JP4404433B2 - Disposable BUN sensor and manufacturing method thereof - Google Patents

Disposable BUN sensor and manufacturing method thereof Download PDF

Info

Publication number
JP4404433B2
JP4404433B2 JP2000053784A JP2000053784A JP4404433B2 JP 4404433 B2 JP4404433 B2 JP 4404433B2 JP 2000053784 A JP2000053784 A JP 2000053784A JP 2000053784 A JP2000053784 A JP 2000053784A JP 4404433 B2 JP4404433 B2 JP 4404433B2
Authority
JP
Japan
Prior art keywords
layer
electrode
enzyme
urea
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000053784A
Other languages
Japanese (ja)
Other versions
JP2001242133A (en
Inventor
金宗 檀
浩樹 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Techno Medica Co Ltd
Original Assignee
Techno Medica Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techno Medica Co Ltd filed Critical Techno Medica Co Ltd
Priority to JP2000053784A priority Critical patent/JP4404433B2/en
Publication of JP2001242133A publication Critical patent/JP2001242133A/en
Application granted granted Critical
Publication of JP4404433B2 publication Critical patent/JP4404433B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、全血、血漿、血清、尿など生体液中の尿素窒素を測定する使い捨てBUNセンサー及びその製造法に関するものである。
【0002】
【従来の技術】
近年、検量線の校正や電極の洗浄が不要で小型、使い捨てタイプの酵素センサーが実用に供されている。酵素センサーは、一般的には酵素反応を検知する作用極(酵素電極又は測定極とも言う)と、電気回路を形成する参照極(又は対極)を有する構造を持ち、作用極における酵素反応による物質変化を、それら電極により電気信号の変化として取り出し、その変化からその酵素と特異的に作用する基質の濃度を測定するものである。その中でよく使われている酵素センサーには酸化還元酵素を利用するものがある。例えば生成する過酸化水素、又は消費する酸素を検出物質とするアンペロメトリック型酵素センサーである(例えば特開平のグルコース酵素センサー)。また、酵素の酸化還元をメディエーションする電子伝達物質(メディエーターと呼ばれる)を介して電気信号を検出するアンペロメトリック型酵素センサーもある。更に、水
解酵素を利用し、それと選択的に反応する基質の水解生成物により電極信号の変化をポテンシオメトリックに測定することによって、その基質の濃度を定量することも可能である。
【0003】
例えば、尿素、特に血液中の尿素窒素(BUN)は、肝臓のタンパク中間代謝機能及び腎臓機能を反映する重要な臨床検査項目である為、それの測定用酵素センサーの開発は多数報告されている。尿素の測定には一般的に、水解酵素であるウレアーゼが利用されている。その水解反応の反応式を次に示す:
CO(NH2)2 + H2O → CO2 + 2NH3
反応は、二酸化炭素(CO2 )及びアンモニア(NH3 )を生成する為、従来技術ではPCO2電極、即ちCO2 ガス透過膜を持つpH電極(例えば、G.G.Guilbault ら、Anal.Chem.,44,2161(1972)) 、又はNH3 電極、即ちNH3 ガス透過膜を持つpH電極(例えば、米国特許明細書第3,926,734 号参照)を用いて測定する。又は、水溶液中NH3 はアンモニアムイオン(NH4 )選択性電極(例えば、米国特許明細書第4,476,005 号参照)、電気伝導度変化(例えば、米国明細書特許第5,698,083 号参照)又はpH変化(例えば、文献R.M.Ianniello ら、Anal.Chim.Acta,146,249 (1983))による測定も研究されている。
【0004】
このように、BUNセンサーはバイオセンサーの一種で、この種のセンサーは一般に、測定すべき血液中の尿素窒素とウレアーゼという酵素との間で生じる酵素反応により生成するアンモニウムイオンや重炭酸イオンのような生成物或いはこのようなイオンの生成に伴うpHの変化を検出するように構成され、検出した値から尿素窒素の濃度に換算する。
【0005】
ところで、このようなBUNセンサーはその使用環境からして取扱い者の安全性の観点で使用後は破棄され、つまり使い捨てのものが一般的となってきている。そのため、測定の信頼性を高く維持しながらセンサー自体のコストをできるだけ低く抑えることが要求される。しかしながら、従来のこの種のセンサーの製造には普通、電子回路製造技術、特にエッチングやイオンプレーティングのような薄膜形成技術が使用されており、高価で大規模な製造装置が必要であり、製造工程が複雑となり、製造コストを十分に低減させることができていないのが実情である。
またこの種のセンサーは、センサーの校正及び測定にかかる時間もできるだけ短いことが望まれている。
【0006】
【発明が解決しようとする課題】
従来の尿素測定センサーにおける問題点について説明する。
PCO2電極及びNH3 電極による尿素測定では、ガス選択透過膜を使う為、pH電極とガス透過膜の間に支持電解質液を保持させておく必要がある。これは使い捨てセンサーにとっては製造上の欠点となる。
また、溶液中長時間保存しておくと、pH電極の性能が低下し、溶液の蒸発の問題もあり、センサーの保存寿命が限定される。
また、アンモニアムイオン選択電極による測定方法では、その電極自体の選択性が悪い(他のイオンに対しても反応する)為、実用的ではない。従来のpH測定に基づく尿素センサーでは、ガラスのpH電極とウレアーゼ酵素とを組み合わせたものである為、同様に支持電解質が必要であり、小型化や製造の容易性の面で使い捨てセンサーとして利用するのは困難である。電気伝導度による測定では、検体試料のイオン強度が高いため、酵素反応によるイオン強度の変化量が少なく、実用的には問題が多い。
従って、安価に製造ができ、構造が簡単、さらに支持電解質溶液の不要なドライタイプの使い捨てのポテンシオメトリック型酵素センサーの提供が期待されている。
【0007】
そこで、本発明は、上記のような従来技術に伴う問題点を解決して、低価格でしかも測定時間が短くかつ測定精度が高く、pH変化をpH電極で検出する使い捨てBUNセンサー及びその製造法を提供することを目的としている。
【0008】
【課題を解決するための手段】
上記の目的を達成するために、本発明の第1の発明により提供される使い捨てBUNセンサーは、絶縁性フィルムの上に、スクリーン印刷法により、電極層及び電極層の周囲を囲む絶縁層を順次印刷し、カーボン層上に有機系合成物質を滴下乾燥することにより形成されたpH変化を検出するpH電極と、前記pH電極上に、ウレアーゼ、水膨潤性高分子材料、界面活性剤及び緩衝物質の混合物の水溶液を滴下乾燥することにより形成された酵素層と、酵素層の表面を覆って、酵素層の酵素の流失を防止し、尿素の拡散を制限し、測定液中の夾雑物質(例えば、全血中の血球、蛋白質)を除去する働きをする高分子物質の溶液を滴下乾燥することにより形成されたフィルター層とを備えていることを特徴としている。
pH電極は好ましくはトリドデシルアミンのような水素イオンに反応する物質から成り得る。
酵素層は、測定時に測定液が速やかに浸透して酵素が溶けて反応が起こり易く、また酵素層中の界面活性剤は、水分の吸収を助けると共に測定に誤差を生じさせ易い気泡の発生を抑える働きをする。
【0009】
、本発明の第1の発明により提供される使い捨てBUNセンサーでは、スクリーン印刷を利用した低コスト、保存性良好で、構造が簡単なコーテッドワイヤタイプのpH液膜電極を採用した。このpH液膜電極は一定の感度があり、しかも室温保存で半年以上の保存寿命を持つ。また、直接このpH液膜電極の表面に酵素反応層を設けることにより、検体試料を注入する際、検体中水分及びイオンは、酵素反応層を通してpH電極の表面に達し、pH電極が働くようになる。同時に、測定基質も酵素層に拡散し、その中に固定されている酵素(及び補酵素)と反応し、その反応によるpHの変化をその下に設けたpH電極でセンシングする。従って、本発明では、pH電極が働く為の支持電解質溶液の構成は不要である。それに一定な感度を持つコーテッドワイヤ型pH液膜電極を使用する為、従来のポテンシオメトリック型酵素センサーの検量線校正など面倒な手順も省略できる。従って、乾燥状態で保存ができ、安価、安定、使い捨てタイプのポテンシオメトリック型酵素センサーが提供できるようになる。
【0010】
また、本発明の第2の発明による使い捨てBUNセンサーの製造法は、絶縁性フィルムの上に、スクリーン印刷法により、電極層及び電極層の周囲を囲む絶縁層を順次印刷する工程と、カーボン層上に有機系合成物質を滴下乾燥して、pH変化を検出するpH電極を形成する工程と、このpH電極上に、ウレアーゼ、水膨潤性高分子材料、界面活性剤及び緩衝物質の混合物の水溶液を滴下乾燥して、酵素層を形成する工程と、酵素層の表面を覆って、酵素層のウレアーゼの流失を防止し、尿素の拡散を制限し、測定液中の夾雑物質を除去する働きをする高分子物質の溶液を滴下乾燥して、フィルター層を形成する工程とから成ることを特徴としている。
【0011】
好ましくは、酵素層は、酵素(ウレアーゼ)、水膨潤性高分子材料0.01〜2mg、界面活性剤0〜1μl及び緩衝物質50μlから成る水溶液を所定量滴下乾燥して形成され得る。pH電極を形成する有機系合成物質は、ポリ塩化ビニル(PVC)を基材としたpH感応物質から成り得る。
【0013】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施の形態について説明する。図1には、本発明の一実施の形態による使い捨てBUNセンサーを示す。図示BUNセンサーにおいて、1は基体を成すポリエチレンフィルムで、その上に銀ペースト層2、カーボン層3、及び絶縁体層4が設けられ、これらの層はスクリーン印刷法により形成される。カーボン層3上に絶縁体層4で画定された領域には、pH変化を検出するpH電極5が設けられ、このpH電極5はトリドデシルアミンのような水素イオンに反応する有機系合成物質のPVC膜から成る。pH電極5上には、酵素、水膨潤性高分子材料、界面活性剤及び緩衝物質等の混合物から成る酵素層6が設けられ、この酵素層6の径は図示したようにpH電極5の径より小さく形成されている。酵素層6中の水膨潤性高分子材料は水分を吸収して保持する働きをし、また緩衝物質としては、Na2HPO4−NaH2PO4、CH3COONa−HCl、Tris−HClなどが使用され得る。酵素層6上には、この酵素層6の上面及び側周面を覆って、酵素層6の酵素の流失を防止し、尿素及び窒素の拡散を制限し、測定液中の夾雑物質(血球)を除去するフィルター層7が設けられている。フィルター層の材料としてはNafion、ポリビニルブチラールのような高分子物質が使用され得る。
【0014】
図2には、本発明の使い捨てBUNセンサーの製造法の好ましい実施の形態を示す。
図2のAに示す第1の工程では、ポリエチレンフィルム1の上面に銀ペーストがスクリーン印刷法により印刷され、銀ペーストの薄膜層2が形成される。
図2のBに示す第2の工程では、銀ペーストの薄膜層2の外表面を覆うようにカーボン層3がスクリーン印刷法により印刷される。
図2のCに示す第3の工程において、カーボン層3を囲んで絶縁体から成るレジスト層4がスクリーン印刷法により形成され、このレジスト層4は図示したようにカーボン層3上にpH電極5の形成領域を画定する。
【0015】
図2のDに示す第4の工程において、レジスト層4で画定されたカーボン層3上の凹部に、ポリ塩化ビニルを基材としたトリドデシルアミンのようなpH感応物質の水溶液が滴下され、そして乾燥される。こうしてカーボン層3上にpH電極5が形成される。図2のEに示す第5の工程において、pH電極5上に、酵素(ウレアーゼ)と、水膨潤性高分子材料0.01〜2mgと、界面活性剤0〜1μlと緩衝物質50μlとからなる水溶液が滴下され、そして予定の乾燥速度で乾燥される。こうしてpH電極5上に、酵素層6が形成され、酵素層6の周縁部は図示しようにレジスト層4上にのびている。
【0016】
最後の工程において、酵素層6上に、ポリビニルブチラールのような高分子物質の水溶液が滴下され、そして予定の乾燥速度で乾燥される。こうして酵素層6を覆うようにフィルター層7が形成される(図1参照)。なお、図示実施の形態においては酵素層6は、酵素反応によって生じるpH変化を測定するため初期pH値を7.4に維持するように構成されている。
【0017】
【実施例】
次に、本発明の尿素センサーの実施例について具体的に説明する。
実施例1
生体試料中尿素を測定する為の尿素センサーを下記のように作製した。
(1)pH電極基板の作製。
先ず、図3に示したように、絶縁性基板10上に銀の指示電極11及び参照電極12の下地電極を内円及び外環形状に設ける。次に、内円銀の上に銀が露出しないように、また、外環の銀と繋がらないように導電性カーボンペーストを印刷し乾燥してカーボン層13を形成した。更に基板の上にレジストを内円カーボン層13の露出直径が1.0mm Φになるように、また参照電極12を被せないように印刷し乾燥してレジスト層14を形成し、電極基板を作製した。
【0018】
(2)コーテッドワイヤ型pH液膜の構成。
上記の電極基板の銀参照電極を0.7M塩化カリウム中に、1mA の定電流で10秒間塩化銀形成処理を行い、洗浄、乾燥して参照電極12を完成させた。また、指示電極カーボン層13の上に規定組成で調製したpH液膜溶液を一定容量滴下し、室温で乾燥させて、コーテッドワイヤpH液膜電極15を作製した。
【0019】
(3)酵素反応層の構成。
先ず、酵素−ポリマー溶液を次のように調製した、ウレアーゼ(東洋紡(株)製、120 IU/mg )10mg、PVA (和光純薬(株)製、ポリビニルアルコール、n = 500 )1.0g をりん酸塩緩衝液100ml(0.02M) に溶解し均一に混合した。
次に、上記の溶液0.5ul を上記のpH液膜指示電極15の上に滴下し、室温で乾燥して酵素反応層16を形成した。こうして尿素酵素センサーを作製した。
上記の尿素センサーの酵素反応層16の表面に、更に高分子膜でコートした。この高分子膜は、例えばNafion溶液(5%、Wt% in water:n-propanol = 1:1 )0.5 ulを上記の酵素反応層の上に滴下し、室温で乾燥して完成した。
【0020】
試験例1
次に、実施例1に記載した尿素センサーを本発明の例として、試験例にてセンサー性能をテストした。
(1)尿素標準測定溶液の調製
まず、尿素標準水溶液を次のように調製する。80℃で乾燥した尿素(和光純薬(株)製、生化学用品)を50mMりん酸塩緩衝液(pH 7.38 )に溶かし尿素の終濃度が40mMになるように調製した。
次に、上記の40mMの尿素溶液を50mMのりん酸塩緩衝液(pH 7.38 )で希釈して尿素の終濃度が0mM から40mMまでの約15段階の濃度になるように調製した。
【0021】
(2)ポテンシオメトリー法による尿素応答
先ず、尿素酵素センサーの作用極端子17及び参照極端子18をDigital Electrometer((株)アドバンテスト製)の電位差測定端子に接続した。次ぎにそのセンサーを50mMのりん酸塩緩衝液(pH 7.38 、以下blank という)に浸けて、センサーの電位応答をGPIBコネクタを介してコンピュータに120秒間取り込んだ。次に、そのセンサーを上記の溶液から取り出し、尿素標準測定溶液の尿素濃度が2mM の溶液に浸け、60秒 間の電位応答を測定した。更に新しいセンサーを付け替え、新しい濃度の尿素溶液を同じ様な測定で繰り返した。尿素濃度が0 〜40mMまでの約15段階での測定を全て行った。 測定結果は、図4及び図5に示した。
【0022】
図4は、尿素酵素センサーのblank 及び尿素に対する応答曲線である。尿素とウレアーゼの酵素反応により溶液が、アルカリ性になるため、pH液膜電極の出力電位は低くなる。この電位変化(絶対値)は、尿素濃度の上昇によって大きくなる傾向がある。
図5には、図4に示した様な応答曲線からデータに基づき、尿素濃度とセンサーの電位変化との対数関係を示す。この結果、本発明の尿素センサーは、尿素の濃度が5mM 前後で、感度は約55mV/Decade であった。また、1 〜20mMの範囲では直線関係があり、充分なダイナミックレンジを示した。
【0023】
(3)尿素応答のpH依存性
本発明では、pH液膜電極の上に載せた酵素反応層が、測定液の水素イオンの拡散に対してブロックしない為、測定液中の水素イオンが、酵素反応層を通してpH電極へ拡散し、pH電極の応答に直接影響を与える。ここでサンプルのpHから尿素測定への影響を下記のように確認した。
先ず、pH 6.2〜pH 7.8のりん酸塩緩衝液(50mM)を数種類作った。その中に尿素を一定量溶かして終濃度が8mM になるように調製した。次に、この尿素溶液を(2)に記載したような手順で、ポテンシオメトリーによる測定を行った。測定結果は図6に示した。その結果、尿素の電位応答は、測定液のpHに大きく依存することが分かった。つまり。確認したpH範囲(6.2 〜7.8 )ではpHの上昇に伴い、センサーの電位変化(絶対値)も上昇した。
図6に示したようなpH依存性を解決する為には、測定の時、サンプルのpHも同時に測定し、その測定値に基づき、尿素の測定値に対して補正が必要である。
【0024】
生体サンプル、例えば、血液、尿等中のクレアラチン、クレアニチン等及びその他酵素反応により、溶液中水素イオンの濃度が変わるものであれば、本発明を利用できる。例えば、グルコースディヒトロギナーゼ(Glucose Dehydrogenase )及び補酵素のNAD(P)+を利用して、グルコースとの反応から水素イオンを生成する為、本発明によりグルコースの測定もできる。
【0025】
【発明の効果】
以上説明してきたように、本発明による使い捨てBUNセンサーにおいては、絶縁性フィルムの上に、スクリーン印刷法により、電極層及び電極層の周囲を囲む絶縁層を順次印刷し、カーボン層上に有機系合成物質を滴下乾燥することにより形成されたpH変化を検出するpH電極と、前記pH電極上に、ウレアーゼ、水膨潤性高分子材料、界面活性剤及び緩衝物質の混合物の水溶液を滴下乾燥することにより形成された酵素層と、酵素層の表面を覆って、酵素層の酵素の流失を防止し、尿素の拡散を制限し、測定液中の夾雑物質(例えば、全血中の血球、蛋白質)を除去する働きをする高分子物質の溶液を滴下乾燥することにより形成されたフィルター層とを備えているので、使い捨てセンサーとして重要な製造コストを大幅に低減でき、製品が安価になると共に、測定時に校正液がフィルター層に速かに浸透し、酵素層の酵素が溶けて反応し易い状態となり、しかも酵素層に含まれた緩衝物質の働きで酵素層に気泡が生じることがなく、従って、尿素及び窒素の濃度を精度良く測定することができるようになる。
【0026】
また、本発明による使い捨てBUNセンサーの製造法によれば、ポリエチレンフィルムの上にスクリーン印刷法により電極層を形成し、滴下乾燥工程でpH電極と酵素層とフィルター層とをそれぞれ形成することで、BUNセンサーを製造するので、製造コストを大幅に低減でき、使い捨てセンサーとして安価な製品を提供できるようになる。
【図面の簡単な説明】
【図1】 本発明の一実施の形態による使い捨てBUNセンサーを示す概略断面図。
【図2】 図1に示すBUNセンサーの製造法の各工程態をを示す概略断面図。
【図3】 本発明による実施例の尿素酵素センサーの概略図。
【図4】 ポテンシオメトリーで測定した尿素酵素センサーの尿素標準溶液に対する電位応答曲線図であり、測定した尿素溶液の尿素濃度は0 、2 、5 、10、20、30mMである。
【図5】 尿素濃度とセンサーの電位応答の対数関係を示す図。
【図6】 本発明の尿素酵素センサーのpH依存性を示す図。
【符号の説明】
1:ポリエチレンフィルム
2:銀ペーストの薄膜層(電極層)
3:カーボン層
4:レジスト層
5:PH電極
6:酵素層
7:フィルター層
10:絶縁性基板
11:銀の指示電極
12:参照電極
13:カーボン層
14:レジスト層
15: pH液膜電極
16:酵素反応層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a disposable BUN sensor for measuring urea nitrogen in biological fluids such as whole blood, plasma, serum, and urine, and a method for producing the same.
[0002]
[Prior art]
In recent years, small-sized and disposable enzyme sensors that do not require calibration of calibration curves or electrode cleaning have been put to practical use. An enzyme sensor generally has a structure having a working electrode (also referred to as an enzyme electrode or a measuring electrode) for detecting an enzyme reaction and a reference electrode (or counter electrode) that forms an electric circuit, and is a substance resulting from an enzyme reaction at the working electrode. The change is taken out as a change in electric signal by these electrodes, and the concentration of the substrate that specifically acts on the enzyme is measured from the change. Among them, enzyme sensors that are often used include those that use oxidoreductases. For example, an amperometric enzyme sensor that uses hydrogen peroxide produced or oxygen consumed as a detection substance (for example, a glucose enzyme sensor disclosed in Japanese Patent Laid-Open No. 2005-151867). There is also an amperometric enzyme sensor that detects an electric signal via an electron mediator (called a mediator) that mediates redox of the enzyme. Furthermore, the concentration of the substrate can be quantified by using a hydrolase and potentiometrically measuring the change in electrode signal by the hydrolysis product of the substrate that selectively reacts with it.
[0003]
For example, urea, especially urea nitrogen (BUN) in the blood, is an important clinical test item that reflects the liver's intermediary metabolic function and kidney function, and therefore, many developments of enzyme sensors for its measurement have been reported. . In general, urease, which is a hydrolase, is used for measuring urea. The reaction formula of the hydrolysis reaction is as follows:
CO (NH 2 ) 2 + H 2 O → CO 2 + 2NH 3
Since the reaction produces carbon dioxide (CO 2 ) and ammonia (NH 3 ), the prior art uses a PCO 2 electrode, ie a pH electrode with a CO 2 gas permeable membrane (eg, GGGuilbault et al., Anal. Chem., 44, 2161 (1972)), or an NH 3 electrode, that is, a pH electrode having an NH 3 gas permeable membrane (see, for example, US Pat. No. 3,926,734). Alternatively, NH 3 in an aqueous solution can be an ammonia ion (NH 4 + ) selective electrode (see, eg, US Pat. No. 4,476,005), a change in electrical conductivity (eg, US Pat. No. 5,698, 083) or changes in pH (eg RMIanniello et al., Anal. Chim. Acta, 146, 249 (1983)) have also been studied.
[0004]
Thus, the BUN sensor is a kind of biosensor, and this type of sensor is generally like an ammonium ion or bicarbonate ion generated by an enzymatic reaction between urea nitrogen in the blood to be measured and an enzyme called urease. The product is configured to detect a change in pH associated with the production of such a product or such ions, and the detected value is converted into the concentration of urea nitrogen.
[0005]
By the way, such a BUN sensor is discarded after use from the viewpoint of the safety of the operator in view of its use environment, that is, a disposable sensor has become common. Therefore, it is required to keep the cost of the sensor itself as low as possible while maintaining high measurement reliability. However, conventional manufacturing of this type of sensor usually uses electronic circuit manufacturing technology, particularly thin film formation technology such as etching and ion plating, and requires expensive and large-scale manufacturing equipment. The actual situation is that the process is complicated and the manufacturing cost cannot be sufficiently reduced.
In addition, this type of sensor is desired to have a sensor calibration and measurement time as short as possible.
[0006]
[Problems to be solved by the invention]
Problems in the conventional urea measuring sensor will be described.
In urea measurement using a PCO 2 electrode and an NH 3 electrode, since a gas selective permeable membrane is used, it is necessary to hold a supporting electrolyte solution between the pH electrode and the gas permeable membrane. This is a manufacturing disadvantage for disposable sensors.
Further, if the solution is stored in the solution for a long time, the performance of the pH electrode is deteriorated and there is a problem of evaporation of the solution, so that the storage life of the sensor is limited.
In addition, the measurement method using an ammonia ion selective electrode is not practical because the selectivity of the electrode itself is poor (it reacts with other ions). A conventional urea sensor based on pH measurement is a combination of a glass pH electrode and a urease enzyme, and thus requires a supporting electrolyte, and is used as a disposable sensor in terms of miniaturization and ease of manufacture. It is difficult. In the measurement by electric conductivity, since the ionic strength of the specimen sample is high, the amount of change in ionic strength due to the enzyme reaction is small, and there are many problems in practical use.
Accordingly, it is expected to provide a dry-type disposable potentiometric enzyme sensor that can be manufactured at low cost, has a simple structure, and does not require a supporting electrolyte solution.
[0007]
Accordingly, the present invention solves the problems associated with the prior art as described above, and is a disposable BUN sensor that detects a pH change with a pH electrode at a low cost, with a short measurement time and high measurement accuracy, and a method for manufacturing the same. The purpose is to provide.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the disposable BUN sensor provided by the first invention of the present invention sequentially forms an electrode layer and an insulating layer surrounding the electrode layer on the insulating film by screen printing. PH electrode for detecting pH change formed by printing and dripping and drying organic synthetic substance on carbon layer, urease, water-swellable polymer material, surfactant and buffer substance on said pH electrode An enzyme layer formed by dripping and drying an aqueous solution of the mixture of the above, and covering the surface of the enzyme layer, preventing the enzyme from flowing out of the enzyme layer, limiting the diffusion of urea, and contaminants in the measurement solution (for example, And a filter layer formed by dropping and drying a solution of a polymer substance that functions to remove blood cells and proteins in whole blood .
pH electrode may preferably consist of a material that reacts to the hydrogen ion such as tridodecylamine.
In the enzyme layer, the measurement solution penetrates quickly during the measurement and the enzyme dissolves and the reaction is likely to occur, and the surfactant in the enzyme layer helps to absorb moisture and generate bubbles that are likely to cause an error in the measurement. It works to suppress.
[0009]
The disposable BUN sensor provided by the first invention of the present invention employs a coated wire type pH liquid film electrode that uses screen printing and has a low cost, good storage stability and a simple structure. This pH liquid film electrode has a certain sensitivity, and has a shelf life of more than half a year when stored at room temperature. In addition, by providing an enzyme reaction layer directly on the surface of the pH liquid membrane electrode, when injecting the sample, moisture and ions in the sample reach the surface of the pH electrode through the enzyme reaction layer so that the pH electrode works. Become. At the same time, the measurement substrate also diffuses into the enzyme layer, reacts with the enzyme (and coenzyme) immobilized therein, and changes in pH due to the reaction are sensed by a pH electrode provided thereunder. Therefore, in this invention, the structure of the supporting electrolyte solution for a pH electrode to work is unnecessary. In addition, since a coated wire type pH liquid film electrode having a certain sensitivity is used, troublesome procedures such as calibration of a calibration curve of a conventional potentiometric enzyme sensor can be omitted. Accordingly, it is possible to provide a potentiometric enzyme sensor that can be stored in a dry state and is inexpensive, stable, and disposable.
[0010]
The method for manufacturing a disposable BUN sensor according to the second invention of the present invention includes a step of sequentially printing an electrode layer and an insulating layer surrounding the electrode layer on an insulating film by a screen printing method, and a carbon layer. A step of forming a pH electrode for detecting pH change by dripping and drying an organic synthetic substance on the aqueous solution, and an aqueous solution of a mixture of urease, a water-swellable polymer material, a surfactant and a buffer substance on the pH electrode The process of forming the enzyme layer by dripping and drying, covering the surface of the enzyme layer, preventing the flow of urease from the enzyme layer, limiting the diffusion of urea, and removing contaminants in the measurement solution And a step of forming a filter layer by dripping and drying a solution of the polymer substance to be formed.
[0011]
Preferably, the enzyme layer can be formed by dripping and drying a predetermined amount of an aqueous solution comprising an enzyme (urease ), a water-swellable polymer material 0.01 to 2 mg, a surfactant 0 to 1 μl, and a buffer substance 50 μl. The organic synthetic material forming the pH electrode may be a pH sensitive material based on polyvinyl chloride (PVC).
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows a disposable BUN sensor according to an embodiment of the present invention. In the illustrated BUN sensor, reference numeral 1 denotes a polyethylene film constituting a substrate, on which a silver paste layer 2, a carbon layer 3, and an insulator layer 4 are provided, and these layers are formed by a screen printing method. The region defined by the insulator layer 4 on the carbon layer 3 is provided with a pH electrode 5 for detecting a pH change. The pH electrode 5 is an organic synthetic substance that reacts with hydrogen ions such as tridodecylamine . It consists of a PVC film. On the pH electrode 5, an enzyme layer 6 made of a mixture of an enzyme, a water-swellable polymer material, a surfactant and a buffer substance is provided. The enzyme layer 6 has a diameter as shown in the figure. It is formed smaller. The water-swellable polymer material in the enzyme layer 6 functions to absorb and retain moisture, and Na2HPO4-NaH2PO4, CH3COONa-HCl, Tris-HCl, etc. can be used as a buffer substance. On the enzyme layer 6, the upper surface and the side peripheral surface of the enzyme layer 6 are covered to prevent the loss of the enzyme in the enzyme layer 6, the diffusion of urea and nitrogen is restricted, and the contaminants (blood cells) in the measurement solution A filter layer 7 is provided to remove water. As a material for the filter layer, a polymer substance such as Nafion or polyvinyl butyral can be used.
[0014]
FIG. 2 shows a preferred embodiment of the method for producing the disposable BUN sensor of the present invention.
In the first step shown in FIG. 2A, a silver paste is printed on the upper surface of the polyethylene film 1 by a screen printing method to form a thin film layer 2 of the silver paste.
In the second step shown in FIG. 2B, the carbon layer 3 is printed by screen printing so as to cover the outer surface of the thin film layer 2 of silver paste.
In the third step shown in FIG. 2C, a resist layer 4 made of an insulator is formed by screen printing so as to surround the carbon layer 3, and this resist layer 4 is formed on the carbon layer 3 with a pH electrode 5 as shown in the drawing. A forming region is defined.
[0015]
In the fourth step shown in FIG. 2D, an aqueous solution of a pH sensitive substance such as tridodecylamine based on polyvinyl chloride is dropped into the recesses on the carbon layer 3 defined by the resist layer 4, And dried. Thus, the pH electrode 5 is formed on the carbon layer 3. In the fifth step shown in FIG. 2E, the pH electrode 5 is composed of an enzyme (urease ), a water-swellable polymer material 0.01-2 mg, a surfactant 0-1 μl, and a buffer substance 50 μl. The aqueous solution is added dropwise and dried at the expected drying rate. Thus, the enzyme layer 6 is formed on the pH electrode 5, and the peripheral edge of the enzyme layer 6 extends on the resist layer 4 as shown.
[0016]
In the last step, an aqueous solution of a polymer material such as polyvinyl butyral is dropped on the enzyme layer 6 and dried at a predetermined drying speed. Thus, a filter layer 7 is formed so as to cover the enzyme layer 6 (see FIG. 1). In the illustrated embodiment, the enzyme layer 6 is configured to maintain the initial pH value at 7.4 in order to measure the pH change caused by the enzyme reaction.
[0017]
【Example】
Next, specific examples of the urea sensor of the present invention will be described.
Example 1
A urea sensor for measuring urea in a biological sample was prepared as follows.
(1) Production of pH electrode substrate.
First, as shown in FIG. 3, the silver indicator electrode 11 and the base electrode of the reference electrode 12 are provided on the insulating substrate 10 in an inner circle shape and an outer ring shape. Next, a conductive carbon paste was printed and dried to form a carbon layer 13 so that the silver was not exposed on the inner circle silver and was not connected to the outer ring silver. Further, a resist is printed on the substrate so that the exposed diameter of the inner carbon layer 13 is 1.0 mmΦ and not covered with the reference electrode 12 and dried to form a resist layer 14 to produce an electrode substrate. .
[0018]
(2) Configuration of coated wire type pH liquid film.
The silver reference electrode of the above electrode substrate was subjected to silver chloride formation treatment in 0.7 M potassium chloride at a constant current of 1 mA for 10 seconds, washed and dried to complete the reference electrode 12. Further, a fixed volume of pH liquid film solution prepared with a prescribed composition was dropped on the indicator electrode carbon layer 13 and dried at room temperature to prepare a coated wire pH liquid film electrode 15.
[0019]
(3) Configuration of the enzyme reaction layer.
First, an enzyme-polymer solution was prepared as follows, urease (Toyobo Co., Ltd., 120 IU / mg) 10 mg, PVA (Wako Pure Chemical Industries, Ltd., polyvinyl alcohol, n = 500) 1.0 g Dissolved in 100 ml (0.02 M) of an acid buffer and mixed uniformly.
Next, 0.5 ul of the above solution was dropped onto the above pH liquid membrane indicator electrode 15 and dried at room temperature to form the enzyme reaction layer 16. Thus, a urea enzyme sensor was produced.
The surface of the enzyme reaction layer 16 of the urea sensor was further coated with a polymer film. For example, 0.5 ul of Nafion solution (5%, Wt% in water: n-propanol = 1: 1) was dropped on the enzyme reaction layer and dried at room temperature.
[0020]
Test example 1
Next, using the urea sensor described in Example 1 as an example of the present invention, the sensor performance was tested in a test example.
(1) Preparation of urea standard measurement solution First, a urea standard aqueous solution is prepared as follows. Urea dried at 80 ° C. (manufactured by Wako Pure Chemical Industries, Ltd., biochemical supplies) was dissolved in 50 mM phosphate buffer (pH 7.38) to prepare a final urea concentration of 40 mM.
Next, the 40 mM urea solution was diluted with 50 mM phosphate buffer (pH 7.38) to prepare a final urea concentration of about 15 steps from 0 mM to 40 mM.
[0021]
(2) Urea Response by Potentiometric Method First, the working electrode terminal 17 and the reference electrode terminal 18 of the urea enzyme sensor were connected to a potential difference measuring terminal of Digital Electrometer (manufactured by Advantest). Next, the sensor was immersed in 50 mM phosphate buffer (pH 7.38, hereinafter referred to as blank), and the potential response of the sensor was transferred to the computer via the GPIB connector for 120 seconds. Next, the sensor was taken out from the above solution, immersed in a solution with a urea concentration of 2 mM in the urea standard measurement solution, and the potential response was measured for 60 seconds. Further, a new sensor was replaced, and a new concentration of urea solution was repeated with the same measurement. All measurements were made in about 15 steps from 0 to 40 mM urea concentration. The measurement results are shown in FIGS.
[0022]
FIG. 4 is a response curve of the urea enzyme sensor to blank and urea. Since the solution becomes alkaline due to the enzymatic reaction between urea and urease, the output potential of the pH liquid film electrode is lowered. This potential change (absolute value) tends to increase as the urea concentration increases.
FIG. 5 shows a logarithmic relationship between the urea concentration and the sensor potential change based on data from the response curve as shown in FIG. As a result, the urea sensor of the present invention had a urea concentration of about 5 mM and a sensitivity of about 55 mV / Decade. In addition, in the range of 1 to 20 mM, there was a linear relationship and a sufficient dynamic range was shown.
[0023]
(3) pH dependence of urea response In the present invention, since the enzyme reaction layer placed on the pH liquid membrane electrode does not block the diffusion of hydrogen ions in the measurement liquid, the hydrogen ions in the measurement liquid are It diffuses through the reaction layer to the pH electrode and directly affects the response of the pH electrode. Here, the influence on the urea measurement from the pH of the sample was confirmed as follows.
First, several types of phosphate buffers (50 mM) having a pH of 6.2 to 7.8 were prepared. A certain amount of urea was dissolved therein to prepare a final concentration of 8 mM. Next, this urea solution was measured by potentiometry according to the procedure described in (2). The measurement results are shown in FIG. As a result, it was found that the potential response of urea greatly depends on the pH of the measurement solution. In other words. In the confirmed pH range (6.2 to 7.8), the potential change (absolute value) of the sensor also increased as the pH increased.
In order to solve the pH dependence as shown in FIG. 6, it is necessary to simultaneously measure the pH of the sample at the time of measurement, and to correct the measured value of urea based on the measured value.
[0024]
The present invention can be used as long as the concentration of hydrogen ions in the solution is changed by a biological sample, for example, creatine in blood, urine and the like, and other enzyme reactions. For example, since glucose ions are generated from a reaction with glucose using glucose dehydrogenase (Glucose Dehydrogenase) and the coenzyme NAD (P) +, glucose can be measured according to the present invention.
[0025]
【The invention's effect】
As described above, in the disposable BUN sensor according to the present invention , the electrode layer and the insulating layer surrounding the electrode layer are sequentially printed on the insulating film by the screen printing method, and the organic system is formed on the carbon layer. A pH electrode that detects a pH change formed by dripping and drying a synthetic substance, and an aqueous solution of a mixture of urease, a water-swellable polymer material, a surfactant and a buffer substance is dripped and dried on the pH electrode. Covers the surface of the enzyme layer and the surface of the enzyme layer, prevents the loss of enzyme in the enzyme layer, restricts the diffusion of urea, and contaminants in the measurement solution (for example, blood cells and proteins in whole blood) since a filter layer formed by dropping drying a solution of a polymer substance which serves to remove, it can be significantly reduced important manufacturing cost as a disposable sensor, Goods with the less expensive, calibration fluid penetrates the or quickly the filter layer during measurement, it is likely state reaction melts the enzyme layer, moreover bubble to the enzyme layer by the action of the buffer substance contained in the enzyme layer Therefore, the concentrations of urea and nitrogen can be measured with high accuracy.
[0026]
In addition, according to the method for manufacturing a disposable BUN sensor according to the present invention, an electrode layer is formed on a polyethylene film by a screen printing method, and a pH electrode, an enzyme layer, and a filter layer are formed in a dropping drying step, respectively. Since the BUN sensor is manufactured, the manufacturing cost can be greatly reduced, and an inexpensive product can be provided as a disposable sensor.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a disposable BUN sensor according to an embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view showing each process state of the manufacturing method of the BUN sensor shown in FIG.
FIG. 3 is a schematic view of a urea enzyme sensor according to an embodiment of the present invention.
FIG. 4 is a potential response curve diagram of a urea enzyme sensor measured by potentiometry with respect to a urea standard solution, and the urea concentration of the measured urea solution is 0, 2, 5, 10, 20, and 30 mM.
FIG. 5 is a diagram showing a logarithmic relationship between urea concentration and the potential response of a sensor.
FIG. 6 is a graph showing the pH dependence of the urea enzyme sensor of the present invention.
[Explanation of symbols]
1: Polyethylene film 2: Silver paste thin film layer (electrode layer)
3: Carbon layer 4: Resist layer 5: PH electrode 6: Enzyme layer 7: Filter layer 10: Insulating substrate 11: Silver indicator electrode 12: Reference electrode 13: Carbon layer 14: Resist layer 15: pH liquid film electrode 16 : Enzyme reaction layer

Claims (2)

絶縁性フィルムの上に、スクリーン印刷法により、電極層及び電極層の周囲を囲む絶縁層を順次印刷し、カーボン層上に有機系合成物質を滴下乾燥することにより形成されたpH変化を検出するpH電極と、
前記pH電極上に、ウレアーゼ、水膨潤性高分子材料、界面活性剤及び緩衝物質の混合物の水溶液を滴下乾燥することにより形成された酵素層と、
酵素層の表面を覆って、酵素層の酵素の流失を防止し、尿素の拡散を制限し、測定液中の夾雑物質を除去する働きをする高分子物質の溶液を滴下乾燥することにより形成されたフィルター層と
を備えていること
を特徴とする使い捨てBUNセンサー。
On the insulating film, an electrode layer and an insulating layer surrounding the electrode layer are sequentially printed by a screen printing method, and a pH change formed by dropping and drying an organic synthetic material on the carbon layer is detected. a pH electrode;
On the pH electrode, an enzyme layer formed by dripping and drying an aqueous solution of a mixture of urease, water-swellable polymer material, surfactant and buffer substance,
It is formed by dripping and drying a solution of a polymer substance that covers the surface of the enzyme layer, prevents the loss of enzyme in the enzyme layer, restricts the diffusion of urea, and removes contaminants in the measurement solution. Filter layer and
Disposable BUN sensor, characterized in that it comprises a.
絶縁性フィルムの上に、スクリーン印刷法により、電極層及び電極層の周囲を囲む絶縁層を順次印刷する工程と、
カーボン層上に有機系合成物質を滴下乾燥して、pH変化を検出するpH電極を形成する工程と、
このpH電極上に、ウレアーゼ、水膨潤性高分子材料、界面活性剤及び緩衝物質の混合物の水溶液を滴下乾燥して、酵素層を形成する工程と、
酵素層の表面を覆って、酵素層のウレアーゼの流失を防止し、尿素の拡散を制限し、測定液中の夾雑物質を除去する働きをする高分子物質の溶液を滴下乾燥して、フィルター層を形成する工程と
から成ることを特徴とする使い捨てBUNセンサーの製造法。
A step of sequentially printing an electrode layer and an insulating layer surrounding the electrode layer on the insulating film by a screen printing method;
Forming a pH electrode for detecting a pH change by dripping and drying an organic synthetic material on the carbon layer;
On the pH electrode, a step of dripping and drying an aqueous solution of a mixture of urease, a water-swellable polymer material, a surfactant and a buffer substance to form an enzyme layer;
Cover the surface of the enzyme layer, prevent the urease from flowing out of the enzyme layer, limit the diffusion of urea, and drop and dry a solution of a polymer substance that functions to remove contaminants in the measurement solution. A process for producing a disposable BUN sensor characterized by comprising the steps of:
JP2000053784A 2000-02-29 2000-02-29 Disposable BUN sensor and manufacturing method thereof Expired - Lifetime JP4404433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000053784A JP4404433B2 (en) 2000-02-29 2000-02-29 Disposable BUN sensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000053784A JP4404433B2 (en) 2000-02-29 2000-02-29 Disposable BUN sensor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001242133A JP2001242133A (en) 2001-09-07
JP4404433B2 true JP4404433B2 (en) 2010-01-27

Family

ID=18575116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000053784A Expired - Lifetime JP4404433B2 (en) 2000-02-29 2000-02-29 Disposable BUN sensor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4404433B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8182663B2 (en) 2004-09-02 2012-05-22 Abbott Point Of Care Inc. Blood urea nitrogen (BUN) sensor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1332197C (en) * 2002-10-31 2007-08-15 爱科来株式会社 Analyzing electrode for content density and density analyzer
US20040256227A1 (en) * 2003-02-11 2004-12-23 Jungwon Shin Electrochemical urea sensors and methods of making the same
US8617366B2 (en) * 2005-12-12 2013-12-31 Nova Biomedical Corporation Disposable urea sensor and system for determining creatinine and urea nitrogen-to-creatinine ratio in a single device
US8721870B2 (en) * 2009-03-19 2014-05-13 Edwards Lifesciences Corporation Membrane system with sufficient buffering capacity
KR102175939B1 (en) * 2018-10-17 2020-11-09 동국대학교 산학협력단 pH SENSOR FABRICATED ON CYLINDRICAL SINGLE FIBER

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8182663B2 (en) 2004-09-02 2012-05-22 Abbott Point Of Care Inc. Blood urea nitrogen (BUN) sensor
US8236517B2 (en) 2004-09-02 2012-08-07 Abbott Point Of Care Inc. Blood urea nitrogen (BUN) sensor

Also Published As

Publication number Publication date
JP2001242133A (en) 2001-09-07

Similar Documents

Publication Publication Date Title
KR970001146B1 (en) Gas measuring bio-sensor and manufacturing method
US5078854A (en) Polarographic chemical sensor with external reference electrode
Schaffar Thick film biosensors for metabolites in undiluted whole blood and plasma samples
EP0255291B1 (en) Method and apparatus for electrochemical measurements
EP1688742B1 (en) Electrochemical biosensor
JP4018082B2 (en) Electrochemical biosensor
EP1398386B1 (en) Mediator stabilized reagent compositions and methods for their use in electrochemical analyte detection assays
US10352890B2 (en) Biosensor system, sensor chip, and method of measuring analyte concentration in blood sample
Jobst et al. Thin-film Clark-type oxygen sensor based on novel polymer membrane systems for in vivo and biosensor applications
JPH09500727A (en) Potentiometric biosensor and method of using the same
WO2020094082A1 (en) Potentiometric biosensor and detection method
Kobos et al. Selectivity characteristics of potentiometric carbon dioxide sensors with various gas membrane materials
JP3267933B2 (en) Substrate quantification method
JP4404433B2 (en) Disposable BUN sensor and manufacturing method thereof
WO1995021934A1 (en) Hexacyanoferrate modified electrodes
US7648624B2 (en) Oxygen sensor
KR101163678B1 (en) Creatinine biosensors with reduced interference from creatine
JP2001249103A (en) Biosensor
JPH0943189A (en) Biosensor and method for determining substrate using it
JP2002181757A (en) Biosensor and matrix measuring method
Christiansen et al. The slow penetration of enzymebased biosensors into clinical chemistry analysis
JP2002221508A (en) Biosensor
TW201432258A (en) Electrochemical-based analytical test strip with soluble acidic material coating
JP2009281907A (en) Method, device and instrument for measuring creatinine, and method, device and instrument for measuring amount of salt in urine using those means
JPS62235557A (en) Enzyme electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4404433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term