JP4348759B2 - Rotating vibration gyro - Google Patents

Rotating vibration gyro Download PDF

Info

Publication number
JP4348759B2
JP4348759B2 JP35527898A JP35527898A JP4348759B2 JP 4348759 B2 JP4348759 B2 JP 4348759B2 JP 35527898 A JP35527898 A JP 35527898A JP 35527898 A JP35527898 A JP 35527898A JP 4348759 B2 JP4348759 B2 JP 4348759B2
Authority
JP
Japan
Prior art keywords
mass
axis direction
axis
acceleration
rotational vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35527898A
Other languages
Japanese (ja)
Other versions
JP2000180177A (en
Inventor
阿部  誠
隆芳 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsumi Electric Co Ltd
Original Assignee
Mitsumi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsumi Electric Co Ltd filed Critical Mitsumi Electric Co Ltd
Priority to JP35527898A priority Critical patent/JP4348759B2/en
Publication of JP2000180177A publication Critical patent/JP2000180177A/en
Application granted granted Critical
Publication of JP4348759B2 publication Critical patent/JP4348759B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)
  • Micromachines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、多軸の加速度、角速度を検出可能な回転振動型ジャイロに関する。。
【0002】
【従来の技術】
図9、図10、図11は、回転振動型ジャイロの従来例を示す図である。図9(A)はケースを取り外して見た回転振動型ジャイロ10の平面図で、同図(B)はそのA−A’断面図である。
【0003】
図9において、1は絶縁性の基板、2は周囲に駆動電極2a、2b、2c、2dが形成されたシリコン材からなる導電性の平板円形形状の質量部、3は一端が固定部4によって基板1に固定され、他端が質量部2と一体に形成された質量支持部、5、6、7、8は質量部2と間隙をもって対抗し、基板1に固定された検出電極、9a、9b、9c、9dは一端が基板1に固定され、他端が駆動電極2a、2b、2c、2dとの間で駆動部を構成する駆動電極である。そして、図9(B)に示す如く、質量部2と検出電極5、6、7、8との間にそれぞれ電極間容量C1、C2、C3、C4が生じる。
【0004】
図9(B)に示す如く、質量部1、駆動電極2d、6d、質量支持部3は基板1から浮いて形成され、また図示されていないが、駆動電極2a、2b、2c、6a、6b、6cも同様に、基板1から浮いて形成されている。
【0005】
次にこの装置の動作を説明する。基板側駆動電極6a、6b、6c、6dに適当な交流電圧を印可すると、質量部側駆動電極2a、2b、2c、2dとの間に静電引力が働き、4ヶ所の固定部4、4、4、4に質量支持部3、3、3、3によって連結された質量部2は、質量部2の中心を中心軸としたZ軸周りの回転振動を行う。その時、X軸周りの角速度Ωが回転振動型ジャイロ10に印可されると、質量部2はY軸周りの回転振動を行う。すなわち、図10に示す如く、質量部2が矢印方向に振動する。
【0006】
これは、図11に示す如く、速度Vで矢印方向に移動する物体mに対して、その方向に直交する軸周りの角速度Ωが物体mに対して印可された時、残りの軸方向にコリオリ力Fcが発生することによる。
【0007】
質量部2が 回転振動すると、図10に示す如く、質量部2が変位し、この結果、質量部2と、検出電極5、6、7、8との間の電極間容量C1,C2,C3,C4が変化し、X軸周りの角速度Ωの検出をする。
【0008】
同様にY軸周りの角速度Ωが回転振動型ジャイロ10に印可されればX軸周りの回転振動が発生する。回転振動すると、質量部2が変位し、この結果、質量部2と、検出電極5、6、7、8との間の電極間容量C1,C2,C3,C4が変化し、X軸周りの角速度Ωの検出をする。
【0009】
以上の様に、角速度Ωにより質量部2が、X、Y2軸周りに回転振動を行うと、質量部2と基板上の検出電極5、6、7、8との間の容量C1,C2,C3,C4が変化する。その容量変化を検出することにより回転振動型ジャイロ10に印可された角速度Ωの大きさを測定することができる。また、X、Y2軸周りの角速度Ωを検出することができることから、回転振動型ジャイロ10は2軸の角速度センサとして機能する。
【0010】
また、この回転振動型ジャイロ10に対して、Z軸方向の加速度Gが印可された場合、質量部2はZ軸方向に変位する。その変位量は、印可された加速度の大きさにより変化するので、質量部2と基板側容量検出電極5、6、7、8との間の電気容量C1,C2,C3,C4を測定することにより、この回転振動型ジャイロ10はZ軸方向の加速度センサとしても機能する。
【0011】
回転振動型ジャイロ10は上記の要素より構成されており、Siマイクロマシニング技術により製作される。
【0012】
上記従来の回転振動型ジャイロ1では、X,Y2軸周りの角速度Ω、及びZ軸方向の加速度Gの検出を行うことができる。
【0013】
【発明が解決しょうとする課題】
しかるに、上記構成の回転振動型ジャイロ10においては、X軸、及びY軸方向の加速度が回転振動型ジャイロスコープ10に印可された場合、質量部は加速度の方向に平行移動を行うが、Z軸方向への変位は起こらない。すなわち、質量部2が図10の矢印方向へ回転振動しないので、質量部2と検出電極5、6、7、8との間の電気容量の変化を生じない。従って、従来の構成では、X、Y軸周りの角速度の検出と、Z軸方向の加速度の検出はできるが、X,Y軸方向の加速度の検出ができないという課題がある。
【0014】
本発明は、X、Y軸周りの角速度とX,Y,Z軸方向の加速度を検出可能なジャイロを提供することを目的としている。
【0015】
【課題を解決するための手段】
本発明の上記目的は、基板上に、質量部と、前記質量部を支持する質量支持部と、前記質量部を駆動する駆動用部と、前記質量部が、直交する3つの軸で構成される三次元系において、X軸回りとY軸回りの角速度と、X軸方向とY軸方向とZ軸方向の加速度により変位し、前記質量部の変位量を検出することによって前記X軸回りとY軸回りの角速度、及び前記X軸方向とY軸方向とZ軸方向の加速度を検出する検出部を備えた回転振動型ジャイロにおいて、前記駆動部は、前記基板側の駆動電極と前記質量部側の駆動電極との間で、円形形状に配設されており、前記質量部は、円形形状に配設された前記駆動部の周囲に円環形状に配設され、前記検出部は、前記基板上に形成された検出電極からなり、前記検出電極は前記質量部の全面と対向して前記駆動部の周囲に円環形状に配設され、前記質量部の前記検出電極と対向する部分の厚みを、円環形状でかつ前記検出電極から離間する方向へ、前記質量支持部の厚みよりも厚くして前記質量部の回転中心と前記質量部の重心とに距離を持たせたことによって達成できる。
【0016】
また、上記構成において、前記質量支持部を、前記円環形状をした質量部の外側に配置することによって達成できる。
【0017】
また、前記質量支持部は、前記質量部の回転中心部に配設された固定部に一端が固定されて、前記円環形状をした質量部の内側に配置するよって達成できる。
【0020】
【発明の実施の形態】
以下、図面に示した実施形態を参照して、本発明を詳細に説明する。なお、上記従来例で示した部分と対応する部分は同一符号を付し、その詳細な説明を省略する。
【0021】
図1(A)、図1(B)、図2は、本発明に係る回転振動型ジャイロの第1実施形態を示す図であり、図1(A)は、ケースを取り外して見た回転振動型ジャイロ11の平面図で、同図(B)はそのB−B’線断面図である。
【0022】
本実施形態においては、図1(A),(B)に示すように、シリコン材料からなる導電性の平板円形形状からなる質量部2が、基板側駆動電極9a、9b、9c、9dと導電性の平板円形形状からなる質量部2側の駆動電極2a、2b、2c、2dとの間で形成された駆動部が、円形形状に配設され、その周囲に質量部2が円環形状に配設されている。これに伴い、質量部2と対抗する検出電極5、6、7、8も円環形状に配設されている。質量支持部3は、中心部に配された固定部4に一端が固定されている。
【0023】
次に、上記構成の動作説明をする。X、Y2軸周りの角速度Ω、及びZ軸方向の加速度Gの検出については、上記従来例で述べた内容と同様なので、説明を省略し、以下にX軸方向の加速度の検出について説明する。
【0024】
X軸方向の加速度Gが印加されると、質量部2は図2の動作説明図に示す如く、矢印方向へ変位する。この結果、質量部2が中心部から離れて円環形状に形成されているため、質量部2が内側にあるのに比し、質量部2と、検出電極5、6、7、8との間の容量C5、C6,C7,C8が大きく変化し、X軸方向の加速度Gを感度良く検出する。
【0025】
同様に、Y軸方向の加速度Gが印加されると、質量部2は図2の動作説明図に示す如く、矢印方向へ変位する。この結果、質量部2が中心部から離れて円環形状に形成されているため、質量部2が内側にあるのに比し、質量部2と、検出電極5、6、7、8との間の容量C5、C6,C7,C8が大きく変化し、Y軸方向の加速度Gを感度良く検出する。
【0026】
上述した如く、本第1の実施形態においては、X、Y軸周りの角速度Ω、及びX、Y、Z方向の加速度Gの検出をする。
【0027】
図3は、本発明に係る回転振動型ジャイロの第2実施形態を示す図であり、ケースを取り外して見た回転振動型ジャイロ12の平面図である。本実施形態においては、質量支持部3及びこの質量支持部3の一端を固定する固定部4を質量部の外側に配置したものである。この構成により、X、Y軸周りの角速度Ω、及びX、Y、Z方向の加速度Gの検出ができ、動作は上記第1実施形態と同様なので、説明を省略する。
【0028】
図4、図5、図6は、本発明に係る回転振動型ジャイロの第3実施形態を示す図であり、図4(A)は、ケースを取り外して見た回転振動型ジャイロ13の平面図で、同図(B)はそのC−C’線断面図である。
【0029】
本実施形態においては、図4(A)、(B)に示すように、シリコン材料からなる導電性の平板円形形状からなる質量部2が、基板側駆動電極9a、9b、9c、9dと導電性の平板円形形状からなる質量部2側の駆動電極2a、2b、2c、2dとの間で形成された駆動部が、円形形状に配設され、その周囲に質量部2が円環形状に配設されている。これに伴い、質量部2と対抗する検出電極5、6、7、8も円環形状に配設されている。質量支持部3は、中心部に配された固定部4に一端が固定されている。
【0030】
また、図4(B)に示す如く、質量部2の厚さ寸法Tを質量支持部3の厚さ寸法(t)より大(T>t)としたものである。
【0031】
次に、上記構成の動作説明をする。X、Y2軸周りの角速度Ω、及びZ軸方向の加速度Gの検出については、上記従来例で述べたと同様なので、説明を省略し、以下にX軸方向の加速度の検出について説明する。
【0032】
X軸方向の加速度Gが印加されると、円環形状に形成された質量部2が中心部から離れ、しかも質量質量部2の厚さ寸法が質量支持部3の厚さ寸法より大に形成されているため、質量部2は図5の動作説明図に示す如く、矢印方向へ変位する。この結果、質量部2と、検出電極5、6、7、8との間の容量C9、C10,C11,C12が変化し、X軸方向の加速度Gを検出する。
【0033】
ここで、質量部2が矢印方向へ変位する原理を図6において説明する。同図において、質量部2の厚さを質量支持部3の厚さよりも厚くすると、質量部2の重心Qと回転中心Sが一致しなくなる。そこで、矢印Nで示した水平方向の加速度が印加されると、M=FL(Lは重心Qと回転中心Sとの間の距離)なるモーメントが発生する。その結果、質量部2は矢印J方向に回転振動をし図5で示した如く、質量部2と、検出電極5、6、7、8との間の容量C9、C10,C11,C12が変化し、加速度Gを検出できることになる。
【0034】
同様に、Y軸方向の加速度Gが印加されると、質量部2が回転変位をし、質量部2は図2の動作説明図に示す如く、矢印方向へ変位する。この結果、質量部2と、検出電極5、6、7、8との間の容量C9、C10,C11,C12が変化し、Y軸方向の加速度Gを検出する。
【0035】
上述した如く、本第3の実施形態においても、X、Y軸周りの角速度Ω、及びX、Y、Z方向の加速度Gの検出をする。
【0036】
図7、図8は、本発明に係る回転振動型ジャイロの第4実施形態を示す図であり、図7(A)は、ケースを取り外して見た回転振動型ジャイロ14の平面図である。図7(B)は、図7(A)のD−D'線断面図である。
【0037】
本実施形態においては、図7(A)、(B)に示すように、シリコン材料からなる導電性の平板円形形状からなる質量部2が円形形状に配設され、、基板側駆動電極9a、9b、9c、9dと質量部2側の駆動電極2a、2b、2c、2dとの間で形成された駆動部が、質量部の外側に配設され、その周囲に質量部2が円環形状に配設されている。これに伴い、質量部2と対向する検出電極5、6、7、8も円形形状に配設されている。質量支持部3は、駆動部の外側に配された固定部4に一端が固定されている。
【0038】
また、図7(B)に示す如く、質量部2の厚さ寸法Tを質量支持部3の厚さ寸法(t)より大(T>t)としたものである。
【0039】
この第4実施態様においても、質量部2の厚さ寸法Tを質量支持部3の厚さ寸法(t)より大(T>t)としたため、図8の説明図に示すごとく、矢印E方向へ加速度を印加すると質量部2がX方向に回転振動することから、X軸方向に加速度Gが印加されると質量部2が図7(B)において回転振動して、質量2と検出電極5、6、7、8との間の電気容量C13,C14,C15,C16が変化し、X軸方向の加速度Gを検出する。
【0040】
同様にY軸方向の加速度Gの検出をする。これを含め、本実施態様においても、X、Y軸周りの角速度Ω、及びX、Y、Z方向の加速度Gの検出をする。
【0041】
上記説明中、X、Y軸方向の加速度による振動子の変位と、X、Y軸周りの角速度による振動子の変位は、両者とも質量支持部を回転軸とした回転変位となり、同様な変位形態となる。従って、検出される信号を分離できないと、加速度による信号なのか、角速度による信号なのかが区別できず、センサとして機能することが不可能となる。これを解決するには、周波数フィルタを用いるとよい。通常、角速度を検出するために、振動子を加振するが、検出される加速度の周波数は、通常の用途(自動車、産業用など)では100Hz程度までが上限であるので、加振周波数を1kHz〜数kHzとすれば、角速度により発生するコリオリ力による振動も同じ周波数となり、角速度による信号と、加速度による信号は周波数帯が異なるので、周波数フィルタにより分離が可能となる。
【0042】
【発明の効果】
以上述べた様に本発明によれば、一つの素子で多軸の加速度、角速度を検出できるジャイロの実現が可能となる。
【図面の簡単な説明】
【図1】 本発明に係る回転振動型ジャイロの第1の実施形態を示す図であって、(A)は平面図、(B)はB−B’断面図である。
【図2】 本発明に係る回転振動型ジャイロの第1の実施形態を示す図であって、質量部の変位を説明する図
【図3】 本発明に係る回転型ジャイロの第2の実施形態を示す図である。
【図4】 本発明に係る回転振動型ジャイロの第3の実施形態を示す図である。(A)は平面図、(B)はC−C’断面図である。
【図5】 本発明に係る回転振動型ジャイロの第3の実施形態を示す図で、質量部の変位を説明する図
【図6】 本発明に係る回転振動型ジャイロの第3の実施形態を示す図であって、質量部の変位を説明する原理図。
【図7】 本発明に係る回転振動型ジャイロの第4の実施形態を示す図である。
【図8】 本発明に係る回転振動型ジャイロの第4の実施形態を示す図であって、質量部の変位を説明する原理図。
【図9】 従来例に係る回転振動型ジャイロを示す図であって、(A)は平面図、(B)はA−A’断面図である。
【図10】 従来例に係る回転振動型ジャイロを示す図であって、質量部の変位を説明する図。
【図11】 従来例に係る回転振動型ジャイロを示す図であって、コリオリを説明する図。
【符号の説明】
10、11、12、13、14 回転振動型ジャイロ
1 基板
2 質量部
3 質量支持部
4 固定部
5、6、7、8 検出電極
2a、2b、2c、2d 質量部側駆動電極
9a、9b、9c、9d 基板側駆動電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rotational vibration gyro capable of detecting multiaxial acceleration and angular velocity. .
[0002]
[Prior art]
9, FIG. 10 and FIG. 11 are diagrams showing conventional examples of rotational vibration type gyros. FIG. 9A is a plan view of the rotational vibration gyroscope 10 viewed with the case removed, and FIG. 9B is a cross-sectional view taken along the line AA ′.
[0003]
In FIG. 9, reference numeral 1 denotes an insulating substrate, 2 denotes a conductive flat plate-shaped mass portion made of a silicon material around which drive electrodes 2 a, 2 b, 2 c, and 2 d are formed. The mass supporting parts 5, 6, 7, 8 fixed to the substrate 1 and having the other end integrally formed with the mass part 2 are opposed to the mass part 2 with a gap, and are detected electrodes fixed to the substrate 1, 9a, 9b, 9c, and 9d are drive electrodes that have one end fixed to the substrate 1 and the other end that constitutes a drive unit between the drive electrodes 2a, 2b, 2c, and 2d. 9B, interelectrode capacitances C1, C2, C3, and C4 are generated between the mass portion 2 and the detection electrodes 5, 6, 7, and 8, respectively.
[0004]
As shown in FIG. 9B, the mass portion 1, the drive electrodes 2d and 6d, and the mass support portion 3 are formed so as to float from the substrate 1, and are not shown, but the drive electrodes 2a, 2b, 2c, 6a, and 6b are formed. , 6c are also formed floating from the substrate 1.
[0005]
Next, the operation of this apparatus will be described. When an appropriate AC voltage is applied to the substrate side drive electrodes 6a, 6b, 6c, 6d, electrostatic attraction works between the mass part side drive electrodes 2a, 2b, 2c, 2d, and the four fixed portions 4, 4 are applied. The mass part 2 connected to the mass support parts 3, 3, 3, 3 to 4, 4 performs rotational vibration around the Z axis with the center of the mass part 2 as the central axis. At this time, when the angular velocity Ω around the X axis is applied to the rotational vibration gyroscope 10, the mass part 2 performs rotational vibration around the Y axis. That is, as shown in FIG. 10, the mass part 2 vibrates in the direction of the arrow.
[0006]
As shown in FIG. 11, when an object m moving in the arrow direction at a velocity V is applied to the object m with an angular velocity Ω around an axis orthogonal to that direction, the Coriolis is applied in the remaining axial direction. By generating force Fc.
[0007]
When the mass part 2 is rotated and vibrated, as shown in FIG. 10, the mass part 2 is displaced. As a result, the interelectrode capacitances C1, C2, C3 between the mass part 2 and the detection electrodes 5, 6, 7, 8 , C4 change, and the angular velocity Ω around the X axis is detected.
[0008]
Similarly, if an angular velocity Ω around the Y axis is applied to the rotational vibration gyroscope 10, rotational vibration around the X axis is generated. When the rotational vibration occurs, the mass portion 2 is displaced, and as a result, the interelectrode capacitances C1, C2, C3, C4 between the mass portion 2 and the detection electrodes 5, 6, 7, and 8 change, and the X axis is changed. Detect angular velocity Ω.
[0009]
As described above, when the mass part 2 rotates and vibrates around the X and Y axes by the angular velocity Ω, the capacitances C1, C2, and C2 between the mass part 2 and the detection electrodes 5, 6, 7, and 8 on the substrate are as follows. C3 and C4 change. By detecting the change in capacitance, the magnitude of the angular velocity Ω applied to the rotary vibration gyroscope 10 can be measured. Further, since the angular velocity Ω around the X and Y axes can be detected, the rotational vibration gyroscope 10 functions as a biaxial angular velocity sensor.
[0010]
Further, when an acceleration G in the Z-axis direction is applied to the rotational vibration gyroscope 10, the mass portion 2 is displaced in the Z-axis direction. Since the amount of displacement varies depending on the magnitude of the applied acceleration, the capacitance C1, C2, C3, C4 between the mass part 2 and the substrate side capacitance detection electrodes 5, 6, 7, 8 should be measured. Thus, the rotational vibration gyro 10 also functions as an acceleration sensor in the Z-axis direction.
[0011]
The rotary vibration gyro 10 is composed of the above-described elements, and is manufactured by Si micromachining technology.
[0012]
In the conventional rotational vibration gyro 1, the angular velocity Ω around the X and Y axes and the acceleration G in the Z axis direction can be detected.
[0013]
[Problems to be solved by the invention]
However, in the rotational vibration gyroscope 10 configured as described above, when accelerations in the X-axis and Y-axis directions are applied to the rotational vibration gyroscope 10, the mass portion translates in the direction of acceleration, but the Z-axis There is no displacement in the direction. That is, since the mass part 2 does not rotate and vibrate in the direction of the arrow in FIG. 10, no change in the capacitance between the mass part 2 and the detection electrodes 5, 6, 7, 8 occurs. Therefore, the conventional configuration can detect the angular velocities around the X and Y axes and the acceleration in the Z axis direction, but cannot detect the acceleration in the X and Y axis directions.
[0014]
An object of the present invention is to provide a gyro capable of detecting angular velocities around the X and Y axes and acceleration in the X, Y and Z axis directions.
[0015]
[Means for Solving the Problems]
The above object of the present invention is configured on a substrate by a mass part, a mass support part that supports the mass part, a drive part that drives the mass part, and the mass part that is composed of three orthogonal axes. the X-axis Oite in a three-dimensional system, the X-axis and Y-axis angular velocity, by displaced by acceleration in the X-axis direction and the Y-axis direction and the Z-axis direction, detects the amount of displacement of the mass portion that In the rotational vibration type gyro provided with a detection unit that detects angular velocity around and around the Y axis, and acceleration in the X axis direction, the Y axis direction, and the Z axis direction , the driving unit includes the driving electrode on the substrate side and the It is arranged in a circular shape between the drive electrode on the mass part side, the mass part is arranged in an annular shape around the drive part arranged in a circular shape, and the detection unit is , Comprising a detection electrode formed on the substrate, the detection electrode and the entire surface of the mass portion Disposed in annular shape around the driver and toward, the thickness of the sensing electrode facing the portion of said mass portion, in the direction away from the annular shape a and the detecting electrode, the mass support section This can be achieved by providing a distance between the center of rotation of the mass part and the center of gravity of the mass part.
[0016]
Moreover, the said structure WHEREIN: It can achieve by arrange | positioning the said mass support part on the outer side of the said annular shaped mass part.
[0017]
In addition, the mass support portion can be achieved by arranging one end of the mass support portion at a fixed portion disposed at the rotation center portion of the mass portion and placing the mass support portion inside the annular mass portion.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. Note that portions corresponding to those shown in the conventional example are given the same reference numerals, and detailed description thereof is omitted.
[0021]
FIG. 1A, FIG. 1B, and FIG. 2 are views showing a first embodiment of a rotational vibration gyro according to the present invention. FIG. 1A is a rotational vibration viewed with the case removed. FIG. 2B is a cross-sectional view taken along line BB ′ of FIG.
[0022]
In the present embodiment, as shown in FIGS. 1A and 1B, the mass portion 2 having a conductive flat plate shape made of a silicon material is electrically connected to the substrate side drive electrodes 9a, 9b, 9c, and 9d. The drive part formed between the drive electrodes 2a, 2b, 2c, and 2d on the mass part 2 side having a circular flat plate shape is arranged in a circular shape, and the mass part 2 has an annular shape around it. It is arranged. Accordingly, the detection electrodes 5, 6, 7, and 8 that oppose the mass portion 2 are also arranged in an annular shape. One end of the mass support part 3 is fixed to a fixing part 4 arranged in the center part.
[0023]
Next, the operation of the above configuration will be described. The detection of the angular velocity Ω around the X and Y axes and the acceleration G in the Z-axis direction are the same as those described in the above-described conventional example, so that the description thereof will be omitted and the detection of the acceleration in the X-axis direction will be described below.
[0024]
When the acceleration G in the X-axis direction is applied, the mass part 2 is displaced in the arrow direction as shown in the operation explanatory diagram of FIG. As a result, since the mass portion 2 is formed in an annular shape away from the center portion, the mass portion 2 and the detection electrodes 5, 6, 7, and 8 are compared with the mass portion 2 on the inner side. The capacities C5, C6, C7, and C8 in the meantime greatly change, and the acceleration G in the X-axis direction is detected with high sensitivity.
[0025]
Similarly, when the acceleration G in the Y-axis direction is applied, the mass unit 2 is displaced in the arrow direction as shown in the operation explanatory diagram of FIG. As a result, since the mass portion 2 is formed in an annular shape away from the center portion, the mass portion 2 and the detection electrodes 5, 6, 7, and 8 are compared with the mass portion 2 on the inner side. Capacitances C5, C6, C7, and C8 in the meantime greatly change, and the acceleration G in the Y-axis direction is detected with high sensitivity.
[0026]
As described above, in the first embodiment, the angular velocity Ω around the X and Y axes and the acceleration G in the X, Y, and Z directions are detected.
[0027]
FIG. 3 is a view showing a second embodiment of the rotational vibration type gyro according to the present invention, and is a plan view of the rotational vibration type gyro 12 as seen from the case removed. In this embodiment, the mass support part 3 and the fixing part 4 that fixes one end of the mass support part 3 are arranged outside the mass part. With this configuration, the angular velocity Ω around the X and Y axes and the acceleration G in the X, Y, and Z directions can be detected, and the operation is the same as in the first embodiment, and thus the description thereof is omitted.
[0028]
4, 5, and 6 are views showing a third embodiment of the rotational vibration gyro according to the present invention, and FIG. 4A is a plan view of the rotational vibration gyro 13 as seen from the case removed. FIG. 5B is a sectional view taken along the line CC ′.
[0029]
In this embodiment, as shown in FIGS. 4A and 4B, the mass portion 2 having a conductive flat plate shape made of a silicon material is electrically connected to the substrate side drive electrodes 9a, 9b, 9c, and 9d. The drive part formed between the drive electrodes 2a, 2b, 2c, and 2d on the mass part 2 side having a circular flat plate shape is arranged in a circular shape, and the mass part 2 has an annular shape around it. It is arranged. Accordingly, the detection electrodes 5, 6, 7, and 8 that oppose the mass portion 2 are also arranged in an annular shape. One end of the mass support part 3 is fixed to a fixing part 4 arranged in the center part.
[0030]
Further, as shown in FIG. 4B, the thickness dimension T of the mass portion 2 is larger than the thickness dimension (t) of the mass support portion 3 (T> t).
[0031]
Next, the operation of the above configuration will be described. The detection of the angular velocity Ω around the X and Y axes and the acceleration G in the Z-axis direction are the same as described in the above-described conventional example, so the description thereof will be omitted, and the detection of the acceleration in the X-axis direction will be described below.
[0032]
When the acceleration G in the X-axis direction is applied, the mass part 2 formed in an annular shape is separated from the center part, and the thickness dimension of the mass part 2 is larger than the thickness dimension of the mass support part 3. Therefore, the mass portion 2 is displaced in the direction of the arrow as shown in the operation explanatory diagram of FIG. As a result, the capacitances C9, C10, C11, and C12 between the mass unit 2 and the detection electrodes 5, 6, 7, and 8 change, and the acceleration G in the X-axis direction is detected.
[0033]
Here, the principle that the mass part 2 is displaced in the direction of the arrow will be described with reference to FIG. In the same figure, when the thickness of the mass portion 2 is made larger than the thickness of the mass support portion 3, the center of gravity Q and the rotation center S of the mass portion 2 do not coincide with each other. Therefore, when a horizontal acceleration indicated by an arrow N is applied, a moment of M = FL (L is a distance between the center of gravity Q and the rotation center S) is generated. As a result, the mass portion 2 oscillates in the direction of the arrow J, and the capacitances C9, C10, C11, C12 between the mass portion 2 and the detection electrodes 5, 6, 7, 8 change as shown in FIG. Thus, the acceleration G can be detected.
[0034]
Similarly, when the acceleration G in the Y-axis direction is applied, the mass portion 2 is rotationally displaced, and the mass portion 2 is displaced in the direction of the arrow as shown in the operation explanatory diagram of FIG. As a result, the capacitances C9, C10, C11, and C12 between the mass unit 2 and the detection electrodes 5, 6, 7, and 8 change, and the acceleration G in the Y-axis direction is detected.
[0035]
As described above, also in the third embodiment, the angular velocity Ω around the X and Y axes and the acceleration G in the X, Y, and Z directions are detected.
[0036]
7 and 8 are views showing a fourth embodiment of the rotational vibration gyro according to the present invention, and FIG. 7A is a plan view of the rotational vibration gyro 14 as seen from the case removed. FIG. 7B is a cross-sectional view taken along the line DD ′ of FIG.
[0037]
In the present embodiment, as shown in FIGS. 7A and 7B, the mass portion 2 made of a conductive flat plate made of silicon material is arranged in a circular shape, and the substrate side drive electrode 9a, The drive part formed between 9b, 9c, 9d and the drive electrodes 2a, 2b, 2c, 2d on the mass part 2 side is disposed outside the mass part, and the mass part 2 is formed in an annular shape around the drive part. It is arranged. Accordingly, the detection electrodes 5, 6, 7, and 8 that face the mass portion 2 are also arranged in a circular shape. One end of the mass support portion 3 is fixed to a fixing portion 4 disposed outside the driving portion.
[0038]
Further, as shown in FIG. 7B, the thickness dimension T of the mass part 2 is larger than the thickness dimension (t) of the mass support part 3 (T> t).
[0039]
Also in the fourth embodiment, since the thickness dimension T of the mass portion 2 is larger than the thickness dimension (t) of the mass support portion 3 (T> t), as shown in the explanatory view of FIG. When the acceleration is applied to the mass portion 2, the mass portion 2 rotates and vibrates in the X direction. Therefore, when the acceleration G is applied in the X-axis direction, the mass portion 2 vibrates and rotates in FIG. , 6, 7, and 8 change in capacitance C13, C14, C15, C16, and the acceleration G in the X-axis direction is detected.
[0040]
Similarly, the acceleration G in the Y-axis direction is detected. Including this, the present embodiment also detects the angular velocity Ω around the X and Y axes and the acceleration G in the X, Y and Z directions.
[0041]
In the above description, the displacement of the vibrator due to the acceleration in the X and Y axis directions and the displacement of the vibrator due to the angular velocity around the X and Y axes are both rotational displacements with the mass support portion as the rotation axis, and similar displacement forms It becomes. Therefore, if the detected signals cannot be separated, it cannot be distinguished whether the signals are acceleration signals or angular velocities, and it is impossible to function as a sensor. In order to solve this, a frequency filter may be used. Usually, the vibrator is vibrated to detect the angular velocity. However, the upper limit of the detected acceleration frequency is about 100 Hz in normal applications (automobiles, industrial use, etc.), so the excitation frequency is 1 kHz. If it is ˜several kHz, the vibration due to the Coriolis force generated by the angular velocity also has the same frequency, and the signal due to the angular velocity and the signal due to the acceleration are different in frequency band, and can be separated by a frequency filter.
[0042]
【The invention's effect】
As described above, according to the present invention, it is possible to realize a gyro capable of detecting multiaxial acceleration and angular velocity with a single element.
[Brief description of the drawings]
1A and 1B are views showing a first embodiment of a rotational vibration gyro according to the present invention, in which FIG. 1A is a plan view and FIG. 1B is a cross-sectional view along BB ′.
FIG. 2 is a diagram showing a first embodiment of a rotary vibration gyro according to the present invention, and is a diagram for explaining displacement of a mass part; FIG. 3 is a second embodiment of the rotary gyro according to the present invention; FIG.
FIG. 4 is a diagram showing a third embodiment of a rotational vibration gyro according to the present invention. (A) is a top view, (B) is CC 'sectional drawing.
FIG. 5 is a diagram showing a third embodiment of a rotational vibration gyro according to the present invention, and is a diagram for explaining displacement of a mass part. FIG. 6 is a diagram showing a third embodiment of the rotational vibration gyro according to the present invention. It is a figure shown, Comprising: The principle figure explaining the displacement of a mass part.
FIG. 7 is a diagram showing a fourth embodiment of a rotational vibration gyro according to the present invention.
FIG. 8 is a diagram showing a fourth embodiment of a rotational vibration gyro according to the present invention, and is a principle diagram illustrating displacement of a mass part.
9A and 9B are diagrams showing a rotational vibration gyro according to a conventional example, in which FIG. 9A is a plan view and FIG. 9B is a cross-sectional view along AA ′.
FIG. 10 is a view showing a rotational vibration type gyro according to a conventional example, and is a view for explaining displacement of a mass part.
FIG. 11 is a diagram illustrating a rotary vibration type gyro according to a conventional example, illustrating Coriolis.
[Explanation of symbols]
10, 11, 12, 13, 14 Rotational vibration type gyro 1 Substrate 2 Mass 3 Mass support 4 Fixing 5, 6, 7, 8 Detection electrodes 2a, 2b, 2c, 2d Mass drive electrodes 9a, 9b, 9c, 9d Substrate side drive electrode

Claims (3)

基板上に、質量部と、前記質量部を支持する質量支持部と、前記質量部を駆動する駆動用部と、前記質量部が、直交する3つの軸で構成される三次元系において、X軸回りとY軸回りの角速度と、X軸方向とY軸方向とZ軸方向の加速度により変位し、前記質量部の変位量を検出することによって前記X軸回りとY軸回りの角速度、及び前記X軸方向とY軸方向とZ軸方向の加速度を検出する検出部を備えた回転振動型ジャイロにおいて、
前記駆動部は、前記基板側の駆動電極と前記質量部側の駆動電極との間で、円形形状に配設されており、
前記質量部は、円形形状に配設された前記駆動部の周囲に円環形状に配設され、
前記検出部は、前記基板上に形成された検出電極からなり、前記検出電極は前記質量部の全面と対向して前記駆動部の周囲に円環形状に配設され、
前記質量部の前記検出電極と対向する部分の厚みを、円環形状でかつ前記検出電極から離間する方向へ、前記質量支持部の厚みよりも厚くして前記質量部の回転中心と前記質量部の重心とに距離を持たせたことを特徴とする回転振動型ジャイロ。
Oite on a substrate, and the parts by weight, and the mass support portion for supporting the mass portion, a driving unit for driving the mass portion, the mass portion, the three-dimensional system consists of three orthogonal axes The angular velocity about the X axis and the Y axis is detected by detecting the amount of displacement of the mass part by detecting the angular velocity about the X axis and the Y axis, and the acceleration in the X axis direction, the Y axis direction, and the Z axis direction. In the rotational vibration type gyro provided with a detection unit that detects acceleration in the X-axis direction, the Y-axis direction, and the Z-axis direction ,
The drive unit is arranged in a circular shape between the drive electrode on the substrate side and the drive electrode on the mass unit side,
The mass part is arranged in a ring shape around the drive unit arranged in a circular shape,
The detection unit is formed of a detection electrode formed on the substrate, and the detection electrode is arranged in an annular shape around the driving unit so as to face the entire surface of the mass unit.
The rotation part of the mass part and the mass part are formed so that the thickness of the part of the mass part facing the detection electrode is an annular shape and thicker than the mass support part in a direction away from the detection electrode. Rotating vibration type gyro characterized by having a distance from the center of gravity of the.
前記質量支持部は、前記円環形状をした質量部の外側に配置したことを特徴とする請求項1記載の回転振動型ジャイロ。  2. The rotational vibration gyro according to claim 1, wherein the mass support portion is disposed outside the annular mass portion. 前記質量支持部は、前記質量部の回転中心部に配設された固定部に一端が固定されて、前記円環形状をした質量部の内側に配置したことを特徴とする請求項1記載の回転振動型ジャイロ。  2. The mass support portion according to claim 1, wherein one end of the mass support portion is fixed to a fixed portion disposed at a rotation center portion of the mass portion, and the mass support portion is disposed inside the annular mass portion. Rotating vibration type gyro.
JP35527898A 1998-12-15 1998-12-15 Rotating vibration gyro Expired - Fee Related JP4348759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35527898A JP4348759B2 (en) 1998-12-15 1998-12-15 Rotating vibration gyro

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35527898A JP4348759B2 (en) 1998-12-15 1998-12-15 Rotating vibration gyro

Publications (2)

Publication Number Publication Date
JP2000180177A JP2000180177A (en) 2000-06-30
JP4348759B2 true JP4348759B2 (en) 2009-10-21

Family

ID=18443001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35527898A Expired - Fee Related JP4348759B2 (en) 1998-12-15 1998-12-15 Rotating vibration gyro

Country Status (1)

Country Link
JP (1) JP4348759B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100503472B1 (en) * 2003-03-06 2005-07-25 삼성전자주식회사 Rotational gyroscope
JP5036218B2 (en) * 2006-05-29 2012-09-26 住友精密工業株式会社 Angular velocity sensor
DE102007017209B4 (en) * 2007-04-05 2014-02-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Micromechanical inertial sensor for measuring rotation rates
DE102007035806B4 (en) * 2007-07-31 2011-03-17 Sensordynamics Ag Micromechanical rotation rate sensor
WO2009078284A1 (en) * 2007-12-19 2009-06-25 Murata Manufacturing Co., Ltd. Angular velocity sensor
JP5052674B2 (en) * 2008-08-06 2012-10-17 パイオニア株式会社 Rotating vibration gyro
DE102009001922A1 (en) * 2009-03-26 2010-09-30 Sensordynamics Ag Micro-gyroscope for determining rotational movements about three mutually perpendicular spatial axes x, y and z
US8448513B2 (en) * 2011-10-05 2013-05-28 Freescale Semiconductor, Inc. Rotary disk gyroscope

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711532B2 (en) * 1988-07-27 1995-02-08 日本航空電子工業株式会社 Angular velocimeter
EP0461761B1 (en) * 1990-05-18 1994-06-22 British Aerospace Public Limited Company Inertial sensors
JP2502937B2 (en) * 1991-08-29 1996-05-29 ベイ エレクトロニクス インコーポレイテッド Rotation sensor
US5650568A (en) * 1993-02-10 1997-07-22 The Charles Stark Draper Laboratory, Inc. Gimballed vibrating wheel gyroscope having strain relief features
JPH0791958A (en) * 1993-09-27 1995-04-07 Canon Inc Angular velocity sensor
US5992233A (en) * 1996-05-31 1999-11-30 The Regents Of The University Of California Micromachined Z-axis vibratory rate gyroscope
DE19641284C1 (en) * 1996-10-07 1998-05-20 Inst Mikro Und Informationstec Rotation rate sensor with decoupled orthogonal primary and secondary vibrations
DE19648425C1 (en) * 1996-11-22 1998-01-02 Siemens Ag Micro-mechanical rotation rate sensor esp. for measuring angular speed
JPH10239347A (en) * 1997-02-28 1998-09-11 Japan Aviation Electron Ind Ltd Motion sensor
JP3355993B2 (en) * 1997-05-02 2002-12-09 株式会社村田製作所 Vibrating gyro

Also Published As

Publication number Publication date
JP2000180177A (en) 2000-06-30

Similar Documents

Publication Publication Date Title
CN103221779B (en) The axle inertial sensor of micromechanics monoblock type six
JP4353087B2 (en) Rotational vibration type angular velocity sensor
JP4688073B2 (en) Six-degree-of-freedom micro-processing multi-sensor
KR101100021B1 (en) Z-axis angular rate sensor
KR100539061B1 (en) A two axis gyroscope
US8549917B2 (en) Microelectromechanical gyroscope with enhanced rejection of acceleration noises
JP3796991B2 (en) Angular velocity sensor
JP5639088B2 (en) Micro gyroscope for measuring the rotational movement of X axis or / and Y axis and Z axis
JP5453065B2 (en) Micro-electromechanical gyroscope using rotational drive motion with improved electrical properties
EP2192383B1 (en) Uniaxial or biaxial microelectromechanical gyroscope with improved sensitivity to angular velocity detection
US7155978B2 (en) Micro angular rate sensor
JP2006525514A (en) Microfabricated multi-sensor for uniaxial acceleration detection and biaxial angular velocity detection
US20090260437A1 (en) Vibrating micro-mechanical sensor of angular velocity
JP5425211B2 (en) Coriolis rotation speed sensor by micromechanics
JPH08145683A (en) Acceleration/angular acceleration detector
JPH11142164A (en) Finely-processed rotary sensor system of navigation class
JPH10160483A (en) Rate sensor
JPH04233468A (en) Rotating rate sensor
JP2005241500A (en) Angular velocity sensor
JP4348759B2 (en) Rotating vibration gyro
JP2001255153A (en) Separated multi-disk gyroscope
JP2002510398A (en) 2-axis gyroscope
JPH0868636A (en) Apparatus for detecting both acceleration and angular velocity
JPH11351878A (en) Vibration type angular velocity sensor
CN109556590B (en) Resonance ring/multi-resonance ring six-axis inertial sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees