JP4358832B2 - Refrigeration air conditioner - Google Patents

Refrigeration air conditioner Download PDF

Info

Publication number
JP4358832B2
JP4358832B2 JP2006068192A JP2006068192A JP4358832B2 JP 4358832 B2 JP4358832 B2 JP 4358832B2 JP 2006068192 A JP2006068192 A JP 2006068192A JP 2006068192 A JP2006068192 A JP 2006068192A JP 4358832 B2 JP4358832 B2 JP 4358832B2
Authority
JP
Japan
Prior art keywords
evaporator
refrigerant
air
ejector
refrigerating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006068192A
Other languages
Japanese (ja)
Other versions
JP2006292351A (en
Inventor
史武 畝崎
多佳志 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006068192A priority Critical patent/JP4358832B2/en
Publication of JP2006292351A publication Critical patent/JP2006292351A/en
Application granted granted Critical
Publication of JP4358832B2 publication Critical patent/JP4358832B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0013Ejector control arrangements

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Description

この発明は、冷凍空調装置に係り、特にエジェクタを用いる冷凍空調装置に関するものである。   The present invention relates to a refrigeration air conditioner, and more particularly to a refrigeration air conditioner using an ejector.

従来の冷凍空調装置に、エジェクタを用い、エジェクタ出口に気液分離器を設け、気液分離器で分離された液冷媒を蒸発器に供給し、蒸発器出口の冷媒をエジェクタに吸引昇圧させるとともに、気液分離器で分離されたガス冷媒を加熱器に供給し、加熱器で大きく加熱された冷媒を圧縮機に吸入させて圧縮機出口の吐出温度を所定値以上にしたものがある(例えば、特許文献1参照)。
また、従来の別の冷凍空調装置として、エジェクタを用い、気液分離器で分離した液相冷媒をメイン蒸発器、サブ蒸発器に供給するとともに、気液分離器で分離した気相冷媒を温度作動式可変絞り弁を経て圧縮機吸入に供給し、エジェクタの効率が悪化した時に温度作動式可変絞り弁の可変絞り開度を狭くして、サブ蒸発器にも冷媒を流すようにしたものがある(例えば、特許文献2参照)。
In the conventional refrigeration air conditioner, an ejector is used, a gas-liquid separator is provided at the ejector outlet, the liquid refrigerant separated by the gas-liquid separator is supplied to the evaporator, and the refrigerant at the outlet of the evaporator is suctioned and boosted to the ejector. The gas refrigerant separated by the gas-liquid separator is supplied to the heater, and the refrigerant heated greatly by the heater is sucked into the compressor so that the discharge temperature at the compressor outlet becomes a predetermined value or more (for example, , See Patent Document 1).
In addition, as another conventional refrigeration air conditioner, an ejector is used to supply the liquid-phase refrigerant separated by the gas-liquid separator to the main evaporator and sub-evaporator, and the temperature of the gas-phase refrigerant separated by the gas-liquid separator is It is supplied to the compressor suction through an actuated variable throttle valve, and when the efficiency of the ejector deteriorates, the variable throttle opening of the temperature actuated variable throttle valve is narrowed so that the refrigerant also flows through the sub-evaporator. Yes (see, for example, Patent Document 2).

特開2004−3804号公報(5―8頁、図1)Japanese Patent Laying-Open No. 2004-3804 (page 5-8, FIG. 1) 特開2000−283577号公報(1―7頁、図1)Japanese Patent Laid-Open No. 2000-283577 (page 1-7, FIG. 1)

しかし、従来の冷凍空調装置(特許文献1)の場合には、蒸発器と加熱器に冷媒を分配する前に気液分離器を用いていたため以下のような問題があった。まず、加熱器に供給される冷媒がガス冷媒となるため、加熱器での熱交換量は、最大でも冷媒が飽和ガス状態から蒸発器で冷却する負荷熱媒体と同じ温度のガスと変化するまでの熱量しか確保できず、熱交換量が限定されてしまう問題があった。従って加熱器にて装置の運転条件に応じて熱交換量を増加しようとしても、加熱器の熱交換量が不足し、装置運転者の要求に応じた能力を発揮できないという問題があった(なお、蒸発器を第1蒸発器とすれば、加熱器は第2蒸発器といえる)。   However, in the case of the conventional refrigeration air conditioner (Patent Document 1), the gas-liquid separator is used before the refrigerant is distributed to the evaporator and the heater, and thus there are the following problems. First, since the refrigerant supplied to the heater becomes a gas refrigerant, the amount of heat exchange in the heater is maximum until the refrigerant changes from a saturated gas state to a gas having the same temperature as the load heat medium cooled by the evaporator. However, there was a problem that the heat exchange amount was limited. Therefore, even if an attempt is made to increase the amount of heat exchange according to the operating conditions of the apparatus in the heater, there is a problem that the amount of heat exchange of the heater is insufficient, and the capability according to the request of the apparatus operator cannot be exhibited (note that If the evaporator is the first evaporator, the heater can be said to be the second evaporator).

また、従来の冷凍空調装置の別の問題として、加熱器の冷媒状態を制御できないため、圧縮機の吸入温度が大きく上昇し、それに伴い圧縮機の吐出温度も過度に上昇し、圧縮機運転の信頼性が低下する問題があった。加熱器入口の冷媒状態は飽和ガス状態に固定されるので、加熱器出口の冷媒状態は熱交換量に応じて温度上昇したガス冷媒となる。そのため、いわゆる過負荷状態となり、加熱器で冷却する負荷熱媒体の温度が高くなり熱交換量が大きく増加した場合、それに応じて加熱器出口の冷媒温度、すなわち圧縮機吸入温度が大きく上昇する状態となり、吐出温度の過度の上昇を引き起こしていた。   Another problem with conventional refrigeration and air-conditioning systems is that the refrigerant state of the heater cannot be controlled, so the intake temperature of the compressor rises significantly and the discharge temperature of the compressor rises excessively. There was a problem that reliability decreased. Since the refrigerant state at the heater inlet is fixed to the saturated gas state, the refrigerant state at the heater outlet is a gas refrigerant whose temperature has increased according to the amount of heat exchange. For this reason, when the temperature of the load heat medium cooled by the heater becomes high and the heat exchange amount greatly increases, the refrigerant temperature at the outlet of the heater, that is, the compressor intake temperature increases greatly accordingly. Thus, the discharge temperature was excessively increased.

また、従来の冷凍空調装置の別の問題として、冷凍サイクルを循環する冷凍機油が圧縮機に戻りにくくなり、圧縮機の油量が低下し圧縮機運転の信頼性が低下する問題があった。気液分離器に流入する冷凍機油は、液冷媒に溶解して液冷媒側に流出するか、溶解しなくても液体であるので、液冷媒と同様にガス冷媒から分離されて液冷媒側に分離されるので、気液分離器のガス冷媒とともにガス冷媒側に流出する冷凍機油はほとんど無くなる。従って圧縮機に油が戻りにくくなり、圧縮機運転の信頼性低下を引き起こしていた。   Further, another problem of the conventional refrigeration air conditioner is that the refrigeration oil circulating in the refrigeration cycle is difficult to return to the compressor, the amount of oil in the compressor is lowered, and the reliability of the compressor operation is lowered. The refrigerating machine oil that flows into the gas-liquid separator dissolves in the liquid refrigerant and flows out to the liquid refrigerant side, or is liquid even if it does not dissolve. Since it is separated, there is almost no refrigerating machine oil flowing out to the gas refrigerant side together with the gas refrigerant of the gas-liquid separator. Accordingly, it is difficult for oil to return to the compressor, causing a reduction in the reliability of compressor operation.

また、従来の別の冷凍空調装置(特許文献2)の場合には以下のような問題があった。 エジェクタ効率が悪化した場合には、エジェクタでの吸引流量が減少し、メイン蒸発器に流せる流量が低下する。従って、メイン蒸発器で蒸発できる液冷媒量が低下するので、エジェクタを出て気液分離器に流入する冷媒乾き度が低下する。ここで、従来の装置ではサブ蒸発器出口の冷媒過熱度が大きくなると、エジェクタ効率悪化を検知するとしていることから、効率悪化時に気液分離器に流入する冷媒乾き度が低くなりすぎて、液冷媒がオーバーフローし、気相側流路に流れ、気相側流路の冷媒流量が増加し、それにより温度作動式可変絞り弁での減圧量が大きくなり、圧縮機吸入圧(=サブ蒸発器圧力)が低下し、サブ蒸発器での熱交換量が増加し、冷媒過熱度が大きくなったことを検知している。   Further, in the case of another conventional refrigeration air conditioner (Patent Document 2), there are the following problems. When the ejector efficiency deteriorates, the suction flow rate at the ejector decreases, and the flow rate that can flow to the main evaporator decreases. Accordingly, since the amount of liquid refrigerant that can be evaporated by the main evaporator is reduced, the dryness of the refrigerant that exits the ejector and flows into the gas-liquid separator is reduced. Here, in the conventional apparatus, when the refrigerant superheat degree at the outlet of the sub-evaporator increases, it is assumed that the ejector efficiency deterioration is detected. Therefore, the refrigerant dryness flowing into the gas-liquid separator when the efficiency deteriorates becomes too low, The refrigerant overflows and flows into the gas-phase-side channel, and the refrigerant flow rate in the gas-phase-side channel increases, thereby increasing the amount of pressure reduction at the temperature-actuated variable throttle valve, and the compressor suction pressure (= sub-evaporator) The pressure is decreased, the amount of heat exchange in the sub-evaporator is increased, and the degree of refrigerant superheat is increased.

そして、この状態になったときに、温度作動式可変絞り弁開度を小さくし、サブ蒸発器出口の冷媒過熱度を小さくしていることから、気相側流路に流出した液冷媒流量を減少させ、その分をサブ蒸発器に流し、熱交換量に対する液冷媒供給量を増加させて、サブ蒸発器出口の冷媒過熱度を小さくしている。従って、従来の装置では、サブ蒸発器出口の冷媒過熱度は制御できるが、気相側流路から流出する液冷媒量の大小を制御する機能は持たないことになる。そのため、気相側流路とサブ蒸発器出口が合流する圧縮機吸入の状態はコントロールできないことになり、状況によっては圧縮機に液冷媒が吸入される液バック状態になり、圧縮機の運転信頼性を低下させる問題があった。   When this state is reached, the temperature-actuated variable throttle valve opening is reduced and the refrigerant superheat degree at the outlet of the sub-evaporator is reduced. The amount of liquid refrigerant is supplied to the sub-evaporator and the amount of liquid refrigerant supplied with respect to the amount of heat exchange is increased to reduce the degree of refrigerant superheating at the outlet of the sub-evaporator. Accordingly, the conventional apparatus can control the degree of superheat of the refrigerant at the outlet of the sub-evaporator, but does not have a function of controlling the amount of liquid refrigerant flowing out from the gas phase side flow path. Therefore, the compressor suction state where the gas-phase side flow path and the sub-evaporator outlet join cannot be controlled, and depending on the situation, the liquid refrigerant is sucked into the compressor, and the operation reliability of the compressor is increased. There was a problem of lowering the performance.

この発明は、以上の課題を解決するためになされたもので、エジェクタを用いた冷凍空調装置において、第2蒸発器での熱交換量を制御可能にすることで、必要に応じて第2蒸発器での冷却能力を確保し、装置運転の信頼性を確保するとともに、圧縮機吸入温度の過度の上昇や吸入への液バックを抑制するとともに、圧縮機への返油を確保し、圧縮機運転の信頼性を確保できる冷凍空調装置を提供することを目的とする。   The present invention has been made to solve the above-described problems. In a refrigeration air conditioner using an ejector, the amount of heat exchange in the second evaporator can be controlled, so that the second evaporation can be performed as necessary. The cooling capacity of the compressor is secured, the reliability of the operation of the equipment is ensured, the excessive rise in the compressor suction temperature and the liquid back to the suction are suppressed, and the oil return to the compressor is secured, the compressor An object of the present invention is to provide a refrigeration air conditioner that can ensure the reliability of operation.

この発明に係る冷凍空調装置は、圧縮機、凝縮器または放熱器、エジェクタ、蒸発器を環状に接続した冷凍サイクルを有する冷凍空調装置において、前記蒸発器は、第1蒸発器と、第2蒸発器と、を備えるとともに、前記エジェクタからの冷媒を前記第1蒸発器、前記第2蒸発器に分配する分配器を、前記エジェクタと前記第1、第2蒸発器の間に備え、前記エジェクタは前記第1蒸発器からの冷媒を吸引昇圧し、前記分配器は前記エジェクタから流出された冷媒を気液二相冷媒及び液冷媒に分離し、前記第1蒸発器の出口を前記エジェクタの吸引部に、前記第1蒸発器の入口を前記分配器の液冷媒出口に接続し、前記第2蒸発器の出口を前記圧縮機に、前記第2蒸発器の入口を前記分配器の気液二相冷媒出口に接続し、前記エジェクタでの昇圧量を冷媒の蒸発温度上昇幅に換算した値が前記蒸発器での空気の温度低下幅の1/2になる場合は前記第1蒸発器と前記第2蒸発器の面積が同じになるように設定し、前記換算された冷媒の蒸発温度上昇幅が前記蒸発器での空気の温度低下幅の1/2より大きい場合は、前記第2蒸発器の伝熱面積を前記第1蒸発器の伝熱面積より小さくし、前記換算された冷媒の蒸発温度上昇幅が前記蒸発器での空気の温度低下幅の1/2より小さい場合は、前記第1蒸発器の伝熱面積を前記第2蒸発器の伝熱面積より小さくするものである。 The refrigerating air-conditioning apparatus according to the present invention is a refrigerating air-conditioning apparatus having a refrigerating cycle in which a compressor, a condenser or a radiator, an ejector, and an evaporator are connected in an annular shape. The evaporator includes a first evaporator and a second evaporation And a distributor for distributing the refrigerant from the ejector to the first evaporator and the second evaporator, between the ejector and the first and second evaporators, the ejector The refrigerant from the first evaporator is sucked and pressurized, the distributor separates the refrigerant flowing out from the ejector into a gas-liquid two-phase refrigerant and a liquid refrigerant, and the outlet of the first evaporator is a suction part of the ejector The inlet of the first evaporator is connected to the liquid refrigerant outlet of the distributor, the outlet of the second evaporator is connected to the compressor, and the inlet of the second evaporator is connected to the gas-liquid two-phase of the distributor. Connect to the refrigerant outlet, The so that the area of the second evaporator and the first evaporator is the same if the value converted to the evaporation temperature rise of the coolant is 1/2 of the temperature decline of air at the evaporator pressure amount And the converted evaporation temperature increase width of the refrigerant is larger than ½ of the air temperature decrease width in the evaporator, the heat transfer area of the second evaporator is set to be the same as that of the first evaporator. When the converted evaporation temperature increase width of the refrigerant is smaller than ½ of the air temperature decrease width in the evaporator, the heat transfer area of the first evaporator is set to the second heat transfer area. It should be smaller than the heat transfer area of the evaporator.

この発明は、圧縮機、凝縮器または放熱器、エジェクタ、蒸発器を環状に接続した冷凍サイクルを有する冷凍空調装置において、前記蒸発器は、第1蒸発器と、第2蒸発器と、を備えるとともに、前記エジェクタからの冷媒を前記第1蒸発器、前記第2蒸発器に分配する分配器を、前記エジェクタと前記第1、第2蒸発器の間に備え、前記エジェクタは前記第1蒸発器からの冷媒を吸引昇圧し、前記分配器は前記エジェクタから流出された冷媒を気液二相冷媒及び液冷媒に分離し、前記第1蒸発器の出口を前記エジェクタの吸引部に、前記第1蒸発器の入口を前記分配器の液冷媒出口に接続し、前記第2蒸発器の出口を前記圧縮機に、前記第2蒸発器の入口を前記分配器の気液二相冷媒出口に接続し、前記エジェクタでの昇圧量を冷媒の蒸発温度上昇幅に換算した値が前記蒸発器での空気の温度低下幅の1/2になる場合は前記第1蒸発器と前記第2蒸発器の面積が同じになるように設定し、前記換算された冷媒の蒸発温度上昇幅が前記蒸発器での空気の温度低下幅の1/2より大きい場合は、前記第2蒸発器の伝熱面積を前記第1蒸発器の伝熱面積より小さくし、前記換算された冷媒の蒸発温度上昇幅が前記蒸発器での空気の温度低下幅の1/2より小さい場合は、前記第1蒸発器の伝熱面積を前記第2蒸発器の伝熱面積より小さくするので、第2蒸発器での熱交換量を制御可能にすることで、必要に応じて第2蒸発器での能力を確保し、装置運転信頼性を確保できるとともに、圧縮機吸入温度の過度の上昇や液バックを抑制することで圧縮機運転の信頼性を確保できる。また、液冷媒とともに冷凍機油も第2蒸発器を経由して圧縮機に返油可能とすることで、圧縮機油量を確保し、圧縮機運転の信頼性を確保することができる。さらに、第1蒸発器と第2蒸発器での空気と冷媒との温度差を比較的均一にし、第1蒸発器と第2蒸発器での熱交換効率を向上させることができる。 The present invention relates to a refrigeration air conditioner having a refrigeration cycle in which a compressor, a condenser or a radiator, an ejector, and an evaporator are connected in an annular shape, and the evaporator includes a first evaporator and a second evaporator. In addition, a distributor for distributing the refrigerant from the ejector to the first evaporator and the second evaporator is provided between the ejector and the first and second evaporators, and the ejector is provided in the first evaporator. The refrigerant from the ejector is separated into the gas-liquid two-phase refrigerant and the liquid refrigerant, and the outlet of the first evaporator is connected to the suction part of the ejector. An evaporator inlet is connected to the liquid refrigerant outlet of the distributor, an outlet of the second evaporator is connected to the compressor, and an inlet of the second evaporator is connected to a gas-liquid two-phase refrigerant outlet of the distributor. , Evaporating refrigerant by increasing pressure in the ejector If the value in terms of degrees of increase is 1/2 of the temperature decline of air at the evaporator is set such that the area of the second evaporator and the first evaporator is the same, the conversion If the increase in the evaporation temperature of the refrigerant is greater than half the temperature decrease in the evaporator, the heat transfer area of the second evaporator is made smaller than the heat transfer area of the first evaporator. If the converted evaporation temperature increase width of the refrigerant is smaller than ½ of the air temperature decrease width in the evaporator, the heat transfer area of the first evaporator is set as the heat transfer area of the second evaporator. Since the heat exchange amount in the second evaporator can be controlled, the capacity in the second evaporator can be secured as necessary to ensure the reliability of the operation of the apparatus, and the compressor intake temperature. The reliability of the compressor operation can be ensured by suppressing the excessive rise and the liquid back. Further, by allowing the refrigeration oil together with the liquid refrigerant to return to the compressor via the second evaporator, the amount of compressor oil can be ensured and the reliability of the compressor operation can be ensured. Furthermore, the temperature difference between the air and the refrigerant in the first evaporator and the second evaporator can be made relatively uniform, and the heat exchange efficiency between the first evaporator and the second evaporator can be improved.

実施の形態1.
以下この発明の実施の形態1を図1に示す。図1はこの発明の冷凍空調装置の回路図であり、室外機1内には圧縮機3、凝縮器(放熱器)であり、熱源側熱交換器として作用する室外熱交換器4、エジェクタ5、分配器である液分配器6、第2の減圧装置である膨張弁7、負荷側熱交換器として作用する第1蒸発器8及び第2蒸発器9が搭載されており、図示されるように環状に接続され冷媒回路を構成する。
即ち、圧縮機3、室外熱交換器4、エジェクタ5、液分配器6、第2蒸発器9の順で冷凍サイクルが構成され、第2蒸発器9を出た冷媒が圧縮機3吸入側に戻される。また、液分配器6で分配された一部の冷媒が膨張弁7、第1蒸発器8を経てエジェクタ5の吸引部に戻される。
圧縮機3はインバータにより回転数が制御され容量制御されるタイプである。室外熱交換器4は送風機によって搬送される室外機1周囲の空気と熱交換を行う。エジェクタ5は膨張部での絞り開度が可変な構造となっている。膨張弁7は開度が可変に制御される電子膨張弁である。第1蒸発器8、第2蒸発器9はプレート熱交換器であり、搬送される水やブラインなど負荷側熱媒体と冷媒との間で熱交換を行う。この冷凍空調装置の冷媒としては例えばR410Aが用いられる。
室内機2では、第1蒸発器8、第2蒸発器9で冷却される水やブラインの負荷側熱媒体が搬送され、室内機2内の室内熱交換器20で負荷側熱媒体と空気が熱交換を行うことにより冷房運転を行う。
Embodiment 1 FIG.
A first embodiment of the present invention is shown in FIG. FIG. 1 is a circuit diagram of a refrigerating and air-conditioning apparatus according to the present invention. In an outdoor unit 1, there are a compressor 3 and a condenser (radiator), an outdoor heat exchanger 4 acting as a heat source side heat exchanger, and an ejector 5. A liquid distributor 6 serving as a distributor, an expansion valve 7 serving as a second pressure reducing device, a first evaporator 8 and a second evaporator 9 acting as a load side heat exchanger are mounted as shown in the figure. To form a refrigerant circuit.
That is, the refrigeration cycle is configured in the order of the compressor 3, the outdoor heat exchanger 4, the ejector 5, the liquid distributor 6, and the second evaporator 9, and the refrigerant that has exited the second evaporator 9 enters the compressor 3 suction side. Returned. A part of the refrigerant distributed by the liquid distributor 6 is returned to the suction portion of the ejector 5 through the expansion valve 7 and the first evaporator 8.
The compressor 3 is a type in which the rotation speed is controlled by an inverter and the capacity is controlled. The outdoor heat exchanger 4 exchanges heat with the air around the outdoor unit 1 conveyed by a blower. The ejector 5 has a structure in which the throttle opening at the expansion portion is variable. The expansion valve 7 is an electronic expansion valve whose opening degree is variably controlled. The first evaporator 8 and the second evaporator 9 are plate heat exchangers, and perform heat exchange between the load side heat medium such as water and brine to be conveyed and the refrigerant. For example, R410A is used as the refrigerant of the refrigeration air conditioner.
In the indoor unit 2, the load-side heat medium of water and brine cooled by the first evaporator 8 and the second evaporator 9 is conveyed, and the load-side heat medium and air are transferred by the indoor heat exchanger 20 in the indoor unit 2. Cooling operation is performed by heat exchange.

室外機1内には温度センサ11aが圧縮機3吸入側、温度センサ11bが圧縮機3吐出側、温度センサ11cが第2蒸発器9入口、温度センサ11dが第1蒸発器8入口、温度センサ11eが第1蒸発器8出口に設けられており、それぞれ設置場所の冷媒温度を計測する。また、温度センサ11fが第1蒸発器8出口の負荷側熱媒体流路に設けられており、ここでの負荷側熱媒体の温度を計測する。また、温度センサ11gが室外機1周囲の外気温度を計測するために設けられる。
また、圧力センサ12aが圧縮機3吸入側、圧力センサ12bが圧縮機3吐出側に設けられており、それぞれ設置場所の冷媒圧力を計測する。
In the outdoor unit 1, the temperature sensor 11 a is on the suction side of the compressor 3, the temperature sensor 11 b is on the discharge side of the compressor 3, the temperature sensor 11 c is on the second evaporator 9 inlet, the temperature sensor 11 d is on the first evaporator 8 inlet, and the temperature sensor 11e is provided at the outlet of the first evaporator 8 and measures the refrigerant temperature at the installation location. Moreover, the temperature sensor 11f is provided in the load side heat-medium flow path of the 1st evaporator 8 exit, and measures the temperature of the load-side heat medium here. Moreover, the temperature sensor 11g is provided in order to measure the outdoor temperature around the outdoor unit 1.
Moreover, the pressure sensor 12a is provided in the compressor 3 suction | inhalation side, and the pressure sensor 12b is provided in the compressor 3 discharge | emission side, and each measures the refrigerant | coolant pressure of an installation place.

また、室外機1内には、計測制御装置10が設けられており、温度センサ11、圧力センサ12などの計測情報や、冷凍空調装置使用者から指示される運転内容に基づいて、圧縮機3の運転方法、室外熱交換器4の送風機風量、エジェクタ5の絞り開度、膨張弁7の開度などを制御する。   In addition, a measurement control device 10 is provided in the outdoor unit 1, and the compressor 3 is based on measurement information such as the temperature sensor 11 and the pressure sensor 12 and the operation content instructed by the user of the refrigeration air conditioner. The operation method, the air flow rate of the outdoor heat exchanger 4, the throttle opening of the ejector 5, the opening of the expansion valve 7, and the like are controlled.

次に、この冷凍空調装置でのエジェクタ5の構造について説明する。図2はこの発明の実施の形態1を示す冷凍空調装置に使用されるエジェクタの構造と圧力変化の関係を表した図であり、図2(a)はエジェクタ5の構造を表しており、図2(b)は図2(a)におけるエジェクタ5の冷媒流れ方向位置に対応した圧力分布を示している。図2(b)において、横軸は図2(a)のエジェクタ5の冷媒流れ方向位置を表し、縦軸はエジェクタ5の各位置での圧力変化を表している。図において、エジェクタ5は、ニードル部42、ニードル部42を駆動する電磁コイル部41、ノズル部43、混合部44、ディフューザ部45から構成され、ノズル部43はさらに減圧部43aとノズル喉部43cと末広部43bから構成されている。したがって、本実施の形態のエジェクタ5は、ニードル部42を電磁コイル部41にて軸方向に駆動(移動)させてノズル喉部43cの流路面積を可変可能にできる構造であるので、絞り開度可変の絞り機構を備えたエジェクタである。   Next, the structure of the ejector 5 in this refrigeration air conditioner will be described. 2 is a diagram showing the relationship between the structure of the ejector used in the refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention and the pressure change. FIG. 2 (a) shows the structure of the ejector 5. FIG. 2 (b) shows the pressure distribution corresponding to the refrigerant flow direction position of the ejector 5 in FIG. 2 (a). 2B, the horizontal axis represents the refrigerant flow direction position of the ejector 5 in FIG. 2A, and the vertical axis represents the pressure change at each position of the ejector 5. In the figure, the ejector 5 is composed of a needle part 42, an electromagnetic coil part 41 for driving the needle part 42, a nozzle part 43, a mixing part 44, and a diffuser part 45. The nozzle part 43 further includes a decompression part 43a and a nozzle throat part 43c. And the divergent portion 43b. Therefore, the ejector 5 of the present embodiment has a structure in which the needle portion 42 is driven (moved) in the axial direction by the electromagnetic coil portion 41 so that the flow passage area of the nozzle throat portion 43c can be varied. It is an ejector provided with a variable degree diaphragm mechanism.

エジェクタ5は駆動流である圧力P1の液冷媒E1を減圧部43a(X1〜X2)で減圧膨張させてノズル喉部43c(X2)で圧力P2の音速とし、更に末広部43b(X2〜X3)で超音速として圧力P3まで減圧させる。このとき、周囲のガス冷媒の吸引部入口5aからガス冷媒E4を吸引し、この吸引されたガス冷媒は、吸引混合部(X3〜X4)にて末広部43bを流出し超音速となった冷媒と混合されて気液二相冷媒E2となり、この混合された気液二相冷媒E2は、混合部44(X4〜X5)で圧力回復して圧力P4の状態となり、更にディフューザ部45(X5〜X6)で圧力P5まで圧力上昇して流出する。   The ejector 5 decompresses and expands the liquid refrigerant E1 having a pressure P1, which is a driving flow, at the pressure reducing portion 43a (X1 to X2) to obtain a sound velocity at the pressure P2 at the nozzle throat portion 43c (X2), and further, the widening portion 43b (X2 to X3) To reduce the pressure to supersonic speed to pressure P3. At this time, the gas refrigerant E4 is sucked from the suction part inlet 5a of the surrounding gas refrigerant, and the sucked gas refrigerant flows out of the divergent part 43b in the suction mixing part (X3 to X4) and becomes supersonic. Is mixed into the gas-liquid two-phase refrigerant E2, and the mixed gas-liquid two-phase refrigerant E2 recovers the pressure at the mixing unit 44 (X4 to X5) to the pressure P4, and further, the diffuser unit 45 (X5 to X5). In X6), the pressure rises to the pressure P5 and flows out.

次に、液分配器6について説明する。図3はこの発明の実施の形態1を示す冷凍空調装置の液分配器の断面図である。図において液分配器6はエジェクタ5からの流入路6aと、流入路6aから第1蒸発器側8に分岐する第1分岐路6bと、流入路6aから第2蒸発器9に分岐する第2分岐路6cとを備え、第1、第2分岐路6b、6cをU字形状としている。そして、第1分岐路6bを、第2分岐路6cより下方に配置し、分岐部での第2蒸発器9へ流れる冷媒流路よりも第1蒸発器8へ流れる冷媒流路が下方になるように配置している。このとき液冷媒は重力により下方の第1蒸発器8側へ流れ、流しきれない残りの液冷媒が上方の第2蒸発器9側へ流れる。   Next, the liquid distributor 6 will be described. FIG. 3 is a sectional view of the liquid distributor of the refrigerating and air-conditioning apparatus showing Embodiment 1 of the present invention. In the figure, the liquid distributor 6 includes an inflow path 6 a from the ejector 5, a first branch path 6 b that branches from the inflow path 6 a to the first evaporator side 8, and a second branch that branches from the inflow path 6 a to the second evaporator 9. The first and second branch paths 6b and 6c are U-shaped. And the 1st branch path 6b is arrange | positioned below the 2nd branch path 6c, and the refrigerant flow path which flows into the 1st evaporator 8 becomes below rather than the refrigerant flow path which flows into the 2nd evaporator 9 in a branch part. Are arranged as follows. At this time, the liquid refrigerant flows to the lower first evaporator 8 side due to gravity, and the remaining liquid refrigerant that cannot flow completely flows to the upper second evaporator 9 side.

次に、この冷凍空調装置での運転動作について図1〜図4に基づいて説明する。図4は、この発明の実施の形態1を示す冷凍空調装置の圧力とエンタルピの関係を表した図であり、横軸はエンタルピを表し、縦軸は圧力を表している。ここで、本実施の形態の冷凍空調装置は、例えば室外に設置された室外機1から室内に設けられた室内機2へ熱交換をしながら負荷側熱媒体を搬送し、室内を冷房するものであり、圧縮機3から吐出された高温・高圧のガス冷媒R1(I1、Pc1)は、室外熱交換器4で空気へ放熱して凝縮・液化し、高圧の液冷媒R2(I2、Pc1)(E1)となってエジェクタ5に流入する。   Next, the operation | movement operation | movement in this refrigeration air conditioner is demonstrated based on FIGS. 1-4. FIG. 4 is a diagram showing the relationship between the pressure and enthalpy of the refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention, where the horizontal axis represents enthalpy and the vertical axis represents pressure. Here, the refrigerating and air-conditioning apparatus according to the present embodiment, for example, transports a load side heat medium while exchanging heat from an outdoor unit 1 installed outdoors to an indoor unit 2 provided indoors to cool the room. The high-temperature and high-pressure gas refrigerant R1 (I1, Pc1) discharged from the compressor 3 dissipates heat to the air in the outdoor heat exchanger 4, condenses and liquefies, and the high-pressure liquid refrigerant R2 (I2, Pc1) (E1) flows into the ejector 5.

エジェクタ5へ流入した冷媒は、ノズル部43出口(図2のX3の位置)で状態R3(I3、Pe2)になり、混合部44へ流入する。混合部44でエジェクタ5のガス冷媒の吸引部入口5aから流入するR4(I8、Pe2)(E4)の冷媒ガスと混合した後、R5(I5、Pe2)の状態となった冷媒はディフューザ45によりPe2からPe1まで圧力が回復し、状態R6(I6、Pe1)の状態となる。エジェクタ5で減圧された冷媒は、液分配器6に流入する。液分配器6では、エジェクタ5を出た二相冷媒中の液冷媒の一部が第1蒸発器8側に分配され、状態R9(I9、Pe1)の液冷媒は膨張弁7で減圧され、第1蒸発器8に流入し、負荷側熱媒体を冷却しながら蒸発して状態R4(I8、Pe2)のガス冷媒となってエジェクタ5のガス冷媒の吸引部入口5aに吸引される。一方、液分配器6で第1蒸発器8側に分離されなかった残りの液冷媒とガス冷媒が混合した状態R7(I7、Pe1)の二相冷媒は、第2蒸発器9に流入し、負荷側熱媒体を冷却しながら蒸発して状態R8(I8、Pe1)のガス冷媒となり、圧縮機3に吸入される。ここで、本実施の形態では、Pc1>Pc2>Pe1>Pe2であり、また、I1>I8>I7>I6>I5>I2>I2>I3>I9である。   The refrigerant that has flowed into the ejector 5 enters the state R3 (I3, Pe2) at the outlet of the nozzle portion 43 (position X3 in FIG. 2) and flows into the mixing portion 44. After mixing with the refrigerant gas of R4 (I8, Pe2) (E4) flowing in from the gas refrigerant suction part inlet 5a of the ejector 5 in the mixing unit 44, the refrigerant in the state of R5 (I5, Pe2) is caused by the diffuser 45. The pressure is restored from Pe2 to Pe1, and a state R6 (I6, Pe1) is obtained. The refrigerant decompressed by the ejector 5 flows into the liquid distributor 6. In the liquid distributor 6, a part of the liquid refrigerant in the two-phase refrigerant that has exited the ejector 5 is distributed to the first evaporator 8 side, and the liquid refrigerant in the state R9 (I9, Pe1) is decompressed by the expansion valve 7, The refrigerant flows into the first evaporator 8, evaporates while cooling the load-side heat medium, becomes a gas refrigerant in the state R4 (I8, Pe2), and is sucked into the gas refrigerant suction portion inlet 5a of the ejector 5. On the other hand, the two-phase refrigerant in the state R7 (I7, Pe1) in which the remaining liquid refrigerant and gas refrigerant that have not been separated to the first evaporator 8 side by the liquid distributor 6 are mixed flows into the second evaporator 9, While cooling the load-side heat medium, it evaporates to become a gas refrigerant in the state R8 (I8, Pe1) and is sucked into the compressor 3. In the present embodiment, Pc1> Pc2> Pe1> Pe2 and I1> I8> I7> I6> I5> I2> I2> I3> I9.

ここで、エジェクタ5の駆動力は、等エントロピー膨張時のエンタルピI3と等エンタルピ膨張時のエンタルピI2とのエンタルピ差ΔH(=I2−I3)である。このエンタルピ差ΔHが大きいほどエジェクタの導入効果は大きく、一般にこのエンタルピ差ΔHは高圧圧力Pc1と低圧圧力Pe2との圧力差ΔPc(=Pc1−Pe2)が大きいほど大きくなる。   Here, the driving force of the ejector 5 is an enthalpy difference ΔH (= I2−I3) between the enthalpy I3 at the time of isentropic expansion and the enthalpy I2 at the time of isentropic expansion. The greater the enthalpy difference ΔH, the greater the effect of introducing the ejector. Generally, the enthalpy difference ΔH increases as the pressure difference ΔPc (= Pc1−Pe2) between the high pressure Pc1 and the low pressure Pe2 increases.

次に、この冷凍空調装置での冷房運転における負荷側熱媒体の流れと温度変化について説明する。ここで負荷側熱媒体は水として説明する。室内機2では、低温水、例えば7℃の水が室外機から供給され、室内機空間を冷房しながら、水温が上昇し、高温水、例えば12℃の水となって室内機2を出て室外機1に流入する。室外機1において、水はまず第2蒸発器9に流入し、ここで冷媒により冷却され温度低下し、例えば9℃の水となって第2蒸発器9を流出する。第2蒸発器9を出た水は引き続き第1蒸発器8に流入し、ここで冷媒によりさらに冷却され温度低下し、例えば7℃の水となって第1蒸発器8を流出し、室外機1を出て室内機2に流入する。
この冷凍空調装置では、まず高温の水が第2蒸発器9で冷却され、続いて比較的低温の水が第1蒸発器8で冷却される。
Next, the flow and temperature change of the load-side heat medium in the cooling operation in this refrigeration air conditioner will be described. Here, the load side heat medium will be described as water. In the indoor unit 2, low-temperature water, for example, water at 7 ° C. is supplied from the outdoor unit, and while the indoor unit space is cooled, the water temperature rises to become high-temperature water, for example, 12 ° C. water, and exits the indoor unit 2. It flows into the outdoor unit 1. In the outdoor unit 1, water first flows into the second evaporator 9, where it is cooled by the refrigerant and the temperature is lowered, for example, 9 ° C. water is discharged from the second evaporator 9. The water exiting the second evaporator 9 continues to flow into the first evaporator 8, where it is further cooled by the refrigerant to lower the temperature, for example, becomes 7 ° C. water and flows out of the first evaporator 8, and the outdoor unit Exit 1 and flow into indoor unit 2.
In this refrigeration air conditioner, first, the high temperature water is cooled by the second evaporator 9, and then the relatively low temperature water is cooled by the first evaporator 8.

次に、この冷凍空調装置での制御動作について図5に基づいて説明する。まず、圧縮機3の回転数、室外熱交換器4送風量、エジェクタ5開度、膨張弁7開度を初期値に設定して運転を行う(S1)。ここで室外熱交換器4送風量の初期設定値は温度センサ11gで検知される外気温度で決定され、外気温度が高い場合は高風量、低い場合は低風量に設定される(S1)。   Next, the control operation in this refrigeration air conditioner will be described with reference to FIG. First, the operation is performed with the rotation speed of the compressor 3, the outdoor heat exchanger 4 blown air volume, the ejector 5 opening, and the expansion valve 7 opening set to initial values (S1). Here, the initial setting value of the air flow rate of the outdoor heat exchanger 4 is determined by the outside air temperature detected by the temperature sensor 11g, and is set to a high air volume when the outside air temperature is high and to a low air volume when it is low (S1).

そして、この状態で運転した後、装置運転状態に応じて各アクチュエータを制御する。まず圧縮機3の回転数は、温度センサ11fで検知される第1蒸発器8出口の負荷側熱媒体温度(S2)である出口水温が予め設定された目標値、例えば7℃となるように制御される。圧縮機3の回転数が高いと、冷媒流量が増加するため装置の冷却能力が増加し、水がより冷却されるため、第1蒸発器8出口の水温は低下する。逆に、圧縮機3の回転数が低いと、第1蒸発器8出口の水温は上昇する。そこで第1蒸発器8出口の水温と目標値とを比較し(S3)、水温が高い場合は圧縮機3の回転数を増加させ、水温が低い場合は圧縮機3の回転数を減少させる(S4)。   And after driving | running in this state, each actuator is controlled according to an apparatus operating state. First, the rotational speed of the compressor 3 is set so that the outlet water temperature, which is the load-side heat medium temperature (S2) at the outlet of the first evaporator 8 detected by the temperature sensor 11f, becomes a preset target value, for example, 7 ° C. Be controlled. When the rotation speed of the compressor 3 is high, the refrigerant flow rate increases, the cooling capacity of the apparatus increases, and the water is further cooled, so the water temperature at the outlet of the first evaporator 8 decreases. Conversely, when the rotation speed of the compressor 3 is low, the water temperature at the outlet of the first evaporator 8 rises. Therefore, the water temperature at the outlet of the first evaporator 8 is compared with the target value (S3). When the water temperature is high, the rotational speed of the compressor 3 is increased, and when the water temperature is low, the rotational speed of the compressor 3 is decreased ( S4).

次に、室外熱交換器4送風量であるが、この送風量は基本的に初期設定値にて運転を行う。ただし、運転条件によって、圧力センサ12bで検知される高圧(圧縮機3吐出冷媒の圧力)が、過度に上昇した場合は圧縮機3保護のために風量を増加させる制御を行う。また、高圧が過度に低下した場合は、エジェクタ5開度や膨張弁7開度制御を行っても低圧(圧縮機3吸入冷媒の圧力)が大きく低下し、負荷側搬送媒体として水を用いた場合などに、冷媒蒸発温度が低すぎて凍結する恐れが出てくるので、高圧の過度の低下を抑制するように風量を減少させる制御を行う(S5)。   Next, although it is the amount of ventilation of the outdoor heat exchanger 4, the operation is basically performed at the initial set value. However, if the high pressure (pressure of the refrigerant discharged from the compressor 3) detected by the pressure sensor 12b rises excessively depending on the operating conditions, control is performed to increase the air volume to protect the compressor 3. When the high pressure is excessively reduced, the low pressure (pressure of the refrigerant sucked by the compressor 3) is greatly reduced even when the ejector 5 opening degree and the expansion valve 7 opening degree control are performed, and water is used as the load-side transport medium. In some cases, the refrigerant evaporation temperature is too low, and there is a risk of freezing. Therefore, control is performed to reduce the air volume so as to suppress an excessive decrease in high pressure (S5).

次に、エジェクタ5の開度であるが、第2蒸発器9出口(圧縮機3吸入口)の冷媒過熱度SH2が、予め設定された目標値、例えば5℃となるように制御される。ここで、第2蒸発器9出口の冷媒過熱度SH2は、温度センサ11a検知温度(第2蒸発器9出口温度)−温度センサ11c検知温度(第2蒸発器9での冷媒蒸発温度)で演算される値か、または、温度センサ11a検知温度−圧力センサ12a検知圧力から換算される冷媒飽和ガス温度で演算される値を用いる(S6)。このように、圧縮機吸込側過熱度検出手段は温度センサ11a、11cからなり、この温度差から過熱度を演算する。
エジェクタ5の開度が小さくなると、エジェクタ5を通過する冷媒流量が減少するため、圧縮機3による搬送流量が減少し、第2蒸発器9を流れる冷媒流量も減少する。
Next, the opening degree of the ejector 5 is controlled so that the refrigerant superheat degree SH2 at the outlet of the second evaporator 9 (the compressor 3 suction port) becomes a preset target value, for example, 5 ° C. Here, the refrigerant superheat degree SH2 at the outlet of the second evaporator 9 is calculated by the temperature sensor 11a detected temperature (second evaporator 9 outlet temperature) -temperature sensor 11c detected temperature (refrigerant evaporation temperature at the second evaporator 9). Or a value calculated from the refrigerant saturated gas temperature converted from the temperature sensor 11a detected temperature-pressure sensor 12a detected pressure (S6). As described above, the compressor suction side superheat degree detection means includes the temperature sensors 11a and 11c, and calculates the superheat degree from this temperature difference.
When the opening degree of the ejector 5 is reduced, the flow rate of the refrigerant passing through the ejector 5 is reduced, so that the conveyance flow rate by the compressor 3 is reduced and the flow rate of the refrigerant flowing through the second evaporator 9 is also reduced.

従って、所定の熱交換量に対して流れる冷媒流量の増減が制御されることになり、いわゆる膨張弁7の開度制御を行った場合と同様の変化となり、エジェクタ5の開度を小さくすると第2蒸発器9出口の冷媒過熱度SH2は大きくなり、エジェクタ5の開度を大きくすると第2蒸発器9出口の冷媒過熱度SH2は小さくなる。そこで、第2蒸発器9出口の冷媒過熱度SH2と目標値とを比較し(S7)、冷媒過熱度SH2が目標値より大きい場合には、エジェクタ5の開度を大きく制御し、冷媒過熱度SH2が目標値より小さい場合にはエジェクタ5の開度を小さく制御する(S8)。   Therefore, the increase / decrease in the flow rate of the refrigerant flowing with respect to the predetermined heat exchange amount is controlled, which is the same change as when the so-called opening control of the expansion valve 7 is performed. The refrigerant superheat degree SH2 at the outlet of the second evaporator 9 increases, and when the opening degree of the ejector 5 is increased, the refrigerant superheat degree SH2 at the outlet of the second evaporator 9 decreases. Therefore, the refrigerant superheat degree SH2 at the outlet of the second evaporator 9 is compared with the target value (S7). If the refrigerant superheat degree SH2 is larger than the target value, the opening degree of the ejector 5 is controlled to be large, and the refrigerant superheat degree is determined. When SH2 is smaller than the target value, the opening degree of the ejector 5 is controlled to be small (S8).

次に、膨張弁7の開度であるが、第1蒸発器8出口の冷媒過熱度SH1が、予め設定された目標値、例えば5℃となるように制御される。ここで第1蒸発器8出口の冷媒過熱度SH1は、温度センサ11eの検知温度(第1蒸発器8出口温度)−温度センサ11dの検知温度(第1蒸発器8での冷媒蒸発温度)で演算される値を用いる(S9)。このように、第1蒸発器出口過熱度検出手段は温度センサ11e、11dからなり、この温度差から過熱度を演算する。
膨張弁7の開度が小さくなると、第1蒸発器8を流れる冷媒流量は減少し、第1蒸発器8出口の冷媒過熱度SH1は大きくなり、逆に膨張弁7の開度を大きくすると第1蒸発器8出口の冷媒過熱度SH1は小さくなる。そこで、第1蒸発器8出口の冷媒過熱度SH1と目標値とを比較し(S10)、冷媒過熱度SH1が目標値より大きい場合には、膨張弁7の開度を大きく制御し、冷媒過熱度SH1が目標値より小さい場合には膨張弁7の開度を小さく制御する(S11)。
Next, the opening degree of the expansion valve 7 is controlled so that the refrigerant superheat degree SH1 at the outlet of the first evaporator 8 becomes a preset target value, for example, 5 ° C. Here, the refrigerant superheat degree SH1 at the outlet of the first evaporator 8 is the detected temperature of the temperature sensor 11e (first evaporator 8 outlet temperature) −the detected temperature of the temperature sensor 11d (refrigerant evaporation temperature in the first evaporator 8). The calculated value is used (S9). Thus, the first evaporator outlet superheat degree detection means comprises the temperature sensors 11e and 11d, and calculates the superheat degree from this temperature difference.
When the opening degree of the expansion valve 7 decreases, the flow rate of the refrigerant flowing through the first evaporator 8 decreases, the refrigerant superheat degree SH1 at the outlet of the first evaporator 8 increases, and conversely, when the opening degree of the expansion valve 7 increases, The refrigerant superheat degree SH1 at the outlet of one evaporator 8 becomes small. Therefore, the refrigerant superheat degree SH1 at the outlet of the first evaporator 8 is compared with the target value (S10), and when the refrigerant superheat degree SH1 is larger than the target value, the opening degree of the expansion valve 7 is controlled to be large, When the degree SH1 is smaller than the target value, the opening degree of the expansion valve 7 is controlled to be small (S11).

なお、これらの圧縮機3の回転数制御や、エジェクタ5、膨張弁7の開度制御においては、目標値との偏差に基づくPID制御法などにより、制御量が決定される。   In the rotation speed control of the compressor 3 and the opening control of the ejector 5 and the expansion valve 7, the control amount is determined by a PID control method based on a deviation from the target value.

次に、この冷凍空調装置の構成及び制御によって得られる効果について説明する。まずエジェクタ5の昇圧効果により高効率運転が実現される。エジェクタを用いない冷凍空調装置の場合、負荷側熱媒体を冷却するために第1蒸発器8での圧力(Pe2)まで圧力を下げる必要があるが、この冷凍空調装置では、エジェクタ5の昇圧効果により、圧縮機3吸入圧力がPe2から、第2蒸発器9での圧力であるPe1まで引き上げられる。その分圧縮機3の駆動に要する入力が減少し、高効率運転が実現される。   Next, the effect obtained by the configuration and control of this refrigeration air conditioner will be described. First, high-efficiency operation is realized by the boosting effect of the ejector 5. In the case of a refrigeration air conditioner that does not use an ejector, it is necessary to reduce the pressure to the pressure (Pe2) in the first evaporator 8 in order to cool the load-side heat medium. As a result, the suction pressure of the compressor 3 is increased from Pe2 to Pe1, which is the pressure in the second evaporator 9. Accordingly, the input required for driving the compressor 3 is reduced, and high-efficiency operation is realized.

また、液分配器6での分配により、第2蒸発器9にも液冷媒を供給可能としたことで以下の効果が得られる。まず冷却負荷が増加し過負荷運転となり、第2蒸発器9に流入する負荷側熱媒体温度が上昇した場合には、第2蒸発器9での熱交換量が増加し、第2蒸発器9出口の冷媒過熱度SH2が大きくなるため、エジェクタ5の開度が大きく制御される。 このときに膨張弁7の開度が同じであると、エジェクタ5を通過し、液分配器6に流入する二相冷媒流量、すなわち液、ガス流量とも増加する一方、膨張弁7を経て第1蒸発器8に流出する液冷媒流量は変化しないので、第2蒸発器9側に流出する冷媒流量が増加し、流出する液冷媒流量も増加する。従って、第2蒸発器9での冷媒の蒸発量が増加し、より多くの熱交換量が得られる。従って過負荷運転となっても、冷却能力を増加する運転を行うことができ、装置運転の信頼性を確保することができる。   Further, the distribution of the liquid distributor 6 enables the liquid refrigerant to be supplied to the second evaporator 9 as well, and the following effects are obtained. First, when the cooling load increases and an overload operation is performed and the load-side heat medium temperature flowing into the second evaporator 9 rises, the amount of heat exchange in the second evaporator 9 increases, and the second evaporator 9 Since the refrigerant superheat degree SH2 at the outlet increases, the opening degree of the ejector 5 is largely controlled. If the opening degree of the expansion valve 7 is the same at this time, the flow rate of the two-phase refrigerant that passes through the ejector 5 and flows into the liquid distributor 6, that is, the liquid and gas flow rates both increase, while the first through the expansion valve 7. Since the liquid refrigerant flow rate flowing out to the evaporator 8 does not change, the refrigerant flow rate flowing out to the second evaporator 9 side increases, and the liquid refrigerant flow rate flowing out also increases. Therefore, the amount of refrigerant evaporated in the second evaporator 9 increases, and a larger amount of heat exchange can be obtained. Therefore, even if it becomes an overload driving | operation, the driving | operation which increases a cooling capability can be performed and the reliability of an apparatus driving | operation can be ensured.

また、第2蒸発器9での蒸発熱交換量が負荷に応じて増加するように液冷媒を供給することで、第2蒸発器9内の過熱ガス領域の増加を抑制し、熱伝達率の高い二相冷媒領域を多く確保できるので、過負荷運転時でも熱交換性能を高く維持することができ、装置全体で見た蒸発器の性能を高く維持し、過負荷運転となっても高効率の運転を行うことができる。   Further, by supplying liquid refrigerant so that the amount of heat exchanged in the second evaporator 9 increases according to the load, an increase in the superheated gas region in the second evaporator 9 is suppressed, and the heat transfer coefficient is increased. Since a large two-phase refrigerant area can be secured, high heat exchange performance can be maintained even during overload operation, and the evaporator performance as seen in the entire system is maintained high, and high efficiency is achieved even in overload operation. Can be operated.

また、過負荷運転となっても、液冷媒を第2蒸発器9に供給するので、従来例のように気液分離器後のガス冷媒のみが加熱されることが無くなり、第2蒸発器9出口冷媒温度の過度の上昇を抑制でき、圧縮機3の吐出温度上昇を抑制でき、信頼性の高い圧縮機3の運転を実現できる。   Even in the overload operation, since the liquid refrigerant is supplied to the second evaporator 9, only the gas refrigerant after the gas-liquid separator is not heated as in the conventional example, and the second evaporator 9 An excessive increase in the outlet refrigerant temperature can be suppressed, an increase in the discharge temperature of the compressor 3 can be suppressed, and a highly reliable operation of the compressor 3 can be realized.

また、液分配器6での分配により、第2蒸発器9にも液冷媒を供給可能としたことで、液冷媒とともに冷凍機油も第2蒸発器9に供給することができる。従って第2蒸発器9を通過した後で圧縮機3に冷凍機油を返油することが可能となり、従来例のように気液分離器後のガス冷媒のみが圧縮機3に供給される構造に比べて、圧縮機3内の油量確保を確実に行うことができ、圧縮機運転の信頼性を確保することができる。   In addition, since the liquid refrigerant can be supplied to the second evaporator 9 by the distribution in the liquid distributor 6, the refrigeration oil can be supplied to the second evaporator 9 together with the liquid refrigerant. Accordingly, after passing through the second evaporator 9, the refrigeration oil can be returned to the compressor 3, and only the gas refrigerant after the gas-liquid separator is supplied to the compressor 3 as in the conventional example. In comparison, the amount of oil in the compressor 3 can be ensured, and the reliability of compressor operation can be ensured.

また、従来例のように、気液分離器を用いる場合、気液密度差を利用して、重力で分離する方法が一般に取られるが、分離を確実にするため冷媒流速をできるだけ遅くする必要があり、大口径の容器が用いられており、高コストとなる問題があった。この発明の冷凍空調装置では液分配だけできればよいので、液分配器6を図3に示したようなU字型の分岐形状を上下に配置し、分岐部での第2蒸発器9へ流れる冷媒流路よりも第1蒸発器8へ流れる冷媒流路が下方になるように配置した単純な分岐構造とでき、液冷媒は重力により下方の第1蒸発器8側へ流れ、流しきれない残りの液冷媒が上方の第2蒸発器9側へ流れる。このように液冷媒のみを考慮した分配構造とできるので、簡単な構造の分配器を適用でき、低コストを実現できる。   In addition, when using a gas-liquid separator as in the conventional example, a method of separating by gravity using the gas-liquid density difference is generally taken, but it is necessary to make the refrigerant flow rate as slow as possible to ensure the separation. There is a problem that a large-diameter container is used and the cost is high. In the refrigerating and air-conditioning apparatus according to the present invention, it is only necessary to perform liquid distribution. Therefore, the liquid distributor 6 has U-shaped branch shapes as shown in FIG. 3 arranged vertically, and the refrigerant flows to the second evaporator 9 at the branch portion. It can be a simple branching structure in which the refrigerant flow path that flows to the first evaporator 8 is lower than the flow path, and the liquid refrigerant flows to the first evaporator 8 side below by gravity and the remaining flow that cannot flow The liquid refrigerant flows to the upper second evaporator 9 side. Thus, since it can be set as the distribution structure which considered only the liquid refrigerant, the distributor of a simple structure can be applied and low cost can be realized.

なお、エジェクタ5で吸引昇圧に適用できる動力については、
吸引昇圧に適用できる動力∝吸引流量×昇圧幅
の相関が成立するので、第1蒸発器8に分配される冷媒流量が多いと、エジェクタ5での昇圧幅が小さくなり、低圧上昇による効率上昇幅が小さくなる。そのため、第1蒸発器8に分配される冷媒流量は必要以上にならないことが望ましい。この発明の冷凍空調装置では、第1蒸発器8入口に膨張弁7を設け、第1蒸発器8出口の冷媒過熱度を適度に制御できる。従って、同じ熱交換量を得るために、第1蒸発器8に過大な流量が流入して第1蒸発器8出口が気液二相状態のままエジェクタ5に吸引される状態を回避でき、第1蒸発器8での熱交換量を確保する最小限の冷媒流量を供給するようにでき、エジェクタ5での昇圧による効率上昇幅を最大に運転でき、高効率の冷凍空調装置を得ることができる。
Regarding the power that can be applied to the suction pressure increase by the ejector 5,
Since the correlation between power suction flow rate x pressure increase range applicable to suction pressure increase is established, if the refrigerant flow rate distributed to the first evaporator 8 is large, the pressure increase range at the ejector 5 becomes small, and the efficiency increase range due to the low pressure increase Becomes smaller. Therefore, it is desirable that the flow rate of the refrigerant distributed to the first evaporator 8 is not more than necessary. In the refrigerating and air-conditioning apparatus of the present invention, the expansion valve 7 is provided at the inlet of the first evaporator 8, and the refrigerant superheat degree at the outlet of the first evaporator 8 can be controlled appropriately. Therefore, in order to obtain the same heat exchange amount, it is possible to avoid a state in which an excessive flow rate flows into the first evaporator 8 and the outlet of the first evaporator 8 is sucked into the ejector 5 while being in a gas-liquid two-phase state. The minimum refrigerant flow rate that secures the heat exchange amount in one evaporator 8 can be supplied, the maximum efficiency increase due to the pressure increase in the ejector 5 can be operated, and a highly efficient refrigeration air conditioner can be obtained. .

また、第1蒸発器8に分配される冷媒流量は少ない方が望ましいことから、蒸発熱交換に寄与しないガス冷媒はできるだけ、第1蒸発器8側に分配されないことが望ましく、液分配器6に流入するガス冷媒をできるだけ多く第2蒸発器9側に分配することが望ましい。図3に示されるような液分配器6構造とする場合、ガス冷媒は上方に偏って流れるので、分配器分岐部を上下に配置し、上側に分岐する流路を第2蒸発器9側に、下側に分岐する流路を第1蒸発器8側(膨張弁7側)に配置する。このような配置とすると、第1蒸発器8側に分配されるガス流量はほとんどなく、第2蒸発器9側にガス流量を多く分配することができるので、エジェクタ5での昇圧による効率上昇幅を最大に運転でき、高効率の冷凍空調装置を得ることができる。   Further, since it is desirable that the refrigerant flow rate distributed to the first evaporator 8 is small, it is desirable that the gas refrigerant that does not contribute to the exchange of evaporation heat is not distributed to the first evaporator 8 as much as possible. It is desirable to distribute as much of the inflowing gas refrigerant as possible to the second evaporator 9 side. In the case of the liquid distributor 6 structure as shown in FIG. 3, since the gas refrigerant flows biased upward, the distributor branching portion is arranged up and down, and the flow path branched upward is on the second evaporator 9 side. The flow path branched downward is arranged on the first evaporator 8 side (expansion valve 7 side). With this arrangement, there is almost no gas flow rate distributed to the first evaporator 8 side, and a large gas flow rate can be distributed to the second evaporator 9 side. Can be operated at the maximum, and a highly efficient refrigeration air conditioner can be obtained.

また、エジェクタ5の開度制御を、第2蒸発器9出口の冷媒過熱度制御で行う代わりに、圧縮機3の吐出温度、または、吐出冷媒の過熱度を目標に制御を行ってもよい。
これまで、この冷凍空調装置を冷房運転するものとして説明したが、同じ冷媒回路構成で、第1蒸発器8、第2蒸発器9を熱源側熱交換器として構成して外気から採熱し、室外熱交換器4の代わりに凝縮器として温水を加熱する熱交換器を設け、ヒートポンプ給湯機とすることもできる。給湯機では、圧縮機3の吐出ガスの持つ顕熱量も活用して、沸き上げ温度まで昇温する運転が行われるので、吐出ガスの持つ顕熱量の大小を示す、吐出温度または、吐出冷媒の過熱度をどのように設定するかが加熱能力確保、および運転効率向上に重要となる。
Further, the opening degree control of the ejector 5 may be controlled with the discharge temperature of the compressor 3 or the superheat degree of the discharged refrigerant as a target instead of the refrigerant superheat degree control at the outlet of the second evaporator 9.
So far, this refrigeration and air-conditioning apparatus has been described as performing cooling operation, but with the same refrigerant circuit configuration, the first evaporator 8 and the second evaporator 9 are configured as heat source side heat exchangers to collect heat from the outside air, Instead of the heat exchanger 4, a heat exchanger that heats hot water can be provided as a condenser to provide a heat pump water heater. In the water heater, since the operation of raising the temperature to the boiling temperature is performed by utilizing the sensible heat amount of the discharge gas of the compressor 3, the discharge temperature or the discharge refrigerant indicating the magnitude of the sensible heat amount of the discharge gas is performed. How to set the degree of superheat is important for securing heating capacity and improving operating efficiency.

そこで、能力確保し、高効率となる最適な運転を行えるように、沸き上げ温度に応じて吐出温度または、吐出冷媒の過熱度の制御目標値を設定し、圧縮機吐出温度検出手段である温度センサ11bで検知される吐出温度、または、温度センサ11bで検知される吐出温度−圧力センサ12bで検知される圧力高圧から求められる凝縮温度で演算される吐出冷媒の過熱度が目標値となるようにエジェクタ5の開度制御を行う。このように、圧縮機吐出過熱度検出手段は温度センサ11b、圧力センサ12bからなり、検出温度と検出圧力から求められる凝縮温度の差に基づいて過熱度を演算する。
エジェクタ5の開度制御は前述したように、通常の膨張弁開度制御と同様の傾向を示すので、吐出温度、または、吐出冷媒の過熱度が目標値より高い場合にはエジェクタ5の開度を大きく制御し、逆に吐出温度、または、吐出冷媒の過熱度が目標値より低い場合にはエジェクタ5の開度を小さく制御する。
このような運転を行うことで、加熱能力を確保するとともに、高効率の運転を行える冷凍空調装置を得ることができる。
Therefore, the discharge target or the control target value of the superheat degree of the discharged refrigerant is set according to the boiling temperature so that the optimum operation with high efficiency and high efficiency can be performed, and the temperature that is the compressor discharge temperature detection means The superheat degree of the discharge refrigerant calculated by the condensation temperature calculated from the discharge temperature detected by the sensor 11b or the pressure-high pressure detected by the discharge temperature-pressure sensor 12b detected by the temperature sensor 11b becomes the target value. Then, the opening degree of the ejector 5 is controlled. As described above, the compressor discharge superheat degree detection means includes the temperature sensor 11b and the pressure sensor 12b, and calculates the superheat degree based on the difference between the detected temperature and the condensation temperature obtained from the detected pressure.
As described above, the opening degree control of the ejector 5 shows the same tendency as the normal expansion valve opening degree control. Therefore, when the discharge temperature or the superheat degree of the discharged refrigerant is higher than the target value, the opening degree of the ejector 5 is controlled. When the discharge temperature or the superheat degree of the discharged refrigerant is lower than the target value, the opening degree of the ejector 5 is controlled to be small.
By performing such an operation, it is possible to obtain a refrigerating and air-conditioning apparatus capable of ensuring a heating capability and performing a highly efficient operation.

また、第1蒸発器8、第2蒸発器9で冷却する場合、図1の構成のように、冷却される媒体の温度が高温である方を第2蒸発器9で冷却、低温である方を第1蒸発器8で冷却することが望ましい。
これは、エジェクタ5の吸引昇圧作用により、第1蒸発器8の圧力(図4のPe2)<
第2蒸発器9の圧力(図4のPe1)となることから、冷媒の蒸発温度は第1蒸発器8<第2蒸発器9であるので、冷却される媒体の温度も第1蒸発器8<第2蒸発器9となっていると、蒸発熱交換での冷媒蒸発温度と冷却される媒体の温度差を均一にでき、蒸発器での熱交換効率を高くでき、装置の運転効率を高くすることができる。
In addition, when the first evaporator 8 and the second evaporator 9 are used for cooling, the second evaporator 9 cools the medium to be cooled as shown in the configuration of FIG. The first evaporator 8 is preferably cooled.
This is because the pressure of the first evaporator 8 (Pe2 in FIG. 4) <
Since the pressure of the second evaporator 9 (Pe 1 in FIG. 4) is reached, the evaporation temperature of the refrigerant is the first evaporator 8 <the second evaporator 9, so the temperature of the medium to be cooled is also the first evaporator 8. <When the second evaporator 9 is used, the temperature difference between the refrigerant evaporation temperature and the medium to be cooled in the evaporation heat exchange can be made uniform, the heat exchange efficiency in the evaporator can be increased, and the operation efficiency of the apparatus is increased. can do.

なお、第1蒸発器8、第2蒸発器9で冷却される媒体は水やブラインに限るものではなく、空気を用いてもよく、第1蒸発器8、第2蒸発器9を被冷却空間に配置し空気を冷却する直膨の運転を行ってもよい。
この場合、図6に示すように同一の風路内に第1蒸発器8、第2蒸発器9を配置する空気熱交換器構造とし、空気が熱交換器に流入したばかりで高温である風上側に第2蒸発器9、第2蒸発器9で冷却され空気温度が低下する風下側に第1蒸発器8を配置する。この場合も同様に冷媒蒸発温度と冷却される媒体の温度差を均一にでき、第1蒸発器8、第2蒸発器9での熱交換効率を高くでき、装置の運転効率を高くすることができる。
Note that the medium cooled by the first evaporator 8 and the second evaporator 9 is not limited to water or brine, and air may be used, and the first evaporator 8 and the second evaporator 9 are placed in the space to be cooled. A direct expansion operation for cooling the air may be performed.
In this case, as shown in FIG. 6, an air heat exchanger structure in which the first evaporator 8 and the second evaporator 9 are arranged in the same air passage, and the air that has just been introduced into the heat exchanger and is at a high temperature is used. The second evaporator 9 is disposed on the upper side, and the first evaporator 8 is disposed on the leeward side where the air temperature is lowered by cooling with the second evaporator 9. In this case as well, the temperature difference between the refrigerant evaporation temperature and the medium to be cooled can be made uniform, the heat exchange efficiency in the first evaporator 8 and the second evaporator 9 can be increased, and the operation efficiency of the apparatus can be increased. it can.

また、第1蒸発器8、第2蒸発器9で同一の媒体を冷却する必要は無く、個別に冷却を行ってもよい。例えば、第1蒸発器8はより低い蒸発温度で運転できるので、室内空間の露点温度より低い蒸発温度で運転し除湿を行う除湿用熱交換器とし、第2蒸発器9は高い蒸発温度の運転となるので、露点温度より高い室内空間の顕熱分を冷却する顕熱冷却用熱交換器とする構成としてもよい。この場合も、同一熱交換器で除湿と顕熱冷却を行う場合に比べて、蒸発熱交換での冷媒蒸発温度と冷却される媒体の温度差をより均一にでき、第1蒸発器8、第2蒸発器9での熱交換効率を高くでき、装置の運転効率を高くすることができる。また、圧縮機3の吸入圧力に相当する蒸発温度を顕熱冷却に対応した温度とすることができ、高い吸入圧力で除湿も行える空調が行え、高効率かつ快適性の高い運転を行うことができる。   Moreover, it is not necessary to cool the same medium with the 1st evaporator 8 and the 2nd evaporator 9, and you may cool separately. For example, since the first evaporator 8 can be operated at a lower evaporation temperature, it is a dehumidifying heat exchanger that operates at an evaporation temperature lower than the dew point temperature of the indoor space to perform dehumidification, and the second evaporator 9 is operated at a high evaporation temperature. Therefore, the heat exchanger for sensible heat cooling that cools the sensible heat in the indoor space higher than the dew point temperature may be used. Also in this case, compared with the case where dehumidification and sensible heat cooling are performed in the same heat exchanger, the temperature difference between the refrigerant evaporation temperature in the evaporation heat exchange and the medium to be cooled can be made more uniform. The heat exchange efficiency in the two evaporators 9 can be increased, and the operation efficiency of the apparatus can be increased. Further, the evaporation temperature corresponding to the suction pressure of the compressor 3 can be set to a temperature corresponding to sensible heat cooling, air conditioning that can perform dehumidification with a high suction pressure can be performed, and highly efficient and comfortable operation can be performed. it can.

また、第1蒸発器8、第2蒸発器9で冷却対象の温度が異なるものの冷却を行ってもよい。例えば、第1蒸発器8でより低温が要求される対人空調を行い、第2蒸発器9で冷却温度が高くてもよい対機械空調を行うこともできる。また、ショーケースシステムなど低温用冷却に用い、例えば、第1蒸発器8でより低温が要求される肉魚などの生鮮品の冷却を行い、第2蒸発器9で冷却温度が高くてもよい青果・日配品などの冷却を行うようにしてもよい。   In addition, the first evaporator 8 and the second evaporator 9 may be cooled although the temperatures to be cooled are different. For example, it is possible to perform interpersonal air conditioning that requires a lower temperature in the first evaporator 8 and to perform mechanical air conditioning in which the cooling temperature may be higher in the second evaporator 9. Moreover, it uses for cooling for low temperature, such as a showcase system, for example, the 1st evaporator 8 cools fresh products, such as meat fish which require a low temperature, and the 2nd evaporator 9 may have high cooling temperature. You may make it cool fruits and vegetables and daily goods.

実施の形態2.
実施の形態1では、液分配器をU字形状としたが、本実施の形態は筒状構造としたものである。図7、図8はこの発明の実施の形態2を示す冷凍空調装置の液分配器の構造を示す断面図である。
図7は、液分配器6の筒状構造を垂直に配置したものであり、第1、第2分岐路6b、6cを垂直にし、筒状部下部に液冷媒を滞留させ、そこから液冷媒を抜き取り、第1蒸発器8側(膨張弁7側)に供給する構造とする。この構造とする場合、筒状部下部にガス冷媒が到達しないように、分配器入口部は、図示されるように分配器上方に配置し、第1分岐路6bを第2分岐路6cより長くすることが望ましい。
また、図8は筒状構造を水平に配置したものであり、流入路6aと第2分岐路6cを水平にし、第1分岐路6bを垂直とし、二相冷媒が上側に気相、下側に液相と分離される特性を利用して、筒状の下方から液冷媒を抜き取り、第1蒸発器8側(膨張弁7側)に供給する構造とする。いずれの場合も分岐部での冷媒流路において、第1蒸発器8側(膨張弁7側)に分岐される流路が第2蒸発器9側に分岐される流路よりも下方になるように配置される。
Embodiment 2. FIG.
In the first embodiment, the liquid distributor is U-shaped, but this embodiment has a cylindrical structure. 7 and 8 are cross-sectional views showing the structure of the liquid distributor of the refrigerating and air-conditioning apparatus showing Embodiment 2 of the present invention.
In FIG. 7, the cylindrical structure of the liquid distributor 6 is arranged vertically, the first and second branch paths 6b and 6c are made vertical, the liquid refrigerant is retained in the lower part of the cylindrical portion, and the liquid refrigerant is generated therefrom. Is extracted and supplied to the first evaporator 8 side (expansion valve 7 side). In the case of this structure, the distributor inlet portion is arranged above the distributor so that the gas refrigerant does not reach the lower part of the cylindrical portion, and the first branch path 6b is longer than the second branch path 6c. It is desirable to do.
FIG. 8 shows a horizontal arrangement of the cylindrical structure, the inflow path 6a and the second branch path 6c are horizontal, the first branch path 6b is vertical, and the two-phase refrigerant is in the gas phase on the upper side and the lower side. The liquid refrigerant is extracted from the bottom of the cylindrical shape and is supplied to the first evaporator 8 side (expansion valve 7 side) by utilizing the characteristics separated from the liquid phase. In any case, in the refrigerant flow path at the branch portion, the flow path branched to the first evaporator 8 side (expansion valve 7 side) is lower than the flow path branched to the second evaporator 9 side. Placed in.

図7、図8いずれの構造においても、気液分離を確実にする必要はなく、第2蒸発器9側はガス冷媒と液冷媒が混合して流出してよい。従って、一般に用いられる気液分離器のように冷媒流速を遅くしなくてもよいため、筒状部の径は液冷媒が滞留する適度な大きさの径でよい。従って、銅配管の絞り構造などで構成することができ、この場合も従来の気液分離器に比べて安価となり、低コストの冷凍空調装置を得ることができる。   7 and FIG. 8, it is not necessary to ensure gas-liquid separation, and gas refrigerant and liquid refrigerant may be mixed and flow out on the second evaporator 9 side. Therefore, unlike the generally used gas-liquid separator, it is not necessary to slow down the refrigerant flow rate, and the diameter of the cylindrical portion may be an appropriate size for the liquid refrigerant to stay. Therefore, it can be configured with a copper pipe throttle structure, and in this case as well, it is less expensive than a conventional gas-liquid separator, and a low-cost refrigeration air conditioner can be obtained.

実施の形態3.
実施の形態1では、エジェクタ5を絞り開度可変の構造としているが、本実施の形態は、エジェクタ5の開度を固定の構造とし、膨張弁を追加したものである。
図9、図10はこの発明の実施の形態3を示す冷凍空調装置のエジェクタと膨張弁の回路構成を示す図である。
図9は、エジェクタ5と第1の減圧装置である開度可変の電子膨張弁13とを並列に組み合わせ、図10は直列に組み合わせて接続して、減圧装置を構成しており、電子膨張弁13の開度制御により、第2蒸発器9に分配される液冷媒流量を制御する。
この構成による制御は、エジェクタ5の開度制御と同様にして、第2蒸発器9出口の過熱度制御を行う。
Embodiment 3 FIG.
In the first embodiment, the ejector 5 has a structure with a variable throttle opening, but in this embodiment, the opening of the ejector 5 is fixed and an expansion valve is added.
9 and 10 are diagrams showing circuit configurations of the ejector and the expansion valve of the refrigerating and air-conditioning apparatus according to Embodiment 3 of the present invention.
FIG. 9 is a combination of an ejector 5 and a variable opening electronic expansion valve 13 which is a first decompression device in parallel, and FIG. 10 is a serial decompression device configured by connecting them in series. The flow rate of the liquid refrigerant distributed to the second evaporator 9 is controlled by the opening degree control of 13.
The control by this structure performs superheat degree control of the 2nd evaporator 9 exit similarly to the opening degree control of the ejector 5. FIG.

この構成による制御は、エジェクタ5にて開度制御を行うのと同様の効果を得られるとともに、エジェクタ5の構造が簡単で安価となり、低コストの冷凍空調装置を得ることができる。
なお、電子膨張弁13の変わりに、第1の減圧装置としてキャピラリーチューブと電磁弁を直列に接続した回路を複数接続してもよい。この場合、各キャピラリーチューブは流動抵抗が異なるものとし、電磁弁の開閉で減圧装置としての流動抵抗を可変にすることができ、電子膨張弁13と同様の機能を実現できる。
The control by this configuration can obtain the same effect as the opening degree control by the ejector 5, the structure of the ejector 5 is simple and inexpensive, and a low-cost refrigeration air conditioner can be obtained.
Instead of the electronic expansion valve 13, a plurality of circuits in which a capillary tube and an electromagnetic valve are connected in series may be connected as the first pressure reducing device. In this case, each capillary tube has a different flow resistance, and the flow resistance as the decompression device can be made variable by opening and closing the electromagnetic valve, and the same function as the electronic expansion valve 13 can be realized.

実施の形態4.
本実施の形態は実施の形態1の図1で示した第2蒸発器9の代わりに、内部熱交換器を用いたものである。
図11はこの発明の実施の形態4を示す冷凍空調装置の回路図である。図において図1と同一または、相当部分には同一の符号を付し説明を省略する。第2蒸発器9の代わりに、凝縮器である室外熱交換器4の出口の高圧側冷媒と圧縮機3に吸入される低圧側冷媒との間で熱交換する内部熱交換器19が設けられている。
Embodiment 4 FIG.
In the present embodiment, an internal heat exchanger is used instead of the second evaporator 9 shown in FIG. 1 of the first embodiment.
FIG. 11 is a circuit diagram of a refrigerating and air-conditioning apparatus showing Embodiment 4 of the present invention. In the figure, the same or corresponding parts as in FIG. Instead of the second evaporator 9, an internal heat exchanger 19 for exchanging heat between the high-pressure side refrigerant at the outlet of the outdoor heat exchanger 4 that is a condenser and the low-pressure side refrigerant sucked into the compressor 3 is provided. ing.

この構成において、実施の形態1と同様に内部熱交換器19に液冷媒を供給され、熱交換量の調整や、吐出温度上昇の抑制、返油量の確保など同様の効果を得ることができる。
また、冷媒としてCO2を用いる場合や、冷蔵冷凍など低温用途に用いる場合などには、一般に蒸発器での冷媒エンタルピ差が小さく効率が低下しやすいが、内部熱交換器19を用いると、凝縮器4の出口の冷媒を冷却することにより、蒸発器としての冷媒エンタルピ差を拡大でき、より高効率の運転を行うことができる。
In this configuration, liquid refrigerant is supplied to the internal heat exchanger 19 as in the first embodiment, and similar effects such as adjustment of heat exchange amount, suppression of increase in discharge temperature, and securing of oil return amount can be obtained. .
In addition, when using CO 2 as a refrigerant or for low-temperature applications such as refrigeration, the refrigerant enthalpy difference in the evaporator is generally small and the efficiency tends to decrease. However, if the internal heat exchanger 19 is used, condensation occurs. By cooling the refrigerant at the outlet of the vessel 4, the refrigerant enthalpy difference as an evaporator can be expanded and more efficient operation can be performed.

なお、内部熱交換器19を大きなサイズとし、熱交換量を稼いで、より蒸発器としての冷媒エンタルピ差を拡大しようとした場合、従来例のように、気液分離器で分離されたガス冷媒を内部熱交換器に供給すると、圧縮機3の吸入の温度が上昇しすぎるため、却って運転効率が低下する場合がある。この場合に、この発明の構成のように内部熱交換器19に液冷媒を供給できるような構造とすると、冷媒エンタルピ差を拡大するとともに、圧縮機3の吸入温度の過度の上昇を抑制し、より高効率の運転を行うことができる。
また、吸入温度上昇抑制を目的に、内部熱交換器19での熱交換量を減少させる回路構造を持つ場合に比べ、内部熱交換器19での熱交換面積を有効に活用でき、内部熱交換器19の効果を十分に得ることができる。
また、図においては内部熱交換器19は、室内機2からの負荷熱媒体を冷却する構成とはしてないが、第2蒸発器9として、内部熱交換器19と負荷側熱媒体を冷却する熱交換器を併用しても同様の効果を得ることができる。
Note that when the internal heat exchanger 19 is made large in size to increase the heat exchange amount and to further increase the refrigerant enthalpy difference as an evaporator, the gas refrigerant separated by the gas-liquid separator as in the conventional example If is supplied to the internal heat exchanger, the suction temperature of the compressor 3 increases too much, and the operation efficiency may decrease. In this case, when the liquid refrigerant is supplied to the internal heat exchanger 19 as in the configuration of the present invention, the refrigerant enthalpy difference is enlarged, and an excessive increase in the intake temperature of the compressor 3 is suppressed. More efficient operation can be performed.
In addition, the heat exchange area in the internal heat exchanger 19 can be used more effectively than in the case of having a circuit structure that reduces the amount of heat exchange in the internal heat exchanger 19 for the purpose of suppressing the rise in suction temperature, and the internal heat exchange The effect of the vessel 19 can be sufficiently obtained.
In the figure, the internal heat exchanger 19 is not configured to cool the load heat medium from the indoor unit 2, but as the second evaporator 9, the internal heat exchanger 19 and the load-side heat medium are cooled. The same effect can be obtained even if a heat exchanger is used.

また、図1では、第1蒸発器8、第2蒸発器9ともにそれぞれ1つの熱交換器として図示されているが、それぞれ複数個あっても同様の効果を得ることができる。例えば、第1蒸発器8、膨張弁7を内蔵した室内機2を2台以上の複数で構成し、各室内機2で空気を直接冷却する直膨のシステムとして、図12の回路図のように、第1蒸発器8a、膨張弁7aを内蔵した室内機2a及び第1蒸発器8b、膨張弁7bを内蔵した室内機2b等とした構成としてもよい。この場合、液分配器6で分配された冷媒が、各室内機2a、2b内の膨張弁7a、7b、第1蒸発器8a、8bを経てエジェクタ5に吸引される回路構成となる。   In FIG. 1, both the first evaporator 8 and the second evaporator 9 are shown as one heat exchanger, but the same effect can be obtained even when there are a plurality of them. For example, as a direct expansion system in which the indoor unit 2 including the first evaporator 8 and the expansion valve 7 is composed of two or more units and directly cools the air in each indoor unit 2 as shown in the circuit diagram of FIG. The first evaporator 8a, the indoor unit 2a incorporating the expansion valve 7a, the first evaporator 8b, the indoor unit 2b incorporating the expansion valve 7b, and the like may be employed. In this case, the refrigerant distributed by the liquid distributor 6 is drawn into the ejector 5 through the expansion valves 7a and 7b and the first evaporators 8a and 8b in the indoor units 2a and 2b.

実施の形態5.
実施の形態1、4では、この発明の冷凍空調装置は冷房運転(冷却運転)を行うものとして説明したが、本実施の形態は、冷房(冷却)及び暖房(加熱)をともに実施するヒートポンプに適用するものである。
図13はこの発明の実施の形態5を示す冷凍空調装置の回路図である。
図において、実施の形態1の図1及び実施の形態4の図12と同一または、相当部分には同一の符号を付し説明を省略する。
室外機1には冷房運転、または、暖房運転を行うための流路を切り換える切換手段である四方弁14と逆止弁15、冷房運転時は凝縮器となり、暖房運転時には第1蒸発器となり熱源側熱交換器として作用する室外熱交換器17、膨張弁7cが設けられている。室内機2a、2bには、冷房運転時は凝縮器となり、暖房運転時には第1蒸発器となる室外熱交換器17が設けられている。
室内機2a、2bには、冷房運転時は第1蒸発器となり、暖房運転時には凝縮器となり、負荷側熱交換器として作用する室内熱交換器16a、16bがそれぞれ設けられている。
Embodiment 5 FIG.
In the first and fourth embodiments, the refrigerating and air-conditioning apparatus of the present invention has been described as performing a cooling operation (cooling operation). However, the present embodiment is a heat pump that performs both cooling (cooling) and heating (heating). Applicable.
FIG. 13 is a circuit diagram of a refrigerating and air-conditioning apparatus showing Embodiment 5 of the present invention.
In the figure, the same or corresponding parts as in FIG. 1 of the first embodiment and FIG. 12 of the fourth embodiment are denoted by the same reference numerals, and description thereof is omitted.
The outdoor unit 1 has a four-way valve 14 and a check valve 15 which are switching means for switching a flow path for performing a cooling operation or a heating operation, and serves as a condenser during the cooling operation, and serves as a first evaporator during the heating operation. An outdoor heat exchanger 17 acting as a side heat exchanger and an expansion valve 7c are provided. The indoor units 2a and 2b are provided with an outdoor heat exchanger 17 that serves as a condenser during the cooling operation and serves as a first evaporator during the heating operation.
The indoor units 2a and 2b are provided with indoor heat exchangers 16a and 16b, respectively, which serve as a first evaporator during the cooling operation and serve as a condenser during the heating operation and function as a load-side heat exchanger.

次に、運転動作について図13に基づいて説明する。まず、四方弁14、逆止弁15の流路切り換えにより、冷房運転を行う場合、圧縮機3、四方弁14、室外熱交換器17、膨張弁7c、逆止弁15a、エジェクタ5、液分配器6、内部熱交換器19を経て圧縮機3吸入部に接続される回路構成となるとともに、液分配器6で分配された一部の冷媒が逆止弁15b、各室内機2a、2bの膨張弁7a、7b、室内熱交換器16a、16b、四方弁14を経てエジェクタ5ガス冷媒の吸引部入口5aに戻される回路となる。そして、冷媒流路は図中実線の流れとなり、各室内機2a、2b内の室内熱交換器16a、16bが第1蒸発器、室外熱交換器17が凝縮器となり、冷却運転を行う。   Next, a driving | operation operation | movement is demonstrated based on FIG. First, when cooling operation is performed by switching the flow path of the four-way valve 14 and the check valve 15, the compressor 3, the four-way valve 14, the outdoor heat exchanger 17, the expansion valve 7c, the check valve 15a, the ejector 5, the liquid distribution The refrigerant is distributed in the liquid distributor 6 through the check valve 15b and each of the indoor units 2a and 2b. It becomes a circuit returned to the suction part inlet 5a of the ejector 5 gas refrigerant through the expansion valves 7a and 7b, the indoor heat exchangers 16a and 16b, and the four-way valve 14. The refrigerant flow is a solid line in the figure, and the indoor heat exchangers 16a and 16b in the indoor units 2a and 2b serve as the first evaporator and the outdoor heat exchanger 17 serves as a condenser to perform the cooling operation.

また、暖房運転を行う場合、圧縮機3、四方弁14、各室内機2a、2b内の室内熱交換器16a、13b、膨張弁7a、7b、逆止弁15c、エジェクタ5、液分配器6、内部熱交換器19を経て圧縮機3吸入部に接続される回路構成となるとともに、液分配器6で分配された一部の冷媒が逆止弁15d、膨張弁7c、室外熱交換器17、四方弁14を経てエジェクタ5ガス冷媒の吸引部入口5aに戻される回路となる。そして冷媒流路は図中点線の流れとなり、各室内機2a、2b内の室内熱交換器16a、16bが凝縮器、室外熱交換器17が第1蒸発器となり、暖房運転を行う。   When performing the heating operation, the compressor 3, the four-way valve 14, the indoor heat exchangers 16a and 13b in the indoor units 2a and 2b, the expansion valves 7a and 7b, the check valve 15c, the ejector 5, and the liquid distributor 6 are used. The circuit configuration is connected to the suction portion of the compressor 3 through the internal heat exchanger 19, and a part of the refrigerant distributed by the liquid distributor 6 is a check valve 15d, an expansion valve 7c, and an outdoor heat exchanger 17. The circuit is returned to the suction portion inlet 5a of the ejector 5 gas refrigerant through the four-way valve 14. The refrigerant flow path is a dotted line in the figure, and the indoor heat exchangers 16a and 16b in the indoor units 2a and 2b are condensers, and the outdoor heat exchanger 17 is a first evaporator, and heating operation is performed.

この回路構成で、四方弁14は冷暖各運転時に、圧縮機3から吐出された冷媒が凝縮器となる熱交換器に流れるよう流路切り換えをするとともに、第1蒸発器となる熱交換器を流出した冷媒がエジェクタ5に吸引されるように流路切換を行う。また、逆止弁15は、凝縮器となる熱交換器を流出した高圧冷媒がエジェクタ5において吸引動力を発揮する流路側に流入するように流路切り換えをするとともに、液分配器6から第1蒸発器に流入させるべく分配された液冷が第1蒸発器となる熱交換器に流入するように流路切り換えをする。
このような回路構成とすることで、冷暖いずれの運転においてもエジェクタ5による昇圧効果により高効率運転を行うことができるなど図1の回路の場合と同様の効果を得ることができる。また、複数台の室内機2を接続するマルチシステムを構成した場合でも図1の回路の場合と同様の効果を得ることができる。
With this circuit configuration, the four-way valve 14 switches the flow path so that the refrigerant discharged from the compressor 3 flows to the heat exchanger that becomes the condenser during each cooling and heating operation, and the heat exchanger that becomes the first evaporator The flow path is switched so that the refrigerant that has flowed out is sucked into the ejector 5. The check valve 15 switches the flow path so that the high-pressure refrigerant that has flowed out of the heat exchanger serving as a condenser flows into the flow path that exhibits suction power in the ejector 5, and the first flow from the liquid distributor 6. The flow path is switched so that the liquid cooling distributed to flow into the evaporator flows into the heat exchanger serving as the first evaporator.
By adopting such a circuit configuration, it is possible to obtain the same effect as in the case of the circuit of FIG. Further, even when a multi-system that connects a plurality of indoor units 2 is configured, the same effect as in the case of the circuit of FIG. 1 can be obtained.

この場合、エジェクタ5の開度制御は、冷却運転・暖房運転時とも、内部熱交換器19の出口(圧縮機3吸入)の冷媒過熱度SH2が、予め設定された目標値となるように行われる。また、膨張弁7cの制御については、冷却運転時には、室外熱交換器17出口の膨張弁7cは開度全開で減圧しないように制御され、膨張弁7a、7bは第1蒸発器8に相当する室内熱交換器16a、16bの出口冷媒過熱度が予め設定された目標値となるように制御される。室内熱交換器16a出口の冷媒過熱度は、温度センサ11e検知温度−温度センサ11d検知温度で演算され、室内熱交換器16b出口の冷媒過熱度は、温度センサ11i検知温度−温度センサ11h検知温度で演算される。
暖房運転時には、室内熱交換器16a、16b出口の膨張弁7a、7bは開度全開で減圧しないように制御され、膨張弁7cは第1蒸発器8に相当する室外熱交換器17出口の冷媒過熱度が予め設定された目標値となるように制御される。室外熱交換器17出口の冷媒過熱度は、温度センサ11k検知温度−温度センサ11j検知温度で演算される。
In this case, the opening degree control of the ejector 5 is performed so that the refrigerant superheat degree SH2 at the outlet of the internal heat exchanger 19 (intake of the compressor 3) becomes a preset target value during both the cooling operation and the heating operation. Is called. Further, regarding the control of the expansion valve 7c, during the cooling operation, the expansion valve 7c at the outlet of the outdoor heat exchanger 17 is controlled so as not to be depressurized with the opening fully opened, and the expansion valves 7a and 7b correspond to the first evaporator 8. Control is performed so that the outlet refrigerant superheat degree of the indoor heat exchangers 16a and 16b becomes a preset target value. The refrigerant superheat degree at the outlet of the indoor heat exchanger 16a is calculated by the temperature sensor 11e detection temperature-temperature sensor 11d detection temperature, and the refrigerant superheat degree at the indoor heat exchanger 16b outlet is calculated by the temperature sensor 11i detection temperature-temperature sensor 11h detection temperature. Calculated with
During the heating operation, the expansion valves 7a and 7b at the outlets of the indoor heat exchangers 16a and 16b are controlled so as not to be depressurized by fully opening, and the expansion valve 7c is a refrigerant at the outlet of the outdoor heat exchanger 17 corresponding to the first evaporator 8. Control is performed so that the degree of superheat becomes a preset target value. The refrigerant superheat degree at the outlet of the outdoor heat exchanger 17 is calculated by the temperature sensor 11k detection temperature-temperature sensor 11j detection temperature.

また、圧縮機3については、スクロール、ロータリー、レシプロなどどのような種類のものであってもよいし、容量制御方法としてもインバータによる回転数制御だけでなく、複数台圧縮機がある場合の台数制御や、インジェクション、高低圧間の冷媒バイパス、ストロークボリューム可変タイプならストロークボリュームを変更するなど各種方法をとってもよい。   The compressor 3 may be of any type such as scroll, rotary, reciprocating, etc., and the capacity control method is not limited to the number of revolutions controlled by an inverter, but the number of units when there are a plurality of compressors. Various methods may be used such as control, injection, refrigerant bypass between high and low pressures, and changing the stroke volume for variable stroke volume types.

また、適用する冷媒もR410Aに限るものではなく、他のHFC系冷媒や、HC冷媒、CO2、NH3などの自然冷媒に適用することができる。CO2冷媒の場合、高低圧差圧が大きいことから、エジェクタ5での回収動力が大きく、エジェクタ5での昇圧量が大きくなり、この発明に適用する際により効果的である。CO2冷媒を適用する場合で、高圧が臨界圧力以上の運転の場合は、凝縮器は放熱器として作用する。 Also, the refrigerant to be applied is not limited to R410A, and can be applied to other HFC refrigerants, natural refrigerants such as HC refrigerant, CO 2 , and NH 3. In the case of CO 2 refrigerant, since the high / low pressure differential pressure is large, the recovery power in the ejector 5 is large and the pressure increase amount in the ejector 5 is large, which is more effective when applied to the present invention. When a CO 2 refrigerant is applied and the high pressure is operated at a critical pressure or higher, the condenser acts as a radiator.

実施の形態6(この発明の実施の形態)
実施の形態1、4では、この発明の冷凍空調装置は冷房運転を行うものとして説明したが、本実施の形態は食品などの冷蔵冷凍用途に冷熱を供給する冷凍装置に適用するものである。
図14はこの発明の実施の形態6を示す冷凍空調装置の回路図である。この実施の形態においては、室外機1はコンデンシングユニットであり、室内機2はユニットクーラであり、ユニットクーラ周囲の空気を冷却する。コンデンシングユニット1とユニットクーラ2はガス管21、液管22で接続される。
計測制御装置10aはコンデンシングユニット1の制御装置であり、温度センサ11、圧力センサ12などの計測情報や、冷凍空調装置使用者から指示される運転内容に基づいて、コンデンシングユニット1内の圧縮機3の運転方法、室外熱交換器4の送風機風量などを制御する。計測制御装置10bはユニットクーラ2の制御装置であり、温度センサ11、圧力センサ12などの計測情報や、冷凍空調装置使用者から指示される運転内容に基づいて、ユニットクーラ2内のエジェクタ5、膨張弁7の開度などを制御する。
Embodiment 6 (Embodiment of the Invention)
In the first and fourth embodiments, the refrigerating and air-conditioning apparatus according to the present invention has been described as performing a cooling operation. However, the present embodiment is applied to a refrigerating apparatus that supplies cold heat to refrigeration and freezing applications such as food.
FIG. 14 is a circuit diagram of a refrigerating and air-conditioning apparatus showing Embodiment 6 of the present invention. In this embodiment, the outdoor unit 1 is a condensing unit, the indoor unit 2 is a unit cooler, and cools the air around the unit cooler. The condensing unit 1 and the unit cooler 2 are connected by a gas pipe 21 and a liquid pipe 22.
The measurement control device 10a is a control device for the condensing unit 1 and compresses the condensing unit 1 based on measurement information such as the temperature sensor 11 and the pressure sensor 12 and the operation content instructed by the user of the refrigeration air conditioner. The operation method of the machine 3 and the blower air volume of the outdoor heat exchanger 4 are controlled. The measurement control device 10b is a control device for the unit cooler 2, and based on the measurement information such as the temperature sensor 11 and the pressure sensor 12 and the operation content instructed by the user of the refrigeration air conditioner, the ejector 5 in the unit cooler 2, The opening degree of the expansion valve 7 is controlled.

ユニットクーラ2内において、第1蒸発器8と第2蒸発器9は一体構造のプレートフィン熱交換器18で構成されている。図14には空気熱交換器であるプレートフィン熱交換器18の断面構造、伝熱管23の配置構造も併せて示しており、伝熱管23は所定の間隔で平行に配置されているフィンプレート24と一体化されており、このフィンプレート24に設けられている貫通孔(図示せず)を通った後、紙面垂直方向の手前・奥の両端で折り返され、再びフィンプレート24に戻るように配列されている。
プレートフィン熱交換器18では、空気が図14の紙面の右から左に流れる。伝熱管23が空気流路に垂直に5列配置されており、流路風下側の4列の伝熱管23にて、第1蒸発器8が構成され、流路風上側の1列の伝熱管23にて第2蒸発器9が構成される。なお図14中で、点線で示してある列は、フィンプレート24には伝熱管23を貫通させる貫通孔が空いているが、伝熱管23が配置されていない列である。
In the unit cooler 2, the first evaporator 8 and the second evaporator 9 are configured by an integrally structured plate fin heat exchanger 18. FIG. 14 also shows a cross-sectional structure of a plate fin heat exchanger 18 that is an air heat exchanger and an arrangement structure of the heat transfer tubes 23, and the heat transfer tubes 23 are arranged in parallel at predetermined intervals. After passing through a through hole (not shown) provided in the fin plate 24, it is folded back at both the front and back ends in the direction perpendicular to the plane of the paper, and arranged so as to return to the fin plate 24 again. Has been.
In the plate fin heat exchanger 18, the air flows from the right to the left in FIG. The heat transfer tubes 23 are arranged in five rows perpendicular to the air flow path, and the first evaporator 8 is constituted by the four rows of heat transfer tubes 23 on the leeward side of the flow channel, and one row of heat transfer tubes on the upper side of the flow channel. The second evaporator 9 is configured at 23. In FIG. 14, the rows indicated by dotted lines are rows in which the fin plate 24 has through holes through which the heat transfer tubes 23 pass, but the heat transfer tubes 23 are not arranged.

温度センサ11lは第2蒸発器9出口部に設置されており、設置箇所の冷媒温度を計測する。以上で説明した以外の図14における各機器の符号は、実施の形態1と同一であり説明を省略する。   The temperature sensor 11l is installed at the outlet of the second evaporator 9, and measures the refrigerant temperature at the installation location. The reference numerals of the devices in FIG. 14 other than those described above are the same as those in the first embodiment, and a description thereof is omitted.

冷媒回路は図14に示されるように環状に構成され、圧縮機3、室外熱交換器4、液管22、エジェクタ5、液分配器6、第2蒸発器9、ガス管21の順で冷凍サイクルが構成され、ガス管21を出た冷媒が圧縮機3吸入側に戻される。また、液分配器6で分配された一部の冷媒が膨張弁7、第1蒸発器8を経てエジェクタ5の吸引部に戻される。   As shown in FIG. 14, the refrigerant circuit is configured in an annular shape, and is refrigerated in the order of the compressor 3, the outdoor heat exchanger 4, the liquid pipe 22, the ejector 5, the liquid distributor 6, the second evaporator 9, and the gas pipe 21. A cycle is configured, and the refrigerant that has exited the gas pipe 21 is returned to the compressor 3 suction side. A part of the refrigerant distributed by the liquid distributor 6 is returned to the suction portion of the ejector 5 through the expansion valve 7 and the first evaporator 8.

次に、この冷凍空調装置での運転動作について説明する。圧縮機3から吐出された高温・高圧のガス冷媒は、室外熱交換器4で空気へ放熱して凝縮・液化し、高圧の液冷媒となり、液管22を経てエジェクタ5に流入する。
エジェクタ5へ流入した冷媒は、ノズル部で減圧し二相冷媒となった後で混合部において吸引部のガス冷媒を吸引し、ディフューザにて圧力回復する。エジェクタ5で減圧された冷媒は、液分配器6に流入する。液分配器6では、エジェクタ5を出た二相冷媒中の液冷媒の一部が第1蒸発器8側に分配され、液冷媒は膨張弁7で減圧され、第1蒸発器8に流入し、ユニットクーラ2に流入する空気を冷却しながら蒸発してガス冷媒となってエジェクタ5のガス冷媒の吸引部入口5aに吸引される。一方、液分配器6で第1蒸発器8側に分離されなかった残りの液冷媒とガス冷媒が混合した状態の二相冷媒は、第2蒸発器9に流入し、ユニットクーラ2に流入する空気を冷却しながら蒸発してガス冷媒となり、ガス管21を経て圧縮機3に吸入される。
冷凍サイクルの動作状況は実施の形態1における図4とほぼ同様の動作状況となる。
Next, the operation of this refrigeration air conditioner will be described. The high-temperature and high-pressure gas refrigerant discharged from the compressor 3 dissipates heat to the air in the outdoor heat exchanger 4 to condense and liquefy it to become a high-pressure liquid refrigerant and flows into the ejector 5 through the liquid pipe 22.
The refrigerant that has flowed into the ejector 5 is reduced in pressure at the nozzle portion to become a two-phase refrigerant, and then sucks the gas refrigerant in the suction portion in the mixing portion and recovers the pressure in the diffuser. The refrigerant decompressed by the ejector 5 flows into the liquid distributor 6. In the liquid distributor 6, a part of the liquid refrigerant in the two-phase refrigerant that has exited the ejector 5 is distributed to the first evaporator 8 side, and the liquid refrigerant is decompressed by the expansion valve 7 and flows into the first evaporator 8. The air flowing into the unit cooler 2 evaporates while cooling to become a gas refrigerant, and is sucked into the gas refrigerant suction portion inlet 5 a of the ejector 5. On the other hand, the two-phase refrigerant in a state where the remaining liquid refrigerant and gas refrigerant that have not been separated to the first evaporator 8 side by the liquid distributor 6 are mixed flows into the second evaporator 9 and flows into the unit cooler 2. While cooling the air, it evaporates to become a gas refrigerant and is sucked into the compressor 3 through the gas pipe 21.
The operation state of the refrigeration cycle is substantially the same as that in FIG. 4 in the first embodiment.

次に、この冷凍空調装置での制御動作について説明する。まず、圧縮機3の回転数、室外熱交換器4送風量、エジェクタ5開度、膨張弁7開度を初期値に設定して運転を行う。そして、この状態で運転した後、装置運転状態に応じて各アクチュエータを制御する。まず圧縮機3の回転数は、圧力センサ12aで検知される圧縮機吸入圧力が予め設定された目標値、例えば0.3MPaとなるように制御される。吸入圧力が目標値より高い場合は、圧縮機3の回転数を増加させ、低い場合は圧縮機3の回転数を減少させる。   Next, the control operation in this refrigeration air conditioner will be described. First, the operation is performed by setting the rotation speed of the compressor 3, the outdoor heat exchanger 4 air flow, the ejector 5 opening, and the expansion valve 7 opening to initial values. And after driving | running in this state, each actuator is controlled according to an apparatus operating state. First, the rotation speed of the compressor 3 is controlled such that the compressor suction pressure detected by the pressure sensor 12a becomes a preset target value, for example, 0.3 MPa. When the suction pressure is higher than the target value, the rotational speed of the compressor 3 is increased, and when the suction pressure is lower, the rotational speed of the compressor 3 is decreased.

次に、室外熱交換器4の送風量であるが、この送風量は基本的に初期設定値にて運転を行う。ただし、運転条件によって、圧力センサ12bで検知される高圧(圧縮機3吐出冷媒の圧力)が、過度に上昇した場合は圧縮機3保護のために風量を増加させる制御を行う。   Next, although it is the air flow rate of the outdoor heat exchanger 4, this air flow rate is basically operated at an initial set value. However, if the high pressure (pressure of the refrigerant discharged from the compressor 3) detected by the pressure sensor 12b rises excessively depending on the operating conditions, control is performed to increase the air volume to protect the compressor 3.

次に、エジェクタ5の開度であるが、第2蒸発器9出口の冷媒過熱度SH2が、予め設定された目標値、例えば2℃となるように制御される。ここで、第2蒸発器9出口の冷媒過熱度SH2は、温度センサ11l検知温度(第2蒸発器9出口温度)−温度センサ11c検知温度(第2蒸発器9での冷媒蒸発温度)で演算される値を用いる。第2蒸発器9出口の冷媒過熱度SH2と目標値とを比較し、冷媒過熱度SH2が目標値より大きい場合には、エジェクタ5の開度を大きく制御し、冷媒過熱度SH2が目標値より小さい場合にはエジェクタ5の開度を小さく制御する。   Next, the opening degree of the ejector 5 is controlled so that the refrigerant superheat degree SH2 at the outlet of the second evaporator 9 becomes a preset target value, for example, 2 ° C. Here, the refrigerant superheat degree SH2 at the outlet of the second evaporator 9 is calculated by the temperature sensor 11l detected temperature (second evaporator 9 outlet temperature) -temperature sensor 11c detected temperature (refrigerant evaporation temperature at the second evaporator 9). The value to be used is used. The refrigerant superheat degree SH2 at the outlet of the second evaporator 9 is compared with the target value. If the refrigerant superheat degree SH2 is larger than the target value, the opening degree of the ejector 5 is controlled to be large, and the refrigerant superheat degree SH2 is less than the target value. When it is small, the opening degree of the ejector 5 is controlled to be small.

次に、膨張弁7の開度であるが、第1蒸発器8出口の冷媒過熱度SH1が、予め設定された目標値、例えば2℃となるように制御される。ここで第1蒸発器8出口の冷媒過熱度SH1は、温度センサ11eの検知温度(第1蒸発器8出口温度)−温度センサ11dの検知温度(第1蒸発器8での冷媒蒸発温度)で演算される値を用いる。第1蒸発器8出口の冷媒過熱度SH1と目標値とを比較し、冷媒過熱度SH1が目標値より大きい場合には、膨張弁7の開度を大きく制御し、冷媒過熱度SH1が目標値より小さい場合には膨張弁7の開度を小さく制御する。   Next, the opening degree of the expansion valve 7 is controlled so that the refrigerant superheat degree SH1 at the outlet of the first evaporator 8 becomes a preset target value, for example, 2 ° C. Here, the refrigerant superheat degree SH1 at the outlet of the first evaporator 8 is the detected temperature of the temperature sensor 11e (first evaporator 8 outlet temperature) −the detected temperature of the temperature sensor 11d (refrigerant evaporation temperature in the first evaporator 8). Use the computed value. The refrigerant superheat degree SH1 at the outlet of the first evaporator 8 is compared with the target value. If the refrigerant superheat degree SH1 is larger than the target value, the opening degree of the expansion valve 7 is controlled to be large, and the refrigerant superheat degree SH1 is set to the target value. If smaller, the opening degree of the expansion valve 7 is controlled to be small.

次に、本実施の形態におけるプレートフィン熱交換器18での熱交換動作と効果について説明する。図15はプレートフィン熱交換器18での空気と冷媒の温度変化を表した図であり、図の横軸は空気流れ方向の順での伝熱管列位置、縦軸は空気、冷媒の温度を表している。冷媒蒸発温度は、膨張弁7で減圧される分第1蒸発器8の方が低くなる。空気と冷媒の熱交換では、流入したばかりで高温である風上側の列(列数字1)にて第2蒸発器9の冷媒と空気が熱交換し、第2蒸発器9で冷却され空気温度が低下する風下側の列(列数字2〜5)にて第1蒸発器8の冷媒と空気が熱交換する。従って、第1蒸発器8、第2蒸発器9における空気と冷媒との温度差が比較的均一となる。そのため、空気と冷媒との温度差が不均一で温度差が小さい箇所が生じない構造となるため、第1蒸発器8、第2蒸発器9での熱交換効率を高くでき、その分高い蒸発温度で運転できるため、装置の運転効率を高くすることができる。   Next, the heat exchange operation and effects in the plate fin heat exchanger 18 in the present embodiment will be described. FIG. 15 is a diagram showing changes in the temperature of air and refrigerant in the plate fin heat exchanger 18, where the horizontal axis represents the heat transfer tube row position in the air flow direction, and the vertical axis represents the air and refrigerant temperatures. Represents. The refrigerant evaporation temperature is lower in the first evaporator 8 because the refrigerant is depressurized by the expansion valve 7. In the heat exchange between the air and the refrigerant, the refrigerant and the air in the second evaporator 9 exchange heat in the windward column (column number 1) that has just flowed in and is hot, and is cooled by the second evaporator 9 and is cooled to the air temperature. The refrigerant of the first evaporator 8 and the air exchange heat in the leeward side row (column numbers 2 to 5) in which the temperature decreases. Therefore, the temperature difference between the air and the refrigerant in the first evaporator 8 and the second evaporator 9 becomes relatively uniform. For this reason, the temperature difference between the air and the refrigerant is non-uniform, and there is no structure where the temperature difference is small. Therefore, the heat exchange efficiency in the first evaporator 8 and the second evaporator 9 can be increased, and the evaporation is increased accordingly. Since it can be operated at a temperature, the operating efficiency of the apparatus can be increased.

また、空気と冷媒との温度差が各部均一になることで、熱交換量も均一化でき、低温用途で用いる場合での第1蒸発器8、第2蒸発器9への着霜量も均一化できる。冷蔵冷凍用途で用いられる場合、第1蒸発器8、第2蒸発器9での冷媒蒸発温度を0℃以下で運転して冷却を行うため、第1蒸発器8、第2蒸発器9への着霜が生じ、運転時間が長くなるに連れて着霜量が増加する。一定以上着霜量が増加すると、プレートフィン熱交換器18の通風抵抗が増大し、送風量が低下し、冷却能力が低下するので、一定時間毎に除霜運転が実施される。本実施の形態の構成とした場合、着霜量分布が均一化できるので、着霜が不均一に発生する場合に比べ、着霜により通風抵抗が増大し空気風量が低下し、冷却能力が低下するまでの時間が長時間化できるので、除霜を実施する時間間隔を長くすることができる。その分、除霜中に冷熱供給が停止し、負荷側空気温度が上昇する頻度を減少できるので、より信頼性の高い装置とすることができる。   Further, since the temperature difference between the air and the refrigerant becomes uniform in each part, the heat exchange amount can also be made uniform, and the amount of frost formation on the first evaporator 8 and the second evaporator 9 when used in a low temperature application is also uniform. Can be When used in refrigerated refrigeration applications, cooling is performed by operating the refrigerant evaporation temperature in the first evaporator 8 and the second evaporator 9 at 0 ° C. or lower, so that the cooling to the first evaporator 8 and the second evaporator 9 is performed. Frosting occurs and the amount of frosting increases as the operating time becomes longer. If the amount of frost formation exceeds a certain level, the ventilation resistance of the plate fin heat exchanger 18 increases, the air flow rate decreases, and the cooling capacity decreases, so the defrosting operation is carried out at regular intervals. In the case of the configuration of the present embodiment, the frost amount distribution can be made uniform, so that compared with the case where frost formation is uneven, the frost formation increases the airflow resistance and the air flow rate, and the cooling capacity is reduced. Since the time until this can be extended, the time interval for performing defrosting can be increased. Accordingly, the supply of cold heat is stopped during defrosting, and the frequency with which the load-side air temperature rises can be reduced, so that a more reliable device can be obtained.

図14では、第1蒸発器8が4列、第2蒸発器9が1列で構成され、第1蒸発器8の列数が多く、その分伝熱管の伝熱面積、および伝熱管周囲のフィンプレート24の伝熱面積が大きく構成される。第1蒸発器8と第2蒸発器9との伝熱面積比は、エジェクタ5での昇圧量と、プレートフィン熱交換器18での空気の温度低下幅ΔTairとの相関に応じて設定される。エジェクタ5での昇圧量を冷媒の蒸発温度上昇幅に換算し、この上昇幅が、プレートフィン熱交換器18での空気の温度低下幅ΔTairの1/2となる場合はちょうど第1蒸発器8と第2蒸発器9が同一面積となるように設定する。このときの、冷媒と空気の温度変化を表すと図16となり、第2蒸発器9における空気の温度低下幅が、プレートフィン熱交換器18での空気の温度低下幅ΔTairの1/2となり(1/2・ΔTair)、これが第1蒸発器8と第2蒸発器9の蒸発温度の差(ΔTref)が等しくなる。このとき、第1蒸発器8と第2蒸発器9での空気と冷媒との温度差はそれぞれ同じ幅で確保できており、それぞれの熱交換器において温度差が不均一で温度差が小さい箇所が生じない構造となるため、第1蒸発器8、第2蒸発器9での熱交換効率を高くできる。   In FIG. 14, the first evaporator 8 is composed of four rows and the second evaporator 9 is composed of one row, and the number of the first evaporators 8 is large, and accordingly, the heat transfer area of the heat transfer tube and the surroundings of the heat transfer tube The heat transfer area of the fin plate 24 is large. The heat transfer area ratio between the first evaporator 8 and the second evaporator 9 is set according to the correlation between the pressure increase amount at the ejector 5 and the temperature drop width ΔTair of the air at the plate fin heat exchanger 18. . When the amount of pressure increase at the ejector 5 is converted into the refrigerant evaporation temperature increase width, and this increase width is ½ of the air temperature decrease width ΔTair at the plate fin heat exchanger 18, the first evaporator 8 is exactly the same. And the second evaporator 9 are set to have the same area. The temperature change of the refrigerant and air at this time is shown in FIG. 16, and the temperature drop of the air in the second evaporator 9 is ½ of the temperature drop ΔTair of the air in the plate fin heat exchanger 18 ( 1/2 · ΔTair), which equalizes the difference in evaporation temperature (ΔTref) between the first evaporator 8 and the second evaporator 9. At this time, the temperature difference between the air and the refrigerant in the first evaporator 8 and the second evaporator 9 can be secured with the same width, and the temperature difference is not uniform and the temperature difference is small in each heat exchanger. Therefore, the heat exchange efficiency in the first evaporator 8 and the second evaporator 9 can be increased.

エジェクタ5での昇圧量がプレートフィン熱交換器18での空気の温度低下幅ΔTairの1/2より大きい場合は、図16の状態から図17に示すように第1蒸発器8での空気と冷媒蒸発温度との温度差(ΔTref)が広がり、第2蒸発器9での空気と冷媒蒸発温度との温度差が狭まる方向に変化するため、第2蒸発器9での冷媒と空気との温度差が小さくなることにより、蒸発器の熱交換効率が低くなる。従って、このような場合には 第2蒸発器9の伝熱面積を小さくし、比較的高温の空気とのみ熱交換が行われるようにする。例えば、第1蒸発器8が4列、第2蒸発器9が2列という構成とし、第2蒸発器9が流路風上側に配置する。このような構成とすることで、第1蒸発器8と第2蒸発器9での空気と冷媒との温度差を比較的均一にし、第1蒸発器8、第2蒸発器9での熱交換効率を向上することができる。   When the pressure increase amount at the ejector 5 is larger than ½ of the temperature drop ΔTair of the air at the plate fin heat exchanger 18, the air in the first evaporator 8 is changed from the state of FIG. 16 to the state shown in FIG. 17. The temperature difference between the refrigerant evaporation temperature (ΔTref) increases and the temperature difference between the air and the refrigerant evaporation temperature in the second evaporator 9 changes in a narrowing direction. Therefore, the temperature between the refrigerant and the air in the second evaporator 9 By reducing the difference, the heat exchange efficiency of the evaporator is reduced. Therefore, in such a case, the heat transfer area of the second evaporator 9 is reduced so that heat exchange is performed only with relatively hot air. For example, the first evaporator 8 has four rows and the second evaporator 9 has two rows, and the second evaporator 9 is arranged on the upstream side of the flow path. With such a configuration, the temperature difference between the air and the refrigerant in the first evaporator 8 and the second evaporator 9 is made relatively uniform, and heat exchange in the first evaporator 8 and the second evaporator 9 is performed. Efficiency can be improved.

逆に、エジェクタ5での昇圧量がプレートフィン熱交換器18での空気の温度低下幅ΔTairの1/2より小さい場合は、図16の状態から第1蒸発器8での空気と冷媒蒸発温度との温度差(ΔTref)が狭まり、第2蒸発器9での空気と冷媒蒸発温度との温度差が広がる方向に変化するため、第2蒸発器9での冷媒と空気との温度差が大きくなることにより、蒸発器の熱交換効率が高くなる。従って、第1蒸発器8の伝熱面積を第2蒸発器9の伝熱面積より小さく設定する。   On the contrary, when the amount of pressure increase in the ejector 5 is smaller than 1/2 of the temperature drop ΔTair of the air in the plate fin heat exchanger 18, the air and refrigerant evaporation temperature in the first evaporator 8 from the state of FIG. And the temperature difference between the air and the refrigerant evaporating temperature in the second evaporator 9 changes in a widening direction, so that the temperature difference between the refrigerant and the air in the second evaporator 9 is large. As a result, the heat exchange efficiency of the evaporator is increased. Therefore, the heat transfer area of the first evaporator 8 is set smaller than the heat transfer area of the second evaporator 9.

一般に、冷蔵冷凍用途で用いられる場合、蒸発器での空気温度変化幅は、冷却温度の変動を抑制するという観点から5〜10℃程度に設定される。一方、エジェクタ5においては、空調運転よりも低圧で用いられるため、減圧幅が大きく、その分回収動力が増加し、昇発幅も大きくなり、冷蔵で5℃以上、冷凍で10℃以上の蒸発温度上昇となる。従って、冷蔵冷凍用途で用いられる場合には、エジェクタ5での昇圧量を冷媒の蒸発温度上昇幅に換算した値が空気の温度低下幅の1/2よりも大きくなるため、第1蒸発器8の伝熱面積を第2蒸発器9よりも大きく構成すると、高効率の蒸発器とすることができる。   In general, when used in refrigerated refrigeration applications, the air temperature change width in the evaporator is set to about 5 to 10 ° C. from the viewpoint of suppressing fluctuations in the cooling temperature. On the other hand, since the ejector 5 is used at a lower pressure than the air-conditioning operation, the decompression width is large, the recovery power is increased correspondingly, and the ascending width is also increased. The temperature rises. Accordingly, when used in refrigerated refrigeration, the value obtained by converting the pressure increase amount in the ejector 5 into the evaporation temperature increase width of the refrigerant is larger than ½ of the air temperature decrease width. If the heat transfer area is larger than that of the second evaporator 9, a highly efficient evaporator can be obtained.

なお、第1蒸発器8での冷媒圧力損失が大きいと、エジェクタ5で吸引される冷媒の圧力が低下し、その分吸引後エジェクタ5から流出する冷媒の圧力が低下する。その分圧縮機3の吸入圧力が低下し冷凍サイクルの効率が低下し、装置の運転効率が低下する。そこで、第1蒸発器8での冷媒圧力損失が過大になるのを防止するため、第1蒸発器8での冷媒分岐数(流路)を複数にし、伝熱管23の1本あたりに流れる冷媒流量を減らして冷媒圧力損失を低減する構成としてもよい。図14の構成では、冷媒分岐数は1としているが、図18に示す構成のように、冷媒分岐数を2としてもよい。   If the refrigerant pressure loss in the first evaporator 8 is large, the pressure of the refrigerant sucked by the ejector 5 is lowered, and the pressure of the refrigerant flowing out from the ejector 5 is lowered by that amount. Accordingly, the suction pressure of the compressor 3 is lowered, the efficiency of the refrigeration cycle is lowered, and the operation efficiency of the apparatus is lowered. Therefore, in order to prevent the refrigerant pressure loss in the first evaporator 8 from becoming excessive, the number of refrigerant branches (flow paths) in the first evaporator 8 is made plural, and the refrigerant that flows per one heat transfer tube 23. It is good also as a structure which reduces a flow volume and reduces a refrigerant | coolant pressure loss. In the configuration of FIG. 14, the number of refrigerant branches is 1, but the number of refrigerant branches may be 2 as in the configuration shown in FIG.

また図19に示す構成のように、第1蒸発器8の入口側の分岐数は1とし、出口側の分岐数を2とする構成としてもよい。冷媒流路を複数にし伝熱管23の1本あたりの冷媒流量を低減すると圧力損失も低下する一方で、冷媒側熱伝達率も低下する。第1蒸発器8の入口側では、二相冷媒であっても比較的液冷媒が多い流れであるので、冷媒流速が遅く、圧力損失の値も小さい。そこで、この領域では、圧力損失を低減するよりも、冷媒流速を増速して冷媒側熱伝達率を向上させる方が、装置としての運転効率向上に寄与する。一方蒸発器出口側では、二相冷媒であっても比較的ガス冷媒が多い流れであり、冷媒流速が早く、圧力損失の値も大きい。そのためこの領域では、圧力損失を低減させる方が装置としての運転効率向上に寄与する。
そこで図19の構成のように、第1蒸発器8出口側の分岐数が、入口側の分岐数よりも多くなるように構成する。このようにすることで、圧力損失低減と熱伝達率向上の効果を最適に得ることができ、運転効率の高い装置を得ることができる。
19, the number of branches on the inlet side of the first evaporator 8 may be 1, and the number of branches on the outlet side may be 2. When a plurality of refrigerant channels are used and the refrigerant flow rate per one of the heat transfer tubes 23 is reduced, the pressure loss is reduced while the refrigerant-side heat transfer coefficient is also reduced. On the inlet side of the first evaporator 8, even if it is a two-phase refrigerant, the flow is relatively rich in liquid refrigerant, so the refrigerant flow rate is slow and the pressure loss value is small. Therefore, in this region, rather than reducing the pressure loss, increasing the refrigerant flow rate to improve the refrigerant side heat transfer rate contributes to improving the operation efficiency of the apparatus. On the other hand, on the evaporator outlet side, even if it is a two-phase refrigerant, the flow is relatively rich in gas refrigerant, the refrigerant flow rate is fast, and the value of pressure loss is also large. Therefore, in this region, reducing the pressure loss contributes to improving the operating efficiency of the device.
Therefore, as in the configuration of FIG. 19, the number of branches on the outlet side of the first evaporator 8 is configured to be larger than the number of branches on the inlet side. By doing in this way, the effect of a pressure loss reduction and a heat-transfer rate improvement can be acquired optimally, and an apparatus with high operating efficiency can be obtained.

なお、前述したように第1蒸発器8での冷媒蒸発温度は第2蒸発器9での冷媒蒸発温度よりも低く、例えば冷蔵用途の運転では、第1蒸発器8の冷媒蒸発温度−10℃、第2蒸発器9での冷媒蒸発温度−5℃、冷凍用途の運転では、第1蒸発器8の冷媒蒸発温度−40℃、第2蒸発器9での冷媒蒸発温度−32℃となる。このように第2蒸発器9での冷媒蒸発温度が高いため、第2蒸発器9の冷媒から第1蒸発器8にフィンプレート24を介して熱が移動し、第1蒸発器8での空気からの吸熱量が減少する可能性がある。そこで、第2蒸発器9の冷媒から第1蒸発器8への熱移動を抑制する熱移動抑制構造をとることが望ましい。   As described above, the refrigerant evaporation temperature in the first evaporator 8 is lower than the refrigerant evaporation temperature in the second evaporator 9. For example, in operation for refrigeration, the refrigerant evaporation temperature of the first evaporator 8 is −10 ° C. The refrigerant evaporation temperature in the second evaporator 9 is −5 ° C., and in the operation for refrigeration, the refrigerant evaporation temperature in the first evaporator 8 is −40 ° C., and the refrigerant evaporation temperature in the second evaporator 9 is −32 ° C. Since the refrigerant evaporation temperature in the second evaporator 9 is high in this way, heat is transferred from the refrigerant in the second evaporator 9 to the first evaporator 8 via the fin plate 24, and the air in the first evaporator 8. There is a possibility that the amount of heat absorbed from will decrease. Therefore, it is desirable to adopt a heat transfer suppression structure that suppresses heat transfer from the refrigerant of the second evaporator 9 to the first evaporator 8.

例えば、図14のプレートフィン熱交換器18では、第1蒸発器8と第2蒸発器9との間に、伝熱管23を配置しない列を設けて、第1蒸発器8、第2蒸発器9での列間距離(列ピッチ)よりも多くの間隔を空けて配置している。このような配置とすることで、第1蒸発器8と第2蒸発器9との間のフィンプレート24の熱抵抗を大きくし、第2蒸発器9の冷媒から第1蒸発器8の冷媒への熱移動を抑制する。そのため第1蒸発器8での空気からの吸熱量の低減を回避し、蒸発器としての熱交換効率を高め、装置の運転効率を高めることができる。
列ピッチの間隔を局所的に変更することを行っても、同様の構成とできるが、その場合は様々な列パターンに対応したフィン型が必要となり、機種毎にフィン型設計が必要となり、高コストとなる。列ピッチを等間隔にし、一部列に伝熱管23を配置しないような構成とすると、どのような形態、容量の熱交換器であっても、同じフィン型で容易に熱移動を抑制する構成を製造することができ、汎用的かつ安価に熱交換器を構成することができる。
For example, in the plate fin heat exchanger 18 of FIG. 14, a row in which the heat transfer tubes 23 are not arranged is provided between the first evaporator 8 and the second evaporator 9, and the first evaporator 8 and the second evaporator 9 is arranged with a larger distance than the inter-row distance (row pitch) in FIG. With this arrangement, the thermal resistance of the fin plate 24 between the first evaporator 8 and the second evaporator 9 is increased, and the refrigerant of the second evaporator 9 is changed to the refrigerant of the first evaporator 8. Suppresses heat transfer. Therefore, it is possible to avoid a reduction in the amount of heat absorbed from the air in the first evaporator 8, increase the heat exchange efficiency as the evaporator, and increase the operation efficiency of the apparatus.
Even if the row pitch interval is locally changed, the same structure can be obtained, but in that case, fin types corresponding to various row patterns are required, and fin type design is required for each model, which is difficult. Cost. A configuration in which the pitch is equally spaced and the heat transfer tubes 23 are not arranged in some rows, and the heat transfer is easily suppressed with the same fin type regardless of the form and capacity of the heat exchanger. Can be manufactured, and a heat exchanger can be configured for general purpose and at low cost.

なお、第2蒸発器9の冷媒から第1蒸発器8への熱移動を抑制する構造として、フィンプレート24にスリット、切り欠きを設けてもよい。スリットを設ける場所は、フィンプレート24全体でもよく、第1蒸発器8と第2蒸発器9の境界部に局所的に設けてもよい。フィンプレート24全体に設けることで、第1蒸発器8、第2蒸発器9間の熱移動を抑制しつつ空気側の熱伝達率を高めることができ、より高性能の熱交換器とすることができる。
またスリットを第1蒸発器8と第2蒸発器9の境界部にのみ局所的に設けてもよい。フィンプレート24にスリットを設けると、スリット部への着霜が早く進行するため、着霜による通風抵抗の増加が早くなり、除霜に要する時間間隔が短くなる。そこで、第1蒸発器8と第2蒸発器9の境界部に局所的にスリットを設けることで、必要不可欠な部分に局所的にスリットを配置でき、第1蒸発器8、第2蒸発器9間の熱移動を抑制するとともに、除霜に要する時間間隔も長く取れ、高効率かつ高信頼性の装置とすることができる。
また第1蒸発器8と第2蒸発器9の境界部のフィンプレート24を切断しても、同様の効果を得ることができる。
In addition, you may provide a slit and a notch in the fin plate 24 as a structure which suppresses the heat transfer from the refrigerant | coolant of the 2nd evaporator 9 to the 1st evaporator 8. FIG. The place where the slit is provided may be the entire fin plate 24 or may be provided locally at the boundary between the first evaporator 8 and the second evaporator 9. By providing the fin plate 24 as a whole, the heat transfer rate on the air side can be increased while suppressing heat transfer between the first evaporator 8 and the second evaporator 9, and a higher performance heat exchanger can be obtained. Can do.
A slit may be locally provided only at the boundary between the first evaporator 8 and the second evaporator 9. When a slit is provided in the fin plate 24, frosting on the slit portion proceeds quickly, so that the increase in ventilation resistance due to frosting is accelerated and the time interval required for defrosting is shortened. Therefore, by providing a slit locally at the boundary between the first evaporator 8 and the second evaporator 9, the slit can be locally disposed in an indispensable part. The first evaporator 8 and the second evaporator 9 In addition to suppressing the heat transfer between them, the time interval required for defrosting can be made long, and a highly efficient and reliable device can be obtained.
The same effect can be obtained by cutting the fin plate 24 at the boundary between the first evaporator 8 and the second evaporator 9.

なお、第1蒸発器8の冷媒流れ方向を決定する際、出口部の伝熱管23を、図14に示されるように、空気流路側風上側に配置する。蒸発器出口部の伝熱管23では、冷媒は過熱ガスとなるため、他の部分より温度上昇し空気と冷媒との温度が近接しやすくなる。蒸発器内での冷媒と空気との温度差を均一化し効率向上するためには、できるだけ過熱ガスが高温の空気と接するようにし、温度差を確保した方が望ましい。そこで、図14に示される構成のように、空気流路の最も風上側に出口部の伝熱管23を配置し、過熱ガス部と高温の空気が熱交換するように構成する。
このような構成とすることで、第1蒸発器8、第2蒸発器9内での冷媒と空気との温度差を均一化し、より高性能の熱交換器とすることができる。
In addition, when determining the refrigerant | coolant flow direction of the 1st evaporator 8, the heat exchanger tube 23 of an exit part is arrange | positioned in the air flow path side windward side, as FIG. 14 shows. In the heat transfer tube 23 at the outlet of the evaporator, since the refrigerant becomes a superheated gas, the temperature rises from other parts, and the temperatures of the air and the refrigerant are likely to approach each other. In order to make the temperature difference between the refrigerant and the air in the evaporator uniform and improve the efficiency, it is desirable that the superheated gas is in contact with the hot air as much as possible to ensure the temperature difference. Therefore, as in the configuration shown in FIG. 14, the heat transfer tube 23 at the outlet portion is arranged on the furthest upstream side of the air flow path so that the superheated gas portion and the high-temperature air exchange heat.
By setting it as such a structure, the temperature difference of the refrigerant | coolant and air in the 1st evaporator 8 and the 2nd evaporator 9 can be equalize | homogenized, and it can be set as a higher performance heat exchanger.

また、第1蒸発器8での冷媒圧力損失が大きい場合、冷媒蒸発温は入口から出口にかけて低下する。この場合は図20のように、蒸発器出口部の伝熱管23を空気流路風下側に配置する。この場合の、空気と冷媒の温度変化を表すと図21のようになり、空気風下側の列になると、空気温度が低下するとともに、冷媒温度が低下する。従って、第1蒸発器8、第2蒸発器9内での冷媒と空気との温度差を均一の状態にすることができ、より高性能の熱交換器とすることができる。   When the refrigerant pressure loss in the first evaporator 8 is large, the refrigerant evaporation temperature decreases from the inlet to the outlet. In this case, as shown in FIG. 20, the heat transfer tube 23 at the outlet of the evaporator is disposed on the leeward side of the air flow path. In this case, the temperature change between the air and the refrigerant is shown in FIG. 21. When the air leeward side row is reached, the air temperature is lowered and the refrigerant temperature is lowered. Therefore, the temperature difference between the refrigerant and the air in the first evaporator 8 and the second evaporator 9 can be made uniform, and a higher performance heat exchanger can be obtained.

なお、図14の冷媒回路では、ユニットクーラ2が1台で構成される場合を示したが、2台以上のユニットクーラ2が並列に接続される場合においても同様の効果を得ることができる。また形態としてユニットクーラ2に限るものではなく、ショーケースなど他の低温機器に適用しても同様の効果を得ることができる。   In the refrigerant circuit of FIG. 14, the case where the unit cooler 2 is constituted by one unit is shown, but the same effect can be obtained even when two or more unit coolers 2 are connected in parallel. Further, the form is not limited to the unit cooler 2, and the same effect can be obtained even when applied to other low-temperature equipment such as a showcase.

この発明の実施の形態1を示す冷凍空調装置の回路図である。1 is a circuit diagram of a refrigerating and air-conditioning apparatus showing Embodiment 1 of the present invention. この発明の実施の形態1を示す冷凍空調装置のエジェクタの構造と圧力変化を示した図である。It is the figure which showed the structure and pressure change of the ejector of the refrigerating and air-conditioning apparatus which shows Embodiment 1 of this invention. この発明の実施の形態1を示す冷凍空調装置の液分配器の構造を示す断面図である。It is sectional drawing which shows the structure of the liquid distributor of the refrigerating and air-conditioning apparatus which shows Embodiment 1 of this invention. この発明の実施の形態1を示す冷凍空調装置の圧力とエンタルピの相関を示す図である。It is a figure which shows the correlation of the pressure and enthalpy of the refrigerating air-conditioning apparatus which shows Embodiment 1 of this invention. この発明の実施の形態1を示す冷凍空調装置の制御動作を示すフロー図である。It is a flowchart which shows the control action of the refrigerating air conditioner which shows Embodiment 1 of this invention. この発明の実施の形態1を示す冷凍空調装置の蒸発器の構造を示す図である。It is a figure which shows the structure of the evaporator of the refrigerating air conditioning apparatus which shows Embodiment 1 of this invention. この発明の実施の形態2を示す冷凍空調装置の液分配器の構造を示す断面図である。It is sectional drawing which shows the structure of the liquid distributor of the refrigerating air-conditioning apparatus which shows Embodiment 2 of this invention. この発明の実施の形態2を示す冷凍空調装置の液分配器の他の構造を示す断面図である。It is sectional drawing which shows the other structure of the liquid distributor of the refrigerating air-conditioning apparatus which shows Embodiment 2 of this invention. この発明の実施の形態3を示す冷凍空調装置のエジェクタと膨張弁の回路構成を示す図である。It is a figure which shows the circuit structure of the ejector and expansion valve of the refrigerating and air-conditioning apparatus which shows Embodiment 3 of this invention. この発明の実施の形態3を示す冷凍空調装置のエジェクタと膨張弁の回路構成を示す図である。It is a figure which shows the circuit structure of the ejector and expansion valve of the refrigerating and air-conditioning apparatus which shows Embodiment 3 of this invention. この発明の実施の形態4を示す冷凍空調装置の回路図である。It is a circuit diagram of the refrigerating and air-conditioning apparatus which shows Embodiment 4 of this invention. この発明の実施の形態4を示す冷凍空調装置の回路図である。It is a circuit diagram of the refrigerating and air-conditioning apparatus which shows Embodiment 4 of this invention. この発明の実施の形態5を示す冷凍空調装置の回路図である。It is a circuit diagram of the refrigerating and air-conditioning apparatus which shows Embodiment 5 of this invention. この発明の実施の形態6を示す冷凍空調装置の回路図である。It is a circuit diagram of the refrigerating and air-conditioning apparatus which shows Embodiment 6 of this invention. この発明の実施の形態6を示す冷凍空調装置のプレートフィン熱交換器での空気と冷媒の温度変化を示した図である。It is the figure which showed the temperature change of the air and the refrigerant | coolant in the plate fin heat exchanger of the refrigerating air conditioner which shows Embodiment 6 of this invention. この発明の実施の形態6を示す冷凍空調装置のプレートフィン熱交換器での空気と冷媒の温度変化を示した図である。It is the figure which showed the temperature change of the air and the refrigerant | coolant in the plate fin heat exchanger of the refrigerating air conditioner which shows Embodiment 6 of this invention. この発明の実施の形態6を示す冷凍空調装置のプレートフィン熱交換器での空気と冷媒の温度変化を示した図である。It is the figure which showed the temperature change of the air and the refrigerant | coolant in the plate fin heat exchanger of the refrigerating air conditioner which shows Embodiment 6 of this invention. この発明の実施の形態6を示す冷凍空調装置のプレートフィン熱交換器の第2の構成を示した図である。It is the figure which showed the 2nd structure of the plate fin heat exchanger of the refrigerating and air-conditioning apparatus which shows Embodiment 6 of this invention. この発明の実施の形態6を示す冷凍空調装置のプレートフィン熱交換器の第3の構成を示した図である。It is the figure which showed the 3rd structure of the plate fin heat exchanger of the refrigerating and air-conditioning apparatus which shows Embodiment 6 of this invention. この発明の実施の形態6を示す冷凍空調装置のプレートフィン熱交換器の第4の構成を示した図である。It is the figure which showed the 4th structure of the plate fin heat exchanger of the refrigerating and air-conditioning apparatus which shows Embodiment 6 of this invention. この発明の実施の形態6を示す冷凍空調装置のプレートフィン熱交換器での空気と冷媒の温度変化を示した図である。It is the figure which showed the temperature change of the air and the refrigerant | coolant in the plate fin heat exchanger of the refrigerating air conditioner which shows Embodiment 6 of this invention.

符号の説明Explanation of symbols

1 室外機(コンデンシングユニット)、2、2a、2b 室内機(ユニットクーラ)、3 圧縮機、4 室外熱交換器(凝縮器、放熱器)、5 エジェクタ、5a 吸引部入口、6 液分配器、6a 流入路、6b 第1分岐路、6c 第2分岐路、7、7a、7b、7c 膨張弁、8 第1蒸発器、9 第2蒸発器、10、10a、10b 計測制御装置、11a、11b、11c、11d、11e、11f、11g、11h、11i、11j、11k、11l 温度センサ、12a、12b 圧力センサ、13 膨張弁、14 四方弁、15 逆止弁、16a、16b 室内熱交換器、17 室外熱交換器、18 プレートフィン熱交換器、19 内部熱交換器、20 室内熱交換器、21 ガス管、22 液管、23 伝熱管、24 フィンプレート。
1 outdoor unit (condensing unit), 2, 2a, 2b indoor unit (unit cooler), 3 compressor, 4 outdoor heat exchanger (condenser, radiator), 5 ejector, 5a suction part inlet, 6 liquid distributor 6a Inflow passage, 6b First branch passage, 6c Second branch passage, 7, 7a, 7b, 7c Expansion valve, 8 First evaporator, 9 Second evaporator, 10, 10a, 10b Measurement control device, 11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h, 11i, 11j, 11k, 11l Temperature sensor, 12a, 12b Pressure sensor, 13 Expansion valve, 14 Four-way valve, 15 Check valve, 16a, 16b Indoor heat exchanger , 17 outdoor heat exchanger, 18 plate fin heat exchanger, 19 internal heat exchanger, 20 indoor heat exchanger, 21 gas pipe, 22 liquid pipe, 23 heat transfer pipe, 24 fin plate.

Claims (26)

圧縮機、凝縮器または放熱器、エジェクタ、蒸発器を環状に接続した冷凍サイクルを有する冷凍空調装置において、
前記蒸発器は、第1蒸発器と、
第2蒸発器と、
を備えるとともに、
前記エジェクタからの冷媒を前記第1蒸発器、前記第2蒸発器に分配する分配器を、前記エジェクタと前記第1、第2蒸発器の間に備え、
前記エジェクタは前記第1蒸発器からの冷媒を吸引昇圧し、
前記分配器は前記エジェクタから流出された冷媒を気液二相冷媒及び液冷媒に分離し、
前記第1蒸発器の出口を前記エジェクタの吸引部に、前記第1蒸発器の入口を前記分配器の液冷媒出口に接続し、
前記第2蒸発器の出口を前記圧縮機に、前記第2蒸発器の入口を前記分配器の気液二相冷媒出口に接続し、
前記エジェクタでの昇圧量を冷媒の蒸発温度上昇幅に換算した値が前記蒸発器での空気の温度低下幅の1/2になる場合は前記第1蒸発器と前記第2蒸発器の面積が同じになるように設定し、
前記換算された冷媒の蒸発温度上昇幅が前記蒸発器での空気の温度低下幅の1/2より大きい場合は、前記第2蒸発器の伝熱面積を前記第1蒸発器の伝熱面積より小さくし、前記換算された冷媒の蒸発温度上昇幅が前記蒸発器での空気の温度低下幅の1/2より小さい場合は、前記第1蒸発器の伝熱面積を前記第2蒸発器の伝熱面積より小さくすることを特徴とする冷凍空調装置。
In a refrigeration air conditioner having a refrigeration cycle in which a compressor, a condenser or a radiator, an ejector, and an evaporator are connected in an annular shape,
The evaporator includes a first evaporator,
A second evaporator;
With
A distributor for distributing the refrigerant from the ejector to the first evaporator and the second evaporator; and between the ejector and the first and second evaporators,
The ejector sucks and boosts the refrigerant from the first evaporator,
The distributor separates the refrigerant flowing out of the ejector into a gas-liquid two-phase refrigerant and a liquid refrigerant,
Connecting the outlet of the first evaporator to the suction part of the ejector, and connecting the inlet of the first evaporator to the liquid refrigerant outlet of the distributor;
Connecting the outlet of the second evaporator to the compressor and connecting the inlet of the second evaporator to the gas-liquid two-phase refrigerant outlet of the distributor;
When the value obtained by converting the pressure increase amount at the ejector into the evaporation temperature increase width of the refrigerant is ½ of the air temperature decrease width at the evaporator, the areas of the first evaporator and the second evaporator are Set to be the same,
If the converted evaporation temperature increase width of the refrigerant is larger than ½ of the air temperature decrease width in the evaporator, the heat transfer area of the second evaporator is made larger than the heat transfer area of the first evaporator. If the reduced evaporation temperature increase width of the refrigerant is smaller than half of the air temperature decrease width in the evaporator, the heat transfer area of the first evaporator is set to the heat transfer area of the second evaporator. A refrigeration air conditioner characterized by being smaller than the heat area.
冷凍空調装置の運転状態に応じて、前記エジェクタの流動抵抗を制御する制御手段を備えたことを特徴とする請求項1記載の冷凍空調装置。   The refrigerating and air-conditioning apparatus according to claim 1, further comprising control means for controlling a flow resistance of the ejector according to an operating state of the refrigerating and air-conditioning apparatus. 圧縮機、凝縮器または放熱器、エジェクタ、蒸発器を環状に接続した冷凍サイクルを有する冷凍空調装置において、
前記蒸発器は、第1蒸発器と、
第2蒸発器と、
を備えるとともに、
前記エジェクタからの冷媒を前記第1蒸発器、前記第2蒸発器に分配する分配器を、前記エジェクタと前記第1、第2蒸発器の間に備え、
前記エジェクタは前記第1蒸発器からの冷媒を吸引昇圧し、
前記第1蒸発器の出口を前記エジェクタの吸引部に、前記第1蒸発器の入口を前記分配器の液冷媒出口に接続し、
前記第2蒸発器の出口を前記圧縮機に、前記第2蒸発器の入口を前記分配器の気液二相冷媒出口に接続し、
さらに、冷凍空調装置の運転状態に応じて、前記エジェクタの流動抵抗を制御する制御手段と、
前記圧縮機に吸入される冷媒の過熱度を検出する圧縮機吸入側過熱度検出手段と、
を有し、
前記制御手段は、前記圧縮機吸入側過熱度検出手段で検出された過熱度が所定値となるように前記エジェクタの流動抵抗を制御し、
前記エジェクタでの昇圧量を冷媒の蒸発温度上昇幅に換算した値が前記蒸発器での空気の温度低下幅の1/2になる場合は前記第1蒸発器と前記第2蒸発器の面積が同じになるように設定し、
前記換算された冷媒の蒸発温度上昇幅が前記蒸発器での空気の温度低下幅の1/2より大きい場合は、前記第2蒸発器の伝熱面積を前記第1蒸発器の伝熱面積より小さくし、前記換算された冷媒の蒸発温度上昇幅が前記蒸発器での空気の温度低下幅の1/2より小さい場合は、前記第1蒸発器の伝熱面積を前記第2蒸発器の伝熱面積より小さくすることを特徴とする冷凍空調装置。
In a refrigeration air conditioner having a refrigeration cycle in which a compressor, a condenser or a radiator, an ejector, and an evaporator are connected in an annular shape,
The evaporator includes a first evaporator,
A second evaporator;
With
A distributor for distributing the refrigerant from the ejector to the first evaporator and the second evaporator; and between the ejector and the first and second evaporators,
The ejector sucks and boosts the refrigerant from the first evaporator,
Connecting the outlet of the first evaporator to the suction part of the ejector, and connecting the inlet of the first evaporator to the liquid refrigerant outlet of the distributor;
Connecting the outlet of the second evaporator to the compressor and connecting the inlet of the second evaporator to the gas-liquid two-phase refrigerant outlet of the distributor;
Furthermore, according to the operating state of the refrigeration air conditioner, a control means for controlling the flow resistance of the ejector,
A compressor suction side superheat degree detecting means for detecting the superheat degree of the refrigerant sucked into the compressor;
Have
The control means controls the flow resistance of the ejector so that the degree of superheat detected by the compressor suction side superheat degree detection means becomes a predetermined value,
When the value obtained by converting the pressure increase amount at the ejector into the evaporation temperature increase width of the refrigerant is ½ of the air temperature decrease width at the evaporator, the areas of the first evaporator and the second evaporator are Set to be the same,
If the converted evaporation temperature increase width of the refrigerant is larger than ½ of the air temperature decrease width in the evaporator, the heat transfer area of the second evaporator is made larger than the heat transfer area of the first evaporator. If the reduced evaporation temperature increase width of the refrigerant is smaller than half of the air temperature decrease width in the evaporator, the heat transfer area of the first evaporator is set to the heat transfer area of the second evaporator. A refrigeration air conditioner characterized by being smaller than the heat area.
前記制御手段は、エジェクタのノズル部の開口面積を変えて流動抵抗を変化させる開口面積可変手段を備えたことを特徴とする請求項2または3記載の冷凍空調装置。   The refrigerating and air-conditioning apparatus according to claim 2 or 3, wherein the control means includes an opening area variable means for changing the flow resistance by changing the opening area of the nozzle portion of the ejector. 前記エジェクタと直列、または、並列に接続された第1の減圧装置を備え、
冷凍空調装置の運転状態に応じて、前記第1の減圧装置の流動抵抗を変える制御手段を備えたことを特徴とする請求項1または3記載の冷凍空調装置。
A first pressure reducing device connected in series or in parallel with the ejector;
4. The refrigerating and air-conditioning apparatus according to claim 1, further comprising a control unit that changes a flow resistance of the first decompression device in accordance with an operating state of the refrigerating and air-conditioning apparatus.
前記圧縮機に吸入される冷媒の過熱度を検出する圧縮機吸入側過熱度検出手段を備え、
前記制御手段は、前記圧縮機吸入側過熱度検出手段で検出された過熱度が所定値となるように前記エジェクタ、または、前記第1の減圧装置の流動抵抗を制御することを特徴とする請求項2、4、5のいずれかに記載の冷凍空調装置。
A compressor suction side superheat degree detecting means for detecting the superheat degree of refrigerant sucked into the compressor;
The control means controls the flow resistance of the ejector or the first pressure reducing device so that the degree of superheat detected by the compressor suction side superheat degree detection means becomes a predetermined value. Item 6. The refrigeration air conditioner according to any one of Items 2, 4, and 5.
前記分配器と前記第1蒸発器の入口の間に第2の減圧装置を備えたことを特徴とする請求項1〜6のいずれかに記載の冷凍空調装置。   The refrigerating and air-conditioning apparatus according to claim 1, further comprising a second decompression device between the distributor and the inlet of the first evaporator. 前記第1蒸発器の出口の冷媒の過熱度を検出する第1蒸発器出口過熱度検出手段と、
この第1蒸発器出口過熱度検出手段で検出された過熱度が所定値となるように、前記第2の減圧装置の流動抵抗を変える制御手段を備えたことを特徴とする請求項7記載の冷凍空調装置。
First evaporator outlet superheat degree detecting means for detecting the superheat degree of the refrigerant at the outlet of the first evaporator;
The control means for changing the flow resistance of the second decompression device so that the degree of superheat detected by the first evaporator outlet superheat degree detection means becomes a predetermined value. Refrigeration air conditioner.
前記第1蒸発器によって冷却される負荷側熱媒体の温度が、前記第2蒸発器によって冷却される負荷側熱媒体の温度よりも低温であることを特徴とする請求項1〜8のいずれかに記載の冷凍空調装置。   The temperature of the load side heat medium cooled by the first evaporator is lower than the temperature of the load side heat medium cooled by the second evaporator. The refrigeration air conditioner described in 1. 前記分配器を、前記第1蒸発器に分配されるガス冷媒流量が、前記第2蒸発器に分配されるガス冷媒流量よりも少なくなるようにしたことを特徴とする請求項1〜9のいずれかに記載の冷凍空調装置。   10. The distributor according to claim 1, wherein a flow rate of gas refrigerant distributed to the first evaporator is smaller than a flow rate of gas refrigerant distributed to the second evaporator. A refrigeration air conditioner according to claim 1. 前記分配器は、前記エジェクタからの流入路と、
この流入路から前記第1蒸発器側に分岐する第1分岐路と、
前記流入路から前記第2蒸発器側に分岐する第2分岐路と、
を備え、
前記第1分岐路は、前記第2分岐路より下方に配置されていることを特徴とする請求項1〜10のいずれかに記載の冷凍空調装置。
The distributor includes an inflow path from the ejector;
A first branch path that branches from the inflow path toward the first evaporator;
A second branch path branched from the inflow path to the second evaporator side;
With
The refrigerating and air-conditioning apparatus according to any one of claims 1 to 10, wherein the first branch path is disposed below the second branch path.
前記第1、第2分岐路をU字形状としたことを特徴とする請求項11記載の冷凍空調装置。   The refrigerating and air-conditioning apparatus according to claim 11, wherein the first and second branch paths are U-shaped. 前記第1、第2分岐路を垂直にし、前記第1分岐路を前記第2分岐路より長くしたことを特徴とする請求項11記載の冷凍空調装置。   The refrigerating and air-conditioning apparatus according to claim 11, wherein the first and second branch paths are vertical, and the first branch path is longer than the second branch path. 前記流入路と前記第2分岐路を水平にし、前記第1分岐路を垂直としたことを特徴とする請求項11記載の冷凍空調装置。   The refrigerating and air-conditioning apparatus according to claim 11, wherein the inflow path and the second branch path are horizontal, and the first branch path is vertical. 前記第2蒸発器に代えて、前記凝縮器または放熱器の出口の高圧側冷媒と前記圧縮機に吸入される低圧側冷媒との間で熱交換する内部熱交換器を備えたことを特徴とする請求項1〜14のいずれかに記載の冷凍空調装置。   In place of the second evaporator, an internal heat exchanger for exchanging heat between the high-pressure side refrigerant at the outlet of the condenser or the radiator and the low-pressure side refrigerant sucked into the compressor is provided. The refrigeration air conditioner according to any one of claims 1 to 14. 前記第1蒸発器及び前記第2の減圧装置を室内機に内蔵し、前記第1蒸発器により、室内の空気と冷媒との熱交換をするようにしたことを特徴とする請求項15記載の冷凍空調装置。   The said 1st evaporator and the said 2nd pressure reduction apparatus are incorporated in the indoor unit, The heat exchange with indoor air and a refrigerant | coolant is carried out by the said 1st evaporator, The refrigerant | coolant of Claim 15 characterized by the above-mentioned. Refrigeration air conditioner. 冷・暖房運転により冷媒の流れを切り換える切換手段を備え、
冷房運転を行うときは、前記切換手段により、前記圧縮機、前記切換手段、凝縮器として作用する熱源側熱交換器、前記エジェクタ前記分配器、前記内部熱交換器が環状に接続されるとともに、前記液分配器、前記第1蒸発器として作用する負荷側熱交換器、前記エジェクタの吸引部が接続され、
暖房運転を行うときは、前記圧縮機、凝縮器または放熱器として作用する負荷側熱交換器、前記エジェクタ前記分配器、前記内部熱交換器が環状に接続されるとともに、前記分配器、第1蒸発器として作用する熱源側熱交換器、前記エジェクタの吸引部が接続されるようにしたことを特徴とする請求項16記載の冷凍空調装置。
Switching means for switching the flow of the refrigerant by cooling and heating operation,
When performing the cooling operation, the switching means connects the compressor, the switching means, the heat source side heat exchanger acting as a condenser, the ejector the distributor, the internal heat exchanger in an annular shape, The liquid distributor, the load side heat exchanger acting as the first evaporator, and the suction part of the ejector are connected,
When performing the heating operation, the load side heat exchanger acting as the compressor, the condenser or the radiator, the ejector, the distributor, the internal heat exchanger are connected in a ring shape, and the distributor, the first The refrigerating and air-conditioning apparatus according to claim 16, wherein a heat source side heat exchanger acting as an evaporator and a suction part of the ejector are connected.
前記第1、第2蒸発器を同一の空気流路に並設することにより空気を冷却する空気熱交換器を構成し、前記第2蒸発器を前記第1蒸発器よりも前記空気流路の風上側に配置したことを特徴とする請求項1〜14のいずれかに記載の冷凍空調装置。   By arranging the first and second evaporators in the same air flow path, an air heat exchanger that cools the air is configured, and the second evaporator is located closer to the air flow path than the first evaporator. The refrigerating and air-conditioning apparatus according to any one of claims 1 to 14, wherein the refrigerating and air-conditioning apparatus is disposed on the windward side. 前記第1、第2の蒸発器は、それぞれ少なくとも1列多段の第1蒸発器側の伝熱管と第2蒸発器側の伝熱管とを有し、前記第1蒸発器側の伝熱管と前記第2蒸発器側の伝熱管が複数枚のフィンプレートを介して一体的に形成されて前記空気熱交換器を構成したことを特徴とする請求項18記載の冷凍空調装置。   Each of the first and second evaporators includes at least one row of multistage first evaporator side heat transfer tubes and second evaporator side heat transfer tubes, and the first evaporator side heat transfer tubes and the The refrigerating and air-conditioning apparatus according to claim 18, wherein the heat exchanger tube on the second evaporator side is integrally formed through a plurality of fin plates to constitute the air heat exchanger. 前記第1蒸発器の伝熱面積が前記第2蒸発器の伝熱面積よりも大きく構成されたことを特徴とする請求項18または19記載の冷凍空調装置。   The refrigerating and air-conditioning apparatus according to claim 18 or 19, wherein a heat transfer area of the first evaporator is configured to be larger than a heat transfer area of the second evaporator. 前記第1蒸発器の前記伝熱管の入口側と出口側との伝熱管を少なくともそれぞれ1つ以上に分岐し、前記入口側の分岐数よりも出口側の分岐数を多くしたことを特徴とする請求項19記載の冷凍空調装置。 The heat transfer tubes at the inlet side and the outlet side of the heat transfer tube of the first evaporator are each branched into at least one, and the number of branches on the outlet side is larger than the number of branches on the inlet side. refrigerating and air-conditioning apparatus according to claim 19, wherein. 前記第1蒸発器と前記第2蒸発器の間に、前記伝熱管1列相当分以上の間隔を設けたことを特徴とする請求項19記載の冷凍空調装置。 Wherein between the first evaporator and the second evaporator, the refrigeration air conditioning system according to claim 19 characterized in that a said heat transfer tube 1 row equivalent or more intervals. 前記フィンプレートの全体、または、前記第1、第2蒸発器の境界部にスリットまたは切り欠きを設けたことを特徴とする請求項19記載の冷凍空調装置。 Whole of the fin plate, or the first, the refrigerating and air-conditioning apparatus according to claim 19 characterized in that a lack slits or cut at the boundary portion of the second evaporator. 前記第1蒸発器の入口側の前記伝熱管の列が前記第1蒸発器の出口側の前記伝熱管の列よりも前記空気流路の風上側に配置されたことを特徴とする請求項19記載の冷凍空調装置。 The row of the heat transfer tubes on the inlet side of the first evaporator is arranged on the windward side of the air flow path with respect to the row of the heat transfer tubes on the outlet side of the first evaporator. Refrigeration air conditioner of description . 前記第1蒸発器の出口側の前記伝熱管の列が前記第1蒸発器の入口側の前記伝熱管の列よりも前記空気流路の風上側に配置されたことを特徴とする請求項19記載の冷凍空調装置。 The row of the heat transfer tubes on the outlet side of the first evaporator is arranged on the windward side of the air flow path with respect to the row of the heat transfer tubes on the inlet side of the first evaporator. Refrigeration air conditioner of description . 前記冷媒として二酸化炭素を用いることを特徴とする請求項1〜25のいずれかに記載の冷凍空調装置。   26. The refrigerating and air-conditioning apparatus according to claim 1, wherein carbon dioxide is used as the refrigerant.
JP2006068192A 2005-03-14 2006-03-13 Refrigeration air conditioner Expired - Fee Related JP4358832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006068192A JP4358832B2 (en) 2005-03-14 2006-03-13 Refrigeration air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005070886 2005-03-14
JP2006068192A JP4358832B2 (en) 2005-03-14 2006-03-13 Refrigeration air conditioner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009070808A Division JP2009133624A (en) 2005-03-14 2009-03-23 Refrigerating/air-conditioning device

Publications (2)

Publication Number Publication Date
JP2006292351A JP2006292351A (en) 2006-10-26
JP4358832B2 true JP4358832B2 (en) 2009-11-04

Family

ID=37413094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006068192A Expired - Fee Related JP4358832B2 (en) 2005-03-14 2006-03-13 Refrigeration air conditioner

Country Status (1)

Country Link
JP (1) JP4358832B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107076488A (en) * 2014-09-18 2017-08-18 三星电子株式会社 Kind of refrigeration cycle and the refrigerator with the kind of refrigeration cycle
CN109073291A (en) * 2016-03-25 2018-12-21 法雷奥热系统公司 Air conditioning circuit for motor vehicle

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4548266B2 (en) * 2005-08-03 2010-09-22 株式会社デンソー Vapor compression refrigeration cycle equipment
JP4779928B2 (en) 2006-10-27 2011-09-28 株式会社デンソー Ejector refrigeration cycle
JP4930035B2 (en) * 2006-12-15 2012-05-09 三菱電機株式会社 Control method of refrigeration cycle apparatus
JP4915250B2 (en) * 2007-02-23 2012-04-11 株式会社デンソー Ejector refrigeration cycle
JP5050563B2 (en) * 2007-02-27 2012-10-17 株式会社デンソー Ejector and ejector type refrigeration cycle unit
JP4715797B2 (en) * 2007-04-03 2011-07-06 株式会社デンソー Ejector refrigeration cycle
JP4858399B2 (en) * 2007-10-16 2012-01-18 株式会社デンソー Refrigeration cycle
JP5100416B2 (en) * 2008-01-25 2012-12-19 三菱電機株式会社 Reheat dehumidifier and air conditioner
WO2009128271A1 (en) * 2008-04-18 2009-10-22 株式会社デンソー Ejector-type refrigeration cycle device
DE112009000608B4 (en) 2008-04-18 2017-12-28 Denso Corporation An ejector-type refrigeration cycle device
JP5018756B2 (en) * 2008-04-18 2012-09-05 株式会社デンソー Ejector refrigeration cycle
JP5018725B2 (en) * 2008-04-18 2012-09-05 株式会社デンソー Ejector refrigeration cycle
JP5003665B2 (en) * 2008-04-18 2012-08-15 株式会社デンソー Ejector refrigeration cycle
JP5024244B2 (en) * 2008-09-08 2012-09-12 株式会社デンソー Heat pump cycle using ejector
JP2010078248A (en) * 2008-09-26 2010-04-08 Mitsubishi Electric Corp Gas-liquid separator and refrigerating cycle device including the same
JP2010236706A (en) * 2009-03-30 2010-10-21 Daikin Ind Ltd Air conditioner
JP5786481B2 (en) * 2010-06-18 2015-09-30 ダイキン工業株式会社 Refrigeration equipment
JP5213986B2 (en) * 2011-04-13 2013-06-19 三菱電機株式会社 Refrigeration cycle equipment
JP6115345B2 (en) 2013-06-18 2017-04-19 株式会社デンソー Ejector
JP6115344B2 (en) 2013-06-18 2017-04-19 株式会社デンソー Ejector
JP6186998B2 (en) 2013-07-31 2017-08-30 株式会社デンソー Air conditioner for vehicles
WO2015075760A1 (en) * 2013-11-20 2015-05-28 三菱電機株式会社 Air conditioner
JP6472266B2 (en) * 2015-02-20 2019-02-20 大阪瓦斯株式会社 Ejector cycle
JP6425579B2 (en) * 2015-02-20 2018-11-21 大阪瓦斯株式会社 Ejector cycle
JP6590948B2 (en) * 2015-12-17 2019-10-16 三菱電機株式会社 Heat exchanger and refrigeration cycle equipment
CN107747770B (en) * 2017-09-28 2024-03-19 青岛海尔空调器有限总公司 Indoor unit of wall-mounted air conditioner
JP7135450B2 (en) * 2018-05-31 2022-09-13 株式会社デンソー refrigeration cycle equipment
JP7135583B2 (en) * 2018-08-22 2022-09-13 株式会社デンソー refrigeration cycle equipment
CN111795452B (en) * 2019-04-08 2024-01-05 开利公司 Air conditioning system
CN110701810A (en) * 2019-10-29 2020-01-17 中机国能炼化工程有限公司 Injection supercharging two-stage series connection supercooling double-temperature-zone refrigerating system and application
CN111998565B (en) * 2020-08-13 2024-02-27 珠海格力电器股份有限公司 Double-temperature air conditioning system and control method thereof
JP7526926B2 (en) 2020-11-25 2024-08-02 パナソニックIpマネジメント株式会社 Refrigeration equipment
CN114183942B (en) * 2021-12-10 2023-01-10 珠海格力电器股份有限公司 Heat exchange system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107076488A (en) * 2014-09-18 2017-08-18 三星电子株式会社 Kind of refrigeration cycle and the refrigerator with the kind of refrigeration cycle
CN107076488B (en) * 2014-09-18 2020-08-25 三星电子株式会社 Refrigeration cycle and refrigerator with same
CN109073291A (en) * 2016-03-25 2018-12-21 法雷奥热系统公司 Air conditioning circuit for motor vehicle
CN109073291B (en) * 2016-03-25 2020-12-01 法雷奥热系统公司 Air conditioning circuit for motor vehicle

Also Published As

Publication number Publication date
JP2006292351A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
JP4358832B2 (en) Refrigeration air conditioner
JP2009133624A (en) Refrigerating/air-conditioning device
KR100958399B1 (en) Hvac system with powered subcooler
JP6125000B2 (en) Dual refrigeration equipment
EP2711652B1 (en) Integral air conditioning system for heating and cooling
US7984621B2 (en) Air conditioning system for communication equipment and controlling method thereof
JP6878612B2 (en) Refrigeration cycle equipment
CN105008820A (en) Air conditioner
JP6479181B2 (en) Air conditioner
JP6888102B2 (en) Heat exchanger unit and refrigeration cycle equipment
JP4118254B2 (en) Refrigeration equipment
JP4550153B2 (en) Heat pump device and outdoor unit of heat pump device
JP4966742B2 (en) Air conditioner
JPH07208821A (en) Air conditioner
JP4428341B2 (en) Refrigeration cycle equipment
JP5496161B2 (en) Refrigeration cycle system
JP4418936B2 (en) Air conditioner
WO2018008129A1 (en) Refrigeration cycle device
JP2013124843A (en) Refrigeration cycle system
JP2011052850A (en) Heat pump type warm water heating device
JP2017089904A (en) Heat pump system
JP2006003023A (en) Refrigerating unit
JP6391832B2 (en) Air conditioner and heat source machine
JP2002174465A (en) Refrigerating apparatus
JP4522962B2 (en) Refrigeration cycle equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4358832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees