JP4387505B2 - Zoom lens and photographing apparatus using the same - Google Patents
Zoom lens and photographing apparatus using the same Download PDFInfo
- Publication number
- JP4387505B2 JP4387505B2 JP21336999A JP21336999A JP4387505B2 JP 4387505 B2 JP4387505 B2 JP 4387505B2 JP 21336999 A JP21336999 A JP 21336999A JP 21336999 A JP21336999 A JP 21336999A JP 4387505 B2 JP4387505 B2 JP 4387505B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- lens
- focal length
- zoom lens
- refractive power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Lenses (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、ズームレンズ及びそれを用いた撮影装置に関し、特に負の屈折力のレンズ群が先行する全体として2つのレンズ群を有し、これら2つのレンズ群のレンズ構成を適切に設定することにより、全変倍範囲にわたり高い光学性能を有した写真用カメラ、ビデオカメラ、デジタルカメラ、そしてSVカメラ等の撮影装置に好適なものである。
【0002】
【従来の技術】
従来より負の屈折力のレンズ群が先行する所謂ネガティブリード型のズームレンズは、広画角化が比較的容易である為、多くのカメラの標準型のズームレンズとして用いられている。
【0003】
この種の標準型ズームレンズとして、負の屈折力を有する第1群と正の屈折力を有する第2群の2つのレンズ群で構成し、これら2つのレンズ群を光軸に沿って移動し、レンズ群間隔を変化させることにより変倍を行う、所謂2群ズームレンズが、例えば、特開昭53−132360号公報,特開昭56−19022号公報,そして米国特許第5283639号等で提案されている。
【0004】
又、特開平7−52256号公報では物体側より順に負の屈折力の第1群、正の屈折力の第2群、そして正の屈折力の第3群の3つのレンズ群を有し、広角端から望遠端への変倍を第2群と第3群の間隔を増大させて行ったズームレンズが提案されている。
【0005】
又、米国特許第543710号では物体側より順に負の屈折力の第1群、正の屈折力の第2群、そして正の屈折力の第3群の3つのレンズ群を有し、広角端から望遠端への変倍を第2群と第3群の間隔を減少させて行ったズームレンズが開示されている。
【0006】
また本出願人は持開平6−27377号公報により、3群構成以上の多群ズームレンズを提案している。
【0007】
【発明が解決しようとする課題】
一般に負の屈折力の第1群と正の屈折力の第2群の2つのレンズ群より成るネガティブリード型の2群ズームレンズは広画角化が比較的容易であり、また所定のバックフォーカスが容易に得られるという特長がある。
【0008】
しかしながら、全変倍範囲にわたり、又画面全体にわたり良好なる光学性能を得るには、各レンズ群の屈折力配置やレンズ形状等を適切に設定する必要がある。
【0009】
各レンズ群の屈折力配置やレンズ構成が不適切であると変倍に伴う収差変動が大きくなり、全変倍範囲にわたり高い光学性能を得るのが難しくなってくる。
【0010】
又、負の屈折力のレンズ群が先行する2群ズームレンズにおいては、各群の光軸上の位置は変倍と像面位置の変動補正のために相対位置が一義的に決定されてしまう。この結果、広角端から望遠端に変倍させる途中の変倍位置での光学性能を任意に制御することができない。
【0011】
従って変倍途中の位置での光学性能を良くするには変倍中の各群での収差変動を極力少なくする必要がある。そのための方法としては、例えば各群の屈折力をゆるくしたり、あるいは各群をより多くのレンズ枚数で構成するなどの方法がとられている。しかしながら、この方法はレンズ全長が大型になり高変倍化、高性能化が困難になってくるという問題があった。
【0012】
本発明は、負の屈折力のレンズ群が先行するネガティブリード型の2つのレンズ群より成るズームレンズにおいて、各レンズ群のレンズ構成を適切に設定することにより、変倍範囲中の任意のズーム位置においても良好なる光学性能が得られ、全変倍範囲及び画角全体にわたり高い光学性能が容易に得られるズームレンズ及びそれを用いた撮影装置の提供を目的とする。
【0013】
【課題を解決するための手段】
請求項1の発明のズームレンズは、物体側から順に、負の屈折力の前群と、正の屈折力の後群より構成され、前群と後群の間隔を変化させて変倍させるズームレンズにおいて、
前群は、物体側から順に、正の屈折力のFa群と負の屈折力のFb群より構成され、変倍時にFa群とFb群の間隔が変化するようにFa群とFb群が移動し、
後群は、物体側から順に、正の屈折力のRa群と正の屈折力のRb群より構成され、変倍時にRa群とRb群の間隔が変化するようにRa群とRb群が移動し、
広角端から望遠端に変倍させるときレンズ全系の像面に対してFa群とRb群は移動方向が反転し、
Ra群の焦点距離をfRa、Rb群の焦点距離をfRb、広角端でのRa群とRb群の光軸上間隔をCw、望遠端でのRa群とRb群の光軸上間隔をCt、レンズ全系の焦点距離が広角端の焦点距離fwと望遠端での焦点距離ftの相乗平均fm=(fw×ft) 1/2 になるときのRa群とRb群の光軸上間隔をCmとするとき、
0.7<fRa/fRb<1.5
Cw<Cm<Ct
なる条件を満足することを特徴としている。
【0014】
請求項2の発明は請求項1の発明において、前記Fa群は1つの正レンズより成り、前記Ra群は正レンズと負レンズ を有することを特徴としている。
【0015】
請求項3の発明は請求項1又は2の発明において、前記Ra群の物体側に変倍に伴ってRa群と一体的に移動する絞りを有すると共に、前記Rb群は正の屈折力の接合レンズ又は正レンズより成ることを特徴としている。
【0016】
請求項4の発明は請求項1、2又は3の発明において、広角端から望遠端に変倍させるとき、レンズ全系の像面に対して前記Rb群は物体側への移動から像面側への移動に反転することを特徴としている。
【0017】
請求項5の発明は請求項1から4のいずれか1項の発明において、広角端から望遠端に変倍させるとき、レンズ全系の像面に対して前記Fa群は像面側への移動から物体側への移動に反転することを特徴としている。
【0018】
請求項6の発明は請求項1から5のいずれか1項の発明において、広角端でのレンズ全系の焦点距離をfw、前記Fa群の焦点距離をfFaとするとき、
0.00<fw/fFa<0.20
なる条件を満足することを特徴としている。
【0019】
請求項7の発明は請求項1から6のいずれか1項の発明において、広角端でのレンズ全系の焦点距離をfw、前記Fb群の焦点距離をfFbとするとき、
0.35<fw/|fFb|<0.80
なる条件を満足することを特徴としている。
【0020】
