JP4353657B2 - Method for separating hydrogen from hydrocarbon reformed gases using high temperature proton conductors - Google Patents
Method for separating hydrogen from hydrocarbon reformed gases using high temperature proton conductors Download PDFInfo
- Publication number
- JP4353657B2 JP4353657B2 JP2001190705A JP2001190705A JP4353657B2 JP 4353657 B2 JP4353657 B2 JP 4353657B2 JP 2001190705 A JP2001190705 A JP 2001190705A JP 2001190705 A JP2001190705 A JP 2001190705A JP 4353657 B2 JP4353657 B2 JP 4353657B2
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- solid electrolyte
- gas
- temperature proton
- mixed gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Hydrogen, Water And Hydrids (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、一酸化炭素および水素を含む混合ガス、特に合成直後の高温の合成ガスから実質的に水素のみを分離する水素分離方法に関する。
【0002】
【従来の技術】
地球温暖化の原因である二酸化炭素および生物に有害な排気ガスなどの問題を地球規模で解決するためには、化石燃料の燃焼エネルギーを機械エネルギー源としていたエネルギー変換技術から、前記問題をできるだけ小さく抑えることができるエネルギー変換手段への、または前記問題のガスを実質的に発生させないエネルギー変換手段への変更の必要性が、より切迫した問題とされるようになってきた。自動車などでも、エネルギーのハイブリッド化が進められ、更にはエネルギー変換手段を全く変えた、燃料電池をエネルギー変換手段とするものに大きく変わろうとしている。
【0002】
燃料電池は、研究の歴史も長く、燃料の持つ化学エネルギーを電気化学的な反応によって直接電気エネルギーに変換でき、変換効率が高く、クリーンな排気、低騒音であるなどの長所を持つため、都心部にも設置可能なエネルギー変換手段として注目され、実用化の研究も更に盛んになっている。中でも、固体電解質型燃料電池は、従来の熱機関より遙かに高い発電効率が予想されており、今後の資源エネルギーの問題や前記環境問題を解決できるものとして注目されている。
特に、水素を燃料とするものは、クリーンで、かなりコンパクトな電池が設計可能であることから、最も注目されている。
【0003】
ただ、前記現時点でのコンパクト化可能な電池では、水素燃料中への一酸化炭素の混入は貴金属系触媒に被毒をきたすなど、該変換手段に悪影響を引き起こすという問題があり、燃料中のこの量を100ppm以下にすることが重要な課題となっている。前記一酸化炭素などを除去するのにこれまで提案されている技術を、水素源として、改質ガス、合成ガスを用いる場合について、挙げると、
1,多孔質体(フイルター)を用いる方法。
2,パラジウムあるいはパラジウム合金を改質ガスからの水素分離に用いる方法。
3,固体電解質を用いる方法などがある。
3,の方法は、分離性能および被毒の問題が少ないものとして注目されている。
【0004】
特開平10−297902号公報には、酸素イオン輸送に基づく、炭化水素の部分酸化による合成ガスの製造と、該生成した合成ガスから水素輸送膜として、例えばパラジウム若しくはパラジウム合金を利用するもの又はプロトン輸送膜、例えば高温型プロトン導電性固体電解質水素輸送膜を用いて水素のみを分離する工程とを一体化した水素の製造プロセスの発明について説明されている。
そして、使用する固体電解質水素輸送膜を構成する材料および水素製造法の原理的な説明はあるが、水素製造の具体的な説明がなされておらず、実際に水素の生成がされたことを確認したことのデータもない。また、本発明者らは、前記公開公報に記載の範囲でその技術の実施を試みたが、水素の継続的分離を確かめることができなかった。
【0005】
【発明が解決しようとする課題】
そこで、本発明の課題は、基本的には前記先行技術の不都合の原因を見出し、その不都合を取り除いた高温型プロトン導電性固体電解質を用いて純粋な水素を分離できる技術を確立する、特に前記分離の駆動力を電圧にのみに依存させ、圧力差、濃度差に依存しない水素の分離技術を確立することである。
そこで、前記公報の技術説明だけの原理ではなぜ作動しないかを次のように推測した。もし高温型プロトン導電性固体電解質が、化学的組成および構造が安定に存在するならば、前記固体電解質のプロトン導電性の特性から、水素の分離が実現されなければならない。しかしながら、それが進まないのは化学的組成および結晶構造が、プロトンの導電体として機能させない化学量論的な変化が生じているものと考えられる。そこで、そのような変化をどうすれば防ぐことができるかを検討することを試みる実験をした。その際、可能性としては酸素の減少が考えられるので、酸素を何らかの方法で供給することを試み、前記化学量論的な変化をなくすことができれば、前記固体電解質のプロトン導電性を維持できるものと考えた。この考えの基に、酸素そのものおよび酸素を固体電解質に供給できる物質、例えば水(蒸気として)を供給したところ、カソード側に水素(一部は添加した蒸気の電気分解により発生する水素を含む)が電解により、安定に移送されて来ることが確認できた。これにより、前記本発明の課題を解決することができた。
【0006】
【課題を解決するための手段】
本発明は、高温型プロトン導電性固体電解質からなる膜の両面に水素の酸化・プロトンの還元反応が可能な電極が取り付けられ、一方が陽極室(アノード室)を、他方が陰極室(カソード室)を構成するよう前記電極に電圧が加えられ、かつ前記高温型プロトン導電性固体電解質が充分なイオン導電性を持つように維持された電気化学セルの、アノード室に少なくとも一酸化炭素および/または二酸化炭素ならびに水素を含む混合ガスを供給し、カソード室には0.1−0.4mol/発生H2mol比の水分または水分を含むスイープガスをカソード室に供給することを特徴とする前記混合ガスから分離された水素を得る方法である。好ましくは、高温型プロトン導電性固体電解質からなる膜を700℃以上1000℃迄に維持することを特徴とする前記混合ガスから分離された水素を得る方法であり、より好ましくは、混合ガスとして生成した高温の改質ガスを用いることを特徴とする前記分離された水素を得る方法である。
【0007】
【本発明の実施の態様】
本発明をより詳細に説明する。
A.本発明で用いる電気化学セルの概略の構造を図1を参照しながら説明する。図1において、[A]はアノード室を構成し、この室には改質ガスなどの一酸化炭素(CO)を含む混合ガスGMIXが供給され、直流電圧D.C.が印加されたアノード電極ELAおよびとカソード電極ELCと高温型プロトン導電性固体電解質S.E.からなる膜とから構成される電気化学セルにより水素が分離されCO濃度が上がったガスGcoが室外に取り出される。また、[C]はカソード室を構成し、この室からは、カソード電極ELC表面に移動した分離された水素ガスと該分離された水素ガスを電極表面から分離させるために供給されるスイープガスGSW中の水分が電気分解されて発生する水素ガスとが前記スイープガスGSWと共に取り出される。このような構成により、水素が分離される。
【0008】
ここで、スイープガスを用いず、水分のみを供給しても良い。
前記膜の概念には、比較的厚い数mm厚のものを含み、その形状も、板状、チューブ状(この場合筒状の電解セルとすることができる)など、要は前記原理による水素分離機能を発揮するものであればよい。
また、水素分離の原料混合ガスとしては、例えば1,CH4+1/2O2→CO+2H2の反応によって生じる水素と一酸化炭素の混合ガス(比は2/1)、2,CO+H2O→CO2+H2の反応より前記1,で生成する一酸化炭素を水蒸気と反応させることにより得られる水素と二酸化炭素の混合ガス(比は3/1)などを挙げることができる。
【0009】
B.前記電気化学セルは、高温型プロトン導電体固体電解質の両側に水素の酸化・プロトンの還元反応を行わせることのできる電極を取り付けたものである。前記電気化学セルの電極での反応は理論的には
H2→2H++2e−(アノード) (1)
2H++2e-→H2(カソード) (2)
のようになるはずであるが、前記反応が安定に維持できないので、カソード側に少量の酸素補給体、例えば水蒸気を供給し、前記固体電解質に少量の酸化物イオンによる電流を生じさせることにより、本発明の水素の分離を実現した。
【0010】
C.前記高温型プロトン導電体固体電解質としては、SrCe0.95Yb0.05O3−α、BaCe0.80Y0.20O3−α、CaZr0.90In0.10O3−α (αは混合酸化物の電荷を中和する値である。)などを好ましい材料として挙げることができる。基本的にはプロトン導電性酸化物固体電解質であれば使用可能である。
D.電極構成材料としては、PtやNiなどの金属、および電子導電性酸化物を使用できる。
【0011】
【実施例】
実施例1
プロトン導電性電解質SrCe 0.95 Yb 0.05 O 3−α を直径13mm、厚さ0.5mmのディスク状に加工したものに多孔質白金電極を取り付け、アノード室、およびカソード室を構成する磁製の部材で、気密にはさみ付けて電気化学セルを構成した。アノード室には水素と一酸化炭素の2:1の混合ガスを希釈ガスArで希釈したガスを導入し直流を通電して、他方の電極室で発生する水素の量をガスクロマトグラフ(島津製作所社製GC−8A)で調べた。本実験にはスイープガスGSWとして湿潤アルゴンを用い、カソード室へ水蒸気を導入することにより比較的高い電流密度まで高い電流効率が得られた。900℃において実験を行った結果、通電とともにカソード室において水素の発生が確認され、このような方法により改質ガスからの水素分離がなされた。図2に示すように水素の発生量は、120mA/cm2程度の電流密度まで電流から計算される値に一致した。これは、通電した電気量の全てがカソード室での水素発生に使われたことを示し、電流効率はほぼ1である。
【0012】
図3に示すように、アノード室出口ガスGCO中の水素および一酸化炭素の濃度の通電による変化を調べたところ、一酸化炭素の濃度は電流に対してほとんど変化せず、一方、水素は単調に減っており、水素が分離されたことを示す。
ここでは、水素の減少量は小さいが、電極面積、電流を大きくすれば、水素の分離効率を上げることができることは明らかである。
【0013】
比較例
ここでは、スイープガスGSWとして水蒸気を添加しないアルゴンを用い、カソード室での水素の発生速度と電流値の関連を調べたところ、水素発生速度は電流密度25mA/cm2で飽和し水素の分離が電流量に比例していないことが分かる(図4)。また、アノード室での水素の減少率を測定した結果を図5に示す。図3と対比すると電解セルによる水素分離の性能が明らかに悪いことが理解される。
【0014】
【発明の効果】
以上述べたように、本発明の方法によってCOを含まない水素を得ることができ、改質ガスの製造と組み合わせることにより、純度の高い水素の製造ができる装置を設計できる、水素の分離技術を提供できるという、優れた効果がもたらされる。
【図面の簡単な説明】
【図1】 本発明の水素分離装置の一例
【図2】 本発明の方法による電流密度と水素発生速度
【図3】 本発明の方法による水素分離効率
【図4】 非湿潤スイープガスを用いた比較例(カソード室)
【図5】 非湿潤スイープガスを用いた比較例(アノード室)
【符号の説明】
〔A〕 アノード室 〔C〕 カソード室 ELA アノード電極
ELC カソード電極 S.E 高温型プロトン導電性電解質
GMIX 混合ガス GCO カソード室排出ガス GSW スイープガス[0001]
BACKGROUND OF THE INVENTION
The present invention is a gas mixture containing carbon monoxide and hydrogen, to a hydrogen separation method for separating substantially only the hydrogen in particular immediately after synthesis hot synthesis gas.
[0002]
[Prior art]
In order to solve the global warming-causing problems such as carbon dioxide and exhaust gas harmful to living organisms, the problem can be reduced as much as possible from energy conversion technology that uses the combustion energy of fossil fuels as a mechanical energy source. The need for changes to energy conversion means that can be suppressed or to energy conversion means that do not substantially generate the gas in question has become a more pressing issue. Even in automobiles and the like, energy hybridization has been promoted, and the energy conversion means has been completely changed, and fuel cells are going to be changed to energy conversion means.
[0002]
Fuel cells have a long history of research and can convert the chemical energy of fuel directly into electrical energy through electrochemical reactions, and have the advantages of high conversion efficiency, clean exhaust, and low noise. It is attracting attention as an energy conversion means that can be installed in the department, and research into practical use is becoming more active. Among them, solid oxide fuel cells are expected to have much higher power generation efficiency than conventional heat engines, and are attracting attention as being able to solve future resource energy problems and the environmental problems.
In particular, a fuel using hydrogen as a fuel is attracting the most attention because a clean and fairly compact battery can be designed.
[0003]
However, in the battery that can be made compact at the present time, there is a problem that mixing of carbon monoxide into the hydrogen fuel causes poisoning to the noble metal catalyst, and causes adverse effects on the conversion means. It is an important issue to make the
1. Method using a porous body (filter).
2. A method of using palladium or a palladium alloy for hydrogen separation from the reformed gas.
3. There is a method using a solid electrolyte.
The method 3 is attracting attention as having few problems of separation performance and poisoning.
[0004]
Japanese Patent Application Laid-Open No. 10-297902 discloses production of synthesis gas by partial oxidation of hydrocarbons based on oxygen ion transport, and protons or proton alloys that use, for example, palladium or a palladium alloy as a hydrogen transport film from the generated synthesis gas. An invention of a process for producing hydrogen in which a transport membrane, for example, a step of separating only hydrogen using a high-temperature proton conductive solid electrolyte hydrogen transport membrane is integrated is described.
And although there is a principle explanation of the material and hydrogen production method that make up the solid electrolyte hydrogen transport membrane to be used, there is no specific explanation of hydrogen production, and it was confirmed that hydrogen was actually generated There is no data of what has been done. In addition, the present inventors tried to implement the technique within the range described in the above publication, but could not confirm the continuous separation of hydrogen.
[0005]
[Problems to be solved by the invention]
Therefore, the object of the present invention is to basically find the cause of the disadvantages of the prior art and establish a technique capable of separating pure hydrogen using a high-temperature proton conductive solid electrolyte that eliminates the disadvantages. The separation driving force depends only on the voltage, and the hydrogen separation technology that does not depend on the pressure difference and the concentration difference is established.
Then, it was estimated as follows why it did not operate | move by the principle only of the technical description of the said gazette. If the high-temperature proton conductive solid electrolyte has a stable chemical composition and structure, hydrogen separation must be realized from the proton conductive properties of the solid electrolyte. However, it is thought that the reason why it does not progress is that a stoichiometric change occurs in which the chemical composition and the crystal structure do not function as a proton conductor. Therefore, an experiment was attempted to examine how such a change can be prevented. At that time, since the reduction of oxygen is considered as a possibility, if it is attempted to supply oxygen by some method and the stoichiometric change can be eliminated, the proton conductivity of the solid electrolyte can be maintained. I thought. Based on this idea, when oxygen itself and a substance that can supply oxygen to the solid electrolyte, such as water (as steam), are supplied, hydrogen is supplied to the cathode side (some include hydrogen generated by electrolysis of the added steam) Has been confirmed to be stably transported by electrolysis. Thereby, the subject of the present invention was able to be solved.
[0006]
[Means for Solving the Problems]
In the present invention, electrodes capable of oxidizing hydrogen and reducing protons are attached to both surfaces of a membrane made of a high-temperature proton conductive solid electrolyte, one being an anode chamber (anode chamber) and the other being a cathode chamber (cathode chamber). At least carbon monoxide and / or in the anode chamber of an electrochemical cell in which a voltage is applied to the electrode so as to constitute and the high temperature proton conductive solid electrolyte is maintained to have sufficient ionic conductivity. A mixed gas containing carbon dioxide and hydrogen is supplied, and the cathode chamber is supplied with moisture at a ratio of 0.1-0.4 mol / generated H 2 mol or a sweep gas containing moisture to the cathode chamber. This is a method for obtaining hydrogen separated from a gas. Preferably, it is a method for obtaining hydrogen separated from the mixed gas, characterized in that a membrane comprising a high-temperature proton conductive solid electrolyte is maintained at 700 ° C. or higher and 1000 ° C., and more preferably generated as a mixed gas A method for obtaining the separated hydrogen, characterized by using a high temperature reformed gas.
[0007]
[Embodiments of the present invention]
The present invention will be described in more detail.
A. A schematic structure of an electrochemical cell used in the present invention will be described with reference to FIG. In FIG. 1, [A] constitutes an anode chamber, to which a mixed gas G MIX containing carbon monoxide (CO) such as a reformed gas is supplied, and a DC voltage D.V. C. Anode electrode EL A , cathode electrode EL C, and high-temperature proton conductive solid electrolyte S. E. Gas G co having an increased CO concentration as a result of separation of hydrogen by an electrochemical cell composed of a film made of is taken out outdoors. [C] constitutes a cathode chamber from which separated hydrogen gas that has moved to the surface of the cathode electrode EL C and a sweep gas that is supplied to separate the separated hydrogen gas from the electrode surface. moisture in G SW is the hydrogen gas generated is electrolyzed is taken out together with the sweep gas G SW. With such a configuration, hydrogen is separated.
[0008]
Here, only moisture may be supplied without using the sweep gas.
The concept of the membrane includes a relatively thick several mm thickness, and the shape is also plate-like, tube-like (in this case, it can be a cylindrical electrolytic cell), and the main points are hydrogen separation based on the above principle. Any device that exhibits its function may be used.
Further, as a raw material mixed gas for hydrogen separation, for example, a mixed gas of hydrogen and carbon monoxide (
[0009]
B. The electrochemical cell is formed by attaching an electrode capable of causing the oxidation-proton reduction reaction of hydrogen on either side of the high-temperature proton conductors solid electrolyte. The reaction at the electrode of the electrochemical cell is theoretically H 2 → 2H + + 2e − (anode) (1)
2H + + 2e − → H 2 (cathode) (2)
However, since the reaction cannot be stably maintained, a small amount of oxygen replenisher, for example, water vapor is supplied to the cathode side, and a current caused by a small amount of oxide ions is generated in the solid electrolyte. The hydrogen separation of the present invention was realized.
[0010]
C. Examples of the high-temperature proton conductor solid electrolyte include SrCe 0.95 Yb 0.05 O 3-α , BaCe 0.80 Y 0.20 O 3-α , CaZr 0.90 In 0.10 O 3-α ( α is a value that neutralizes the charge of the mixed oxide) . Basically, any proton conductive oxide solid electrolyte can be used.
D. As an electrode constituent material, metals such as Pt and Ni, and electron conductive oxides can be used.
[0011]
【Example】
Example 1
A porous platinum electrode is attached to a proton conductive electrolyte SrCe 0.95 Yb 0.05 O 3-α processed into a disk shape having a diameter of 13 mm and a thickness of 0.5 mm, and a magnetic material constituting an anode chamber and a cathode chamber An electrochemical cell was constructed by being hermetically sandwiched with a member made of metal. A gas obtained by diluting a 2: 1 mixed gas of hydrogen and carbon monoxide with a diluent gas Ar is introduced into the anode chamber, and direct current is applied. The amount of hydrogen generated in the other electrode chamber is measured by a gas chromatograph (Shimadzu Corporation). GC-8A) manufactured. In this experiment using a wet argon as the sweep gas G SW is high current efficiency to a relatively high current density by introducing steam into the cathode compartment is obtained. As a result of conducting an experiment at 900 ° C., it was confirmed that hydrogen was generated in the cathode chamber while being energized, and hydrogen was separated from the reformed gas by such a method. As shown in FIG. 2, the generation amount of hydrogen coincided with the value calculated from the current up to a current density of about 120 mA / cm 2 . This indicates that all of the energized electricity was used for hydrogen generation in the cathode chamber, and the current efficiency is approximately 1.
[0012]
As shown in FIG. 3, was examined changes due to energization of the concentration of hydrogen and carbon monoxide in the anode chamber outlet gas G CO, the concentration of carbon monoxide hardly changes with respect to current, whereas, hydrogen Monotonically decreasing, indicating that hydrogen has been separated.
Here, although the reduction amount of hydrogen is small, it is obvious that the hydrogen separation efficiency can be increased by increasing the electrode area and current.
[0013]
Comparative Example Here, argon without adding water vapor was used as the sweep gas G SW , and when the relationship between the hydrogen generation rate in the cathode chamber and the current value was examined, the hydrogen generation rate was saturated at a current density of 25 mA / cm 2 and hydrogen. It can be seen that the separation of is not proportional to the amount of current (FIG. 4). Further, FIG. 5 shows the results of measuring the hydrogen reduction rate in the anode chamber. Compared with FIG. 3, it is understood that the performance of hydrogen separation by the electrolytic cell is clearly poor.
[0014]
【The invention's effect】
As described above, hydrogen separation technology that can obtain hydrogen that does not contain CO by the method of the present invention and that can be designed to produce high-purity hydrogen by combining with the production of reformed gas. It is possible to provide an excellent effect.
[Brief description of the drawings]
FIG. 1 shows an example of a hydrogen separator according to the present invention. FIG. 2 shows current density and hydrogen generation rate by the method of the present invention. FIG. 3 shows hydrogen separation efficiency by the method of the present invention. Comparative example (cathode chamber)
FIG. 5: Comparative example using non-wet sweep gas (anode chamber)
[Explanation of symbols]
[A] Anode chamber [C] Cathode chamber EL A Anode electrode EL C Cathode electrode E High-temperature proton conductive electrolyte G MIX mixed gas G CO cathode chamber exhaust gas G SW sweep gas
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001190705A JP4353657B2 (en) | 2001-06-25 | 2001-06-25 | Method for separating hydrogen from hydrocarbon reformed gases using high temperature proton conductors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001190705A JP4353657B2 (en) | 2001-06-25 | 2001-06-25 | Method for separating hydrogen from hydrocarbon reformed gases using high temperature proton conductors |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003002610A JP2003002610A (en) | 2003-01-08 |
JP4353657B2 true JP4353657B2 (en) | 2009-10-28 |
Family
ID=19029440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001190705A Expired - Lifetime JP4353657B2 (en) | 2001-06-25 | 2001-06-25 | Method for separating hydrogen from hydrocarbon reformed gases using high temperature proton conductors |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4353657B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2004074175A1 (en) * | 2003-02-24 | 2006-06-01 | 国立大学法人名古屋大学 | Hydrogen gas separator |
JP4617648B2 (en) * | 2003-02-27 | 2011-01-26 | トヨタ自動車株式会社 | Hydrogen extraction device |
US8012380B2 (en) * | 2004-03-05 | 2011-09-06 | Ceramatec, Inc. | Proton conducting ceramic membranes for hydrogen separation |
JP2005298307A (en) * | 2004-04-15 | 2005-10-27 | Chiba Inst Of Technology | Fuel reformer for fuel cell and fuel reforming method |
JP4855706B2 (en) * | 2005-04-12 | 2012-01-18 | 株式会社ノリタケカンパニーリミテド | Hydrogen separator and hydrogen separator |
JP4255941B2 (en) | 2005-10-19 | 2009-04-22 | 独立行政法人科学技術振興機構 | Hydrocarbon reforming method and hydrocarbon reforming apparatus using oxygen permeable membrane |
-
2001
- 2001-06-25 JP JP2001190705A patent/JP4353657B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2003002610A (en) | 2003-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Iwahara et al. | High temperature-type proton conductive solid oxide fuel cells using various fuels | |
JPH11250922A (en) | Polymer film electrochemical cell operating at temperature higher than 100×c | |
US4459340A (en) | Method for producing electricity from a fuel cell having solid-oxide ionic electrolyte | |
WO2018029994A1 (en) | Hydrogen processing device | |
US20050064259A1 (en) | Hydrogen diffusion electrode for protonic ceramic fuel cell | |
JP2002280015A (en) | Single room type solid electrolyte fuel cell and its manufacturing method | |
JP4353657B2 (en) | Method for separating hydrogen from hydrocarbon reformed gases using high temperature proton conductors | |
JP4977621B2 (en) | Electrochemical cell and method for producing electrochemical cell | |
Velraj et al. | A novel solid oxide electrolytic cell with reduced endothermic load for CO2 electrolysis using (La0. 80Sr0. 20) 0.95 MnO3-δ cathode | |
JP2607682B2 (en) | Purification device for hydrogen gas supplied to fuel cell | |
JP3932549B2 (en) | Electrolyte membrane for fuel cell | |
JP4512788B2 (en) | High temperature steam electrolyzer | |
JP2013014820A (en) | Electrolytic cell for reforming fuel gas, and method of generating reformed gas using electrolytic cell | |
US20110053032A1 (en) | Manifold for series connection on fuel cell | |
JPS63219593A (en) | Hydrogen production | |
Pham et al. | A review of 2019 fuel cell technologies: modelling and controlling | |
US7927578B2 (en) | Hydrogen separation process using mixed oxide ion/electronic/hydrogen atom conducting membranes | |
US7691770B2 (en) | Electrode structure and methods of making same | |
JPH09316675A (en) | Production of high-purity oxygen and electrolytic cell | |
EP1423886A2 (en) | Device and method for supplying hydrogen to a fuel cell and the use thereof for electric vehicle traction | |
US20070080058A1 (en) | Electrode for electrochemical cell and electrochemical cell | |
JPH04160760A (en) | Inside reforming type fuel cell | |
JPH0927327A (en) | Fuel cell electrode and manufacture thereof | |
JP2000021426A (en) | Fuel cell | |
Hibino et al. | Electrocatalytic Oxidation of Methane by Alternating Current Electrolysis Using Yttria‐Stabilized Zirconia |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20031031 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20040129 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060515 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090416 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090428 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090609 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090721 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090728 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4353657 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120807 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130807 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |