JP4414149B2 - Manufacturing method of laminated iron core - Google Patents

Manufacturing method of laminated iron core Download PDF

Info

Publication number
JP4414149B2
JP4414149B2 JP2003077321A JP2003077321A JP4414149B2 JP 4414149 B2 JP4414149 B2 JP 4414149B2 JP 2003077321 A JP2003077321 A JP 2003077321A JP 2003077321 A JP2003077321 A JP 2003077321A JP 4414149 B2 JP4414149 B2 JP 4414149B2
Authority
JP
Japan
Prior art keywords
divided core
core piece
divided
piece
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003077321A
Other languages
Japanese (ja)
Other versions
JP2004289908A (en
Inventor
孝昭 三井
勝房 藤田
徳夫 鳥巣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui High Tech Inc
Original Assignee
Mitsui High Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui High Tech Inc filed Critical Mitsui High Tech Inc
Priority to JP2003077321A priority Critical patent/JP4414149B2/en
Publication of JP2004289908A publication Critical patent/JP2004289908A/en
Application granted granted Critical
Publication of JP4414149B2 publication Critical patent/JP4414149B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、大形発電機等の固定子鉄心に適用される積層鉄心の製造方法に関する。
【0002】
【従来の技術】
従来の積層鉄心の製造方法は、例えば、多段の順送りプレス金型に、帯状で未加工の薄板材(例えば、電磁鋼板)を供給して連続的に分割鉄心片を形成すると共に、分割鉄心片に固定子巻線を装着するためのスロットを打ち抜きによって設けた帯状薄板材を形成する。そして、帯状薄板材を所定の直径を備えた円柱状の治具の周りに幅方向に湾曲させながら、順次重ねてスパイラル状に巻き付け、重なるスロットの位置を一致させて、積層鉄心を形成している(例えば、特許文献1参照)。
また、大形の固定子鉄心の場合は、ノッチングプレス金型によって1枚1枚打ち抜いて鉄心を形成している場合がある。
【0003】
【特許文献1】
特許第3359863号公報(第2〜3頁、図3)
【0004】
【発明が解決しようとする課題】
ところで、前記従来技術では、帯状薄板材を幅方向に強制的に湾曲させて、円柱状の治具の周りに巻き付けるために、湾曲部分に塑性変形させる力が加わって歪みが生じやすい。とくに、渦電流損失を極めて小さくするために、厚みが例えば、0.1〜0.5mm程度の帯状薄板材を使う場合、積層方向に変形する座屈が生じやすい。そのため、順次重ねてスパイラル状に巻き付けたときに、積層方向の隣り合う帯状薄板材の間に隙間が生じて、固定子鉄心としての磁気特性を低下させるという問題があった。
また、ノッチングプレス金型によって鉄心を形成する場合、材料の歩留りが悪く、コスト高になるという問題があった。
本発明はかかる事情に鑑みてなされたもので、材料費を低減し、積層鉄心の変形を防止すると共に、固定子鉄心の磁気特性の低下を防止できる積層鉄心の製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
前記目的の沿う第1の発明に係る積層鉄心の製造方法は、磁性の薄板材を多数枚積層して形成され、内側にスロットで区分される所定数の磁極部を備え、所定のスロット形成位置で複数に分割した下側分割鉄心片、該下側分割鉄心片と外形の異なる中側分割鉄心片、及び前記下側分割鉄心片と同一外形の上側分割鉄心片を前記薄板材からそれぞれ形成し、前記下側分割鉄心片、中側分割鉄心片、及び上側分割鉄心片をかしめ積層した分割鉄心片ブロックを、その両端部に形成されたヒンジ部を介して鎖状かつ回動可能に連結して直線状に引出し、この直線状に連結された前記分割鉄心片ブロックをスパイラル状に巻いて積層形成する積層鉄心の製造方法であって、
前記下側分割鉄心片を形成する加工ステ−ションはX方向に並べて配置され、前記中側分割鉄心片及び上側分割鉄心片を形成する加工ステーションは、前記X方向と直交するY方向に並べて配置され、これらの加工ステーションが交叉する位置で、前記下側分割鉄心片、中側分割鉄心片及び上側分割鉄心片の積層加工が行われると共に、隣り合う前記分割鉄心片ブロックが直線状で、かつ鎖状に連結されている。
これにより、隣り合う分割鉄心片ブロックは、ヒンジ部を介して回転可能に連結されているので、連結された分割鉄心片ブロックを円柱状の治具に押しつけながら湾曲させてスパイラル状に巻いて積層鉄心を形成する場合、ヒンジ部で連結されている両側の分割鉄心片ブロックが相対的に回動することによって円柱状の治具の形状に倣って変形し、各分割鉄心片ブロックには無理な塑性変形をさせる力は加わらない。
【0006】
また、前記下側分割鉄心片を形成する加工ステ−ションはX方向に並べて配置され、前記中側分割鉄心片及び上側分割鉄心片を形成する加工ステーションは、前記X方向と直交するY方向に並べて配置され、これらの加工ステーションが交叉する位置で、前記下側分割鉄心片、中側分割鉄心片及び上側分割鉄心片の積層加工が行われると共に、隣り合う前記分割鉄心片ブロックが直線状で、かつ鎖状に連結されている。
この場合、下側分割鉄心片と形状が異なる中側分割鉄心片及び上側分割鉄心片を、下側分割鉄心片の加工ステーションと中側分割鉄心片及び上側分割鉄心片の加工ステーションが交叉する位置で、1台のプレス金型によって直線状で、かつ鎖状に連結加工することが可能となる。
【0007】
の発明に係る積層鉄心の製造方法は、第の発明に係る積層鉄心の製造方法において、前記分割鉄心片ブロックの全部又は一部には、積層した場合に上下方向に符合する連結孔が形成された突出部を設け、最終的に組み立てられた積層鉄心を、上下方向に貫通する前記連結孔に挿通する連結部材を介して固定する。
この場合、連結部材によって積層したときのスロットのずれを無くすと共に、積層鉄心の積層方向に簡単に圧縮力を加えて、その力を維持することができ、積層鉄心の積層方向に隣接する分割鉄心片ブロックどうしが常時密着した状態となる。
【0008】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここに、図1は本発明の第1の実施の形態に係る積層鉄心の製造方法を適用して製造された積層鉄心の正面図、図2は同積層鉄心の説明図、図3(A)、(B)、(C)はそれぞれ同積層鉄心の下側分割鉄心片、中側分割鉄心片、上側分割鉄心片の正面図、図4は本発明の第1の実施の形態に係る積層鉄心の製造方法における連結型による加工前の下側分割鉄心片、中側分割鉄心片、上側分割鉄心片の相対的位置を示す要部側断面図、図5は同製造方法における連結型による加工後の下側分割鉄心片、中側分割鉄心片、上側分割鉄心片の相対的位置を示す要部側断面図、図6は同製造方法の加工状態を示す平面図、図7は同製造方法に用いられる下側加工ステーションの左側から内外周加工型までの平面図、図8は同製造方法に用いられる下側加工ステーションのかしめ部加工型から連結型までの平面図、図9は同製造方法に用いられる下側加工ステーションの連結型より右側を示す平面図、図10は同製造方法に用いられる中上側加工ステーションの平面図、図11は同製造方法の分割鉄心片ブロックを円筒状治具に巻き付ける工程を示す平面図、図12は本発明の第2の実施の形態に係る積層鉄心の製造方法を適用して製造された積層鉄心の正面図、図13は本発明の第3の実施の形態に係る積層鉄心の製造方法に用いられる製造設備と帯状薄板材の加工状態を示す平面図である。
【0009】
図1、図2に示すように、本発明の第1の実施の形態に係る積層鉄心の製造方法を適用して製造された積層鉄心10は、中空円筒状に形成され、内周側に開口する所定数のスロット11を円周方向に等間隔に備え、隣り合うスロット11の間に内周側に突出する磁極部12を備えている。また、積層鉄心10は、全スロット数を等分割した同一のスロット数(図1では8スロット)をそれぞれ有する複数のブロックに分割された磁性の薄板材からなる分割鉄心片ブロック13を備え、分割鉄心片ブロック13を長手方向の両端で所定数連結して形成した鎖状鉄心材14をスパイラル状に巻き付けて積層形成している。なお、図2は鎖状鉄心材14の端部を積層鉄心10の両端面から極端に浮いた状態にして、形状を理解しやすく示しているが、実際には端部も密着した状態になる。
【0010】
図3(A)、(B)、(C)、図4、図5に示すように、分割鉄心片ブロック13は、下側分割鉄心片15、中側分割鉄心片16、及び下側分割鉄心片15とほぼ同一形状の上側分割鉄心片17とが3層に積層されている。下側分割鉄心片15は一方側(図3(A)では右側)にのみ突出する下連結部18を有し、下連結部18の中央には軸受孔A19が設けられている。下側分割鉄心片15の他方側(図3(A)では左側)の端部には切欠き部20が形成され、隣接する下側分割鉄心片15の下連結部18が隙間を開けて嵌入するようになっている。中側分割鉄心片16は他方側(図3(B)では左側)にのみ突出する中連結部21を有し、中連結部21の中央下部には軸受孔A19に嵌入可能な突出軸部B22と中央上部には軸受穴C23がそれぞれ設けられている。中側分割鉄心片16の一方側(図3(B)では右側)の端部には切欠き部24が設けられて、隣接する中連結部21が隙間を開けて嵌入するようになっている。上側分割鉄心片17には一方側(図3(C)では右側)にのみ突出する上連結部25を有し、上連結部25の中央下部には突出軸部D26が設けられている。上側分割鉄心片17の他方側(図3(C)では左側)の端部には切欠き部27が設けられて、隣接する上連結部25が隙間を開けて嵌入するようになっている。軸受孔A19、突出軸部B22、軸受穴C23及び突出軸部D26がそれぞれ嵌入することにより、隣り合う分割鉄心片ブロック13が相対的に回動可能になるヒンジ部28が形成される。
【0011】
下側分割鉄心片15のスロット11の外周側に形成された基部29には嵌入孔30A(図4参照)が、中側分割鉄心片16、及び上側分割鉄心片17のスロット11の基部29にはそれぞれ上面に複数の嵌入凹部30が、下面には嵌入凹部30に対応する位置にかしめ用突起部31が設けられている。そして、図5に示すように、下側分割鉄心片15、中側分割鉄心片16、及び上側分割鉄心片17を積層したときに、下側分割鉄心片15の嵌入孔30Aに中側分割鉄心片16のかしめ用突起部31が、中側分割鉄心片16の嵌入凹部30に上側分割鉄心片17のかしめ用突起部31が嵌入して、かしめ部32を形成し、下側分割鉄心片15、中側分割鉄心片16、及び上側分割鉄心片17を一体に固定した分割鉄心片ブロック13を形成している。なお、嵌入孔30Aは、最下層となる下側分割鉄心片15にのみ設けられ、それ以外の下側分割鉄心片15には、図3(A)に示すように、嵌入凹部30及びかしめ用突起部31が設けられている。
【0012】
図6に示すように、積層鉄心10の製造設備33は、下側分割鉄心片15を形成する加工ステーション、すなわち下側加工ステーション34と、中側分割鉄心片16、及び上側分割鉄心片17を形成する加工ステーション、すなわち中上側加工ステーション35を備えた、例えば順送り式のプレス金型からなり、下側加工ステーション34と中上側加工ステーション35とは直交するX方向とY方向に並べて配置されている。
図6〜図9に示すように、下側加工ステーション34は図6の左側から右側に向かって、例えば厚みが0.35mm、幅が下側分割鉄心片15のY方向の最大幅より大きい珪素鋼板からなる帯状の磁性の薄板材、すなわち帯状薄板材36の位置決めを行うパイロット孔37を加工すると共に、隣り合う下側分割鉄心片15の境界部38を打ち抜くパイロット加工型39を設けている。次に、スロット11を打ち抜くスロット加工型40、下側分割鉄心片15の内外周を打ち抜く内外周トリミング型41を順次設けている。内外周トリミング型41は工程途中の下側分割鉄心片15を帯状薄板材36とを繋ぎ止める繋がり部42、43を残すようにしている。次に、最下層の下側分割鉄心片15には嵌入孔30Aを、それ以外の下側分割鉄心片15には嵌入凹部30及びかしめ用突起部31を加工するかしめ部加工型44及び軸受孔A19を加工するヒンジ部加工型45を備えた連結部加工型45Aを設け、次に加工動作を行わないアイドル部46を設けている。
【0013】
更に、下側加工ステーション34と中上側加工ステーション35とが交叉する交叉部47には、残された下側分割鉄心片15の繋がり部42、43を切断する繋がり部切断型48と、かしめ部32を押圧するかしめ型49と、軸受孔A19、突出軸部B22、軸受穴C23及び突出軸部D26をそれぞれ嵌入させてヒンジ部28を形成するヒンジ部嵌入型50とを備えて、厚み方向に隣り合う分割鉄心片ブロック13を連結する連結型51を設けている。更に、連結型51の右側に加工動作を行わないアイドル部52、分割鉄心片ブロック13を帯状薄板材36から完全に分離する分離型53を備えている。また、パイロット加工型39から所定ピッチ(下側分割鉄心片15の長手方向の長さ)だけ右側に順次離れた各加工部にそれぞれパイロットピン54を設け、帯状薄板材36が右側に移動したとき、パイロットピン54がパイロット孔37に嵌入して帯状薄板材36を位置決めするようにしている。したがって、下側加工ステーション34は、パイロット加工型39、スロット加工型40、内外周トリミング型41、連結部加工型45A、アイドル部46、連結型51、アイドル部52、分離型53を順次配列して、帯状薄板材36を1ストローク毎にパイロットピン54で位置決めして送り出す順送り型を形成している。
【0014】
図6、図10に示すように、中上側加工ステーション35は、図10の下方から上方に向かって、例えば厚みが0.35mm、幅が分割鉄心片ブロック13の円周方向の最大長さより大きい珪素鋼板からなる帯状の磁性の薄板材、すなわち帯状薄板材55の位置決めを行うパイロット孔56を打ち抜くパイロット加工型57を設けている。次に、上側分割鉄心片17の両端側のトリミングを行う上側両端トリミング型58、次に中側分割鉄心片16の両端側のトリミングを行う中側両端トリミング型59、次に加工動作を行わないアイドル部60が設けられている。更に、スロット11を打ち抜くスロット加工型61、中側分割鉄心片16及び上側分割鉄心片17の内外周を打ち抜く内外周トリミング型62が設けられている。内外周トリミング型62は、加工途中の内側分割鉄心片16及び上側分割鉄心片17を帯状薄板材55と共に中上側加工ステーション35に沿って移動させるため、中側分割鉄心片16及び上側分割鉄心片17と帯状薄板材55とを繋ぎ止める繋がり部63、64を残すようにしている。次に、中側分割鉄心片16及び上側分割鉄心片17の嵌入凹部30とかしめ用突起部31を加工するかしめ部加工型65と、中側分割鉄心片16の軸受穴C23、突出軸部B22、上側分割鉄心片17の突出軸部D26を加工するヒンジ部加工型66とを備えた連結部加工型67が設けられ、その先はアイドル部68を介して下側加工ステーション34の連結型51に連結されている。連結型51では左側から送られてきた帯状薄板材36の嵌入孔30A(あるいは嵌入凹部30)及び下連結部18が加工された部分の上方に、帯状薄板材55のかしめ用突起部31(嵌入凹部30)及び中連結部21、上連結部25が加工された部分を重ねるようにしている。
【0015】
また、パイロット加工型57から所定ピッチだけ上方(連結型51に向かう方向)に順次離れた各加工部にそれぞれパイロットピン69を設け、帯状薄板材55が上方に移動したとき、パイロットピン69がパイロット孔56に嵌入して帯状薄板材55を位置決めするようにしている。したがって、中上側加工ステーション35は、パイロット加工型57、上側両端トリミング型58、中側両端トリミング型59、アイドル部60、スロット加工型61、内外周トリミング型62、連結部加工型67、アイドル部68を順次配列して、帯状薄板材55を1ストロークごとにパイロットピン69で位置決めして送り出す順送り型を形成している。図11に示すように、分離型53の右側には所定の固定子鉄心の内径に等しい外形を有する円筒状治具70を設け、円筒状治具70の外周の一部に分割鉄心片ブロック13の端部を固定し、円筒状治具70を回転することにより、分割鉄心片ブロック13をスパイラル状に巻き付けるようにしている。
【0016】
ここで、積層鉄心10の製造方法について加工工程順に説明する。
(1)下側加工ステーション34のパイロット加工型39に帯状薄板材36を装着し、パイロット孔37と隣り合う下側分割鉄心片15の境界部38とを同時に打ち抜き加工する。
なお以下の工程ではいずれも、帯状薄板材36はパイロット孔37とパイロットピン54によって位置決めされる。
(2)帯状薄板材36を右方向に移動し、帯状薄板材36のパイロット孔37とパイロットピン54によってスロット加工型40の加工位置に位置決めしてスロット11を打ち抜き加工する。
(3)帯状薄板材36を右方向に移動し、内外周トリミング型41の加工位置に位置決めして内外周トリミング加工をする。
【0017】
(4)帯状薄板材36を右方向に移動し、連結部加工型45Aの加工位置に位置決めして、ヒンジ部28を構成する下連結部18を実質的に厚みの半分を押し出す半抜き加工によりヒンジ部加工すると共に、かしめ部32の実質的に厚み分を押してかしめ部32を構成する嵌入孔30Aを加工する連結部加工をする。
(5)帯状薄板材36を右方向に移動し、連結部加工を行った部分をアイドル部46に位置決めする。
(6)帯状薄板材36を右方向に移動し、下側分割鉄心片15のヒンジ部加工を行った部分を連結型51に位置決めする。
【0018】
一方、中上側加工ステーション35は下側加工ステーション34の動作に応じて工程を進める。すなわち下側分割鉄心片15及び中側分割鉄心片16のかしめ部32とヒンジ部28となる部分が加工された位置が同時に連結型51に載置されるタイミングで同期するように次の工程を並行して進める。
なお、以下、中上側加工ステーション35の加工工程では、中側分割鉄心片16と上側分割鉄心片17が順次交互に形成されるようになっている。
(7)中上側加工ステーション35のパイロット加工型57に帯状薄板材55を装着し、パイロット孔56を打ち抜き加工する。
なお、以下の工程ではいずれも、帯状薄板材55はパイロット孔56とパイロットピン69によって位置決めされる。
(8)帯状薄板材55を上方向に移動し、中側両端トリミング型59により、中側分割鉄心片16の両側と上側両端トリミング型58により、上側分割鉄心片17の両側トリミング加工を行う。
【0019】
(9)帯状薄板材55を上方向に移動し、アイドル部60を経て、さらに上方向に移動し、両側トリミング加工を行った中側分割鉄心片16、上側分割鉄心片17を順にスロット加工型61に位置決めしてスロット加工を行う。
(10)帯状薄板材55を上方向に移動し、スロット加工を行った中側分割鉄心片16、上側分割鉄心片17を順に内外周トリミング型62に位置決めし、内外周トリミング加工を行う。
【0020】
(11)帯状薄板材55を上方向に移動し、内外周トリミング加工を行った中側分割鉄心片16、上側分割鉄心片17を順に連結部加工型67に位置決めして、ヒンジ部28を形成する突出軸部B22、軸受穴C23とかしめ部32を形成する嵌入凹部30、かしめ用突起部31を中側分割鉄心片16に、突出軸部D26、嵌入凹部30、かしめ用突起部31を上側分割鉄心片17に加工する。
(12)帯状薄板材55をアイドル部68を経てさらに上方向に移動し、突出軸部B22、軸受穴C23と嵌入凹部30、かしめ用突起部31の加工が終わった中側分割鉄心片16を連結型51に位置決めし、連結型51の左側のアイドル部46に位置決めされた下側分割鉄心片15の軸受孔A19の上に、連結型51の上に位置決めされた中側分割鉄心片16の突出軸部B22を重ね合わせる。
この状態で、連結型51を動作させてアイドル部46上の下側分割鉄心片15の軸受孔A19に連結型51上の中側分割鉄心片16の突出軸部B22を嵌入させ、同時に連結型51上の下側分割鉄心片15の嵌入孔30Aに連結型51上の中側分割鉄心片16のかしめ用突起部31を嵌入させ、更に下側分割鉄心片15と帯状薄板材36とを繋ぐ繋がり部42、43及び中側分割鉄心片16と帯状薄板材55とを繋ぐ繋がり部63、64を切断する。
【0021】
(13)帯状薄板材55を上方に移動し、突出軸部D26の加工が終わった上側分割鉄心片17を連結型51上に位置決めし、連結型51の右側のアイドル部52上の中側分割鉄心片16の軸受穴C23上に、上側分割鉄心片17のヒンジ部28を形成する突出軸部D26を重ね合わせる。
この状態で、連結型51を動作させて、アイドル部52上の中側分割鉄心片16の軸受穴C23に連結型51上の上側分割鉄心片17の突出軸部D26を嵌入させ、同時に連結型51上の中側分割鉄心片16の嵌入凹部30に上側分割鉄心片17のかしめ用突起部31を嵌入させ、更に上側分割鉄心片17と帯状薄板材55とを繋ぐ繋がり部63、64を切断する。
これにより、連結型51上にあって下側分割鉄心片15、中側分割鉄心片16、及び上側分割鉄心片17がかしめ積層された分割鉄心片ブロック13は帯状薄板材36及び帯状薄板材55から切り離され、連結型51の右側のアイドル部52にある分割鉄心片ブロック13とヒンジ部28を介して連結され、更に連結型51の左側のアイドル部46にある下側分割鉄心片15にヒンジ部を介して連結される。
【0022】
(14)帯状薄板材36を右方向に移動し、連結型51上で積層が完了した分割鉄心片ブロック13をアイドル部52に移動させる。この状態で下側加工ステーション34及び中上側加工ステーション35の両方がそれぞれ同期して動作する。
(15)帯状薄板材36を右方向に移動し、アイドル部52上の分割鉄心片ブロック13を分離型53に移動させて、分離型53により、分割鉄心片ブロック13の周囲に残された帯状薄板材36の一部分を小鉄片に切断して排出する。
これら、(1)〜(15)の工程を連続して行うことにより、図11に示すような分割鉄心片ブロック13がヒンジ部28によって連鎖状に連結された直線状の鎖状鉄心材14が得られる。
(16)直線状の鎖状鉄心材14を引き出して、その端部を円筒状治具70の外周の一部に固定し、円筒状治具70を回転させて湾曲させ、分割鉄心片ブロック13をスパイラル状に巻き付ける。同時に円筒状治具70の軸方向に沿って巻き付けられた分割鉄心片ブロック13を押しつけて、軸方向に隣接する分割鉄心片ブロック13を密着させ、積層鉄心10を形成する。
【0023】
このように、分割鉄心片ブロック13を連鎖状に連結した直線状の鎖状鉄心材14を円筒状治具70に巻き付けるとき、分割鉄心片ブロック13に円筒状治具70の外周に沿って湾曲させる力が作用するが、隣接する分割鉄心片ブロック13どうしがヒンジ部28によって回動可能に連結されているので、ヒンジ部28が回動し、分割鉄心片ブロック13の基部29には無理な塑性変形は生じない。
また、中側分割鉄心片16と上側分割鉄心片17は同一帯状薄板材55によって形成されるので、製造設備が簡単となる。
【0024】
図12に示すように、本発明の第2の実施の形態に係る積層鉄心の製造方法を適用して製造された積層鉄心71は、前記第1の実施の形態に係る積層鉄心10に用いた下側分割鉄心片15、中側分割鉄心片16及び上側分割鉄心片17とほぼ同様の下側分割鉄心片、中側分割鉄心片及び上側分割鉄心片を用いる。そして、下側分割鉄心片、中側分割鉄心片及び上側分割鉄心片のいずれか1又は2又は全部の外周側に、中央部に貫通する連結孔72を有する突出部73を設け、分割鉄心片ブロック74を形成して積層した場合に連結孔72が上下方向に符合するようにしたものである。分割鉄心片ブロック74の他に突出部73を設けていない分割鉄心片ブロック75を形成して、交互に連鎖状に連結する。
これにより、連結孔72に、例えば通しボルト等の連結部材を上下に貫通させて締めつけ、スロットずれをなくすと共に、最終的に組み立てられた積層鉄心71の軸方向に圧縮力を加えて、軸方向に隣接する分割鉄心片ブロック74を互いに密着させ、占積率を高めることが出来る。
【0025】
図13に示すように、本発明の第3の実施の形態に係る積層鉄心の製造方法は、前記第1の実施の形態に係る積層鉄心の製造方法で説明した中側分割鉄心片16と上側分割鉄心片17を同一ラインで加工する中上側加工ステーションの代わりに、積層鉄心の製造設備76に中側加工ステーション77と上側加工ステーション78をそれぞれ別個に設け、中側加工ステーション77と上側加工ステーション78と連携動作をする下側加工ステーション79を設けて鎖状鉄心材14を形成するものである。なお、第1の実施の形態と共通する形状、作用を備えた構成要素については、同一名称、同一符号を付して説明する。
下側加工ステーション79は、第1の実施の形態で説明した下側加工ステーシン34(図13では、パイロット加工型39、スロット加工型40、内外周トリミング型41、を省略)に設けた、連結部加工型45A、アイドル部46、連結型51、アイドル部52を順次隣り合わせて備え、アイドル部52の右隣にアイドル部80を設け、更に右側に、連結型81、アイドル部82、分離型83を設けている。また、中側加工ステーション77と上側加工ステーション78では、それぞれ第1の実施の形態で中側分割鉄心片16を加工するときに用いた帯状薄板材55と同じ形状の帯状薄板材84、85を用いる。
【0026】
中側加工ステーション77は、図13の下方から上方に向かって、帯状薄板材84の位置決めを行うパイロット孔86を打ち抜くパイロット加工型87、中側両端トリミング型88、アイドル部89、スロット加工型90、内外周トリミング型91、連結部加工型92、アイドル部93を順に設け、その先は下側加工ステーション79の連結型51に連結されている。
上側加工ステーション78は、下方から上方に向かって、帯状薄板材85の位置決めを行うパイロット孔86Aを打ち抜くパイロット加工型94、上側両端トリミング型95、アイドル部96、スロット加工型97、内外周トリミング型98、連結部加工型99、アイドル部100を順次配列し、その先は下側加工ステーション79の連結型81に連結されている。
【0027】
連結型51では左側から送られてきた帯状薄板材36の嵌入孔30A(又は嵌入凹部30)及び下連結部18が加工された部分の上方に、帯状薄板材84のかしめ用突起部31(嵌入凹部30)及び中連結部21が加工された部分を重ねるようにしている。また、連結型81では左側から送られてきた帯状薄板材36の下側分割鉄心片15に中側分割鉄心片16が積層された上に更に上側分割鉄心片17を重ねるようにしている。
また、パイロット加工型87、94から所定ピッチだけ上方(連結型51、81に向かう方向)に順次離れた各加工部にそれぞれパイロットピン101を設け、帯状薄板材84、85が上方に移動したとき、パイロットピン101がパイロット孔86、86Aに嵌入して帯状薄板材84、85を位置決めするようにしている。
【0028】
このような積層鉄心の製造設備76の中側加工ステーション77によって、中側分割鉄心片16を加工し、下側加工ステーション79で加工された下側分割鉄心片15の上に中側分割鉄心片16を積層して連結型51により連結する。そのあと、別個に設けた上側加工ステーション78によって上側分割鉄心片17を加工して中側分割鉄心片16の上に積層し、下側分割鉄心片15と中側分割鉄心片16と上側分割鉄心片17とを積層してヒンジ部とかしめ部を連結型81で連結し、分離型83で分離加工して鎖状鉄心材14を形成する。
したがって、中側分割鉄心片16と上側分割鉄心片17とを別個の加工ステーションで加工することにより、金型構造が複雑化することがない。
【0029】
以上、本発明の実施の形態について説明したが、本発明は前記実施の形態に限定されるものではなく、要旨を逸脱しない条件の変更等も全て本発明の権利範囲に含まれる。
例えば、前記第1の実施の形態では、下側分割鉄心片の下連結部に貫通した軸受孔を設けた例について説明したが、中側分割鉄心片と同様に、下連結部の中央下部に突出軸部を、中央上部に軸受穴を設けて、軸受穴に中側分割鉄心片に設けた突出軸部を嵌入させるようにしてもよい。
また、積層鉄心の全周に設ける分割鉄心片ブロックの数は、前記実施の形態では12個分設けた例について説明したが、8個、10個などこの個数に限るものではない。
【0030】
【発明の効果】
請求項1、2記載の積層鉄心の製造方法においては、所定のスロット形成位置で複数に分割した下側分割鉄心片、中側分割鉄心片、及び上側分割鉄心片を薄板材からそれぞれ形成し、下側分割鉄心片、中側分割鉄心片、及び上側分割鉄心片をかしめ積層した分割鉄心片ブロックを、その両端部に形成されたヒンジ部を介して鎖状かつ回動可能に連結して直線状に引出し、この直線状に連結された前記分割鉄心片ブロックをスパイラル状に巻いて積層形成するので、連結された分割鉄心片ブロックを、例えば円柱状の治具に押しつけながら湾曲させてスパイラル状に巻くときに、ヒンジ部で連結されている両側の分割鉄心片ブロックが相対的に回動し、各分割鉄心片ブロックには無理な塑性変形を生じさせる力は加わらない。したがって、積層鉄心の変形を防止でき、固定子鉄心磁気の低下を防止できる。また、材料の歩留りを高くし、材料費を低減できる。
【0031】
また、下側分割鉄心片を形成する加工ステーションはX方向に並べて配置され、中側分割鉄心片及び上側分割鉄心片を形成する加工ステーションは、X方向と直交するY方向に並べて配置され、これらの加工ステーションが交叉する位置で、下側分割鉄心片、中側分割鉄心片及び上側分割鉄心片の積層加工が行われると共に、隣り合う分割鉄心片ブロックの鎖状連結が行われるようにしているので、下側分割鉄心片と形状が異なる中側分割鉄心片及び上側分割鉄心片を、下側分割鉄心片の加工ステーションと中側分割鉄心片及び上側分割鉄心片の加工ステーションが交叉する位置で、一台のプレス金型によって直線状で、かつ鎖状の連結加工が可能となり、製造設備が簡単になると共に、製造コストを低下させる効果がある。
【0032】
請求項記載の積層鉄心の製造方法においては、分割鉄心片ブロックの全部又は一部には、積層した場合に上下方向に符合する連結孔が形成された突出部を設け、最終的に組み立てられた積層鉄心を、上下方向に貫通する連結孔に挿入する連結部材を介して固定するので、連結部材によって積層鉄心の積層方向に簡単に圧縮力を加えて、その力を維持することが出来、積層鉄心の積層方向に隣接する分割鉄心片ブロックどうしが常時密着した状態となり、積層鉄心の磁気特性を高く維持することが出来る。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る積層鉄心の製造方法を適用して製造された積層鉄心の正面図である。
【図2】同積層鉄心の説明図である。
【図3】(A)、(B)、(C)はそれぞれ同積層鉄心の下側分割鉄心片、中側分割鉄心片、上側分割鉄心片の正面図である。
【図4】本発明の第1の実施の形態に係る積層鉄心の製造方法における連結型による加工前の下側分割鉄心片、中側分割鉄心片、上側分割鉄心片の相対的位置を示す要部側断面図である。
【図5】同製造方法における連結型による加工後の下側分割鉄心片、中側分割鉄心片、上側分割鉄心片の相対的位置を示す要部側断面図である。
【図6】同製造方法の加工状態を示す平面図である。
【図7】同製造方法に用いられる下側加工ステーションの左側から内外周加工型までの平面図である。
【図8】同製造方法に用いられる下側加工ステーションのかしめ部加工型から連結型までの平面図である。
【図9】同製造方法に用いられる下側加工ステーションの連結型より右側を示す平面図である。
【図10】同製造方法に用いられる中上側加工ステーションの平面図である。
【図11】同製造方法の分割鉄心片ブロックを円筒状治具に巻き付ける工程を示す平面図である。
【図12】本発明の第2の実施の形態に係る積層鉄心の製造方法を適用して製造された積層鉄心の正面図である。
【図13】本発明の第3の実施の形態に係る積層鉄心の製造方法に用いられる製造設備と帯状薄板材の加工状態を示す平面図である。
【符号の説明】
10:積層鉄心、11:スロット、12:磁極部、13:分割鉄心片ブロック、14:鎖状鉄心材、15:下側分割鉄心片、16:中側分割鉄心片、17:上側分割鉄心片、18:下連結部、19:軸受孔A、20:切欠き部、21:中連結部、22:突出軸部B、23:軸受穴C、24:切欠き部、25:上連結部、26:突出軸部D、27:切欠き部、28:ヒンジ部、29:基部、30:嵌入凹部、30A:嵌入孔、31:かしめ用突起部、32:かしめ部、33:製造設備、34:下側加工ステーション、35:中上側加工ステーション、36:帯状薄板材、37:パイロット孔、38:境界部、39:パイロット加工型、40:スロット加工型、41:内外周トリミング型、42、43:繋がり部、44:かしめ部加工型、45:ヒンジ部加工型、45A:連結部加工型、46:アイドル部、47:交叉部、48:繋がり部切断型、49:かしめ型、50:ヒンジ部嵌入型、51:連結型、52:アイドル部、53:分離型、54:パイロットピン、55:帯状薄板材、56:パイロット孔、57:パイロット加工型、58:上側両端トリミング型、59:中側両端トリミング型、60:アイドル部、61:スロット加工型、62:内外周トリミング型、63、64:繋がり部、65:かしめ部加工型、66:ヒンジ部加工型、67:連結部加工型、68:アイドル部、69:パイロットピン、70:円筒状治具、71:積層鉄心、72:連結孔、73:突出部、74、75:分割鉄心片ブロック、76:製造設備、77:中側加工ステーション、78:上側加工ステーション、79:下側加工ステーション、80:アイドル部、81:連結型、82:アイドル部、83:分離型、84、85:帯状薄板材、86、86A:パイロット孔、87:パイロット加工型、88:中側両端トリミング型、89:アイドル部、90:スロット加工型、91:内外周トリミング型、92:連結部加工型、93:アイドル部、94:パイロット加工型、95:上側両端トリミング型、96:アイドル部、97:スロット加工型、98:内外周トリミング型、99:連結部加工型、100:アイドル部、101:パイロットピン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a laminated core applied to a stator core such as a large generator.
[0002]
[Prior art]
A conventional method of manufacturing a laminated core includes, for example, supplying a strip-shaped unprocessed thin plate material (for example, a magnetic steel sheet) to a multistage progressive press die to continuously form divided core pieces, and split core pieces. A strip-shaped thin plate material is formed by punching slots for mounting the stator windings. Then, while winding the strip-shaped thin plate material around the cylindrical jig having a predetermined diameter in the width direction, the strip-like thin plate material is sequentially wound in a spiral shape, and the positions of the overlapping slots are matched to form a laminated core. (For example, refer to Patent Document 1).
In the case of a large stator core, the core may be formed by punching one by one with a notching press die.
[0003]
[Patent Document 1]
Japanese Patent No. 3359863 (pages 2 and 3, FIG. 3)
[0004]
[Problems to be solved by the invention]
By the way, in the said prior art, in order to forcibly curve a strip | belt-shaped thin board | plate material to the width direction, and to wind around the cylindrical jig | tool, the force which plastically deforms to a curved part is added, and it becomes easy to produce distortion. In particular, in order to extremely reduce the eddy current loss, when a strip-shaped thin plate material having a thickness of, for example, about 0.1 to 0.5 mm is used, buckling is likely to occur in the stacking direction. For this reason, there is a problem that when the layers are sequentially stacked and wound in a spiral shape, a gap is generated between adjacent strip-shaped thin plate members in the stacking direction, and the magnetic characteristics as the stator core are deteriorated.
Further, when the iron core is formed by a notching press die, there is a problem that the yield of the material is poor and the cost is high.
The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a method for manufacturing a laminated core capable of reducing material costs, preventing deformation of the laminated core, and preventing deterioration of magnetic properties of the stator core. And
[0005]
[Means for Solving the Problems]
A method for manufacturing a laminated iron core according to the first invention that meets the above-mentioned object is provided by laminating a large number of magnetic thin plate materials, and includes a predetermined number of magnetic pole portions divided by slots inside, and a predetermined slot forming position. Lower divided core piece divided intoDifferent external shape from the lower divided core pieceMiddle split core piece, andOf the same outer shape as the lower divided core piece.The upper divided core pieces are formed from the thin plate material, and the lower divided core pieces, the middle divided core pieces, and the divided core piece blocks obtained by caulking and stacking the upper divided core pieces are hinge portions formed at both ends thereof. Are connected to each other in a chain and turnable manner through a straight line, and the divided core piece blocks connected in a straight line are spirally wound to form a laminate.A method of manufacturing a laminated core,
The processing stations forming the lower divided core pieces are arranged side by side in the X direction, and the processing stations forming the middle divided core pieces and the upper divided core pieces are arranged side by side in the Y direction perpendicular to the X direction. In the position where these processing stations cross, the lower divided core piece, the middle divided core piece and the upper divided core piece are laminated, and the adjacent divided core pieces are linear, and They are linked in a chain.
As a result, since the adjacent divided core piece blocks are rotatably connected via the hinge portion, the connected divided core piece blocks are bent while being pressed against a cylindrical jig and wound into a spiral shape to be stacked. When forming an iron core, the divided core piece blocks on both sides connected by the hinge part are relatively rotated and deformed following the shape of the cylindrical jig, which is impossible for each divided iron piece block. No force is applied to cause plastic deformation.
[0006]
Also,The processing stations forming the lower divided core pieces are arranged side by side in the X direction, and the processing stations forming the middle divided core pieces and the upper divided core pieces are arranged side by side in the Y direction perpendicular to the X direction. In the position where these processing stations cross, the lower divided core piece, the middle divided core piece and the upper divided core piece are laminated, and the adjacent divided core pieces are linear, and They are linked in a chain.
In this case, the middle divided core piece and the upper divided core piece having a shape different from that of the lower divided core piece, the position where the lower divided core piece processing station intersects with the middle divided core piece and the upper divided core piece processing station. Thus, it is possible to perform the connecting process in a linear form and in a chain form by a single press die.
[0007]
First2The method of manufacturing a laminated core according to the invention is1In the method for manufacturing a laminated core according to the invention, the whole or a part of the divided core piece block is provided with a protruding portion formed with a connecting hole that coincides with the vertical direction when laminated, and finally assembled. The laminated iron core is fixed via a connecting member inserted through the connecting hole penetrating in the vertical direction.
In this case, it is possible to eliminate the displacement of the slot when stacked by the connecting member, and to easily apply a compressive force in the stacking direction of the stacked cores to maintain the force, and to split the adjacent cores in the stacking direction of the stacked cores. The single blocks are always in close contact with each other.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
FIG. 1 is a front view of a laminated core manufactured by applying the laminated core manufacturing method according to the first embodiment of the present invention, FIG. 2 is an explanatory view of the laminated core, and FIG. , (B), (C) are front views of the lower divided core piece, the middle divided core piece, and the upper divided core piece of the same laminated core, respectively, and FIG. 4 is the laminated core according to the first embodiment of the present invention. FIG. 5 is a cross-sectional side view of the main part showing the relative positions of the lower divided core piece, the middle divided core piece, and the upper divided core piece before processing by the connecting die in the manufacturing method of FIG. FIG. 6 is a plan view showing a processing state of the manufacturing method, and FIG. 7 is a plan view showing the processing state of the manufacturing method. FIG. 8 is a plan view from the left side of the lower processing station used to the inner and outer peripheral processing molds. FIG. 9 is a plan view showing the right side of the connecting mold of the lower processing station used in the manufacturing method, and FIG. 10 is a middle upper processing used in the manufacturing method. FIG. 11 is a plan view showing a process of winding the divided core piece block of the manufacturing method around a cylindrical jig, and FIG. 12 is an application of the method for manufacturing a laminated core according to the second embodiment of the present invention. FIG. 13 is a plan view showing the manufacturing equipment used in the method for manufacturing a laminated core according to the third embodiment of the present invention and the processing state of the strip-shaped sheet material.
[0009]
As shown in FIGS. 1 and 2, a laminated core 10 manufactured by applying the method for manufacturing a laminated core according to the first embodiment of the present invention is formed in a hollow cylindrical shape and has an opening on the inner peripheral side. A predetermined number of slots 11 are provided at equal intervals in the circumferential direction, and a magnetic pole portion 12 is provided between adjacent slots 11 and protrudes toward the inner periphery. Further, the laminated core 10 includes a split core piece block 13 made of a magnetic thin plate material divided into a plurality of blocks each having the same number of slots (eight slots in FIG. 1) obtained by equally dividing the total number of slots. A chain iron core material 14 formed by connecting a predetermined number of core piece blocks 13 at both ends in the longitudinal direction is wound in a spiral shape and laminated. Note that FIG. 2 shows the end of the chain iron core material 14 in an extremely floating state from both end surfaces of the laminated core 10 so that the shape can be easily understood. .
[0010]
As shown in FIGS. 3A, 3 </ b> B, 3 </ b> C, 4, and 5, the split core piece block 13 includes a lower split core piece 15, an intermediate split core piece 16, and a lower split core. The piece 15 and the upper divided core piece 17 having substantially the same shape are laminated in three layers. The lower divided core piece 15 has a lower connecting portion 18 protruding only on one side (right side in FIG. 3A), and a bearing hole A19 is provided at the center of the lower connecting portion 18. A notch 20 is formed at the other end (left side in FIG. 3A) of the lower divided core piece 15 so that the lower connecting portion 18 of the adjacent lower divided core piece 15 is inserted with a gap. It is supposed to be. The middle divided core piece 16 has a middle coupling portion 21 that projects only on the other side (left side in FIG. 3B), and a projecting shaft portion B22 that can be fitted into the bearing hole A19 at the center lower portion of the middle coupling portion 21. A bearing hole C23 is provided in each of the upper center. A cutout portion 24 is provided at the end of one side (right side in FIG. 3B) of the middle divided core piece 16 so that the adjacent middle connecting portions 21 are fitted with a gap. . The upper divided core piece 17 has an upper connecting portion 25 that protrudes only on one side (right side in FIG. 3C), and a protruding shaft portion D <b> 26 is provided at the lower center of the upper connecting portion 25. A cutout portion 27 is provided at the other end (left side in FIG. 3C) of the upper divided core piece 17 so that the adjacent upper connecting portion 25 is fitted with a gap. By inserting the bearing hole A19, the protruding shaft portion B22, the bearing hole C23, and the protruding shaft portion D26, a hinge portion 28 is formed that allows the adjacent divided core piece blocks 13 to be relatively rotated.
[0011]
An insertion hole 30 </ b> A (see FIG. 4) is formed in the base 29 formed on the outer peripheral side of the slot 11 of the lower divided core piece 15 in the base 29 of the slot 11 of the middle divided core piece 16 and the upper divided core piece 17. Each has a plurality of insertion recesses 30 on the upper surface and a caulking projection 31 at a position corresponding to the insertion recess 30 on the lower surface. Then, as shown in FIG. 5, when the lower divided core piece 15, the middle divided core piece 16, and the upper divided core piece 17 are stacked, the middle divided core is inserted into the insertion hole 30 </ b> A of the lower divided core piece 15. The caulking protrusion 31 of the piece 16 is inserted into the fitting recess 30 of the middle divided core piece 16 to fit the caulking protrusion 31 of the upper divided core piece 17 to form the caulked portion 32, and the lower divided core piece 15. The divided core piece block 13 is formed by integrally fixing the middle divided core piece 16 and the upper divided core piece 17 together. The insertion hole 30A is provided only in the lower divided core piece 15 as the lowermost layer, and the other lower divided core piece 15 has an insertion recess 30 and a caulking as shown in FIG. A protrusion 31 is provided.
[0012]
As shown in FIG. 6, the manufacturing facility 33 for the laminated core 10 includes a processing station for forming the lower divided core piece 15, that is, a lower processing station 34, an intermediate divided core piece 16, and an upper divided core piece 17. For example, a progressive press die having a processing station to be formed, that is, a middle upper processing station 35, and the lower processing station 34 and the middle upper processing station 35 are arranged side by side in the X and Y directions perpendicular to each other. Yes.
As shown in FIGS. 6 to 9, the lower processing station 34 has a silicon thickness of, for example, 0.35 mm and a width larger than the maximum width in the Y direction of the lower divided core piece 15 from the left side to the right side in FIG. 6. A pilot processing die 39 is provided for processing the pilot hole 37 for positioning the strip-shaped magnetic thin plate material made of a steel plate, that is, the strip-shaped thin plate material 36, and punching out the boundary portion 38 between the adjacent lower divided core pieces 15. Next, a slot working die 40 for punching the slot 11 and an inner / outer periphery trimming die 41 for punching the inner and outer periphery of the lower divided core piece 15 are sequentially provided. The inner and outer peripheral trimming die 41 leaves the connecting portions 42 and 43 for connecting the lower divided core piece 15 to the strip-shaped thin plate material 36 in the middle of the process. Next, an insertion hole 30A is formed in the lower divided core piece 15 in the lowermost layer, and a caulking portion machining die 44 and a bearing hole for machining the fitting recess 30 and the caulking projection 31 in the other lower divided core piece 15. A connecting portion machining die 45A having a hinge portion machining die 45 for machining A19 is provided, and then an idle portion 46 that does not perform the machining operation is provided.
[0013]
Further, the crossing portion 47 where the lower processing station 34 and the middle upper processing station 35 cross each other includes a connection portion cutting die 48 for cutting the connection portions 42 and 43 of the remaining lower divided core piece 15 and a caulking portion. A caulking die 49 for pressing 32, and a hinge part fitting die 50 for forming the hinge part 28 by fitting the bearing hole A19, the projecting shaft part B22, the bearing hole C23 and the projecting shaft part D26, respectively, in the thickness direction. A connecting die 51 for connecting adjacent divided core piece blocks 13 is provided. Further, an idle portion 52 that does not perform a machining operation and a separation die 53 that completely separates the divided core piece block 13 from the strip-shaped thin plate material 36 are provided on the right side of the connection die 51. Further, when the pilot pins 54 are provided in the respective machining portions sequentially separated to the right side by a predetermined pitch (the length in the longitudinal direction of the lower divided core piece 15) from the pilot machining die 39, and the belt-like thin plate material 36 moves to the right side. The pilot pin 54 is fitted into the pilot hole 37 to position the strip-shaped thin plate material 36. Accordingly, the lower machining station 34 sequentially arranges the pilot machining die 39, the slot machining die 40, the inner and outer peripheral trimming die 41, the connecting portion machining die 45A, the idle portion 46, the connecting die 51, the idle portion 52, and the separation die 53. Thus, a progressive die is formed in which the belt-like thin plate material 36 is positioned and fed by the pilot pin 54 for each stroke.
[0014]
As shown in FIGS. 6 and 10, the middle upper processing station 35 has, for example, a thickness of 0.35 mm and a width larger than the maximum circumferential length of the divided core piece block 13 from the lower side to the upper side in FIG. 10. A pilot processing die 57 for punching out a pilot hole 56 for positioning the belt-like magnetic thin plate material made of a silicon steel plate, that is, the belt-like thin plate material 55 is provided. Next, the upper end trimming mold 58 for trimming both ends of the upper divided core piece 17, the middle end trimming mold 59 for trimming the both ends of the middle divided core piece 16, and no processing operation are performed next. An idle unit 60 is provided. Further, a slot machining die 61 for punching the slot 11 and an inner and outer peripheral trimming die 62 for punching the inner and outer peripheries of the middle divided core piece 16 and the upper divided core piece 17 are provided. The inner / outer periphery trimming die 62 moves the inner divided core piece 16 and the upper divided core piece 17 in the middle of processing along the middle upper processing station 35 together with the strip-shaped thin plate material 55, and therefore the inner divided core piece 16 and the upper divided core piece. The connection parts 63 and 64 for connecting the 17 and the strip-shaped thin plate material 55 are left. Next, a caulking portion machining die 65 for machining the fitting concave portion 30 and the caulking projection 31 of the middle divided core piece 16 and the upper divided core piece 17, the bearing hole C23, and the protruding shaft portion B22 of the middle divided core piece 16. Further, a connecting portion processing die 67 provided with a hinge portion processing die 66 for processing the protruding shaft portion D26 of the upper divided core piece 17 is provided, and the tip thereof is a connecting die 51 of the lower processing station 34 via an idle portion 68. It is connected to. In the connection mold 51, the caulking projection 31 (insertion) of the belt-shaped thin plate material 55 is provided above the insertion hole 30A (or the insertion recess 30) of the belt-shaped thin plate material 36 sent from the left side and the portion where the lower connection portion 18 is processed. The recessed portions 30), the middle connecting portion 21, and the upper connecting portion 25 are processed.
[0015]
In addition, pilot pins 69 are provided in the respective machining portions that are sequentially separated from the pilot machining die 57 by a predetermined pitch (in the direction toward the connecting die 51), and when the strip-shaped thin plate material 55 moves upward, the pilot pins 69 are piloted. The belt-like thin plate material 55 is positioned by being fitted into the hole 56. Therefore, the middle upper machining station 35 includes a pilot machining die 57, an upper both-side trimming die 58, a middle both-side trimming die 59, an idle portion 60, a slot machining die 61, an inner and outer peripheral trimming die 62, a connecting portion machining die 67, and an idle portion. 68 is sequentially arranged to form a progressive feed type in which the belt-like thin plate material 55 is positioned and fed by the pilot pin 69 for each stroke. As shown in FIG. 11, a cylindrical jig 70 having an outer shape equal to the inner diameter of a predetermined stator core is provided on the right side of the separation mold 53, and the divided core piece block 13 is formed on a part of the outer periphery of the cylindrical jig 70. By fixing the end portion of this and rotating the cylindrical jig 70, the divided core piece block 13 is wound in a spiral shape.
[0016]
Here, the manufacturing method of the laminated iron core 10 is demonstrated in order of a process process.
(1) The strip-shaped thin plate material 36 is mounted on the pilot machining die 39 of the lower machining station 34, and the pilot hole 37 and the boundary portion 38 of the lower divided core piece 15 adjacent to each other are punched at the same time.
In any of the following processes, the strip-shaped thin plate material 36 is positioned by the pilot hole 37 and the pilot pin 54.
(2) The strip-shaped thin plate material 36 is moved rightward, and the slot 11 is punched by positioning at the processing position of the slot machining die 40 by the pilot holes 37 and the pilot pins 54 of the strip-shaped thin plate material 36.
(3) The strip-shaped thin plate material 36 is moved to the right and positioned at the processing position of the inner and outer peripheral trimming die 41 to perform inner and outer peripheral trimming.
[0017]
(4) By moving the strip-shaped thin plate material 36 in the right direction and positioning it at the processing position of the connecting portion processing die 45A, the lower connecting portion 18 constituting the hinge portion 28 is substantially half-extruded to push out half the thickness. The connecting portion is processed to process the insertion hole 30A constituting the caulking portion 32 by pressing the substantial thickness of the caulking portion 32 while processing the hinge portion.
(5) The strip-shaped thin plate material 36 is moved in the right direction, and the portion where the connecting portion has been processed is positioned on the idle portion 46.
(6) The strip-shaped thin plate material 36 is moved to the right, and the portion of the lower divided core piece 15 that has been subjected to the hinge processing is positioned on the connecting die 51.
[0018]
On the other hand, the middle upper processing station 35 advances the process according to the operation of the lower processing station 34. That is, the following process is performed so that the positions where the caulking portion 32 and the hinge portion 28 of the lower divided core piece 15 and the middle divided core piece 16 are processed are synchronized at the same time when they are placed on the connecting die 51. Proceed in parallel.
In the following, in the machining step of the middle upper machining station 35, the middle divided core pieces 16 and the upper divided core pieces 17 are formed alternately one after another.
(7) The belt-like thin plate material 55 is mounted on the pilot machining die 57 of the middle upper machining station 35, and the pilot holes 56 are punched.
In any of the following processes, the strip-shaped thin plate material 55 is positioned by the pilot hole 56 and the pilot pin 69.
(8) The strip-shaped thin plate material 55 is moved upward, and both side trimming of the upper divided core piece 17 is performed by the middle end trimming die 59 on both sides of the middle split core piece 16 and the upper end trimming die 58.
[0019]
(9) The strip-shaped thin plate material 55 is moved upward, passed through the idle part 60, further moved upward, and the middle divided core piece 16 and the upper divided core piece 17 subjected to both-side trimming are sequentially slot processed. Positioning to 61, slot processing is performed.
(10) The strip-shaped thin plate material 55 is moved upward, and the inner divided core piece 16 and the upper divided core piece 17 subjected to slot processing are sequentially positioned on the inner and outer peripheral trimming molds 62, and inner and outer peripheral trimming is performed.
[0020]
(11) Move the strip-shaped thin plate material 55 upward, position the inner divided core piece 16 and the upper divided core piece 17 that have been subjected to inner and outer periphery trimming processing to the connecting portion machining die 67 in order to form the hinge portion 28. The projecting shaft portion B22, the fitting recess 30 that forms the bearing hole C23 and the caulking portion 32, and the caulking projection portion 31 on the inner divided core piece 16, and the projecting shaft portion D26, the fitting recess 30 and the caulking projection portion 31 on the upper side. The divided core piece 17 is processed.
(12) The strip-shaped thin plate material 55 is further moved upward through the idle portion 68, and the inner divided core piece 16 after the processing of the protruding shaft portion B22, the bearing hole C23, the fitting concave portion 30, and the caulking projection portion 31 is finished. The middle divided core piece 16 positioned on the connecting die 51 is positioned on the connecting die 51 and on the bearing hole A19 of the lower divided core piece 15 positioned on the left idle portion 46 of the connecting die 51. The protruding shaft part B22 is overlapped.
In this state, the connecting die 51 is operated so that the protruding shaft portion B22 of the middle divided core piece 16 on the connecting die 51 is fitted into the bearing hole A19 of the lower divided core piece 15 on the idle portion 46, and at the same time, the connecting type. The caulking protrusion 31 of the middle divided core piece 16 on the connecting die 51 is fitted into the fitting hole 30A of the lower divided core piece 15 on 51, and further the lower divided core piece 15 and the strip-shaped thin plate material 36 are connected. The connection parts 63 and 64 which connect the connection parts 42 and 43 and the intermediate | middle division | segmentation iron core piece 16 and the strip | belt-shaped thin board | plate material 55 are cut | disconnected.
[0021]
(13) Move the strip-shaped thin plate material 55 upward, position the upper divided core piece 17 on which the projecting shaft portion D26 has been processed positioned on the connecting die 51, and divide the middle portion on the idle portion 52 on the right side of the connecting die 51. On the bearing hole C23 of the core piece 16, a protruding shaft portion D26 that forms the hinge portion 28 of the upper divided core piece 17 is overlapped.
In this state, the connecting die 51 is operated so that the protruding shaft portion D26 of the upper divided core piece 17 on the connecting die 51 is fitted into the bearing hole C23 of the middle divided core piece 16 on the idle portion 52, and at the same time, the connecting type. 51, the caulking protrusion 31 of the upper divided core piece 17 is fitted into the fitting recess 30 of the middle divided core piece 16 on the upper side 51, and the connecting parts 63 and 64 connecting the upper divided core piece 17 and the strip-shaped thin plate material 55 are further cut. To do.
Thereby, the divided core piece block 13 on the connecting die 51 and the lower divided core piece 15, the intermediate divided core piece 16, and the upper divided core piece 17 are caulked and laminated is the strip-shaped thin plate material 36 and the strip-shaped thin plate material 55. And is connected to the divided core piece block 13 in the idle portion 52 on the right side of the connecting die 51 via the hinge portion 28 and further hinged to the lower divided core piece 15 in the left idle portion 46 of the connecting die 51. It is connected via a part.
[0022]
(14) The strip-shaped thin plate material 36 is moved to the right, and the divided core piece block 13 that has been stacked on the connection mold 51 is moved to the idle portion 52. In this state, both the lower processing station 34 and the middle upper processing station 35 operate in synchronization with each other.
(15) The strip-shaped thin plate material 36 is moved to the right, the split core piece block 13 on the idle part 52 is moved to the separation mold 53, and the strip shape left around the split core piece block 13 by the separation mold 53. A portion of the thin plate material 36 is cut into small iron pieces and discharged.
By continuously performing these steps (1) to (15), a linear chain core material 14 in which divided core piece blocks 13 as shown in FIG. can get.
(16) The linear chain iron core material 14 is pulled out, the end thereof is fixed to a part of the outer periphery of the cylindrical jig 70, the cylindrical jig 70 is rotated and curved, and the divided core piece block 13 is rotated. Is wound in a spiral. At the same time, the split core piece block 13 wound along the axial direction of the cylindrical jig 70 is pressed to closely contact the split core piece blocks 13 adjacent in the axial direction, thereby forming the laminated core 10.
[0023]
As described above, when the linear chain core material 14 in which the divided core piece blocks 13 are connected in a chain is wound around the cylindrical jig 70, the divided core piece block 13 is curved along the outer periphery of the cylindrical jig 70. However, since the adjacent divided iron core blocks 13 are rotatably connected to each other by the hinge portion 28, the hinge portion 28 is rotated, and the base portion 29 of the divided iron core piece block 13 is impossible. Plastic deformation does not occur.
Further, since the middle divided core piece 16 and the upper divided core piece 17 are formed by the same strip-shaped thin plate material 55, the manufacturing equipment is simplified.
[0024]
As shown in FIG. 12, a laminated core 71 manufactured by applying the method for manufacturing a laminated core according to the second embodiment of the present invention was used for the laminated core 10 according to the first embodiment. The lower divided core piece, the middle divided core piece, and the upper divided core piece substantially the same as the lower divided core piece 15, the middle divided core piece 16, and the upper divided core piece 17 are used. And the protrusion part 73 which has the connection hole 72 which penetrates a center part is provided in any 1 or 2 or all the outer peripheral sides of a lower side split core piece, an upper side split core piece, and a split core piece. When the blocks 74 are formed and stacked, the connection holes 72 are aligned in the vertical direction. In addition to the divided core piece block 74, a divided core piece block 75 not provided with the projecting portion 73 is formed and connected alternately in a chain.
Thereby, a connecting member such as a through-bolt is passed through the connecting hole 72 and tightened up and down to eliminate the slot shift, and a compressive force is applied to the axial direction of the finally assembled laminated core 71, so that the axial direction The segment core piece blocks 74 adjacent to each other can be brought into close contact with each other to increase the space factor.
[0025]
As shown in FIG. 13, the manufacturing method of the laminated core according to the third embodiment of the present invention includes the middle divided core piece 16 and the upper side described in the manufacturing method of the laminated core according to the first embodiment. Instead of the upper middle processing station that processes the divided core pieces 17 on the same line, the intermediate core processing station 77 and the upper processing station 78 are provided separately in the laminated core manufacturing facility 76, respectively. A lower processing station 79 that operates in cooperation with 78 is provided to form the chain iron core material 14. In addition, about the component provided with the shape and effect | action common to 1st Embodiment, the same name and the same code | symbol are attached | subjected and demonstrated.
The lower machining station 79 is a connection provided in the lower machining stasin 34 described in the first embodiment (the pilot machining die 39, the slot machining die 40, and the inner and outer trimming die 41 are omitted in FIG. 13). The part processing mold 45A, the idle part 46, the connection type 51, and the idle part 52 are provided next to each other, the idle part 80 is provided on the right side of the idle part 52, and the connection type 81, the idle part 82, and the separation type 83 are provided on the right side. Is provided. Moreover, in the middle side processing station 77 and the upper side processing station 78, strip-like thin plate members 84 and 85 having the same shape as the strip-like thin plate member 55 used when machining the middle-side divided core piece 16 in the first embodiment are respectively provided. Use.
[0026]
The middle machining station 77 is a pilot machining die 87 that punches out a pilot hole 86 for positioning the strip-shaped thin plate material 84 from the lower side to the upper side in FIG. The inner and outer trimming die 91, the connecting portion processing die 92, and the idle portion 93 are provided in this order, and the tip is connected to the connecting die 51 of the lower processing station 79.
The upper processing station 78 includes a pilot processing die 94 for punching a pilot hole 86A for positioning the strip-shaped thin plate material 85 from the lower side to the upper side, an upper end trimming die 95, an idle portion 96, a slot processing die 97, and an inner and outer peripheral trimming die. 98, a connecting part machining die 99, and an idle part 100 are sequentially arranged, and the tip is connected to a connecting die 81 of the lower processing station 79.
[0027]
In the connection mold 51, the caulking projection 31 (insertion) of the strip thin plate material 84 is provided above the insertion hole 30A (or insertion recess 30) of the strip thin plate material 36 sent from the left side and the portion where the lower connection portion 18 is processed. The recessed portions 30) and the portions where the middle connecting portions 21 are processed are overlapped. Further, in the connection type 81, the upper divided core piece 17 is further stacked on the lower divided core piece 15 of the strip-shaped sheet material 36 sent from the left side and the middle divided core piece 16 being laminated.
In addition, when the pilot pins 101 are provided in the respective processing portions that are sequentially separated from the pilot processing dies 87 and 94 by a predetermined pitch (in the direction toward the connection dies 51 and 81), and the strip-like thin plates 84 and 85 are moved upward. The pilot pin 101 is fitted into the pilot holes 86 and 86A to position the strip-shaped thin plate materials 84 and 85.
[0028]
The middle divided core piece 16 is machined by the middle machining station 77 of the laminated iron core manufacturing equipment 76, and the middle divided core piece 15 is formed on the lower divided core piece 15 machined by the lower machining station 79. 16 are stacked and connected by a connecting die 51. Thereafter, the upper divided core piece 17 is processed and laminated on the middle divided core piece 16 by the separately provided upper machining station 78, and the lower divided core piece 15, the middle divided core piece 16, and the upper divided core core are stacked. The piece 17 is laminated, the hinge portion and the caulking portion are connected by a connecting die 81, and separated by a separating die 83 to form a chain iron core material 14.
Therefore, the mold structure is not complicated by processing the middle divided core piece 16 and the upper divided core piece 17 at separate processing stations.
[0029]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and all changes in conditions that do not depart from the gist of the present invention are also included in the scope of the rights of the present invention.
For example, in the first embodiment, the example in which the bearing hole penetrating the lower connecting portion of the lower divided core piece has been described, but in the middle lower portion of the lower connecting portion, similar to the middle divided core piece. The protruding shaft portion may be provided with a bearing hole at the center upper portion, and the protruding shaft portion provided in the middle divided core piece may be fitted into the bearing hole.
Moreover, although the number of the divided core piece blocks provided on the entire circumference of the laminated iron core has been described with respect to the example in which 12 pieces are provided in the above-described embodiment, it is not limited to this number, such as eight or ten.
[0030]
【The invention's effect】
Claim1, 2In the laminated core manufacturing method described above, the lower divided core piece, the lower divided core piece, the middle divided core piece, and the upper divided core piece divided into a plurality of parts at a predetermined slot forming position are respectively formed from a thin plate material. The middle core piece and the divided core piece block obtained by caulking and stacking the upper half piece are connected in a chain and turnable manner via hinges formed at both ends thereof, and drawn out linearly. Since the divided core piece blocks connected in a straight line are wound in a spiral shape to form a stack, the connected divided core piece blocks are curved while being pressed against a cylindrical jig, for example, and wound into a spiral shape. The split core piece blocks on both sides connected by the hinge part rotate relatively, and no force that causes unreasonable plastic deformation is applied to each split core piece block. Therefore, deformation of the laminated core can be prevented, and a decrease in stator core magnetism can be prevented. In addition, the material yield can be increased and the material cost can be reduced.
[0031]
Also,The processing stations for forming the lower divided core pieces are arranged side by side in the X direction, and the processing stations for forming the middle divided core pieces and the upper divided core pieces are arranged in the Y direction perpendicular to the X direction. At the position where the station crosses, the lower divided core piece, the middle divided core piece and the upper divided core piece are laminated, and the adjacent divided core piece blocks are connected in a chain manner. The middle divided core piece and the upper divided core piece, which are different in shape from the lower divided core piece, are placed at the position where the machining station for the lower divided core piece intersects with the machining station for the middle divided core piece and the upper divided core piece. With the press mold of the stand, linear and chain connection processing becomes possible, and the manufacturing equipment is simplified and the manufacturing cost is reduced.
[0032]
Claim2In the laminated core manufacturing method described above, all or a part of the divided core piece blocks are provided with protruding portions formed with connecting holes that coincide with each other in the vertical direction when stacked, and the finally assembled laminated core Is fixed through a connecting member that is inserted into a connecting hole that penetrates in the vertical direction, so that the compressing force can be easily applied in the stacking direction of the laminated core by the connecting member, and the force can be maintained. The divided core blocks adjacent to each other in the stacking direction are always in close contact with each other, and the magnetic properties of the stacked core can be maintained high.
[Brief description of the drawings]
FIG. 1 is a front view of a laminated iron core manufactured by applying the laminated iron core manufacturing method according to the first embodiment of the present invention.
FIG. 2 is an explanatory diagram of the laminated core.
3A, 3B, and 3C are front views of a lower divided core piece, a middle divided core piece, and an upper divided core piece of the same laminated core, respectively.
FIG. 4 is a view showing the relative positions of a lower divided core piece, a middle divided core piece, and an upper divided core piece before processing by a connecting die in the method for manufacturing a laminated core according to the first embodiment of the present invention. FIG.
FIG. 5 is a sectional side view of the main part showing the relative positions of the lower divided core piece, the middle divided core piece, and the upper divided core piece after processing by the connecting die in the manufacturing method.
FIG. 6 is a plan view showing a processing state of the manufacturing method.
FIG. 7 is a plan view from the left side of the lower processing station used in the manufacturing method to the inner and outer peripheral processing dies.
FIG. 8 is a plan view from a caulking portion machining die to a connection die of a lower machining station used in the manufacturing method.
FIG. 9 is a plan view showing the right side of the connection type of the lower processing station used in the manufacturing method.
FIG. 10 is a plan view of a middle upper processing station used in the manufacturing method.
FIG. 11 is a plan view showing a step of winding the divided core piece block of the manufacturing method around a cylindrical jig.
FIG. 12 is a front view of a laminated core manufactured by applying the laminated core manufacturing method according to the second embodiment of the present invention.
FIG. 13 is a plan view showing a manufacturing facility used in a method for manufacturing a laminated core according to a third embodiment of the present invention and a processing state of a strip-shaped sheet material.
[Explanation of symbols]
10: laminated core, 11: slot, 12: magnetic pole part, 13: split core piece block, 14: chain core material, 15: lower split core piece, 16: middle split core piece, 17: upper split core piece , 18: lower connecting portion, 19: bearing hole A, 20: notched portion, 21: middle connecting portion, 22: protruding shaft portion B, 23: bearing hole C, 24: notched portion, 25: upper connecting portion, 26: Projection shaft part D, 27: Notch part, 28: Hinge part, 29: Base part, 30: Insertion recessed part, 30A: Insertion hole, 31: Protrusion part for caulking, 32: Caulking part, 33: Manufacturing equipment, 34 : Lower processing station, 35: Middle upper processing station, 36: Strip-shaped thin plate material, 37: Pilot hole, 38: Boundary part, 39: Pilot processing mold, 40: Slot processing mold, 41: Inner and outer peripheral trimming mold, 42, 43: Connection part, 44: Caulking part processing type, 45: 45A: Connection part processing type, 46: Idle part, 47: Crossing part, 48: Connection part cutting type, 49: Caulking type, 50: Hinge part insertion type, 51: Connection type, 52: Idle part 53: separation type, 54: pilot pin, 55: strip-shaped thin plate material, 56: pilot hole, 57: pilot processing type, 58: upper side trimming type, 59: middle side trimming type, 60: idle part, 61: Slot machining type, 62: Inner and outer peripheral trimming type, 63, 64: Connection part, 65: Caulking part processing type, 66: Hinge part processing type, 67: Connection part processing type, 68: Idle part, 69: Pilot pin, 70 : Cylindrical jig, 71: Laminated iron core, 72: Connection hole, 73: Projection, 74, 75: Divided core block, 76: Manufacturing equipment, 77: Middle processing station, 78: Upper processing stay 79: Lower processing station, 80: Idle part, 81: Connection type, 82: Idle part, 83: Separation type, 84, 85: Strip-like thin plate material, 86, 86A: Pilot hole, 87: Pilot processing type 88: Middle both-ends trimming type, 89: Idle part, 90: Slot processing type, 91: Inner and outer peripheral trimming type, 92: Connection part processing type, 93: Idle part, 94: Pilot processing type, 95: Upper both-side trimming Type: 96: Idle part, 97: Slot processing type, 98: Inner / outer periphery trimming type, 99: Connection part processing type, 100: Idle part, 101: Pilot pin

Claims (2)

磁性の薄板材を多数枚積層して形成され、内側にスロットで区分される所定数の磁極部を備え、所定のスロット形成位置で複数に分割した下側分割鉄心片、該下側分割鉄心片と外形の異なる中側分割鉄心片、及び前記下側分割鉄心片と同一外形の上側分割鉄心片を前記薄板材からそれぞれ形成し、前記下側分割鉄心片、中側分割鉄心片、及び上側分割鉄心片をかしめ積層した分割鉄心片ブロックを、その両端部に形成されたヒンジ部を介して鎖状かつ回動可能に連結して直線状に引出し、この直線状に連結された前記分割鉄心片ブロックをスパイラル状に巻いて積層形成する積層鉄心の製造方法であって、
前記下側分割鉄心片を形成する加工ステ−ションはX方向に並べて配置され、前記中側分割鉄心片及び上側分割鉄心片を形成する加工ステーションは、前記X方向と直交するY方向に並べて配置され、これらの加工ステーションが交叉する位置で、前記下側分割鉄心片、中側分割鉄心片及び上側分割鉄心片の積層加工が行われると共に、隣り合う前記分割鉄心片ブロックが直線状で、かつ鎖状に連結されていることを特徴とする積層鉄心の製造方法。
A lower divided core piece, which is formed by laminating a large number of magnetic thin plate materials, and has a predetermined number of magnetic pole portions divided inside by slots, and is divided into a plurality at predetermined slot forming positions, and the lower divided core pieces The outer divided core piece and the upper divided core piece having the same outer shape as the lower divided core piece are formed from the thin plate material, respectively, the lower divided core piece, the middle divided core piece, and the upper divided piece. The divided core pieces, which are obtained by caulking and stacking the core pieces, are connected in a chain and turnable manner via hinges formed at both ends thereof, and drawn out linearly. A method of manufacturing a laminated core in which blocks are spirally wound to form a laminate,
The processing stations forming the lower divided core pieces are arranged side by side in the X direction, and the processing stations forming the middle divided core pieces and the upper divided core pieces are arranged side by side in the Y direction perpendicular to the X direction. In the position where these processing stations cross, the lower divided core piece, the middle divided core piece and the upper divided core piece are laminated, and the adjacent divided core pieces are linear, and A method of manufacturing a laminated iron core, wherein the laminated iron cores are connected in a chain .
請求項記載の積層鉄心の製造方法において、前記分割鉄心片ブロックの全部又は一部には、積層した場合に上下方向に符合する連結孔が形成された突出部を設け、最終的に組み立てられた積層鉄心を、上下方向に貫通する前記連結孔に挿通する連結部材を介して固定することを特徴とする積層鉄心の製造方法。2. The method of manufacturing a laminated core according to claim 1 , wherein a protrusion is formed in the whole or a part of the divided core piece block with a connection hole formed in the vertical direction when stacked, and finally assembled. The laminated iron core is fixed through a connecting member inserted through the connecting hole penetrating in the vertical direction.
JP2003077321A 2003-03-20 2003-03-20 Manufacturing method of laminated iron core Expired - Fee Related JP4414149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003077321A JP4414149B2 (en) 2003-03-20 2003-03-20 Manufacturing method of laminated iron core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003077321A JP4414149B2 (en) 2003-03-20 2003-03-20 Manufacturing method of laminated iron core

Publications (2)

Publication Number Publication Date
JP2004289908A JP2004289908A (en) 2004-10-14
JP4414149B2 true JP4414149B2 (en) 2010-02-10

Family

ID=33292102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003077321A Expired - Fee Related JP4414149B2 (en) 2003-03-20 2003-03-20 Manufacturing method of laminated iron core

Country Status (1)

Country Link
JP (1) JP4414149B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5103292B2 (en) * 2008-06-16 2012-12-19 株式会社三井ハイテック Rotor laminated iron core and manufacturing method thereof
EP2523309B1 (en) * 2010-02-03 2019-09-04 Toyota Jidosha Kabushiki Kaisha Stator core
JP6934714B2 (en) * 2016-10-18 2021-09-15 株式会社三井ハイテック Manufacturing method of laminated iron core and laminated iron core

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3279279B2 (en) * 1998-06-30 2002-04-30 三菱電機株式会社 Iron core equipment
JP3379461B2 (en) * 1998-08-06 2003-02-24 三菱電機株式会社 Core member laminating mold apparatus, core member laminating method and electric motor
JP2000116037A (en) * 1998-09-29 2000-04-21 Toshiba Corp Method for manufacturing laminated core of motor, motor, and washing machine
DE19851217A1 (en) * 1998-11-06 2000-05-11 Bosch Gmbh Robert Method for producing a rotor or stator of an electrical machine from sheet metal blanks
JP3103343B2 (en) * 1998-12-30 2000-10-30 株式会社三井ハイテック Method of manufacturing laminated magnetic core for stator and mold apparatus used in the method
JP3943338B2 (en) * 2001-02-02 2007-07-11 三菱電機株式会社 Iron core material

Also Published As

Publication number Publication date
JP2004289908A (en) 2004-10-14

Similar Documents

Publication Publication Date Title
JP4886375B2 (en) Laminated core manufacturing method
US10284062B2 (en) Method for manufacturing workpiece and method for manufacturing laminated core
JP5472057B2 (en) Stator winding winding method, stator winding winding device and stator winding manufacturing apparatus
WO2006028179A1 (en) Method for manufacturing laminated core
JP4934402B2 (en) Armature manufacturing method and progressive mold apparatus
US5255425A (en) Method of manufacturing laminated core for dynamo-electric machine
US9017506B2 (en) Method for manufacturing core of rotating electrical machine
JP5338190B2 (en) Manufacturing apparatus and manufacturing method of laminated iron core
JP3626031B2 (en) Stator core, split core block and manufacturing method thereof
RU2684612C1 (en) Method of producing a core of a rotating electrical machine and a core of a rotating machine
JP4414149B2 (en) Manufacturing method of laminated iron core
JP4012828B2 (en) Manufacturing method of laminated iron core
JP2000116074A (en) Laminating die apparatus of core member and laminating method therefor
JP4366103B2 (en) Manufacturing method of laminated iron core
JP2003304654A (en) Stacked iron core
JP5248972B2 (en) Method for manufacturing laminated iron core and mold apparatus
JP5202577B2 (en) Manufacturing method of stator laminated iron core
JP3497911B2 (en) Method for manufacturing laminated iron core for motor and mold device
JP4912088B2 (en) Manufacturing method and manufacturing apparatus of laminated iron core
JP3842146B2 (en) Manufacturing method of laminated iron core
JP4578460B2 (en) Manufacturing method of stator laminated iron core
WO2023182256A1 (en) Stator core manufacturing method, stator core, and motor
US20240322658A1 (en) Manufacturing method for laminated iron core and laminated iron core
JP2006101590A (en) Method of manufacturing laminated stator iron core
WO2022137621A1 (en) Split core, dynamo-electric machine, method for manufacturing split core, and method for manufacturing dynamo-electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees