JP4415474B2 - Resin bond grinding wheel - Google Patents

Resin bond grinding wheel Download PDF

Info

Publication number
JP4415474B2
JP4415474B2 JP2000306741A JP2000306741A JP4415474B2 JP 4415474 B2 JP4415474 B2 JP 4415474B2 JP 2000306741 A JP2000306741 A JP 2000306741A JP 2000306741 A JP2000306741 A JP 2000306741A JP 4415474 B2 JP4415474 B2 JP 4415474B2
Authority
JP
Japan
Prior art keywords
ratio
sic
grinding
resin
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000306741A
Other languages
Japanese (ja)
Other versions
JP2002113665A (en
Inventor
尚登 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2000306741A priority Critical patent/JP4415474B2/en
Publication of JP2002113665A publication Critical patent/JP2002113665A/en
Application granted granted Critical
Publication of JP4415474B2 publication Critical patent/JP4415474B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、難削材の重研削に適したレジンボンド砥石に関する。
【0002】
【従来の技術】
レジンボンド砥石は、ダイヤモンドなどの砥粒をフェノール樹脂等の樹脂結合相中に分散させた砥粒層を有する砥石の総称であり、研削中に樹脂結合相が磨耗して砥粒が徐々に突き出す作用、いわゆる自生発刃作用が良好であることから、他種の結合剤を使用した砥石では研削しにくい難削材料の研削においても比較的良好な切れ味が得られるという特徴を有している。
【0003】
ところで最近では、従来よりいっそう硬く加工が難しいサーメット、超硬合金並びに硬質セラミックスなどが数多く登場し、広範な分野に使用されつつあるだけでなく、加工効率を向上するためにより高剛性、高馬力の研削機械を用いるなど、研削条件が一段と厳しくなりつつある。
【0004】
【発明が解決しようとする課題】
こうした厳しい研削条件下では、フェノール樹脂等を結合相として使用した従来のレジンボンド砥石は樹脂結合相の剛性及び砥粒保持能力が不足するため、研削抵抗が大きく、さらに研削比が小さくて寿命が短かった。
【0005】
そこで、例えばSiCのような硬質粒子をフィラーとして添加して樹脂結合相中に分散させ、樹脂結合相の剛性を高めて研削面における摩耗を減らすとともに、砥粒保持力を向上して超砥粒の早すぎる脱落を防止する効果を狙うことも行われている。
【0006】
しかしながら、上記のようなレジンボンド砥石でも、その寿命はある程度維持できるものの、十分な切れ味の良さを得ることはできなかった。
【0007】
本発明は、上記課題に鑑みてなされたもので、難削材の研削においても良好な切れ味が得られ、なおかつ寿命の長いレジンボンド砥石を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記の課題を解決し、かかる目的を達成するために、本発明は、樹脂結合相中に超砥粒が分散配置されてなるレジンボンド砥石において、前記樹脂結合相中に、カーボンファイバーとSiCとがフィラーとして分散配置されており、カーボンファイバーは、線径(平均直径)が5〜10μm、繊維長(平均長さ)が10〜1000μmであり、SiCは、粒度が#400、#600、#800であり、カーボンファイバーとSiCの混合割合はSiCを1としたときにカーボンファイバーが0.8〜1.2であり、なおかつ、前記カーボンファイバー及び前記SiCの両フィラーの含有比率が前記超砥粒を除く前記樹脂結合相の25〜45vol%であることを特徴とする。
【0009】
カーボンファイバーは固体潤滑性があり、樹脂結合相に含まれることにより、砥石の切れ味を良くすることができるが、抗折強度が小さいため、寿命が短くななるという性質を有し、また、SiCは樹脂結合相の剛性を高めて研削面における摩耗を減らすとともに、砥粒保持力を向上させ超砥粒の早すぎる脱落を防止する効果が得られるが、砥石の切れ味は十分ではなくなるという性質を有する。
本発明によれば、これらカーボンファイバーとSiCの両フィラーを、SiCが1に対してカーボンファイバーが0.8〜1.2となる比率で樹脂結合相に混ぜ合わせることで、その相乗効果によって、研削抵抗を低減させて砥石の切れ味を良くし、研削比を向上させ寿命を長くできる。さらに、カーボンファイバーが超砥粒をつつむ樹脂結合相の強度を上げSiCを保持するような働きをするので樹脂結合相の剛性をより高めることができる。
また、SiCを1としたときのカーボンファイバーの比率が0.8より小さいと、SiCの占める比率が大きくなり研削抵抗が大きくなって切れ味が悪化し、一方、SiCを1としたときのカーボンファイバーの比率が1.2より大きいと、カーボンファイバーの占める比率が大きくなり研削比が落ちて寿命が短くなる。
また、カーボンファイバー及びSiCの含有比率が45%より大きいと、樹脂結合相の強度低下が無視できず、耐摩耗性と研削比が落ちて寿命が短くなり、一方、カーボンファイバー及びSiCの含有比率が25%より小さいと、研削抵抗が上がって、切れ味が悪くなる。
【0010】
【発明の実施の形態】
以下、本発明の実施形態を添付した図面を参照しながら説明する。
図1は本実施形態によるレジンボンド砥石の砥粒層の要部拡大断面図である。
【0011】
図1に示す本実施形態によるレジンボンド砥石1は、砥粒層2の組成に主たる特徴を有するものであり、砥石の形状や寸法はいかなるものであってもよい。例えば、台金の外周または端面に砥粒層2を形成したものであってもよいし、台金を使用せず砥粒層2そのものによって砥石を形成したものであってもよい。また、砥石の形状はホイール型、カップ型、総型、セグメント砥石、内周研削砥石など従来使用されている如何なる形式であってもよい。
【0012】
そして、図1に示すように、レジンボンド砥石1は、ダイヤモンドやCBN等の超砥粒4が樹脂結合相3中に分散されてなる砥粒層2を有するレジンボンド砥石であって、樹脂結合相3は、熱硬化性樹脂を主組成物とする母相中に、カーボンファイバー6とSiC5とがフィラーとして分散配置されており、その混合割合はSiC5を1としたときにカーボンファイバー6が0.8〜1.2であり、なおかつ、カーボンファイバー6及びSiC5の両フィラーは、その含有比率が超砥粒4を除く樹脂結合相3の25〜45vol%である。
【0013】
樹脂結合相3の母相を構成する熱硬化性樹脂としては、熱硬化性ポリイミド樹脂、フェノール樹脂、またはポリスチルピリジン樹脂などが使用可能である。中でも本発明に特に好適なものは、熱硬化性ポリイミド樹脂またはフェノール樹脂である。
【0014】
また、樹脂結合相3中に分散配置されるカーボンファイバー6は通常の長繊維状のカーボンファイバーを粉砕して繊維長の分布があるピーク値をもった正規分布を呈するものとし、その形状は線径(平均直径)が5〜10μm、繊維長(平均長さ)が10〜1000μmのものが好適である。このようなカーボンファイバー6を用いることにより、樹脂結合相3中での分散性が向上し、本実施形態においてよりよい効果を得ることができる。
【0015】
カーボンファイバー6は固体潤滑性があり、抗折強度が小さいため、樹脂結合相3に含まれることにより、レジンボンド砥石1の切れ味を良くすることができるが、寿命が短くなるという性質を有し、また、SiC5は樹脂結合相3の剛性を高めて研削面における摩耗を減らすとともに、砥粒保持力を向上させ超砥粒4の早すぎる脱落を防止する効果が得られるが、レジンボンド砥石1の切れ味は十分ではなくなるという性質を有する。
本実施形態のレジンボンド砥石1によれば、これらカーボンファイバー6とSiC5の両フィラーを、SiC5を1としたときにカーボンファイバー6が0.8〜1.2となる比率で樹脂結合相に混ぜ合わせることで、その相乗効果によって、研削抵抗を低減させてレジンボンド砥石1の切れ味を良くし、研削比を向上させて寿命を長くできる。さらに、カーボンファイバー6が超砥粒4をつつむ樹脂結合相3の強度を上げSiC5を保持するような働きをして樹脂結合相3の強度をより高めることができる。
また、SiC5を1としたときのカーボンファイバー6の比率が0.8より小さいと、SiC5の占める比率が大きくなり研削抵抗が大きくなって切れ味が悪化し、一方、SiC5が1に対するカーボンファイバー6の比率が1.2より大きいと、カーボンファイバー6の占める比率が大きくなり研削比が落ち寿命が短くなる。
また、そのカーボンファイバー6及びSiC5の含有比率が45%より大きいと、樹脂結合相3の強度低下が無視できず、耐摩耗性と研削比が落ちて寿命が短くなり、一方、カーボンファイバー6及びSiC5の含有比率が25%より小さいと、研削抵抗が上昇し、切れ味が悪くなる。
【0016】
【実施例】
難削材として超硬合金を使用し、各種の組成を有するレジンボンド砥石(実施例1〜9,比較例1〜21)を用いて研削試験を行い、得られた結果から研削抵抗(法線方向)、研削比を比較した。その結果を表1に示す。
【0017】
【表1】

Figure 0004415474
【0018】
〔共通寸法、材料等〕
実施例、比較例によるレジンボンド砥石はJIS規格1A1型砥石でその寸法は、外径100mm×砥石厚さ7mm×砥粒層厚さ3mm×内径50.8mmであり、超砥粒4として粒度200/230メッシュの合成ダイヤモンド砥粒が用いられ、集中度が100、グレードがRである。
また、実施例及び比較例で樹脂結合相3に含まれているカーボンファイバー6は線径(平均直径)が5〜10μm、繊維長(平均長さ)が10〜1000μmのものが用いられている。
【0019】
実施例1〜9及び比較例1〜21の組成は表1に示されている通りであり、実施例及び比較例のそれぞれにおいて樹脂結合相3に含まれているSiCの粒度が#400,#600,#800のものを用いて以下に示す条件で研削試験を行った。ここで表1において、総フィラー比率とはカーボンファイバー6及びSiC5の両フィラーの超砥粒4を除く樹脂結合相3中の含有比率を示し、ファイバー/SiC割合とは、樹脂結合相3中に分散配置されているカーボンファイバー6のSiC5を1としたときの割合を示すものである。
〔研削条件〕
被削材として、超硬合金:WC−6%Coを用い、砥石周速:25m/sec、切り込み:20μm、送り速度:0.17m/sec、クロス送り:2mm/パスで湿式研削を行った。研削抵抗(法線方向)及び研削比は超硬合金の加工量が30ccのときに計測を行った。
【0020】
表1に示されているように、本発明の範囲内にある実施例1〜9は研削抵抗(法線抵抗)が小さく、切れ味の良い砥石であることがわかり、さらに、研削比が大きく、寿命の長い砥石であることもわかる。また、本発明の範囲から外れるにしたがい、研削抵抗(法線方向)が大きくなり、研削比が小さくなって試験結果が悪化した。
ここで、総フィラー比率が25%と共通しているが、ファイバー/SiC割合が0.8である実施例1とファイバー/SiC割合が0.6である比較例6とを比較すると、実施例1は比較例6よりも研削抵抗(法線方向)が小さく、研削比が大きいので、実施例1の方が比較例6より切れ味が良く、寿命も長いことがわかる。さらに、同じく総フィラー比率が25パーセントと共通しているが、ファイバー/SiC割合が1.2である実施例3とファイバー/SiC割合が1.4である比較例7とを比較すると、実施例3は比較例7よりも研削抵抗(法線方向)が小さく、研削比が大きいので、実施例3の方が比較例7より切れ味が良く、寿命も長いことがわかる。
また、総フィラー比率が35%と共通しているが、ファイバー/SiC割合が0.8である実施例4とファイバー/SiC割合が0.6である比較例8とを比較すると、実施例4は比較例8よりも研削抵抗(法線方向)が小さく、研削比が大きいので、実施例4の方が比較例8より切れ味が良く、寿命も長いことがわかる。さらに、同じく総フィラー比率が35パーセントと共通しているが、ファイバー/SiC割合が1.2である実施例6とファイバー/SiC割合が1.4である比較例9とを比較すると、実施例6は比較例9よりも研削抵抗(法線方向)が小さく、研削比が大きいので、実施例6の方が比較例9より切れ味が良く、寿命も長いことがわかる。
また、総フィラー比率が45%と共通しているが、ファイバー/SiC割合が0.8である実施例7とファイバー/SiC割合が0.6である比較例10とを比較すると、実施例7は比較例10よりも研削抵抗(法線方向)が小さく、研削比が大きいので、実施例7の方が比較例10より切れ味が良く、寿命も長いことがわかる。さらに、同じく総フィラー比率が45パーセントと共通しているが、ファイバー/SiC割合が1.2である実施例9とファイバー/SiC割合が1.4である比較例11とを比較すると、実施例9は比較例11よりも研削抵抗(法線方向)が小さく、研削比が大きいので、実施例9の方が比較例11より切れ味が良く、寿命も長いことがわかる。
【0021】
ここで、ファイバー/SiC割合が0.8と共通しているが、総フィラー比率が25%である実施例1と総フィラー比率が20%である比較例2とを比較すると、実施例1は比較例2よりも研削抵抗(法線方向)が小さく、研削比が大きいので、実施例1の方が比較例2より切れ味が良く、寿命も長いことがわかる。また、ファイバー/SiC割合が1.2と共通しているが、総フィラー比率が25%である実施例3と総フィラー比率が20%である比較例4とを比較すると、実施例3は比較例4よりも研削抵抗(法線方向)が小さく、研削比が大きいので、実施例3の方が比較例4より切れ味が良く、寿命も長いことがわかる。
また、ファイバー/SiC割合が0.8と共通しているが、総フィラー比率が45%である実施例7と総フィラー比率が50%である比較例13とを比較すると、実施例7は比較例13よりも研削抵抗(法線方向)が小さく、研削比が大きいので、実施例7の方が比較例13より切れ味が良く、寿命も長いことがわかる。また、ファイバー/SiC割合が1.2と共通しているが、総フィラー比率が45%である実施例9と総フィラー比率が50%である比較例15とを比較すると、実施例9は比較例15よりも研削抵抗(法線方向)が小さく、研削比が大きいので、実施例9の方が比較例15より切れ味が良く、寿命も長いことがわかる。
以上のように本発明の範囲内にある実施例1〜9は研削抵抗(法線方向)、研削比のすべてにおいて良好な結果が得られた。
【0022】
【発明の効果】
以上説明したように、本発明によるレジンボンド砥石は樹脂結合相中に超砥粒が分散配置されてなるレジンボンド砥石において、前記樹脂結合相中にカーボンファイバーとSiCとがフィラーとして分散配置されており、カーボンファイバーは、線径(平均直径)が5〜10μm、繊維長(平均長さ)が10〜1000μmであり、SiCは、粒度が#400、#600、#800であり、カーボンファイバーとSiCの混合割合はSiCを1としたときにカーボンファイバーが0.8〜1.2であり、なおかつ、前記カーボンファイバー及び前記SiCの両フィラーは、その含有比率が前記超砥粒を除く前記樹脂結合相の25〜45vol%であるから、カーボンファイバーとSiCのフィラーの相乗効果により、砥石の切れ味を良くして、寿命を長くすることができる。
【図面の簡単な説明】
【図1】 本実施形態におけるレジンボンド砥石の砥粒層の要部拡大断面図である。
【符号の説明】
1 レジンボンド砥石
2 砥粒層
3 樹脂結合相
4 超砥粒
5 SiC
6 カーボンファイバー[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resin bond grindstone suitable for heavy grinding of difficult-to-cut materials.
[0002]
[Prior art]
A resin bond grindstone is a general term for a grindstone having an abrasive grain layer in which abrasive grains such as diamond are dispersed in a resin binder phase such as a phenol resin. The resin binder phase wears during grinding and the abrasive grains gradually protrude. Since the action, the so-called self-generated blade action, is good, it has a characteristic that a relatively good sharpness can be obtained even in grinding of difficult-to-cut materials that are difficult to grind with a grindstone using another type of binder.
[0003]
Recently, many cermets, cemented carbides and hard ceramics that are harder and harder to process than before have appeared and are not only used in a wide range of fields, but also have higher rigidity and higher horsepower to improve processing efficiency. Grinding conditions are becoming more severe, such as using a grinding machine.
[0004]
[Problems to be solved by the invention]
Under such severe grinding conditions, conventional resin bond grindstones using phenolic resin or the like as the binder phase lack the rigidity of the resin binder phase and the ability to retain the abrasive grains, resulting in high grinding resistance, low grinding ratio and long life. It was short.
[0005]
Therefore, for example, hard particles such as SiC are added as a filler and dispersed in the resin binder phase, the rigidity of the resin binder phase is increased to reduce wear on the grinding surface, and the abrasive grain holding power is improved to increase the superabrasive grains. It is also aimed to prevent the dropout of too early.
[0006]
However, even with the resin bond grindstone as described above, although its life can be maintained to some extent, a sufficient sharpness cannot be obtained.
[0007]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a resin-bonded grindstone that has a good sharpness even when grinding difficult-to-cut materials and has a long life.
[0008]
[Means for Solving the Problems]
In order to solve the above-described problems and achieve the above object, the present invention provides a resin bond grindstone in which superabrasive grains are dispersedly arranged in a resin binder phase, and in the resin binder phase, carbon fiber and SiC are included. Are distributed as fillers, the carbon fiber has a wire diameter (average diameter) of 5 to 10 μm, a fiber length (average length) of 10 to 1000 μm, and SiC has a particle size of # 400, # 600, # The mixing ratio of carbon fiber and SiC is 0.8 to 1.2 when the SiC is 1, and the content ratio of both the carbon fiber and the SiC filler is more than the above. It is 25-45 vol% of the said resin binder phase except an abrasive grain, It is characterized by the above-mentioned.
[0009]
Carbon fiber has solid lubricity and can be used to improve the sharpness of the grindstone by being contained in the resin binder phase. However, since the bending strength is small, it has the property of shortening the service life. Has the effect of increasing the rigidity of the resin binder phase to reduce wear on the grinding surface and improving the retention of the abrasive grains and preventing the superabrasive grains from falling off prematurely, but the sharpness of the grindstone is not sufficient. Have.
According to the present invention, these carbon fiber and SiC fillers are mixed with the resin-bonded phase in a ratio of 0.8 to 1.2 carbon fiber with respect to SiC of 1. The grinding resistance is reduced to improve the sharpness of the grindstone, the grinding ratio is improved, and the life can be extended. Furthermore, since the carbon fiber works to increase the strength of the resin-bonded phase sandwiching the superabrasive grains and retain SiC, the rigidity of the resin-bonded phase can be further increased.
Also, if the ratio of carbon fiber when SiC is 1 is less than 0.8, the ratio of SiC is increased, the grinding resistance is increased, and the sharpness is deteriorated. On the other hand, the carbon fiber when SiC is 1 If the ratio is greater than 1.2, the ratio occupied by the carbon fibers increases, the grinding ratio decreases, and the life is shortened.
In addition, if the content ratio of carbon fiber and SiC is larger than 45%, the strength reduction of the resin binder phase cannot be ignored, the wear resistance and the grinding ratio are lowered, and the life is shortened. On the other hand, the content ratio of carbon fiber and SiC is If it is smaller than 25%, the grinding resistance increases and the sharpness deteriorates.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is an enlarged cross-sectional view of the main part of the abrasive layer of the resin bond grindstone according to the present embodiment.
[0011]
The resin-bonded grindstone 1 according to the present embodiment shown in FIG. 1 has main characteristics in the composition of the abrasive layer 2, and the grindstone may have any shape or size. For example, the abrasive grain layer 2 may be formed on the outer periphery or the end face of the base metal, or the grindstone may be formed by the abrasive grain layer 2 itself without using the base metal. The shape of the grindstone may be any type conventionally used, such as a wheel mold, a cup mold, a total mold, a segment grindstone, and an inner peripheral grindstone.
[0012]
As shown in FIG. 1, the resin bond grindstone 1 is a resin bond grindstone having an abrasive grain layer 2 in which superabrasive grains 4 such as diamond and CBN are dispersed in a resin binder phase 3. In phase 3, carbon fiber 6 and SiC5 are dispersed and arranged as a filler in a matrix phase containing a thermosetting resin as a main composition, and the mixing ratio of carbon fiber 6 is 0 when SiC5 is 1. And the content ratio of both fillers of carbon fiber 6 and SiC5 is 25 to 45 vol% of resin binder phase 3 excluding superabrasive grains 4.
[0013]
As the thermosetting resin constituting the matrix phase of the resin binder phase 3, a thermosetting polyimide resin, a phenol resin, or a polystilpyridine resin can be used. Of these, thermosetting polyimide resins or phenol resins are particularly suitable for the present invention.
[0014]
The carbon fibers 6 dispersed and arranged in the resin binder phase 3 are obtained by pulverizing ordinary long-fiber carbon fibers and exhibiting a normal distribution having a peak value with a distribution of fiber lengths. It is preferable that the diameter (average diameter) is 5 to 10 μm and the fiber length (average length) is 10 to 1000 μm. By using such a carbon fiber 6, the dispersibility in the resin binder phase 3 is improved, and a better effect can be obtained in the present embodiment.
[0015]
Since the carbon fiber 6 has solid lubricity and has a low bending strength, it can improve the sharpness of the resin bond grindstone 1 by being included in the resin bonded phase 3, but has a property of shortening the service life. In addition, SiC 5 increases the rigidity of the resin binder phase 3 to reduce wear on the grinding surface, and improves the abrasive grain retention and prevents the superabrasive grains 4 from falling off prematurely. It has the property that its sharpness is not sufficient.
According to the resin bond grindstone 1 of the present embodiment, both the fillers of the carbon fiber 6 and SiC5 are mixed in the resin-bonded phase at a ratio in which the carbon fiber 6 is 0.8 to 1.2 when SiC5 is 1. By combining them, the synergistic effect can reduce the grinding resistance, improve the sharpness of the resin bond grindstone 1, improve the grinding ratio, and extend the life. Further, the strength of the resin-bonded phase 3 can be increased by increasing the strength of the resin-bonded phase 3 in which the carbon fiber 6 encloses the superabrasive grains 4 and holding SiC 5.
Moreover, when the ratio of the carbon fiber 6 when SiC5 is set to 1 is smaller than 0.8, the ratio occupied by the SiC5 increases, the grinding resistance increases, and the sharpness deteriorates. If the ratio is greater than 1.2, the ratio occupied by the carbon fibers 6 increases, the grinding ratio decreases, and the life is shortened.
Further, if the content ratio of the carbon fiber 6 and SiC5 is larger than 45%, the strength reduction of the resin binder phase 3 cannot be ignored, the wear resistance and the grinding ratio are lowered, and the life is shortened. When the content ratio of SiC5 is smaller than 25%, the grinding resistance increases and the sharpness deteriorates.
[0016]
【Example】
A cemented carbide is used as a difficult-to-cut material, a grinding test is performed using resin bond grindstones (Examples 1 to 9, Comparative Examples 1 to 21) having various compositions, and grinding resistance (normal line) is obtained from the obtained results. Direction) and grinding ratios were compared. The results are shown in Table 1.
[0017]
[Table 1]
Figure 0004415474
[0018]
[Common dimensions, materials, etc.]
The resin bond grindstones according to the examples and comparative examples are JIS standard 1A1 type grindstones, and the dimensions are an outer diameter of 100 mm, a grindstone thickness of 7 mm, an abrasive layer thickness of 3 mm, and an inner diameter of 50.8 mm. A / 230 mesh synthetic diamond abrasive is used, with a concentration of 100 and a grade of R.
Moreover, the carbon fiber 6 contained in the resin binder phase 3 in Examples and Comparative Examples has a wire diameter (average diameter) of 5 to 10 μm and a fiber length (average length) of 10 to 1000 μm. .
[0019]
The compositions of Examples 1 to 9 and Comparative Examples 1 to 21 are as shown in Table 1. The particle sizes of SiC contained in the resin binder phase 3 in each of the Examples and Comparative Examples are # 400 and # A grinding test was performed using 600 and # 800 under the following conditions. Here, in Table 1, the total filler ratio indicates the content ratio of both fillers of carbon fiber 6 and SiC5 in the resin binder phase 3 excluding the superabrasive grains 4, and the fiber / SiC ratio indicates the resin binder phase 3. The ratio when the SiC5 of the carbon fiber 6 dispersedly arranged is set to 1 is shown.
[Grinding conditions]
As the work material, cemented carbide: WC-6% Co was used, and grinding with a grinding wheel peripheral speed: 25 m / sec, cutting: 20 μm, feed rate: 0.17 m / sec, cross feed: 2 mm / pass was performed. . The grinding resistance (normal direction) and the grinding ratio were measured when the amount of cemented carbide processed was 30 cc.
[0020]
As shown in Table 1, it can be seen that Examples 1 to 9 within the scope of the present invention have a low grinding resistance (normal resistance) and a sharp grinding wheel, and the grinding ratio is large. It can also be seen that it is a long-life wheel. In addition, as it deviated from the scope of the present invention, the grinding resistance (normal direction) increased, the grinding ratio decreased, and the test results deteriorated.
Here, when the total filler ratio is 25% and the Example 1 in which the fiber / SiC ratio is 0.8 is compared with the comparative example 6 in which the fiber / SiC ratio is 0.6, the Example 1 has a smaller grinding resistance (normal direction) than Comparative Example 6 and a larger grinding ratio, so it can be seen that Example 1 is sharper and has a longer life than Comparative Example 6. Furthermore, when the total filler ratio is 25% in common, Example 3 in which the fiber / SiC ratio is 1.2 is compared with Comparative Example 7 in which the fiber / SiC ratio is 1.4. 3 has a smaller grinding resistance (in the normal direction) than Comparative Example 7 and a larger grinding ratio, so it can be seen that Example 3 has better sharpness and longer life than Comparative Example 7.
Moreover, although the total filler ratio is 35%, the comparison between Example 4 in which the fiber / SiC ratio is 0.8 and Comparative Example 8 in which the fiber / SiC ratio is 0.6 are compared with Example 4. Since the grinding resistance (in the normal direction) is smaller than that of Comparative Example 8 and the grinding ratio is large, it can be seen that Example 4 has better sharpness and longer life than Comparative Example 8. Further, when the total filler ratio is 35% in common but the fiber / SiC ratio is 1.2 and the comparative example 9 is 1.4, the fiber / SiC ratio is 1.4. 6 has a smaller grinding resistance (normal direction) than Comparative Example 9 and a larger grinding ratio. Therefore, it can be seen that Example 6 has better sharpness and longer life than Comparative Example 9.
In addition, when the total filler ratio is 45% and Example 7 in which the fiber / SiC ratio is 0.8 is compared with Comparative Example 10 in which the fiber / SiC ratio is 0.6, Example 7 is compared. Since the grinding resistance (normal direction) is smaller than that of Comparative Example 10 and the grinding ratio is large, it can be seen that Example 7 has better sharpness and longer life than Comparative Example 10. Further, when Example 9 having a fiber / SiC ratio of 1.2 is compared with Comparative Example 11 having a fiber / SiC ratio of 1.4, the total filler ratio is 45% in common. No. 9 has a smaller grinding resistance (in the normal direction) and a higher grinding ratio than Comparative Example 11, so that Example 9 is sharper and has a longer life than Comparative Example 11.
[0021]
Here, although the fiber / SiC ratio is in common with 0.8, when comparing Example 1 in which the total filler ratio is 25% and Comparative Example 2 in which the total filler ratio is 20%, Example 1 is Since the grinding resistance (normal direction) is smaller than that of Comparative Example 2 and the grinding ratio is large, it can be seen that Example 1 has better sharpness and longer life than Comparative Example 2. Moreover, although the fiber / SiC ratio is common with 1.2, when comparing Example 3 in which the total filler ratio is 25% and Comparative Example 4 in which the total filler ratio is 20%, Example 3 is compared. Since the grinding resistance (normal direction) is smaller and the grinding ratio is larger than in Example 4, it can be seen that Example 3 is sharper and has a longer life than Comparative Example 4.
Moreover, although the fiber / SiC ratio is common with 0.8, when comparing Example 7 in which the total filler ratio is 45% and Comparative Example 13 in which the total filler ratio is 50%, Example 7 is compared. Since the grinding resistance (in the normal direction) is smaller than that in Example 13 and the grinding ratio is large, it can be seen that Example 7 has better sharpness and longer life than Comparative Example 13. Further, although the fiber / SiC ratio is common with 1.2, when comparing Example 9 in which the total filler ratio is 45% and Comparative Example 15 in which the total filler ratio is 50%, Example 9 is compared. Since the grinding resistance (normal direction) is smaller and the grinding ratio is larger than in Example 15, it can be seen that Example 9 has better sharpness and longer life than Comparative Example 15.
As described above, in Examples 1 to 9 within the scope of the present invention, good results were obtained in all of the grinding resistance (normal direction) and the grinding ratio.
[0022]
【The invention's effect】
As described above, the resin-bonded grindstone according to the present invention is a resin-bonded grindstone in which superabrasive grains are dispersedly arranged in a resin-bonded phase, and carbon fibers and SiC are dispersedly arranged as fillers in the resin-bonded phase. The carbon fiber has a wire diameter (average diameter) of 5 to 10 μm, a fiber length (average length) of 10 to 1000 μm, and SiC has a particle size of # 400, # 600, and # 800. the mixing ratio of SiC, carbon fibers when formed into a 1 of SiC is 0.8 to 1.2, yet, both filler of the carbon fiber and the SiC, the the content ratio excluding the superabrasive Since it is 25 to 45 vol% of the resin binder phase, the sharpness of the grindstone is improved by the synergistic effect of the carbon fiber and SiC filler. , It is possible to prolong the life.
[Brief description of the drawings]
FIG. 1 is an enlarged cross-sectional view of a main part of an abrasive layer of a resin bond grindstone in the present embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Resin bond grindstone 2 Abrasive grain layer 3 Resin binder phase 4 Superabrasive grain 5 SiC
6 Carbon fiber

Claims (1)

樹脂結合相中に超砥粒が分散配置されてなるレジンボンド砥石において、
前記樹脂結合相中に、カーボンファイバーとSiCとがフィラーとして分散配置されており、
カーボンファイバーは、線径(平均直径)が5〜10μm、繊維長(平均長さ)が10〜1000μmであり、SiCは、粒度が#400、#600、#800であり、
カーボンファイバーとSiCの混合割合はSiCを1としたときにカーボンファイバーが0.8〜1.2であり、
なおかつ、前記カーボンファイバー及び前記SiCの両フィラーの含有比率が前記超砥粒を除く前記樹脂結合相の25〜45vol%であることを特徴とするレジンボンド砥石。
In a resin bond grindstone in which superabrasive grains are dispersed and arranged in a resin binder phase,
In the resin binder phase, carbon fibers and SiC are dispersed and arranged as fillers,
The carbon fiber has a wire diameter (average diameter) of 5 to 10 μm, a fiber length (average length) of 10 to 1000 μm, and SiC has a particle size of # 400, # 600, and # 800,
The mixing ratio of carbon fiber and SiC, the carbon fibers when formed into a 1 of SiC is 0.8 to 1.2,
And the resin bond grindstone characterized by the content ratio of both the said carbon fiber and the filler of SiC being 25-45 vol% of the said resin bond phase except the said superabrasive grain.
JP2000306741A 2000-10-05 2000-10-05 Resin bond grinding wheel Expired - Fee Related JP4415474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000306741A JP4415474B2 (en) 2000-10-05 2000-10-05 Resin bond grinding wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000306741A JP4415474B2 (en) 2000-10-05 2000-10-05 Resin bond grinding wheel

Publications (2)

Publication Number Publication Date
JP2002113665A JP2002113665A (en) 2002-04-16
JP4415474B2 true JP4415474B2 (en) 2010-02-17

Family

ID=18787378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000306741A Expired - Fee Related JP4415474B2 (en) 2000-10-05 2000-10-05 Resin bond grinding wheel

Country Status (1)

Country Link
JP (1) JP4415474B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210108150A (en) * 2020-02-25 2021-09-02 주식회사 세한텍 Wheel for grinding glass sheet and manufacturing method thereof
KR20220067993A (en) * 2020-11-18 2022-05-25 주식회사 세한텍 Wheel for grinding glass sheet and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018058130A (en) * 2016-10-03 2018-04-12 Towa株式会社 Discoid rotary blade, cutting device, and manufacturing method for discoid rotary blade
JP7168159B2 (en) * 2018-03-30 2022-11-09 山形県 Carbon nanotube composite resin bond grinding wheel and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210108150A (en) * 2020-02-25 2021-09-02 주식회사 세한텍 Wheel for grinding glass sheet and manufacturing method thereof
KR102309564B1 (en) 2020-02-25 2021-10-07 주식회사 세한텍 Wheel for grinding glass sheet and manufacturing method thereof
KR20220067993A (en) * 2020-11-18 2022-05-25 주식회사 세한텍 Wheel for grinding glass sheet and manufacturing method thereof
KR102432921B1 (en) 2020-11-18 2022-08-18 주식회사 세한텍 Wheel for grinding glass sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JP2002113665A (en) 2002-04-16

Similar Documents

Publication Publication Date Title
JP3042749B2 (en) Polishing tool containing filamentary particles of microcrystalline alumina
JPS5882678A (en) Coarse tissue organic matter coupled grinding body
US4671021A (en) Grinding tool
JP2001138244A (en) Resin bond type grinding wheel
JP2002066928A (en) Hybrid grinding wheel and manufacturing method therefor
JP2002001668A (en) Metal bonded grinding wheel
JP4415474B2 (en) Resin bond grinding wheel
TW425338B (en) Composite bond wheel and wheel having resin bonding phase
KR101861890B1 (en) A grinding tool for machining brittle materials and a method of making a grinding tool
JPS6359827B2 (en)
JP7261246B2 (en) Metal bond grindstone for hard and brittle materials
JP2659811B2 (en) Resin bond super abrasive whetstone
JPH01115574A (en) Extremely thin cutting blade
JP4370713B2 (en) Resin bond grinding wheel
JP4513135B2 (en) Grinding wheel containing fibrous hollow graphite
JPH10296636A (en) Metal bond grinding wheel
JP2006043884A (en) Resin bonded abrasive tool
JPH11300623A (en) Resin board grinding wheel
JP4496984B2 (en) Resin bond grinding wheel
JP2003205466A (en) Super abrasive grain wheel and its manufacturing method
JP2007015054A (en) Resin bonded super-grinding tool and grinding wheel using the same
JP3146835B2 (en) Metal bond whetstone
JP4199964B2 (en) Super abrasive wheel and grinding method using the same
JP3292134B2 (en) Resin bond whetstone
JP4592207B2 (en) Super abrasive wheel and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees