed from the electrolytic solution. Although there is no restriction | limiting in particular as a p-type semiconductor, For example, monovalent copper compounds, such as copper iodide and a copper thiocyanide, can be used conveniently. Moreover, various additives can be contained functionally as required for film formation.
There is no restriction | limiting in particular as a formation method of a charge transport layer, For example, film forming methods, such as a casting method, a sputtering method, and a vapor deposition method, are mentioned.
[0039]
As the counter electrode, for example, various carbon materials, platinum, gold, or the like can be formed on a conductive or non-conductive substrate by a method such as vapor deposition or sputtering.
Further, when a solid charge transport layer is used, a technique such as direct sputtering or coating may be used on the surface thereof.
[0040]
Since the dye-sensitized solar cell of the present invention has the electrode substrate 1 of the present invention, corrosion of the metal wiring by the electrolytic solution and reverse electron transfer from the metal wiring layer 4 to the electrolytic solution are suppressed, and the output of the photoelectric conversion element The effect is further improved.
[0041]
【Example】
Example 1
A silver paste (silver particles 92 / glass frit 8 (mass ratio)) for forming the inner layer 4a was screen-printed in a lattice pattern on the surface of a glass with an FTO film of 100 × 100 mm. This was dried at 135 ° C. for 20 minutes in a hot-air circulating furnace with a leveling time of 10 minutes, and then baked at 550 ° C. for 15 minutes. Next, using a CCD camera, a silver paste (silver particles 55 / glass frit 45 (mass ratio)) that forms the outer layer 4b while being aligned is overprinted, and at a leveling time of 10 minutes, 135 ° C., 20 After drying in a hot air circulating furnace for 5 minutes, a silver circuit was formed by baking at 550 ° C. for 15 minutes. The circuit width was 250 μm (outer layer 4b), 150 μm (inner layer 4a), and the film thickness was 8 μm (outer layer 3 μm + inner layer 5 μm).
An FTO layer having a thickness of 300 nm was formed on the surface of the substrate with wiring thus produced by a spray pyrolysis method to form a shielding layer 5 to obtain an electrode substrate (i).
[0042]
When the surface of the inner layer 4a and the surface of the outer layer 4b of the electrode substrate (i) was observed with an SEM, the inner layer 4a surface was observed with countless small holes of about 1 to 8 μm where glass frit did not flow. In contrast, almost no small holes were observed on the surface of the outer layer 4b, and a relatively smooth film surface of Ra 0.4 μm was obtained.
[0043]
A titanium oxide dispersion having an average particle diameter of 25 nm was applied to the electrode substrate (i), dried, and heated and sintered at 450 ° C. for 1 hour. This was immersed in an ethanol solution of ruthenium bipyridine complex (N3 dye) overnight to carry the dye. This was placed opposite to the platinum sputtered FTO substrate through a thermoplastic polyolefin resin sheet having a thickness of 50 μm, and the bipolar plate was fixed by thermally melting the resin sheet. In advance, an electrolyte injection port was opened on the platinum sputter electrode side, and a methoxyacetonitrile solution containing 0.5 M iodide salt and 0.05 M iodine as main components was injected between the electrodes. Then, the peripheral portion and the electrolyte solution inlet were main sealed with an epoxy-based sealing resin, and a silver paste was applied to the current collecting terminal portion to obtain a wiring type cell (i).
When photoelectric conversion characteristics were evaluated using AM1.5 pseudo-sunlight, the conversion efficiency of the wiring type cell (i) was 2.7%.
[0044]
(Example 2)
A silver circuit was formed on the heat-resistant glass substrate in the same manner as in Example 1, and an FTO film was formed on the surface of the substrate. This was used as the transparent conductive layer 3 and the shielding layer 5 to obtain an electrode substrate (ii).
Using this electrode substrate (ii), a wired cell (ii) was obtained in the same manner as in Example 1. When photoelectric conversion characteristics were evaluated using artificial sunlight of AM1.5, the conversion efficiency of the wiring type cell (ii) was 2.5%.
[0045]
(Example 3)
A gold circuit was formed on a 100 mm square FTO glass substrate by an additive plating method. The gold circuit was formed in a lattice shape on the substrate surface and had a circuit width of 50 μm. From this, a silver printed circuit was overprinted as the outer layer 4b, and dried and sintered in the same manner as in Example 1. The silver paste used contained silver particles 55 / glass frit 45 (mass ratio), and the film thickness was 8 μm (outer layer 3 μm + inner layer 5 μm). On this surface, an FTO layer of 300 nm was formed in the same manner as in Example 1 to form a shielding layer 5 to obtain an electrode substrate (iii).
Using this electrode substrate (iii), a wired cell (iii) was obtained in the same manner as in Example 1. When photoelectric conversion characteristics were evaluated using artificial sunlight of AM1.5, the conversion efficiency of the wiring type cell (iii) was 3.1%.
[0046]
(Comparative Example 1)
A silver paste (silver particles 92 / glass frit 8 (mass ratio)) is printed on a 100 mm square FTO glass substrate so as to have a circuit width of 250 μm and a film thickness of 8 μm, followed by drying and baking in the same manner as in Example 1. I concluded. On this surface, a 300 nm FTO layer was formed in the same manner as in Example 1 to form a shielding layer 5 to obtain an electrode substrate (iv).
Using this electrode substrate (iv), a wired cell (iv) was obtained in the same manner as in Example 1. When attention was paid to the electrolytic solution injected into the wiring type cell (iv), the brownish color immediately after the injection was changed to almost transparent after a few minutes. This seems to be because I 3 in the electrolytic solution reacted with silver exposed without being shielded and reduced to I .
When photoelectric conversion characteristics were evaluated using artificial sunlight of AM1.5, the conversion efficiency of the wiring type cell (iv) was 0.29%.
[0047]
(Comparative Example 2)
A silver paste (silver particles 55 / glass frit 45 (mass ratio)) is printed on a 100 mm square FTO glass substrate so as to have a circuit width of 250 μm and a film thickness of 8 μm, and dried and baked in the same manner as in Example 1. I concluded. A 300 nm FTO layer was formed on this surface in the same manner as in Example 1 to form the shielding layer 5 to obtain an electrode substrate (v).
Using this electrode substrate (v), a wired cell (v) was obtained in the same manner as in Example 1. When photoelectric conversion characteristics were evaluated using artificial sunlight of AM1.5, the conversion efficiency of the wiring type cell (v) was 0.18%.
[0048]
(Comparative Example 3)
A gold circuit was formed on a 100 mm square FTO glass substrate by an additive plating method. The gold circuit was formed in a lattice shape on the substrate surface, and had a circuit width of 50 μm and a film thickness of 5 μm. A 300 nm FTO layer was formed on this surface in the same manner as in Example 1 to form the shielding layer 5 to obtain an electrode substrate (vi). The cross section of the electrode substrate (vi) was confirmed using SEM and EDX. As a result, the bottom of the circuit (wiring) was found to be due to the bottoming of the plating resist, and the shadow portion was not covered with FTO. It was. Using the electrode substrate (vi), a wired cell (vi) was obtained in the same manner as in Example 1. When photoelectric conversion characteristics were evaluated using artificial sunlight of AM1.5, the conversion efficiency of the wiring type cell (vi) was 0.3%.
[0049]
(Comparative Example 4)
Using a 100 mm square FTO glass substrate, a test cell (vii) was obtained in the same manner as in Example 1 with no wiring. When photoelectric conversion characteristics were evaluated using artificial sunlight of AM1.5, the conversion efficiency of the test cell (vii) was 0.11%.
[0050]
The wiring type cells of Examples 1 to 3 were all excellent in photoelectric conversion efficiency, whereas the wiring type cell (iv) of Comparative Example 1 had a single metal wiring layer 4. Since the shielding by the shielding layer 5 was insufficient, the characteristics of the electrode substrate could not be extracted and the conversion efficiency was not good. Further, in the wiring type cell (v) of Comparative Example 2, the metal wiring layer 4 is composed of one layer, and its volume resistivity is high, so that the resistance of the electrode substrate cannot be reduced and high output cannot be obtained. Therefore, the conversion efficiency was not good. Further, in the wiring type cell (vi) of Comparative Example 3, the metal wiring layer 4 is composed of one layer, and the shielding by the shielding layer 5 is insufficient, so that the characteristics of the electrode substrate cannot be extracted, Conversion efficiency was not good.
[0051]
【The invention's effect】
The electrode substrate 1 of the present invention provides a substrate surface that can reduce the surface roughness (roughness) of the metal wiring layer 4 and form a dense shielding layer 5 without pinholes. According to the dye-sensitized solar cell having such an electrode substrate 1, the corrosion of the metal wiring by the electrolytic solution and the reverse electron transfer from the metal wiring layer 4 to the electrolytic solution are suppressed, and the output effect of the photoelectric conversion element is further increased. improves.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an embodiment of an electrode substrate of the present invention.
FIG. 2 is a schematic cross-sectional view showing an embodiment of an electrode substrate of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Electrode substrate, 2 ... Transparent substrate, 3 ... Transparent conductive layer, 4 ... Metal wiring layer, 4a ... Inner layer, 4b ... Outer layer, 5 ... Shielding layer

Claims (5)

透明基板上に金属配線層と透明導電層とを有する電極基板であって、
前記金属配線層と透明導電層の重なり部において、前記金属配線層が透明導電層の下又は上に配置され、
前記金属配線層が少なくとも内層と外層との2層から構成され
前記内層の体積抵抗率が、外層の体積抵抗率に比べて小さく、
前記外層が少なくとも導電粒子とバインダ材とを含有するペースト組成物で形成され、該ペースト組成物のバインダ材の配合比が、金属配線層中の他の層を形成する組成物中のバインダ材配合比に比べて、大きく、
前記金属配線層及び/又は透明導電層からなる導電層の表面に、遮蔽層を有する
ことを特徴とする色素増感太陽電池用電極基板。
An electrode substrate having a metal wiring layer and a transparent conductive layer on a transparent substrate,
In the overlapping part of the metal wiring layer and the transparent conductive layer, the metal wiring layer is disposed below or on the transparent conductive layer,
The metal wiring layer is composed of at least two layers of an inner layer and an outer layer ,
The volume resistivity of the inner layer is smaller than the volume resistivity of the outer layer,
The outer layer is formed of a paste composition containing at least conductive particles and a binder material, and the blending ratio of the binder material of the paste composition is a binder material blend in the composition that forms another layer in the metal wiring layer Bigger than the ratio,
An electrode substrate for a dye-sensitized solar cell , comprising a shielding layer on a surface of a conductive layer composed of the metal wiring layer and / or the transparent conductive layer .
前記外層が印刷法により形成されることを特徴とする請求項1記載の色素増感太陽電池用電極基板。2. The dye-sensitized solar cell electrode substrate according to claim 1, wherein the outer layer is formed by a printing method. 前記金属配線層を形成する組成物が、銀、又はニッケルを含有することを特徴とする請求項1又は2に記載の色素増感太陽電池用電極基板。The electrode substrate for a dye-sensitized solar cell according to claim 1 or 2 , wherein the composition forming the metal wiring layer contains silver or nickel. 請求項1〜のいずれかに記載の色素増感太陽電池用電極基板を有することを特徴とする光電変換素子。It has the electrode substrate for dye-sensitized solar cells in any one of Claims 1-3 , The photoelectric conversion element characterized by the above-mentioned. 請求項記載の光電変換素子からなることを特徴とする色素増感太陽電池。A dye-sensitized solar cell comprising the photoelectric conversion element according to claim 4 .
JP2002328109A 2002-10-03 2002-11-12 Electrode substrate for dye-sensitized solar cell, photoelectric conversion element, and dye-sensitized solar cell Expired - Lifetime JP4416997B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2002328109A JP4416997B2 (en) 2002-11-12 2002-11-12 Electrode substrate for dye-sensitized solar cell, photoelectric conversion element, and dye-sensitized solar cell
KR1020057005613A KR100689229B1 (en) 2002-10-03 2003-10-03 Electrode substrate, photoelectric conversion element, conductive glass substrate and production method thereof, and pigment sensitizing solar cell
US10/529,818 US8629346B2 (en) 2002-10-03 2003-10-03 Electrode substrate, photoelectric conversion element, conductive glass substrate and production method thereof, and pigment sensitizing solar cell
AU2003275542A AU2003275542B2 (en) 2002-10-03 2003-10-03 Electrode substrate, photoelectric conversion element, conductive glass substrate and production method thereof, and pigment sensitizing solar cell
PCT/JP2003/012738 WO2004032274A1 (en) 2002-10-03 2003-10-03 Electrode substrate, photoelectric conversion elememt, conductive glass substrate and production method therefo, and pigment sensitizing solar cell
TW092127615A TWI326920B (en) 2002-10-03 2003-10-03 Electrode substrate, photoelectric transducer, conductive glass substrate and manufacturing method thereof, and dye-sensitized solar cell
EP03758711A EP1548868A4 (en) 2002-10-03 2003-10-03 Electrode substrate, photoelectric conversion elememt, conductive glass substrate and production method therefo, and pigment sensitizing solar cell
CN 200810126942 CN101312096B (en) 2002-10-03 2003-10-03 Electrode substrate and photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002328109A JP4416997B2 (en) 2002-11-12 2002-11-12 Electrode substrate for dye-sensitized solar cell, photoelectric conversion element, and dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2004164950A JP2004164950A (en) 2004-06-10
JP4416997B2 true JP4416997B2 (en) 2010-02-17

Family

ID=32806498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002328109A Expired - Lifetime JP4416997B2 (en) 2002-10-03 2002-11-12 Electrode substrate for dye-sensitized solar cell, photoelectric conversion element, and dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP4416997B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4679844B2 (en) * 2004-07-02 2011-05-11 日揮触媒化成株式会社 Photoelectric cell
JP5491682B2 (en) 2004-08-13 2014-05-14 日立金属株式会社 Flat conductor for solar cell, method for manufacturing the same, and lead wire for solar cell
JP2006134827A (en) * 2004-11-09 2006-05-25 Nippon Oil Corp Electrode and dye-sensitized solar cell
JP5008853B2 (en) * 2005-09-29 2012-08-22 藤森工業株式会社 Dye-sensitized solar cell and dye-sensitized solar cell module
JP5223309B2 (en) * 2007-11-20 2013-06-26 コニカミノルタホールディングス株式会社 Dye-sensitized solar cell
JP5398205B2 (en) * 2008-09-17 2014-01-29 藤森工業株式会社 Dye-sensitized solar cell
KR101696939B1 (en) 2008-10-29 2017-01-16 후지필름 가부시키가이샤 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
JP5620081B2 (en) 2009-09-28 2014-11-05 富士フイルム株式会社 Method for manufacturing photoelectric conversion element
JP5524557B2 (en) 2009-09-28 2014-06-18 富士フイルム株式会社 Method for producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
JP2012212615A (en) * 2011-03-31 2012-11-01 Sony Corp Method for manufacturing photoelectric conversion element, photoelectric conversion element, and electronic apparatus
JP2014017397A (en) * 2012-07-10 2014-01-30 Ricoh Co Ltd Method for forming metal thin film, metal thin film, and metal thin film laminate, conductive pattern and antenna including the metal thin film
JP6006075B2 (en) * 2012-10-05 2016-10-12 株式会社フジクラ Dye-sensitized solar cell and dye-sensitized solar cell module
JP5972811B2 (en) 2013-02-22 2016-08-17 富士フイルム株式会社 Photoelectric conversion element, method for producing photoelectric conversion element, and dye-sensitized solar cell

Also Published As

Publication number Publication date
JP2004164950A (en) 2004-06-10

Similar Documents

Publication Publication Date Title
JP4503226B2 (en) Electrode substrate, photoelectric conversion element, and dye-sensitized solar cell
KR101017920B1 (en) Electrode substrate and photoelectric converter
JP4260494B2 (en) Manufacturing method of transparent electrode substrate, manufacturing method of photoelectric conversion element, and manufacturing method of dye-sensitized solar cell
TWI663615B (en) A dye-sensitized solar cell and a method for manufacturing the solar cell
JP5184548B2 (en) Method for manufacturing electrode substrate for photoelectric conversion element, and method for manufacturing photoelectric conversion element
KR100854711B1 (en) Photo electrodes equipped blocking layer for dye-sensitized photovoltaic cell and method for preparing the same
WO2004032274A1 (en) Electrode substrate, photoelectric conversion elememt, conductive glass substrate and production method therefo, and pigment sensitizing solar cell
KR101243915B1 (en) Method of preparing photoelectrode structure
JP4515061B2 (en) Method for producing dye-sensitized solar cell
JP2007073505A (en) Photoelectric conversion element
JP4416997B2 (en) Electrode substrate for dye-sensitized solar cell, photoelectric conversion element, and dye-sensitized solar cell
JP4578786B2 (en) Method for producing dye-sensitized solar cell
JP2004164970A (en) Electrode substrate and photoelectric conversion element
JP5095126B2 (en) Photoelectric conversion element
JP5284296B2 (en) Dye-sensitized solar cell
JP2004010403A (en) Titanium oxide fine particle with multiple structure, method of producing the same, photoelectric conversion element and photoelectric cell comprising the same
JP4954855B2 (en) Manufacturing method of dye-sensitized solar cell
JP4341197B2 (en) Photoelectric conversion element and manufacturing method thereof
JP5160045B2 (en) Photoelectric conversion element
JP4072891B2 (en) Method for manufacturing photoelectric conversion element and photovoltaic cell
JP2004327226A (en) Electrode substrate and photoelectric conversion element
JP2004238213A (en) Method of manufacturing titanium oxide particle and photoelectric conversion device using the same
JP2003123855A (en) Electrode for photoelectric conversion element
JP2007172915A (en) Photoelectric conversion device
JP5198490B2 (en) Photoelectric conversion element having electrode substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091125

R151 Written notification of patent or utility model registration

Ref document number: 4416997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term