請求項8の発明は請求項1から7のいずれか1項の発明において、広角端での前記Fb群と前記Ra群の光軸上間隔をBw、望遠端での前記Fb群と前記Ra群の光軸上間隔をBt、レンズ全系の焦点距離が広角端の焦点距離fwと望遠端での焦点距離ftの相乗平均fm=(fw×ft)1/2になる変倍位置での前記Fb群と前記Ra群の光軸上間隔をBmとするとき、
0.50<(Bw−Bm)/(Bw−Bt)<0.75
なる条件を満足することを特徴としている。
【0021】
請求項9の発明の投影装置は、請求項1から請求項8のいずれか1項のズームレンズと、該ズームレンズによって物体像が形成される撮像素子とを有することを特徴としている。
【0023】
【発明の実施の形態】
図1,図2は本発明のズームレンズの数値実施例1のレンズ断面図と収差図である。
【0024】
図3,図4は本発明のズームレンズの数値実施例2のレンズ断面図と収差図である。
【0025】
図5,図6は本発明のズームレンズの数値実施例3のレンズ断面図と収差図である。
【0026】
本発明の撮影装置は、図1,図3,図5に示すズームレンズを用いて撮像手段上に物体像を形成している。
【0027】
レンズ断面図において(A)は広角端(fw)、(B)は広角端と中間(ミドル)との間のズーム位置(fWM )、(C)は中間のズーム位置(fM )、(D)は中間から望遠端との間のズーム位置(fTM )、(E)は望遠端(fT )である。
【0028】
収差図において、(A)は広角端(fw)、(B)は中間のズーム位置(fM )、(C)は望遠端(fT )である。
【0029】
レンズ断面図において、FLは負の屈折力の前群であり、正の屈折力のFa群と負の屈折力のFb群とを有している。
【0030】
RLは正の屈折力の後群であり、正の屈折力のRa群と正の屈折力のRb群とを有している。
【0031】
SPは絞り、IPは像面である。Gはフィルター、フェースプレート等のガラスブロックである。FS1,FS2は各々フレアーカット絞りであり、フレアーカット絞りFS1はRa群の物体側、フレアーカット絞りFS2はRa群の像面側に設けており、各々変倍に伴いRa群と一体的に移動している。
【0032】
本発明のズームレンズは広角端から望遠端への変倍に際して、Fa群,Fb群,Ra群,Rb群を光軸上移動させている。
【0033】
尚、本発明のズームレンズは2群構成として取り扱っているが、変倍に際して4つのレンズ群を独立に移動させている為に4群ズームレンズとして取り扱うようにしても良い。
【0034】
本発明のズームレンズでは、レンズ全系を少なくとも4群の構成とし、各群を移動させて変倍を行なっている。特に後群のRb群の変倍中の移動軌跡を反転させることにより、各群の屈折力を弱くしてレンズ全系を大型にすることなく変倍途中の光学性能を向上させている。またRb群の変倍中の移動軌跡を反転させることにより各群を簡易なレンズ構成にて変倍途中での光学性能変動をおさえつつ、レンズ全系の小型化を可能にしている。
【0035】
特にRb群の移動軌跡を、レンズ全系を広角端から望遠端に変倍させるときレンズ全系の像面IPに対して物体側への移動から像両側への移動に反転させることにより移動軌跡反転後のRb群に増倍作用を持たせている。これにより、Fb群とRa群での変倍作用を低減して、各群の移動量を減少させてレンズ全系の小型化を可能にしている。特に望遠端付近でFb群とRa群の変倍のための間隔変化を少なくして、ズーム停止位置の誤差によるFb群とRa群の間隔変化が小さくなるようにしている。これによってFb群とRa群の間隔余裕を減じることを可能として、レンズ系全体の小型化を図っている。
【0036】
また、前群FL中のFa群の移動軌跡も反転させることにより、より変倍途中での光学性能の変動をおさえている。特にFa群を広角端から望遠端に変倍させるときレンズ全系の像面IPに対してFa群は移動方向が像面側への移動から物体側への移動に反転させることにより変倍途中でのレンズ全系の小型化および光学性能の向上を可能にしている。
【0037】
特に広角端付近でFa群とFb群の変倍のための間隔変化を少なくして、ズーム停止位置の誤差によるFa群とFb群の間隔変化が小さくなるようにしている。これによってFa群とFb群の間隔余裕を減じることを可能としてレンズ系全体の小型化を図っている。
【0038】
また、本実施形態では変倍途中での光学性能の向上を可能とし、Fa群を正レンズ1枚のみで構成して良好なる収差補正を可能としている。又、Fa群を1枚のみの構成にすることでレンズ全系の小型化を図っている。
【0039】
また、後群RLはレンズ全系の結像作用を担うレンズ群であり、後群中のRa群を正レンズと負レンズを有する構成とすることにより色収差を良好に補正するとともに、Ra群に少なくとも1面の非球面を用いることによりレンズ構成を簡易にし小型化を可能にしている。
【0040】
また、変倍途中での光学性能の向上を可能とし、Rb群を正レンズ1枚のみで構成して良好なる収差補正を可能としている。又Rb群を1枚のみの構成にすることでレンズ全系の小型化を図っている。
【0041】
またRb群は正レンズと負レンズの2枚で構成しても良く、これによればさらに良好な収差補正が容易になる。またRb群に非球面を用いても良く、これによれば簡易な構成で収差補正が容易になる。
【0042】
また、絞りをRa群と一体に移動させても良く、これによれば、よりレンズ鏡筒構造を簡易にすることが容易となる。
【0043】
次に数値実施例1〜3のズームレンズを備えた撮影装置の実施例について、図7(A),(B)を用いて説明する。
【0044】
図7(A)は撮影装置の正面図、図7(B)は側部断面図である。図中、10は撮影装置本体(筐体)、11は数値実施例1〜3のいずれかのズームレンズを用いた撮影光学系、12はファインダー光学系、13はCCD等の撮像素子である。
【0045】
このように数値実施例1〜3のズームレンズを撮影装置の撮影光学系に適用することで、コンパクトな撮影装置を実現している。
【0046】
本発明の目的とするズームレンズは以上の如く設定することにより達成されるが、更に光学性能を良好に維持しつつ、レンズ系全体の小型化を図るには次の諸条件のうちの少なくとも1つを満足させるのが良い。
【0047】
(ア−1)広角端でのレンズ全系の焦点距離をfw、Fa群の焦点距離をfFaとしたとき
0.00<fw/fFa<0.20 ‥‥‥(1)
を満足することである。
【0048】
条件式(1)は、Fa群の焦点距離に関するものであり、上限を超えるとFa群のパワーがきつくなりすぎて前玉径が大きくなる。又下限を越えるとFa群のパワーがゆるくなりFb群の変倍作用がゆるくなリレンズ全長が長くなるので良くない。
【0049】
さらに望ましくは、条件式(1)の上限と下限を以下のようにするとなお良い。
【0050】
0.03<fw/fFa<0.15 ‥‥‥(1a)
(ア−2)広角端でのレンズ全系の焦点距離をfw、Fb群の焦点距離をfFbとしたとき
0.35<fw/|fFb|<0.80 ‥‥‥(2)
を満足することである。
【0051】
条件式(2)は、Fb群の焦点距離に関するものであり、上限を超えるとFb群のパワーがきつくなり変倍中の収差変動が大きくなり高変倍化が困難になる。又下限を越えるとFb群のパワーがゆるくなりレンズ全長が長くなり小型化が困難になる。
【0052】
さらに望ましくは、条件式(2)の上限と下限を以下のようにするとなおよい。
【0053】
0.40<fw/|fFb|<0.60 ‥‥‥(2a)
(ア−3)Ra群の焦点距離をfRa、Rb群の焦点距離をfRbとしたとき
0.7<fRa/fRb<1.5 ‥‥‥(3)
を満足することである。
【0054】
条件式(3)は、Ra群とRb群の焦点距離比に関するものであり、下限を越えるとRb群のパワーがゆるくなり変倍中の収差変動が大きくなり高変倍化が困難になる。又、上限を越えるとRa群のパワーがゆるくなりレンズ全長が長くなり小型化が困難になる。
【0055】
さらに望ましくは、条件(3)の上限と下限を以下のようにするとなおよい。
【0056】
0.8<fRa/fRb<1.2 ‥‥‥(3a)
(ア−4)広角端でのFb群とRa群の光軸上間隔をBw、望遠端でのFb群とRa群の光軸上間隔をBt、レンズ全系の焦点距離が、広角端の焦点距離fwと望遠端での焦点距離ftの相乗平均fm=(fw×ft)1/2になる変倍位置でのFb群とRa群の光軸上間隔をBmとしたとき
0.50<(Bw−Bm)/(Bw−Bt)<0.75 ‥‥(4)
を満足することである。
【0057】
条件式(4)は変倍でのFb群とRa群の光軸上間隔に関するものであり、上限を越えると広角端から中間までの広角側の変倍領域でのFb群とRa群の間隔変化が大きくなり全体の高変倍化が困難になる。下限を越えると変倍中間で良好な収差補正が困難になる。
【0058】
さらに望ましくは、条件式(4)の上限と下限を以下のようにするとなおよい。
【0059】
0.60<(Bw−Bm)/(Bw−Bt)<0.70 ‥‥(4a)
(ア−5)広角端でのRa群とRb群の光軸上間隔をCw、望遠端でのRa群とRb群の光軸上間隔をCt、レンズ全系の焦点距離が、広角端の焦点距離fwと望遠端での焦点距離ftの相乗平均fm=(fw×ft)1/2になる変倍位置でのRa群とRb群の光軸上間隔をCmとしたとき、
Cw<Cm<Ct ‥‥‥(5)
を満足することである。
【0060】
条件式(5)は変倍でのRa群とRb群の光軸上間隔に関するものであり、Cmが上限を越えるとRa群で発生する諸収差、特に軸上色収差をRb群で補正することが困難になり、Ra群とRb群をともに簡易な構成にて良好な収差補正をおこなうことが困難になる。Cmが下限を越えて小さくなると広角端でRa群とRb群の間隔が大きくなり十分なバックフォーカスを確保することが困難になる。
【0061】
さらに望ましくは、条件式(5)の上限と下限を以下のようにするとなお良い。
【0062】
1.1×Cw<Cm<0.9×Ct‥‥‥(5a)
(ア−6)Fa群を物体側に凸面を向けた正レンズより構成することである。
【0063】
(ア−7)Fb群を物体側に凸面を向けたメニスカス状の負レンズと、負レンズそして物体側に凸面を向けたメニスカス状の正レンズより構成することである。
【0064】
(ア−8)Ra群を正レンズ、正レンズと負レンズとの接合レンズより構成することである。
【0065】
次に本発明の数値実施例を示す。数値実施例においてRiは物体側より順に第i番目の面の曲率半径、Diは物体側より順に第i番目の光学部材厚又は空気間隔、Niとνiは各々物体側より順に第i番目の光学部材の材質の屈折率とアッベ数である。
【0066】
又、非球面形状は、レンズ面の中心部の曲率半径Rとし、光軸方向(光の進行方向)をX軸とし、光軸と垂直方向をY軸、A,B,C,D,Eを各々非球面係数としたとき
【0067】
【数1】
【0068】
なる式で表している。又「e−X」は「×10-X」を意味している。
【0069】
又、前述の各条件式と数値実施例における諸数値との関係を表1に示す。
【0070】
【0071】
【表1】
【0072】
【発明の効果】
本発明によれば以上のように、負の屈折力のレンズ群が先行するネガティブリード型の2つのレンズ群より成るズームレンズにおいて、各レンズ群のレンズ構成を適切に設定することにより、変倍範囲中の任意のズーム位置においても良好なる光学性能が得られ、全変倍範囲及び画角全体にわたり高い光学性能が容易に得られるズームレンズ及びそれを用いた撮影装置を達成することができる。
【図面の簡単な説明】
【図1】本発明のズームレンズの数値実施例1のレンズ断面図
【図2】本発明のズームレンズの数値実施例1の収差図
【図3】本発明のズームレンズの数値実施例2のレンズ断面図
【図4】本発明のズームレンズの数値実施例2の収差図
【図5】本発明のズームレンズの数値実施例3のレンズ断面図
【図6】本発明のズームレンズの数値実施例3の収差図
【図7】本発明の撮影装置の要部概略図
【符号の説明】
FL 前群
RL 後群
FS1 フレアーカット絞り
FS2 フレアーカット絞り
G ガラスブロック
SP 絞り
IP 像面
d d線
g g線
ΔS サジタル像面
ΔM メリディオナル像面
10 撮影装置本体
11 撮影光学系
12 ファインダー光学系
13 撮像素子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a zoom lens and a photographing apparatus using the same, and in particular, has two lens groups as a whole preceded by a lens group having a negative refractive power, and appropriately sets the lens configuration of these two lens groups. Therefore, it is suitable for a photographing apparatus such as a photographic camera, a video camera, a digital camera, and an SV camera having high optical performance over the entire zoom range.
[0002]
[Prior art]
A so-called negative lead type zoom lens preceded by a lens unit having a negative refractive power is conventionally used as a standard type zoom lens of many cameras because it is relatively easy to widen the angle of view.
[0003]
This type of standard zoom lens is composed of two lens groups, a first group having negative refractive power and a second group having positive refractive power, and these two lens groups are moved along the optical axis. So-called two-group zoom lenses that perform zooming by changing the lens group interval are proposed in, for example, Japanese Patent Laid-Open Nos. 53-132360, 56-19022, and US Pat. No. 5,283,639. Has been.
[0004]
JP-A-7-52256 has three lens groups in order from the object side: a first group having a negative refractive power, a second group having a positive refractive power, and a third group having a positive refractive power. There has been proposed a zoom lens in which zooming from the wide-angle end to the telephoto end is performed by increasing the distance between the second group and the third group.
[0005]
US Pat. No. 5,437,710 has three lens groups in order from the object side: a first group having a negative refractive power, a second group having a positive refractive power, and a third group having a positive refractive power. There is disclosed a zoom lens in which zooming from the telephoto end to the telephoto end is performed by reducing the distance between the second group and the third group.
[0006]
Further, the present applicant has proposed a multi-group zoom lens having a three-group configuration or more according to Japanese Patent Laid-Open No. 6-27377.
[0007]
[Problems to be solved by the invention]
In general, a negative lead type two-unit zoom lens composed of two lens units of a first lens unit having a negative refractive power and a second lens unit having a positive refractive power is relatively easy to widen the angle of view, and has a predetermined back focus. Is easily obtained.
[0008]
However, in order to obtain good optical performance over the entire zoom range and over the entire screen, it is necessary to appropriately set the refractive power arrangement and lens shape of each lens group.
[0009]
If the refractive power arrangement and the lens configuration of each lens group are inappropriate, aberration fluctuations accompanying zooming increase, and it becomes difficult to obtain high optical performance over the entire zooming range.
[0010]
In a two-group zoom lens preceded by a lens unit having a negative refractive power, the relative position of each group on the optical axis is uniquely determined for zooming and correction of fluctuations in image plane position. . As a result, the optical performance at the zoom position during zooming from the wide angle end to the telephoto end cannot be arbitrarily controlled.
[0011]
Accordingly, in order to improve the optical performance at the position during zooming, it is necessary to minimize aberration fluctuations in each group during zooming. As a method for that purpose, for example, the refractive power of each group is loosened, or each group is configured with a larger number of lenses. However, this method has a problem that the overall length of the lens becomes large and it is difficult to achieve high zooming and high performance.
[0012]
The present invention provides a zoom lens composed of two negative lead type lens groups preceded by a lens unit having a negative refractive power, and by appropriately setting the lens configuration of each lens group, an arbitrary zoom within a zooming range is provided. It is an object of the present invention to provide a zoom lens that can obtain good optical performance even at a position and can easily obtain high optical performance over the entire zoom range and the entire angle of view, and a photographing apparatus using the zoom lens.
[0013]
[Means for Solving the Problems]
The zoom lens according to the first aspect of the present invention includes, in order from the object side , a front group having a negative refractive power and a rear group having a positive refractive power, and zooming by changing an interval between the front group and the rear group. In the lens,
The front group is composed of an Fa group having a positive refractive power and an Fb group having a negative refractive power in order from the object side, and the Fa group and the Fb group move so that the distance between the Fa group and the Fb group changes during zooming. And
The rear group is composed of an Ra group having a positive refractive power and an Rb group having a positive refractive power in order from the object side, and the Ra group and the Rb group move so that the interval between the Ra group and the Rb group changes during zooming. And
When zooming from the wide-angle end to the telephoto end, the moving directions of the Fa group and the Rb group are reversed with respect to the image plane of the entire lens system.
The focal length of the Ra group is fRa, the focal length of the Rb group is fRb, the distance on the optical axis between the Ra group and the Rb group at the wide angle end is Cw, the distance on the optical axis between the Ra group and the Rb group at the telephoto end is Ct, The distance on the optical axis between the Ra group and the Rb group when the focal length of the entire lens system is the geometric mean fm = (fw × ft) ½ of the focal length fw at the wide-angle end and the focal length ft at the telephoto end is Cm And when
0.7 <fRa / fRb <1.5
Cw <Cm <Ct
It is characterized by satisfying the following conditions .
[0014]
The invention according to
[0015]
The invention of claim 3 is the invention of
[0016]
According to a fourth aspect of the invention, in the first, second or third aspect of the invention, when zooming from the wide-angle end to the telephoto end, the Rb group moves from the object side to the image plane side with respect to the image plane of the entire lens system. It is characterized by reversing to move to.
[0017]
According to a fifth aspect of the invention, in the invention according to any one of the first to fourth aspects, when the magnification is changed from the wide angle end to the telephoto end, the Fa group moves toward the image plane side with respect to the image plane of the entire lens system. It is characterized by reversing the movement from to the object side.
[0018]
The invention of claim 6 is the invention of any one of claims 1 to 5, wherein the focal length of the entire lens system at the wide angle end is fw, and the focal length of the Fa group is fFa.
0.00 <fw / fFa <0.20
It is characterized by satisfying the following conditions.
[0019]
The invention of claim 7 is the invention of any one of claims 1 to 6, wherein the focal length of the entire lens system at the wide angle end is fw, and the focal length of the Fb group is fFb.
0.35 <fw / | fFb | <0.80
It is characterized by satisfying the following conditions.
[0020]
The invention of claim 8 is the invention of any one of claims 1 to 7, wherein an interval on the optical axis between the Fb group and the Ra group at the wide-angle end is Bw, and the Fb group and the Ra group at the telephoto end. Is the geometrical mean fm of the focal length fw at the wide-angle end and the focal length ft at the telephoto end fm = (fw × ft) 1/2. When the distance on the optical axis between the Fb group and the Ra group is Bm,
0.50 <(Bw−Bm) / (Bw−Bt) <0.75
It is characterized by satisfying the following conditions.
[0021]
A projection apparatus according to a ninth aspect of the invention includes the zoom lens according to any one of the first to eighth aspects, and an image pickup element on which an object image is formed by the zoom lens.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2 are a lens cross-sectional view and aberration diagrams of Numerical Example 1 of the zoom lens according to the present invention.
[0024]
3 and 4 are a lens cross-sectional view and an aberration diagram of Numerical Example 2 of the zoom lens according to the present invention.
[0025]
5 and 6 are a lens sectional view and aberration diagrams of Numerical Example 3 of the zoom lens according to the present invention.
[0026]
The photographing apparatus of the present invention forms an object image on the image pickup means using the zoom lens shown in FIGS.
[0027]
In the lens cross-sectional view, (A) is the wide-angle end (fw), (B) is the zoom position (f WM ) between the wide-angle end and the middle (middle), (C) is the middle zoom position (f M ), ( D) is the zoom position (f TM ) between the middle and the telephoto end, and (E) is the telephoto end (f T ).
[0028]
In the aberration diagrams, (A) is the wide-angle end (fw), (B) is the intermediate zoom position (f M ), and (C) is the telephoto end (f T ).
[0029]
In the lens cross-sectional view, FL is a front group having a negative refractive power, and has a Fa group having a positive refractive power and a Fb group having a negative refractive power.
[0030]
RL is a rear group having a positive refractive power, and has an Ra group having a positive refractive power and an Rb group having a positive refractive power.
[0031]
SP is a stop, and IP is an image plane. G is a glass block such as a filter or a face plate. Each of FS1 and FS2 is a flare cut stop. The flare cut stop FS1 is provided on the object side of the Ra group, and the flare cut stop FS2 is provided on the image side of the Ra group. is doing.
[0032]
The zoom lens of the present invention moves the Fa group, Fb group, Ra group, and Rb group on the optical axis during zooming from the wide-angle end to the telephoto end.
[0033]
Although the zoom lens of the present invention is handled as a two-group configuration, it may be handled as a four-group zoom lens because the four lens groups are independently moved during zooming.
[0034]
In the zoom lens according to the present invention, the entire lens system is configured of at least four groups, and each group is moved to perform zooming. In particular, by reversing the movement trajectory of the rear Rb group during zooming, the optical performance during zooming is improved without weakening the refractive power of each group and increasing the size of the entire lens system. In addition, by reversing the movement trajectory of the Rb group during zooming, each lens group can be made compact with a simple lens configuration, while suppressing fluctuations in optical performance during zooming.
[0035]
In particular, when moving the entire lens system from the wide-angle end to the telephoto end, the movement trajectory of the Rb group is reversed by moving from the object side to the image side IP with respect to the image plane IP of the entire lens system. The Rb group after inversion has a multiplication effect. Thereby, the zooming action in the Fb group and the Ra group is reduced, the movement amount of each group is reduced, and the entire lens system can be downsized. Particularly, the change in the distance between the Fb group and the Ra group is reduced near the telephoto end so that the change in the distance between the Fb group and the Ra group due to an error in the zoom stop position is reduced. This makes it possible to reduce the clearance between the Fb group and the Ra group, thereby reducing the size of the entire lens system.
[0036]
Further, by reversing the movement trajectory of the Fa group in the front group FL, fluctuations in optical performance during zooming can be suppressed. In particular, when changing the magnification of the Fa group from the wide-angle end to the telephoto end, the Fa group is in the middle of magnification change by reversing the movement direction from the movement toward the image plane side to the movement toward the object side with respect to the image plane IP of the entire lens system. This makes it possible to downsize the entire lens system and improve the optical performance.
[0037]
In particular, the change in the distance between the Fa group and the Fb group is reduced near the wide-angle end so that the change in the distance between the Fa group and the Fb group due to an error in the zoom stop position is reduced. This makes it possible to reduce the clearance margin between the Fa group and the Fb group, thereby reducing the size of the entire lens system.
[0038]
Further, in the present embodiment, it is possible to improve the optical performance during zooming, and it is possible to correct aberrations by configuring the Fa group with only one positive lens. In addition, the entire lens system is reduced in size by using only one Fa group.
[0039]
The rear group RL is a lens group responsible for the imaging function of the entire lens system. The Ra group in the rear group has a positive lens and a negative lens so that chromatic aberration can be corrected well, and the Ra group By using at least one aspheric surface, the lens configuration can be simplified and the size can be reduced.
[0040]
Further, the optical performance can be improved during zooming, and the Rb group can be composed of only one positive lens to enable good aberration correction. In addition, the entire lens system is downsized by using only one Rb group.
[0041]
The Rb group may be composed of two lenses, a positive lens and a negative lens, which facilitates better aberration correction. In addition, an aspherical surface may be used for the Rb group, and this makes it easy to correct aberrations with a simple configuration.
[0042]
Further, the stop may be moved integrally with the Ra group, and according to this, it becomes easy to further simplify the lens barrel structure.
[0043]
Next, an embodiment of a photographing apparatus provided with a zoom lens according to Numerical Examples 1 to 3 will be described with reference to FIGS.
[0044]
7A is a front view of the photographing apparatus, and FIG. 7B is a side sectional view. In the figure, 10 is a photographing apparatus body (housing), 11 is a photographing optical system using the zoom lens of any one of Numerical Examples 1 to 3, 12 is a finder optical system, and 13 is an image sensor such as a CCD.
[0045]
In this way, by applying the zoom lenses of Numerical Examples 1 to 3 to the photographing optical system of the photographing apparatus, a compact photographing apparatus is realized.
[0046]
The zoom lens that is the object of the present invention can be achieved by setting as described above. In order to further reduce the size of the entire lens system while maintaining good optical performance, at least one of the following conditions is required. It is good to satisfy one.
[0047]
(A-1) When the focal length of the entire lens system at the wide angle end is fw and the focal length of the Fa group is fFa, 0.00 <fw / fFa <0.20 (1)
Is to satisfy.
[0048]
Conditional expression (1) relates to the focal length of the Fa group. If the upper limit is exceeded, the power of the Fa group becomes too tight and the front lens diameter becomes large. On the other hand, if the lower limit is exceeded, the power of the Fa group becomes loose, and the relens full length becomes long because the zooming action of the Fb group becomes loose.
[0049]
More desirably, the upper limit and lower limit of conditional expression (1) should be set as follows.
[0050]
0.03 <fw / fFa <0.15 (1a)
(A-2) When the focal length of the entire lens system at the wide angle end is fw and the focal length of the Fb group is fFb, 0.35 <fw / | fFb | <0.80 (2)
Is to satisfy.
[0051]
Conditional expression (2) relates to the focal length of the Fb group, and if the upper limit is exceeded, the power of the Fb group becomes tight and aberration fluctuation during zooming becomes large, making it difficult to achieve high zooming. On the other hand, if the lower limit is exceeded, the power of the Fb group becomes loose, the overall length of the lens becomes long, and miniaturization becomes difficult.
[0052]
More desirably, the upper limit and lower limit of conditional expression (2) should be set as follows.
[0053]
0.40 <fw / | fFb | <0.60 (2a)
(A-3) When the focal length of the Ra group is fRa and the focal length of the Rb group is fRb, 0.7 <fRa / fRb <1.5 (3)
Is to satisfy.
[0054]
Conditional expression (3) relates to the focal length ratio of the Ra group and the Rb group, and if the lower limit is exceeded, the power of the Rb group becomes loose, aberration fluctuation during zooming becomes large, and high zooming becomes difficult. On the other hand, if the upper limit is exceeded, the power of the Ra group becomes loose, the entire lens length becomes long, and miniaturization becomes difficult.
[0055]
More desirably, the upper limit and lower limit of the condition (3) are further set as follows.
[0056]
0.8 <fRa / fRb <1.2 (3a)
(A-4) The distance on the optical axis between the Fb group and the Ra group at the wide angle end is Bw, the distance on the optical axis between the Fb group and the Ra group at the telephoto end is Bt, and the focal length of the entire lens system is at the wide angle end. When the distance on the optical axis between the Fb group and the Ra group at the zoom position where the focal length fw and the focal length ft at the telephoto end fm = (fw × ft) 1/2 is Bm, 0.50 < (Bw−Bm) / (Bw−Bt) <0.75 (4)
Is to satisfy.
[0057]
Conditional expression (4) relates to the distance on the optical axis between the Fb group and the Ra group at zooming, and when the upper limit is exceeded, the spacing between the Fb group and Ra group in the zooming area on the wide-angle side from the wide-angle end to the middle. The change becomes large and it becomes difficult to increase the overall zoom ratio. Exceeding the lower limit makes it difficult to correct aberrations in the middle of zooming.
[0058]
More desirably, the upper limit and lower limit of conditional expression (4) should be set as follows.
[0059]
0.60 <(Bw−Bm) / (Bw−Bt) <0.70 (4a)
(A-5) The distance on the optical axis between the Ra group and Rb group at the wide-angle end is Cw, the distance on the optical axis between the Ra group and Rb group at the telephoto end is Ct, and the focal length of the entire lens system is at the wide-angle end. When the distance on the optical axis between the Ra group and the Rb group at the zoom position where the focal length fw and the focal length ft at the telephoto end fm = (fw × ft) 1/2 is Cm,
Cw <Cm <Ct (5)
Is to satisfy.
[0060]
Conditional expression (5) relates to the distance between the Ra group and the Rb group on the optical axis at zooming, and corrects various aberrations generated in the Ra group, particularly axial chromatic aberration, in the Rb group when Cm exceeds the upper limit. It becomes difficult to correct aberrations with a simple configuration for both the Ra group and the Rb group. When Cm becomes smaller than the lower limit, the distance between the Ra group and the Rb group becomes large at the wide-angle end, and it becomes difficult to ensure sufficient back focus.
[0061]
More preferably, the upper limit and lower limit of conditional expression (5) should be set as follows.
[0062]
1.1 × Cw <Cm <0.9 × Ct (5a)
(A-6) The Fa group is composed of a positive lens having a convex surface facing the object side.
[0063]
(A-7) The Fb group is composed of a meniscus negative lens having a convex surface facing the object side, a negative lens, and a meniscus positive lens having a convex surface facing the object side.
[0064]
(A-8) The Ra group is composed of a positive lens and a cemented lens of a positive lens and a negative lens.
[0065]
Next, numerical examples of the present invention will be shown. In the numerical examples, Ri is the radius of curvature of the i-th surface in order from the object side, Di is the i-th optical member thickness or air interval in order from the object side, and Ni and νi are the i-th optical in order from the object side. The refractive index and Abbe number of the material of the member.
[0066]
The aspherical shape is a radius of curvature R at the center of the lens surface, the optical axis direction (light traveling direction) is the X axis, the Y axis is perpendicular to the optical axis, and A, B, C, D, E Where each is an aspheric coefficient [0067]
[Expression 1]
[0068]
It is expressed by the following formula. “E-X” means “× 10 −X ”.
[0069]
Table 1 shows the relationship between the above-described conditional expressions and numerical values in the numerical examples.
[0070]
[0071]
[Table 1]
[0072]
【The invention's effect】
According to the present invention, as described above, in a zoom lens composed of two negative lead type lens groups preceded by a lens unit having a negative refractive power, by appropriately setting the lens configuration of each lens group, It is possible to achieve a zoom lens and a photographing apparatus using the same that can obtain good optical performance at any zoom position within the range, and easily obtain high optical performance over the entire zoom range and the entire angle of view.
[Brief description of the drawings]
FIG. 1 is a lens cross-sectional view of Numerical Example 1 of the zoom lens of the present invention. FIG. 2 is an aberration diagram of Numerical Example 1 of the zoom lens of the present invention. FIG. 4 is an aberration diagram of Numerical Example 2 of the zoom lens of the present invention. FIG. 5 is a sectional view of Lens of Numerical Example of the zoom lens of the present invention. FIG. 7 is an aberration diagram of Example 3. FIG. 7 is a schematic diagram of the main part of the photographing apparatus of the present invention.
FL front group RL rear group FS1 flare cut stop FS2 flare cut stop G glass block SP stop IP image plane d d line g g line ΔS sagittal image plane ΔM
Claims (9)
前群は、物体側から順に、正の屈折力のFa群と負の屈折力のFb群より構成され、変倍時にFa群とFb群の間隔が変化するようにFa群とFb群が移動し、
後群は、物体側から順に、正の屈折力のRa群と正の屈折力のRb群より構成され、変倍時にRa群とRb群の間隔が変化するようにRa群とRb群が移動し、
広角端から望遠端に変倍させるときレンズ全系の像面に対してFa群とRb群は移動方向が反転し、
Ra群の焦点距離をfRa、Rb群の焦点距離をfRb、広角端でのRa群とRb群の光軸上間隔をCw、望遠端でのRa群とRb群の光軸上間隔をCt、レンズ全系の焦点距離が広角端の焦点距離fwと望遠端での焦点距離ftの相乗平均fm=(fw×ft) 1/2 になるときのRa群とRb群の光軸上間隔をCmとするとき、
0.7<fRa/fRb<1.5
Cw<Cm<Ct
なる条件を満足することを特徴とするズームレンズ。 In order from the object side, a zoom lens that is composed of a front group having a negative refractive power and a rear group having a positive refractive power, and changing the distance between the front group and the rear group,
The front group is composed of an Fa group having a positive refractive power and an Fb group having a negative refractive power in order from the object side, and the Fa group and the Fb group move so that the distance between the Fa group and the Fb group changes during zooming. And
The rear group is composed of an Ra group having a positive refractive power and an Rb group having a positive refractive power in order from the object side, and the Ra group and the Rb group move so that the interval between the Ra group and the Rb group changes during zooming. And
When zooming from the wide-angle end to the telephoto end, the moving directions of the Fa group and the Rb group are reversed with respect to the image plane of the entire lens system.
The focal length of the Ra group is fRa, the focal length of the Rb group is fRb, the distance on the optical axis between the Ra group and the Rb group at the wide angle end is Cw, the distance on the optical axis between the Ra group and the Rb group at the telephoto end is Ct, The distance on the optical axis between the Ra group and the Rb group when the focal length of the entire lens system is the geometric mean fm = (fw × ft) ½ of the focal length fw at the wide-angle end and the focal length ft at the telephoto end is Cm And when
0.7 <fRa / fRb <1.5
Cw <Cm <Ct
A zoom lens characterized by satisfying the following conditions:
0.00<fw/fFa<0.20
なる条件を満足することを特徴とする請求項1から5のいずれか1項のズームレンズ。When the focal length of the entire lens system at the wide angle end is fw and the focal length of the Fa group is fFa,
0.00 <fw / fFa <0.20
The zoom lens according to claim 1, wherein the following condition is satisfied.
0.35<fw/|fFb|<0.80
なる条件を満足することを特徴とする請求項1から6のいずれか1項のズームレンズ。When the focal length of the entire lens system at the wide angle end is fw and the focal length of the Fb group is fFb,
0.35 <fw / | fFb | <0.80
The zoom lens according to claim 1, wherein the following condition is satisfied.
0.50<(Bw−Bm)/(Bw−Bt)<0.75
なる条件を満足することを特徴とする請求項1から7いずれか1項のズームレンズ。The distance on the optical axis between the Fb group and the Ra group at the wide angle end is Bw, the distance on the optical axis between the Fb group and the Ra group at the telephoto end is Bt, and the focal length of the entire lens system is the focal length at the wide angle end. When the distance on the optical axis between the Fb group and the Ra group at the zoom position where fw and the focal length ft at the telephoto end fm = (fw × ft) 1/2 is Bm,
0.50 <(Bw−Bm) / (Bw−Bt) <0.75
7 any one of the zoom lens from claim 1, characterized by satisfying the following condition.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21336999A JP4387505B2 (en) | 1999-07-28 | 1999-07-28 | Zoom lens and photographing apparatus using the same |
US09/625,849 US6633437B1 (en) | 1999-07-28 | 2000-07-26 | Zoom lens and photographing apparatus having it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21336999A JP4387505B2 (en) | 1999-07-28 | 1999-07-28 | Zoom lens and photographing apparatus using the same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009195374A Division JP4574728B2 (en) | 2009-08-26 | 2009-08-26 | Zoom lens and photographing apparatus using the same |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2001042215A JP2001042215A (en) | 2001-02-16 |
JP2001042215A5 JP2001042215A5 (en) | 2006-09-07 |
JP4387505B2 true JP4387505B2 (en) | 2009-12-16 |
Family
ID=16638052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21336999A Expired - Fee Related JP4387505B2 (en) | 1999-07-28 | 1999-07-28 | Zoom lens and photographing apparatus using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4387505B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3625435B2 (en) | 2001-08-03 | 2005-03-02 | キヤノン株式会社 | Zoom lens |
WO2004111698A1 (en) | 2003-06-13 | 2004-12-23 | Matsushita Electric Industrial Co., Ltd. | Zoom lens, imaging device, and camera having imaging device |
JP5049012B2 (en) | 2004-09-21 | 2012-10-17 | パナソニック株式会社 | Zoom lens system, imaging device and camera |
JP5241281B2 (en) | 2008-03-17 | 2013-07-17 | キヤノン株式会社 | Zoom lens and imaging apparatus having the same |
-
1999
- 1999-07-28 JP JP21336999A patent/JP4387505B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001042215A (en) | 2001-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3606548B2 (en) | 3 group zoom lens | |
JP4323793B2 (en) | Zoom lens and optical apparatus having the same | |
JP5046747B2 (en) | Zoom lens and imaging apparatus having the same | |
JP4738614B2 (en) | Wide angle zoom lens | |
JP3619178B2 (en) | Zoom lens and optical apparatus having the same | |
JP3927866B2 (en) | Zoom lens and photographing apparatus | |
JPH10293253A (en) | Three-group zoom lens | |
JP4366063B2 (en) | Zoom lens and camera having the same | |
JP4829629B2 (en) | Zoom lens and imaging apparatus having the same | |
JP3486474B2 (en) | Rear focus type zoom lens and camera having the same | |
JP4447680B2 (en) | Zoom lens | |
JP3706783B2 (en) | Zoom lens and photographing apparatus using the same | |
JP3619117B2 (en) | Zoom lens and optical apparatus using the same | |
JP2000180722A (en) | Rear focusing type zoom lens | |
JP3548537B2 (en) | Zoom lens and optical device using the same | |
JP3619153B2 (en) | Zoom lens and optical apparatus using the same | |
JP3977150B2 (en) | Zoom lens and photographing apparatus | |
JPH0814654B2 (en) | Small zoom lens | |
JP2761920B2 (en) | Small wide-angle zoom lens | |
JP4364359B2 (en) | High zoom ratio zoom lens | |
JP3526264B2 (en) | Variable power lens system and optical equipment using the same | |
JP4847091B2 (en) | Zoom lens and imaging apparatus having the same | |
JP4387505B2 (en) | Zoom lens and photographing apparatus using the same | |
JP2003043357A (en) | Zoom lens | |
JP3706827B2 (en) | Zoom lens and optical apparatus having the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060725 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060725 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090630 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090826 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090929 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091001 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121009 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131009 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |