JP4342061B2 - Ferritic stainless steel material for frame and manufacturing method thereof - Google Patents
Ferritic stainless steel material for frame and manufacturing method thereof Download PDFInfo
- Publication number
- JP4342061B2 JP4342061B2 JP36805599A JP36805599A JP4342061B2 JP 4342061 B2 JP4342061 B2 JP 4342061B2 JP 36805599 A JP36805599 A JP 36805599A JP 36805599 A JP36805599 A JP 36805599A JP 4342061 B2 JP4342061 B2 JP 4342061B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- strength
- frame
- annealing
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims description 23
- 239000000463 material Substances 0.000 title claims description 17
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 229910000831 Steel Inorganic materials 0.000 claims description 126
- 239000010959 steel Substances 0.000 claims description 126
- 238000000137 annealing Methods 0.000 claims description 54
- 239000000126 substance Substances 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 17
- 229910052750 molybdenum Inorganic materials 0.000 claims description 9
- 229910052720 vanadium Inorganic materials 0.000 claims description 9
- 229910052698 phosphorus Inorganic materials 0.000 claims description 8
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 25
- 238000000034 method Methods 0.000 description 23
- 229910000859 α-Fe Inorganic materials 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 13
- 229910000734 martensite Inorganic materials 0.000 description 12
- 239000010935 stainless steel Substances 0.000 description 12
- 238000009864 tensile test Methods 0.000 description 12
- 238000005554 pickling Methods 0.000 description 10
- 239000013078 crystal Substances 0.000 description 9
- 229910001566 austenite Inorganic materials 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 230000009471 action Effects 0.000 description 7
- 238000005098 hot rolling Methods 0.000 description 7
- 230000001771 impaired effect Effects 0.000 description 7
- 150000001247 metal acetylides Chemical class 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- 230000000087 stabilizing effect Effects 0.000 description 5
- 238000005096 rolling process Methods 0.000 description 4
- 238000002791 soaking Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 229910052684 Cerium Inorganic materials 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000010960 cold rolled steel Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000003483 aging Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 229910001039 duplex stainless steel Inorganic materials 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000005355 lead glass Substances 0.000 description 1
- 229910001105 martensitic stainless steel Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は高温での耐ばねへたり性と加工性に優れカラーテレビブラウン管等のマスク用フレームに好適なフェライト系ステンレス鋼材およびその製造方法に関する。
【0002】
【従来の技術】
カラーテレビ等のブラウン管では、ブラウン管内のマスクに張力を加える目的でフレームと称される溶接構造の金属ばねが使用されている。このフレームはステンレス鋼板あるいはステンレス条鋼に、プレス加工、ロールフォーミング、引き抜き成形等の塑性加工がなされた後、600℃前後まで加熱する歪み取り焼鈍が施され、溶接組立される。その後、フレームにマスクが張りつけられて500℃までの高温での熱処理が施される。
【0003】
フレーム用鋼材としては、まず上記成形が精度良くおこなえるのに必要な加工性を備えていることが重要とされる。また、マスクがフレームに張りつけられるとフレームには内部方向への曲げ応力が負荷され、フレームの反発力がマスクに作用してマスクには張力が付加される。ブラウン管による画像の揺れやにじみをなくするにはマスクに付加される張力の変動が少ないことが重要であり、これを実現するには上記曲げ応力下で熱処理を施してもフレームが変形しないことが求められる。つまりフレーム用鋼材には優れた高温での耐ばねへたり性が必要とされている。
【0004】
上記フレーム用ステンレス鋼としては従来SUS403鋼あるいはSUS410S鋼が使用されてきた。これらの鋼の結晶組織は通常の熱間圧延温度域ではオーステナイト単相組織またはオーステナイトとフェライトからなる二相組織であるが、熱間圧延後に冷却された状態では主としてマルテンサイト、フェライトおよび炭化物からなる混合組織を有する。フレーム用途用鋼板はコイル状に巻いた上記鋼板に、箱型焼鈍炉によるフェライト域温度で数時間以上保持するバッチ焼鈍を施し、上記混合組織をフェライト相と比較的大きな析出炭化物に変態させて軟化させた後、酸洗処理して製造される。上記軟化焼鈍にはある程度以上の均熱時間が必要であるので焼鈍時間が短い連続焼鈍方式では困難である。
【0005】
これらの鋼はCrを質量%で12%前後(以下、化学組成を表す%表示は質量%を意味する)含有しており、Crを含有することによる熱膨張率低減効果により、これらの鋼は室温付近で10〜11x10-6/Kの熱膨張係数を持ち、ブラウン管の前面ガラスに使用される鉛ガラスの熱膨張係数(9〜10x10-6/K)に近い。またこれらの鋼はマルテンサイト系であり、高温強度が比較的高く、耐ばねへたり性が良好であること等が使用理由となっていた。
【0006】
高温での耐ばねへたり性は、一定温度、一定応力下で、一定時間でクリープ試験した際に観察されるクリープ伸びで判断できる。ブラウン管マスクフレームの場合およそ400〜500℃で100〜300MPaの応力下で30分〜2時間程度の条件でのクリープ伸びが小さいという耐ばねへたり性が必要とされる。
【0007】
近年テレビの大型化やブラウン管用途の拡大に伴い、フレームの高温での耐ばねへたり性の更なる改善と低コスト化が求められるようになった。このような要望に応えるものとして、Cr等の合金元素含有量を低く制限した低合金鋼をベースとしたフレーム用鋼板およびその製造方法が開示されている。
【0008】
例えば特開平8−67954号公報には、C:0.03〜0.25%、Mn:0.05〜1.5%、Mo:0.01〜1.0%を含有し、かつ2%以下のCu、2%以下のNi、3%以下のCr、1%以下のW、0.0003〜0.003%のBからなる群の内の1種もしくは2種以上、および/または0.4%以下のTi、0.4%以下のNb、0.4%以下Vからなる群の内の1種もしくは2種以上を含有するフレーム用鋼板が開示されている。上記鋼板は従来のステンレス鋼に比べて安価で耐ばねへたり性が改善されることがあるが、その熱膨張係数が11〜14x10-6/Kであり、高精細用ブラウン管に使用するには課題を有する。
【0009】
また特開平9−249942号公報には、C:0.08%以下、Cr:10.0〜18.0%を含有し、フェライト相とマルテンサイト相からなる複相ステンレス鋼素材を用いたアパーチャフレーム、および、上記化学組成を有する鋼材をAc1点+100℃以上1200℃以下に加熱保持した後100℃以下に冷却してHvが160〜250で上記複相組織を有するステンレス鋼材を用いたアパーチャフレームが開示されている。
【0010】
しかしながら上記公報に開示されているフレーム用鋼材は硬質なマルテンサイトを導入することにより高い強度を保持するものであり、熱処理後に高強度のフレームを得ようとする場合には、その成形加工性が必ずしも十分ではなく、所望の形状に精度良く加工するのが困難であるという問題がある。
【0011】
以上述べたようにこれまでに開示されている技術では、良好な加工性と従来以上に優れた耐ばねへたり性を備え、しかも安価に製造できるフレーム用鋼材は開示されていない。
【0012】
【発明が解決しようとする課題】
フレーム用にフェライト系ステンレス鋼を使用する場合には高温での耐ばねへたり性の制約から設計応力を小さくする必要があり、フレーム材料の肉厚が大きく、質量が過大になるという問題がある。一方耐ばね性へたり性を高めるためにマルテンサイト系ステンレス鋼を強度が高い焼入れ状態で使用することも考えられるが、強度が高くて伸びが小さいためにフレームに加工することが困難である。
【0013】
フレーム用ステンレス鋼として従来使用されてきたSUS403鋼あるいはSUS410S鋼の熱延鋼帯は、上述したように熱間圧延後に箱型焼鈍炉によるバッチ焼鈍が施される。バッチ焼鈍ではコイルは外周部から加熱されるが、通常の工業生産でのステンレス熱延コイルは単重が10〜20トン前後あり、その熱容量が大きいうえに鋼の熱伝導率も小さいため、コイル全体を均一に加熱するのが難しい。
【0014】
このために上記方式で焼鈍されるステンレス鋼板は、連続式焼鈍工程で製造されるフェライト系ステンレス鋼に比べて強度や伸び等の機械的特性値のばらつきが大きくなるという問題がある。たとえばコイルの内外周を選ばずにランダムに測定した数十コイルの引張強度の最大と最小の差が100MPa程度になることもある。コイル内で強度変動が大きいと加工後の寸法精度が悪くなるうえ、高温での耐ばねへたり性へも悪影響を及ぼすという問題がある。当然のことながらその生産性も良くない。
【0015】
また、特開平8−67954号公報で開示されているフレーム用鋼板は、従来のステンレス鋼に比べて安価で耐ばねへたり性が改善されることがあるが、その熱膨張係数が11〜14x10-6/Kであり、高精細用ブラウン管に使用するには課題を有する。
【0016】
特開平9−249942号公報に開示されている複相組織を有するフレーム用ステンレス鋼材は硬質なマルテンサイトを導入することにより高い強度を保持するものであり、熱処理後に高強度のフレームを得ようとする場合には、その成形加工性が必ずしも十分ではなく、所望の形状に精度良く加工するのが困難であるという問題がある。
【0017】
本発明の目的は上記のような問題点を解決し、良好な加工性と従来以上に優れた耐ばねへたり性を備え、しかも安価に製造できるフレーム用鋼材およびその製造方法を提供することにある。
【0018】
【課題を解決するための手段】
本発明者らは上記課題を解決するために種々研究を重ねた結果、以下の知見を得た。
【0019】
(a)フレームの加工を容易におこなうためには、常温での引張試験における引張強さが800MPa以下で、伸びが20%以上である必要がある。また、また、フレームを成形し組み立てた後架張力を加えた状態で450℃前後に加熱する工程でのフレームの変形を抑制するために、450℃で296MPaの引張応力を1時間作用させる条件でのクリープ伸びが0.1%以下である高温耐ばねへたり性を備える必要がある。これは、296MPaの応力を作用させた際の弾性変形量は0.15〜0.2%の範囲にあり、クリープ伸びをこれよりも小さくすることでばねとしての目的が達成されるからである。
【0020】
安定して良好な加工性を備えた鋼とするには、均質な加工性が得られる連続式焼鈍が可能なフェライト系ステンレス鋼がよい。その高温強度を高めるにはフェライト安定化元素でかつ高温強度および高温クリープ強度を高める元素を含有させるのがよい。
【0021】
(b)鋳造組織におけるマルテンサイト相の比率(%)は、鋼の化学組成の内のオーステナイト形成元素とフェライト形成元素の含有量(ただし質量%表示)から下記式で計算されるGP値で表すことができる。
GP=700C+800N+20Ni+10(Cu+Mn)−6.2Cr−9.2Si−9.3Mo− 4.5W−14V−74.4Ti−37.2Al+63.2
GP=0はフェライト相のみからなる組織を意味する。GPが15%以上、50%以下の範囲になるように各合金元素の含有量を調整し、焼鈍温度を850℃以下に制限すれば焼鈍後に硬質なマルテンサイト相が生じることがない。また、短時間加熱である連続焼鈍方式で焼鈍しても熱間圧延鋼板の軟化や結晶組織の均一化が可能となる。
【0022】
(c)高温クリープ強度を高めるにはMo、V、WおよびPからなる群の内の1種または2種以上を量含有させるのが有効である。これらの元素の内、Vは含有量が過剰になると高温クリープ伸びが増加する傾向を有し、Pも過剰に含有させると溶接性および靱性を阻害するので、これらの元素の含有量は低く制限する必要がある。したがってMoおよびWが性能確保の観点より扱いやすい元素である。
【0023】
NbとTiにも同様の改善作用があるが、その効果は非常にわずかな含有量で飽和するうえ、これらの元素は過剰に含有させると、固溶Cや固溶Nが安定な炭窒化物となり強度が逆に低下する。従ってこれらの元素の含有量は狭い範囲に限定するのがよい。
【0024】
本発明はこれらの知見を基にして完成されたものであり、その要旨は下記(1)に記載の高温での耐ばねへたり性と加工性に優れたフレーム用フェライト系ステンレス鋼および(2)に記載のその製造方法にある。
【0025】
(1)質量%でC:0.020〜0.08%、Si:2.0%以下、Mn:1.0%以下、Cr:10.5〜16.0%、Cu:0.1〜1.0%、Ni:0.1〜0.50%、Ti:0.003〜0.03%、Nb:0.01〜0.05%、Al:0.001〜0.05%、ならびにP:0.040〜0.10%、Mo:0.02〜1.0%、V:0.02〜0.30%、およびW:0.02〜1.0%からなる群から選ばれた1種または2種以上を含有し、残部がFeと不可避的不純物からなり、かつ、下記式で表されるGPが15〜50%の範囲になるように調整された化学組成を備えたことを特徴とするブラウン管のマスクフレーム用フェライト系ステンレス鋼材:
GP=700C+800N+20Ni+10(Cu+Mn)−6.2Cr−9.2Si−9.3Mo− 4.5W−14V−74.4Ti−37.2Al+63.2
ただし、上記式の各元素の値は質量%を表す。
【0026】
(2)(1)に記載の化学組成を有する鋼のスラブを熱間圧延し、得られた熱間圧延鋼材に850℃以下での連続焼鈍を施すことを特徴とするブラウン管のマスクフレーム用フェライト系ステンレス鋼材の製造方法。
【0027】
【発明の実施の形態】
本発明の実施の形態を詳細に述べる。
【0028】
鋼の化学組成;
C:鋼の高強度化および高温での耐ばねへたり性を向上させる作用があり、これらの効果を得るために0.020%以上含有させる。好ましくは0.04%以上である。Cを0.08%を超えて含有させると鋼の結晶組織がマルテンサイトを主体とする結晶組織となり、鋼の加工性が損なわれる。これを避けるためにC含有量の上限は0.08%とする。
【0029】
Si:溶鋼の脱酸を良好におこなわせるための基本元素であり、その効果を確保するために0.20%以上含有させるのが望ましい。溶鋼の脱酸作用はAlを含有させることでも得られるので、Alによる脱酸をおこなう場合は必ずしも0.20%以上のSiを含有させなくても構わない。
【0030】
Siは鋼の強度を高める作用があり、しかもフェライト安定化元素であるためこれらの効果を得る目的でも含有させてもよい。その場合には0.5%以上含有させるのが望ましい。しかしながら2.0%を超えてSiを含有させると靱性が損なわれるので、その含有量は2.0%以下とする。好ましくは1.5%以下である。
【0031】
Mn:溶鋼の脱酸を良好におこなわせるための基本元素であり、その効果を確保するために0.1%以上含有させるのがよい。しかしながらMnはオーステナイト安定化元素であり、Mnを過剰に含有させると鋼が硬質化し、加工性をそこなう。これを避けるためにMn含有量は1.0%以下とする。好ましくは0.6%以下である。
【0032】
Cr:鋼の耐食性と耐熱性を向上させるための主要元素であるうえ、鋼の熱膨張率を低減し、ブラウン管の熱による画像のにじみを抑制する効果が得られるため、フレーム用鋼材として必須の元素である。これらの性能を確保するためにCrは10.5%以上含有させる。
【0033】
しかしながらCrを過剰に含有させるとCr炭化物が安定化してCの溶解度が低下し、鋼の強度が低くなるという問題がある。またコストの面からも多量のCr含有は不利となる。このためCr含有量は16.0%以下とする。
【0034】
Cu:鋼の強度を高める作用があるので鋼の強度を高めるために含有させても構わない。その場合に所望の効果を得るには0.1%以上含有させるのが望ましい。しかしながらCuを過剰に含有させると鋼が硬くなり過ぎて加工性が損なわれる。これを避けるためにCuを含有させる場合でもその上限は1.0%とする。
【0035】
Ni:鋼の靱性を改善する作用があるので鋼の靱性を改善するために含有させても構わない。その場合に所望の効果を得るには0.1%以上含有させるのが望ましい。Niは代表的なオーステナイト安定化元素であり、Niを過剰に含有させると変態温度が低くなり、焼鈍温度を過度に低くせざるをえなくなり、連続焼鈍時の再結晶が不足して鋼の加工性が確保できなくなるおそれがある。このような不都合を避けるためにNi含有量は0.50%以下とする。
【0036】
Ti:NあるいはCとの親和力が強い元素であり、微細な炭化物あるいは窒化物を形成して鋼の強度を高め、結晶組織を微細化する効果が得られるので、含有させても構わない。上記目的でTiを含有させる場合の含有量は0.003%以上とするのが好ましい。しかしながらTi含有量が0.03%を超えるとTiNが粗大になり靱性を低下させる。従ってその含有量は0.03%以下とする。
【0037】
Nb:Tiと同様にCおよびNと親和力が強い元素であり、付加的に鋼の強度を高める作用がある。従って鋼の強度を高める目的でNbを含有させても構わない。その場合に上記効果が得られるNb含有量は0.01%以上である。Nb含有量が0.05%を超えると逆に鋼の強度が低下するため、Nbを含有させる場合の上限を0.05%とする。
【0038】
Al:溶鋼の脱酸剤として含有させてもよいが、その効果はほぼ0.05%で飽和するため含有させる場合でもその上限は0.05%とする。
【0039】
Mo、V、WおよびP:これらの元素には鋼の高温強度と耐ばねへたり性を高める作用がある。本発明では鋼の高温強度と耐ばねへたり性を高めるためにMo、V、WおよびPからなる群の内の1種または2種以上を適量含有させる。
【0040】
PとMoを共に含有する鋼では550℃程度の歪み取り焼鈍時にこれらの元素がFeMoPからなる析出物として析出して鋼の強度を顕著に高める作用がある。Pを含有させることにより鋼の強度を高める場合にはPを0.040%以上含有させるのが好ましい。しかしながらPを0.10%を超えて含有させると溶接性が損なわれるため、Pを含有させる場合の上限は0.10%とする。
【0041】
Moは炭化物を形成することにより鋼の高温強度と耐ばねへたり性を高めるが、炭化物の生成傾向がV、Nb、Tiに比べて弱いため過剰に含有させても強度が低下しにくいという特長を有する。またMoはPとの化合物を生成し強度を高める性質も持つ。Moを含有させてこれらの効果を確保するにはMoを0.02%以上含有させる。好ましくは0.1%以上である。Moは高価であるのでコスト抑制の観点から含有させる場合の上限を1.0%とする。
【0042】
Vは炭化物を形成することにより鋼の高温強度と耐ばねへたり性を高めるが、これらの効果は0.02%以上含有させることで得られる。従ってVを含有させる場合には0.02%以上とする。VはMoに比べて炭化物生成傾向が強いため0.30%を超えて含有させるとVN、VCなどが安定に析出し鋼の強度が低下する。従ってV含有量の上限は0.30%とする。
【0043】
Vによる鋼の強化効果は鋼のC量や製造方法によって異なり、VC等が析出しすぎると強度が低下することがある。これを避けるにはV含有量はC含有量に応じて調整するのがよく、例えばC:0.08%の場合にはV:0.10%以下、C:0.06%の場合にはV:0.20%以下、C:0.04%の場合にはV:0.30%以下とするのがよい。
【0044】
Wには鋼に固溶した状態でその高温強度を高める作用があり、その効果を発揮させるには0.02%以上含有させるのがよい。好ましくは0.1%以上である。しかしながら上記作用はW含有量が1.0%を超えると飽和し、それ以上含有させるのはコストが高くなるばかりであるので、含有させる場合の上限は1.0%とする。
【0045】
GP(%):鋼の化学組成の内のオーステナイト形成元素とフェライト形成元素の含有量(ただし質量%表示)から下記式で計算されるGPは溶鋼を鋳造して得られる結晶組織でのマルテンサイト相の比率(体積比)を表す指標である。
GP=700C+800N+20Ni+10(Cu+Mn)−6.2Cr−9.2Si−9.3Mo− 4.5W−14V−74.4Ti−37.2Al+63.2
GPが50%以下となるように化学組成を調整した鋼は、熱間圧延後に連続式焼鈍による焼鈍を施してもフェライト相と析出物を主体とする結晶組織を有し、良好な加工性を備えた鋼が得られる。
【0046】
GPが50%を超える鋼は焼き入れ性が高い為に鋼板の焼き鈍しを連続焼鈍方式でおこなうと、焼鈍後の結晶組織にマルテンサイト相が残留したりフェライト相+炭化物からなる組織の場合でも軟化が不十分となる等の不都合が生じる。
【0047】
従ってGPが50%を超える鋼の焼鈍は従来の箱型焼鈍炉によるバッチ焼鈍方式で施す必要があり、鋼の強度や加工性などが大きく変動する。また、生産性が低く製造コストが高いという問題もある。これらの不都合を避けるためにGPが50%以下になるように化学組成を調整する。好ましくは40%以下である。
【0048】
他方GPが15%未満である場合には熱間圧延状態でのマルテンサイト相の比率が過度に小さくなり、焼鈍時の軟化が著しく早く進み、鋼の強度が著しく低下するために高温強度と耐ばねへたり性を確保することが困難となる。このような不都合を避けるためにGPは15%以上とする。好ましくは25%以上である。
なお上記GP計算式にはP、SおよびNbについての項を含めていない。この理由はこれらの元素は本発明鋼では含有量されても量が少なく、その影響は無視できるからである。
【0049】
本発明鋼には熱間加工性を高める目的で、B、Ca、Mg、La、Ce、Yからなる群の内の1種以上を含有させても構わない。好適な含有量はBについては0.0005%以上、0.010%以下、CaおよびMgについてはそれぞれ0.0005%以上、0.005%以下、La、CeおよびYについてはそれぞれ0.002%以上、0.05%%以下である。
【0050】
上記以外はFeおよび不可避的不純物である。不可避的不純物の内でSは熱間加工性と靱性を低下させる作用があるので、その含有量は0.03%以下とするのが望ましい。Nはステンレス鋼においては通常0.01〜0.03%程度含有され、Crと反応して鋼の高温強度を高める作用があるが、Nには鋼の靱性を損なう作用があるので、これを避けるためにN含有量は0.05%以下とするのが望ましい。酸素は鋼の靱性を損なうためSiあるいはAl等によって脱酸し、O含有量を0.008%以下とするのが望ましい。
【0051】
本発明の鋼は、その形状が鋼板、条、線などいずれの形態であっても上述したような高温での耐ばねへたり性や良好な加工性が得られるので、その形態は特に限定するものではない。鋼板としては熱延鋼板でもよいしこれを冷間圧延し焼鈍して得られる冷延鋼板でも構わない。
【0052】
本発明の鋼の好適な製造方法を、鋼板を例として以下に説明する。所定の化学組成を有する鋼は公知の方法により溶製し、公知の方法により鋼片(スラブ)とする。溶鋼を直接薄スラブとしても構わない。次いで公知の方法により熱間圧延して熱延板とする。公知の方法により溶鋼から直接薄鋼板としても構わない。
【0053】
最終製品の形態を熱延鋼板とする場合には、上記方法で得られた熱延板に焼鈍処理と酸洗処理を施す。これらの処理を生産性よく低い製造コストでおこなうには公知の連続式焼鈍酸洗ラインを用いるのがよい。
【0054】
上記連続焼鈍時には、鋼板の均熱温度を850℃以下とする。本発明で使用する鋼は焼鈍処理が連続式焼鈍方式でおこなえるように、GP値が15〜50%の範囲になるように化学組成を制限している。また、オーステナイト安定化元素の含有量を極力少なくし、フェライト相とフェライト+オーステナイト二相混合相の境界温度(Ar1変態温度)が低くなりすぎないよう設計している。したがっておよそ800℃前後で連続焼鈍することにより加工性の良好なフェライト系ステンレス鋼板が製造される。850℃を超える温度で焼鈍すると、鋼の結晶組織の一部にマルテンサイト相が混在するようになり、鋼の強度が800MPaを超えるようになり伸びが20%に満たないために加工性が損なわれる。均熱温度は700℃以上とするのがよい。
【0055】
鋼を冷延鋼板とする場合には、上記焼鈍および酸洗を施した熱延鋼板を公知の方法で冷間圧延し、850℃以下で連続焼鈍すればよい。冷間圧延母材の熱延板焼鈍は任意である。
【0056】
焼鈍後の鋼板にはスキンパス圧延やテンションレベリングなどの公知の処理を施しても一向に差し支えない。
【0057】
【実施例】
(実施例1)
表1に示す化学組成を有する鋼を実験室で真空溶解炉にて溶解し、質量が17kgまたは50kgの鋼塊に鋳造した。
【0058】
【表1】
【0059】
これらの鋼塊を熱間鍛造して厚さ:50mm、幅:100mm、長さ:150mmの鋼片とした。この鋼片を1100〜1200℃の温度範囲に加熱し、熱延仕上温度が800〜950℃の範囲になるようにして厚さ:6.0mmに熱間圧延し、引き続き約300℃/分の冷却速度で600℃または750℃まで冷却し、巻取模擬処理としてその温度に保定した加熱炉に挿入し、40℃/時の冷却速度で室温まで徐冷した。これらの熱延板を800℃に加熱して10分間保持した後風冷し(800℃熱処理)、熱延焼鈍鋼板を得た。得られた熱延鋼板の圧延直角方向より厚さ:4.5mm、平行部の形状が、幅6mm、長さ:50mmである引張試験片を切り出し、常温での引張試験(常温引張試験)をおこなった。
【0060】
さらに上記800℃熱処理鋼板を550℃に加熱して30分間保持した後空冷し(550℃熱処理材)、上記800℃熱処理材と同一の方法で引張試験片を採取し、これを用いて常温引張試験および450℃での高温引張試験をおこなった。
【0061】
引張試験は標点間距離が30mmの伸び歪み計を使用し、引張試験速度を鋼が降伏するまでは評点間制御で0.09mm/分とし、鋼の降伏後はクロスヘッド制御にて3.75mm/分とした。降伏点(YS)は0.2%耐力から求め、伸び(El)は評点間距離30mmに対する全伸びを測定した。
【0062】
さらに550℃熱処理材から採取した試験片を用いて450℃でのクリープ試験をおこなった。クリープ試験は、試験片にゲージ長30mmの伸び歪み計を装着し、450℃に加熱しその温度で均熱した後、294MPaの応力を負荷して1時間保持し、応力が294MPaの一定値を示しているときに増加した歪みを測定した。なお実際のフレーム用鋼材にはプレス加工、ロールフォーミング、引き抜き成形等の塑性加工が加えられた後に550℃前後の熱処理が加えられるために加工硬化と時効硬化が相まって本実施例に示すデータよりも高温特性は向上する。
【0063】
表2に得られた結果を示す。表2で、常温特性1は800℃熱処理を施した鋼板の引張試験、常温特性2は800℃熱処理+550℃熱処理を施した鋼板の引張試験、450℃特性1は常温特性2の状態の試験片に450℃でおこなった引張試験を意味する。
【0064】
【表2】
【0065】
表2より明らかなように本発明が規定する条件を満足する鋼を用いた試験番号1〜14ではいずれも常温でのTSが600〜800MPaの範囲の高強度を有し、かつその伸びが20%以上であって良好な加工性を備えている。さらにいずれの鋼共にクリープ伸びが0.1%未満であり、良好な450℃での耐ばねへたり性を示す。
【0066】
他方試験番号15は鋼の化学組成でP、Mo、V、Wいずれも本発明が規定する範囲を外れているため、試験番号16は鋼のV含有量が過剰であっため、いずれも450℃強度が低下し、試験番号18は鋼のGPが15%に満たなかったために550℃歪み取焼鈍で軟化が進行し450℃の強度が低下し、いずれもクリープ伸びが0.1%を超え、耐ばねへたり性が劣った。また試験番号17は鋼のGPが50%を超えていたために常温特性1でTSが800MPaを超え、伸びが20%未満であり、加工性が劣よくなかった。
【0067】
試験番号19では鋼のC含有量が低すぎたために高強度化および高温での耐ばねへたり性が不足し、試験番号20では鋼のC含有量が過剰であったために加工性が十分ではなく、試験番号21では鋼のCr含有量が不足したために熱膨張率が小さくならず、試験番号22では鋼のCr含有量が過剰であったために強度が低くなりクリープ伸びが大きかった。
【0068】
(実施例2)
表3に示す化学組成を有する2種類の鋼Xおよび鋼YをAOD法により溶製し、連続鋳造して厚さ:200mm、幅:1030mmで質量が約15トンのスラブをそれぞれ5本ずつ鋳造し、これらのスラブを1180℃または1210℃に加熱し、仕上温度を860〜940℃の範囲とする熱間圧延を施し、加速冷却をしないで空冷し、660〜730℃でコイル状に巻取り、厚さ:5mmの熱延板とした。これらの熱延板を連続式焼鈍酸洗ラインにより処理する方法か、または箱型焼鈍炉によるバッチ焼鈍を施した後別ラインで酸洗する方法により焼鈍と酸洗を施した。
【0069】
【表3】
【0070】
熱延板焼鈍を連続焼鈍で施す場合の条件としては在炉時間を5分間とし、均熱帯出口での温度が800℃となるよう設定した。バッチ焼鈍条件としては3段積みの箱型焼鈍炉の台座上にコイルを積み上げ、台座の温度(最下段コイルの下面の温度)が760℃に到達してから7時間均熱するパターンにて焼鈍をおこなった。酸洗は連続式焼鈍酸洗ラインにてベンダー、ショットブラストによる機械的デスケーリングおよび硫酸、硝弗酸の組み合わせによる化学的デスケーリングにより酸洗した。バッチ焼鈍を施した鋼帯については焼鈍炉に点火していない連続式焼鈍酸洗ラインを用いて酸洗のみをおこなった。
【0071】
これらの酸洗鋼板から得た試験片の引張試験特性とクリープ試験特性を実施例1に記載したのと同様の条件で調査した。図1は得られたクリープ試験時の応力−歪み曲線の例を示すグラフである。
【0072】
表4に熱延条件と得られた特性値を示す。試験片採取位置は鋼板幅方向中央部であり、表4で部位の欄の符号Tは熱延鋼板の圧延先端部(バッチ焼鈍時のコイルに巻いた状態ではコイルの最内周端)、符号Bは熱延鋼板の圧延終端部(バッチ焼鈍時のコイルに巻いた状態ではコイルの最外周端)を意味する。
【0073】
【表4】
【0074】
表4の試験番号31および32の結果から明らかなように、本発明が規定する条件範囲内の化学組成を有する鋼Xでは連続焼鈍された熱延鋼板のいずれの部位でも常温特性1で20%以上の伸びを示すとともにクリープ伸びが0.1%以下であり、良好な加工性と耐ばねへたり性を示した。他方試験番号33、34に示すように、鋼の強化元素の含有量が本発明が規定する条件を満たさなかった鋼Yはクリープ伸びが0.1%を超えており、よくなかった。焼鈍工程をバッチ焼鈍とした試験番号35および36ではコイル内周と外周における強度と伸びの差が大きく、クリープ伸びも0.2%を超えて大きかった。
【0075】
【発明の効果】
本発明のステンレス鋼は、高温における耐ばねへたり性と優れた加工性を備えており、特性値の変動も少なく、安価に製造できる。従って高精細テレビのフレーム用部材として極めて好適であるうえ、フレーム部材の薄肉化も可能である等、産業上の効果が大きい。
【図面の簡単な説明】
【図1】クリープ試験における応力−歪み曲線の一例を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ferritic stainless steel material excellent in spring sag resistance and workability at a high temperature and suitable for a mask frame such as a color television cathode ray tube and a method for producing the same.
[0002]
[Prior art]
In a cathode ray tube such as a color television, a metal spring having a welded structure called a frame is used for the purpose of applying tension to a mask in the cathode ray tube. This frame is subjected to plastic deformation such as press working, roll forming, pultrusion molding, and the like on a stainless steel plate or stainless steel strip, and then subjected to strain relief annealing that is heated to around 600 ° C., and is assembled by welding. Thereafter, a mask is attached to the frame, and a heat treatment at a high temperature up to 500 ° C. is performed.
[0003]
As a steel material for a frame, first, it is important to have workability necessary for performing the above-described forming with high accuracy. Further, when the mask is attached to the frame, bending stress in the inner direction is applied to the frame, and the repulsive force of the frame acts on the mask to apply tension to the mask. In order to eliminate image shaking and blurring due to the cathode ray tube, it is important that there is little fluctuation in the tension applied to the mask. To achieve this, the frame does not deform even when heat treatment is performed under the bending stress. Desired. In other words, the steel material for the frame is required to have excellent spring sag resistance at a high temperature.
[0004]
Conventionally, SUS403 steel or SUS410S steel has been used as the frame stainless steel. The crystal structure of these steels is an austenite single-phase structure or a two-phase structure composed of austenite and ferrite in the normal hot rolling temperature range, but mainly composed of martensite, ferrite and carbide when cooled after hot rolling. Has mixed tissue. Steel sheets for frame use are softened by subjecting the steel sheets wound in a coil shape to batch annealing that maintains a ferrite region temperature for several hours or more in a box annealing furnace, transforming the mixed structure into a ferrite phase and relatively large precipitated carbides. Then, it is manufactured by pickling treatment. The softening annealing requires a soaking time of a certain level or more, so it is difficult for the continuous annealing method with a short annealing time.
[0005]
These steels contain about 12% by mass of Cr (hereinafter, “%” indicating the chemical composition means “% by mass”). Due to the effect of reducing the thermal expansion due to the inclusion of Cr, these steels 10-11x10 near room temperature -6 The coefficient of thermal expansion of lead glass used for the front glass of CRT (9-10x10) -6 / K). Further, these steels are martensitic, have a relatively high high-temperature strength, and have good spring sag resistance.
[0006]
Spring sag resistance at high temperatures can be judged by the creep elongation observed when a creep test is performed at a constant temperature and a constant stress for a certain time. In the case of a CRT mask frame, spring sag resistance is required such that creep elongation is small under a stress of about 100 to 300 MPa at a temperature of about 400 to 500 ° C. for about 30 minutes to 2 hours.
[0007]
In recent years, with the enlargement of televisions and the expansion of cathode ray tube applications, further improvement in spring sag resistance at high temperatures and cost reduction have been demanded. In order to meet such a demand, a steel plate for a frame based on a low alloy steel in which the content of alloy elements such as Cr is limited to a low level and a manufacturing method thereof are disclosed.
[0008]
For example, JP-A-8-67954 contains C: 0.03 to 0.25%, Mn: 0.05 to 1.5%, Mo: 0.01 to 1.0%, and 2% One or more of the group consisting of the following Cu, 2% or less Ni, 3% or less Cr, 1% or less W, 0.0003 to 0.003% B, and / or 0. A steel plate for a frame is disclosed that contains one or more of the group consisting of 4% or less of Ti, 0.4% or less of Nb, and 0.4% or less of V. The steel sheet is cheaper than conventional stainless steel and may have improved spring sag resistance, but its thermal expansion coefficient is 11 to 14 × 10. -6 / K, which has a problem when used for a high-definition cathode ray tube.
[0009]
Japanese Patent Application Laid-Open No. 9-249942 discloses an aperture using a duplex stainless steel material containing C: 0.08% or less and Cr: 10.0-18.0% and comprising a ferrite phase and a martensite phase. Aperture frame using a stainless steel material having a double phase structure with Hv of 160 to 250 after heating and holding the frame and the steel material having the above chemical composition at Ac1 point + 100 ° C. to 1200 ° C. Is disclosed.
[0010]
However, the steel for frames disclosed in the above publication retains high strength by introducing hard martensite, and when it is intended to obtain a high strength frame after heat treatment, its formability is low. This is not always sufficient, and there is a problem that it is difficult to accurately process the desired shape.
[0011]
As described above, the techniques disclosed so far do not disclose a steel material for a frame that has good workability and spring sag resistance that is superior to that of the prior art and that can be manufactured at low cost.
[0012]
[Problems to be solved by the invention]
When ferritic stainless steel is used for the frame, it is necessary to reduce the design stress due to restrictions on spring sag resistance at high temperatures, and there is a problem that the thickness of the frame material is large and the mass is excessive. . On the other hand, martensitic stainless steel may be used in a quenched state with high strength in order to enhance spring resistance, but it is difficult to process into a frame because of its high strength and low elongation.
[0013]
As described above, the hot rolled steel strip of SUS403 steel or SUS410S steel that has been conventionally used as a stainless steel for frames is subjected to batch annealing in a box annealing furnace after hot rolling. In batch annealing, the coil is heated from the outer periphery, but a stainless steel hot rolled coil in normal industrial production has a unit weight of around 10 to 20 tons, and its heat capacity is large and the thermal conductivity of steel is also small. It is difficult to uniformly heat the whole.
[0014]
For this reason, the stainless steel sheet annealed by the above-described method has a problem that variations in mechanical property values such as strength and elongation are increased as compared with ferritic stainless steel produced by a continuous annealing process. For example, the difference between the maximum and minimum tensile strengths of several tens of coils measured randomly without selecting the inner and outer circumferences of the coil may be about 100 MPa. If the strength fluctuation is large in the coil, there is a problem that the dimensional accuracy after processing is deteriorated and the spring sag resistance at high temperature is also adversely affected. Naturally, its productivity is not good either.
[0015]
Further, the steel plate for a frame disclosed in JP-A-8-67954 is cheaper than conventional stainless steel and may have improved spring sag resistance, but its thermal expansion coefficient is 11 to 14 × 10. -6 / K, which has a problem when used for a high-definition cathode ray tube.
[0016]
The stainless steel material for a frame having a multiphase structure disclosed in Japanese Patent Application Laid-Open No. 9-249742 holds high strength by introducing hard martensite, and attempts to obtain a high strength frame after heat treatment. In this case, there is a problem that the moldability is not always sufficient and it is difficult to accurately process the desired shape.
[0017]
An object of the present invention is to solve the above-mentioned problems, and to provide a steel material for a frame which can be manufactured at a low cost, and has a good workability and a spring sag resistance superior to those of the prior art. is there.
[0018]
[Means for Solving the Problems]
As a result of repeating various studies to solve the above problems, the present inventors have obtained the following knowledge.
[0019]
(A) In order to easily process the frame, it is necessary that the tensile strength in a tensile test at room temperature is 800 MPa or less and the elongation is 20% or more. Moreover, in order to suppress the deformation of the frame in the process of heating to around 450 ° C. after the frame is formed and assembled, the frame is heated at around 450 ° C. under the condition that a tensile stress of 296 MPa is applied at 450 ° C. for 1 hour. It is necessary to provide high temperature spring sag resistance with a creep elongation of 0.1% or less. This is because the amount of elastic deformation when a stress of 296 MPa is applied is in the range of 0.15 to 0.2%, and the purpose as a spring is achieved by making the creep elongation smaller than this. .
[0020]
In order to obtain a steel having a stable and good workability, a ferritic stainless steel capable of continuous annealing, which can obtain a uniform workability, is preferable. In order to increase the high temperature strength, it is preferable to contain an element that is a ferrite stabilizing element and increases the high temperature strength and the high temperature creep strength.
[0021]
(B) The ratio (%) of the martensite phase in the cast structure is expressed by a GP value calculated from the contents of the austenite forming element and the ferrite forming element in the chemical composition of steel (however, expressed in mass%) by the following formula. be able to.
GP = 700C + 800N + 20Ni + 10 (Cu + Mn) -6.2Cr-9.2Si-9.3Mo-4.5W-14V-74.4Ti-37.2Al + 63.2
GP = 0 means a structure composed only of a ferrite phase. If the content of each alloy element is adjusted so that the GP is in the range of 15% or more and 50% or less and the annealing temperature is limited to 850 ° C. or less, a hard martensite phase does not occur after annealing. Moreover, even if it anneals by the continuous annealing system which is heating for a short time, it becomes possible to soften a hot rolled steel plate and to make the crystal structure uniform.
[0022]
(C) In order to increase the high-temperature creep strength, it is effective to contain one or more of Mo, V, W and P in a group. Among these elements, V tends to increase the high temperature creep elongation when the content is excessive, and if P is excessively contained, the weldability and toughness are impaired, so the content of these elements is limited to a low level. There is a need to. Therefore, Mo and W are easy elements to handle from the viewpoint of ensuring performance.
[0023]
Nb and Ti have the same improvement effect, but the effect is saturated with a very small content, and when these elements are contained excessively, solid solution C and solid solution N are stable carbonitrides. In contrast, the strength decreases. Therefore, the content of these elements should be limited to a narrow range.
[0024]
The present invention has been completed on the basis of these findings, and the gist of the present invention is the ferritic stainless steel for frames excellent in spring sag resistance and workability at high temperatures described in (1) below and (2 ) In its production method.
[0025]
(1) By mass%: C: 0.020 to 0.08%, Si: 2.0% or less, Mn: 1.0% or less, Cr: 10.5 to 16.0%, Cu: 0.1 -1.0%, Ni: 0.1 ~ 0.50%, Ti: 0.003 -0.03%, Nb: 0.01 ~ 0.05%, Al: 0.001 -0.05%, and P: 0.040-0.10%, Mo: 0.02-1.0%, V: 0.02-0.30%, and W: 0.02-1.0 Containing one or more selected from the group consisting of: The balance consists of Fe and inevitable impurities, And it was equipped with the chemical composition adjusted so that GP represented by a following formula might be 15 to 50% of range. CRT mask Ferritic stainless steel for frame:
GP = 700C + 800N + 20Ni + 10 (Cu + Mn) -6.2Cr-9.2Si-9.3Mo-4.5W-14V-74.4Ti-37.2Al + 63.2
However, the value of each element in the above formula represents mass%.
[0026]
(2) The steel slab having the chemical composition described in (1) is hot-rolled, and the obtained hot-rolled steel is subjected to continuous annealing at 850 ° C. or less. CRT mask Manufacturing method of ferritic stainless steel for frame.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described in detail.
[0028]
Chemical composition of steel;
C: There exists an effect | action which raises the strength of steel and improves the spring sag resistance at a high temperature, and in order to obtain these effects, 0.020% or more is contained. Preferably it is 0.04% or more. When C is contained exceeding 0.08%, the crystal structure of the steel becomes a crystal structure mainly composed of martensite, and the workability of the steel is impaired. In order to avoid this, the upper limit of the C content is 0.08%.
[0029]
Si: A basic element for satisfactorily deoxidizing molten steel. It is desirable to contain 0.20% or more in order to ensure the effect. Since the deoxidizing action of the molten steel can also be obtained by containing Al, when deoxidizing with Al, it is not always necessary to contain 0.20% or more of Si.
[0030]
Si has an action of increasing the strength of steel and is a ferrite stabilizing element, so it may be contained for the purpose of obtaining these effects. In that case, it is desirable to contain 0.5% or more. However, if Si is contained exceeding 2.0%, the toughness is impaired, so the content is made 2.0% or less. Preferably it is 1.5% or less.
[0031]
Mn: Basic element for satisfactorily deoxidizing molten steel, and it is preferable to contain 0.1% or more in order to ensure the effect. However, Mn is an austenite stabilizing element, and if Mn is contained excessively, the steel becomes hard and the workability is impaired. In order to avoid this, the Mn content is 1.0% or less. Preferably it is 0.6% or less.
[0032]
Cr: The main element for improving the corrosion resistance and heat resistance of steel, as well as reducing the coefficient of thermal expansion of the steel and suppressing the image blur due to the heat of the cathode ray tube. It is an element. In order to ensure these performances, Cr is contained by 10.5% or more.
[0033]
However, when Cr is excessively contained, there is a problem that Cr carbide is stabilized, the solubility of C is lowered, and the strength of the steel is lowered. Also, a large amount of Cr is disadvantageous from the viewpoint of cost. Therefore, the Cr content is 16.0% or less.
[0034]
Cu: Since there exists an effect | action which raises the intensity | strength of steel, you may make it contain in order to raise the intensity | strength of steel. In that case, it is desirable to contain 0.1% or more in order to obtain a desired effect. However, if Cu is excessively contained, the steel becomes too hard and the workability is impaired. In order to avoid this, even when Cu is contained, the upper limit is made 1.0%.
[0035]
Ni: Since there exists an effect | action which improves the toughness of steel, you may make it contain in order to improve the toughness of steel. In that case, it is desirable to contain 0.1% or more in order to obtain a desired effect. Ni is a typical austenite stabilizing element, and if Ni is excessively contained, the transformation temperature becomes low, the annealing temperature has to be excessively lowered, and the recrystallization during continuous annealing is insufficient and the steel is processed. There is a risk that it may not be possible to secure the sex. In order to avoid such inconvenience, the Ni content is set to 0.50% or less.
[0036]
Ti: N is an element having a strong affinity for N or C, and it is possible to increase the strength of the steel by forming fine carbides or nitrides and to refine the crystal structure. When Ti is contained for the above purpose, the content is preferably 0.003% or more. However, if the Ti content exceeds 0.03%, TiN becomes coarse and the toughness is lowered. Therefore, the content is 0.03% or less.
[0037]
Nb: Like Ti, it is an element having a strong affinity for C and N, and additionally has the effect of increasing the strength of steel. Therefore, Nb may be contained for the purpose of increasing the strength of the steel. In that case, the Nb content for obtaining the above effect is 0.01% or more. If the Nb content exceeds 0.05%, the strength of the steel decreases, so the upper limit when Nb is contained is set to 0.05%.
[0038]
Al: Although it may be contained as a deoxidizer for molten steel, the effect is saturated at about 0.05%, so even if it is contained, the upper limit is made 0.05%.
[0039]
Mo, V, W and P: These elements have the effect of increasing the high temperature strength and spring sag resistance of steel. In the present invention, an appropriate amount of one or more members selected from the group consisting of Mo, V, W and P is contained in order to increase the high-temperature strength and spring resistance of the steel.
[0040]
In steels containing both P and Mo, these elements precipitate as precipitates made of FeMoP during strain relief annealing at about 550 ° C., and have the effect of significantly increasing the strength of the steel. In order to increase the strength of the steel by containing P, it is preferable to contain 0.040% or more of P. However, if P is contained in an amount exceeding 0.10%, weldability is impaired, so the upper limit when P is contained is 0.10%.
[0041]
Mo increases the high-temperature strength and spring sag resistance of steel by forming carbides, but because the tendency of carbides to form is weak compared to V, Nb, and Ti, it is difficult to reduce the strength even if excessively contained. Have Mo also has the property of generating a compound with P and increasing the strength. In order to ensure these effects by containing Mo, 0.02% or more of Mo is contained. Preferably it is 0.1% or more. Since Mo is expensive, the upper limit in the case of containing it from a viewpoint of cost control shall be 1.0%.
[0042]
V increases the high-temperature strength and spring sag resistance of steel by forming carbides, but these effects can be obtained by adding 0.02% or more. Therefore, when V is contained, the content is made 0.02% or more. V has a stronger tendency to form carbides than Mo, so if it is contained in excess of 0.30%, VN, VC and the like are stably precipitated and the strength of the steel is reduced. Therefore, the upper limit of V content is 0.30%.
[0043]
The effect of strengthening steel by V depends on the amount of C in the steel and the manufacturing method, and if VC or the like is precipitated too much, the strength may decrease. To avoid this, the V content should be adjusted according to the C content. For example, when C is 0.08%, V is 0.10% or less, and when C is 0.06%. In the case of V: 0.20% or less and C: 0.04%, V: 0.30% or less is preferable.
[0044]
W has an action of increasing the high temperature strength in a state of solid solution in steel, and in order to exert the effect, it is preferable to contain 0.02% or more. Preferably it is 0.1% or more. However, the above-mentioned action is saturated when the W content exceeds 1.0%, and adding more than that only increases the cost, so the upper limit for inclusion is 1.0%.
[0045]
GP (%): GP calculated from the content of the austenite forming element and ferrite forming element in the chemical composition of the steel (in terms of mass%) by the following formula is martensite in a crystal structure obtained by casting molten steel It is a parameter | index showing the ratio (volume ratio) of a phase.
GP = 700C + 800N + 20Ni + 10 (Cu + Mn) -6.2Cr-9.2Si-9.3Mo-4.5W-14V-74.4Ti-37.2Al + 63.2
Steel whose chemical composition is adjusted so that the GP is 50% or less has a crystal structure mainly composed of a ferrite phase and precipitates and has good workability even when subjected to continuous annealing after hot rolling. The provided steel is obtained.
[0046]
Steel with a GP of over 50% has high hardenability, so if the steel sheet is annealed by the continuous annealing method, the martensite phase remains in the crystal structure after annealing or softens even in the case of a structure consisting of a ferrite phase and carbide. Inconveniences such as insufficient.
[0047]
Therefore, it is necessary to anneal steel with a GP exceeding 50% by a batch annealing method using a conventional box-type annealing furnace, and the strength and workability of the steel greatly vary. There is also a problem that productivity is low and manufacturing cost is high. In order to avoid these disadvantages, the chemical composition is adjusted so that the GP is 50% or less. Preferably it is 40% or less.
[0048]
On the other hand, when the GP is less than 15%, the ratio of the martensite phase in the hot-rolled state becomes excessively small, the softening during annealing proceeds extremely rapidly, and the strength of the steel is significantly reduced. It becomes difficult to ensure spring settling. In order to avoid such inconvenience, the GP is set to 15% or more. Preferably it is 25% or more.
The GP calculation formula does not include terms for P, S, and Nb. The reason for this is that even if these elements are contained in the steel of the present invention, the amount thereof is small and the influence thereof can be ignored.
[0049]
The steel of the present invention may contain one or more members selected from the group consisting of B, Ca, Mg, La, Ce and Y for the purpose of improving hot workability. Preferred contents are 0.0005% or more and 0.010% or less for B, 0.0005% or more and 0.005% or less for Ca and Mg, and 0.002% for La, Ce and Y, respectively. As mentioned above, it is 0.05 %% or less.
[0050]
Other than the above are Fe and inevitable impurities. Among the unavoidable impurities, S has an effect of reducing hot workability and toughness, so the content is desirably 0.03% or less. N is usually contained in stainless steel in an amount of about 0.01 to 0.03%, and has the effect of increasing the high temperature strength of the steel by reacting with Cr, but N has the effect of impairing the toughness of the steel. In order to avoid this, the N content is preferably 0.05% or less. Since oxygen impairs the toughness of the steel, it is desirable to deoxidize with Si or Al to make the O content 0.008% or less.
[0051]
Since the steel of the present invention has the above-described spring sag resistance and good workability at a high temperature as described above, the form is particularly limited. It is not a thing. The steel plate may be a hot-rolled steel plate or a cold-rolled steel plate obtained by cold rolling and annealing.
[0052]
A preferred method for producing the steel of the present invention will be described below using a steel plate as an example. Steel having a predetermined chemical composition is melted by a known method and made into a slab by a known method. The molten steel may be directly used as a thin slab. Subsequently, it is hot rolled by a known method to obtain a hot rolled sheet. A thin steel plate may be directly formed from molten steel by a known method.
[0053]
When the form of the final product is a hot-rolled steel sheet, the hot-rolled sheet obtained by the above method is subjected to annealing treatment and pickling treatment. In order to perform these treatments with high productivity and low production costs, it is preferable to use a known continuous annealing pickling line.
[0054]
During the continuous annealing, the soaking temperature of the steel sheet is set to 850 ° C. or lower. The steel used in the present invention has a limited chemical composition so that the GP value is in the range of 15 to 50% so that the annealing treatment can be performed by a continuous annealing method. In addition, the content of the austenite stabilizing element is reduced as much as possible so that the boundary temperature (Ar1 transformation temperature) between the ferrite phase and the ferrite + austenite two-phase mixed phase does not become too low. Therefore, a ferritic stainless steel plate with good workability is produced by continuous annealing at around 800 ° C. When annealing at a temperature exceeding 850 ° C., the martensite phase is mixed in part of the crystal structure of the steel, the strength of the steel exceeds 800 MPa, and the elongation is less than 20%, so the workability is impaired. It is. The soaking temperature is preferably 700 ° C. or higher.
[0055]
When using steel as a cold-rolled steel sheet, the above-described annealing and pickling hot-rolled steel sheet may be cold-rolled by a known method and continuously annealed at 850 ° C. or lower. Hot-rolled sheet annealing of the cold-rolled base material is optional.
[0056]
Even if the steel plate after annealing is subjected to a known treatment such as skin pass rolling or tension leveling, there is no problem.
[0057]
【Example】
(Example 1)
Steel having the chemical composition shown in Table 1 was melted in a laboratory in a vacuum melting furnace and cast into a steel ingot having a mass of 17 kg or 50 kg.
[0058]
[Table 1]
[0059]
These steel ingots were hot forged to form steel pieces having a thickness of 50 mm, a width of 100 mm, and a length of 150 mm. This steel slab is heated to a temperature range of 1100 to 1200 ° C., hot rolled to a thickness of 6.0 mm so that the hot rolling finish temperature is in the range of 800 to 950 ° C., and subsequently about 300 ° C./min. It cooled to 600 degreeC or 750 degreeC with the cooling rate, and it inserted in the heating furnace hold | maintained at the temperature as a winding simulation process, and cooled gradually to room temperature with the cooling rate of 40 degreeC / hour. These hot-rolled sheets were heated to 800 ° C. and held for 10 minutes and then air-cooled (800 ° C. heat treatment) to obtain hot-rolled annealed steel sheets. A tensile test piece having a thickness of 4.5 mm, a parallel part shape of 6 mm in width and a length of 50 mm in the direction perpendicular to the rolling direction of the obtained hot-rolled steel sheet was cut out, and a tensile test at normal temperature (normal temperature tensile test) was performed. I did it.
[0060]
Further, the 800 ° C. heat-treated steel sheet is heated to 550 ° C. and held for 30 minutes, and then air-cooled (550 ° C. heat-treated material), and a tensile test piece is collected in the same manner as the 800 ° C. heat-treated material, A test and a high-temperature tensile test at 450 ° C. were performed.
[0061]
The tensile test uses an elongation strain gauge with a distance between the gauge points of 30 mm, and the tensile test speed is 0.09 mm / min. Between the grades until the steel yields. 75 mm / min. The yield point (YS) was determined from the 0.2% proof stress, and the elongation (El) was measured for the total elongation with respect to the distance between the scores of 30 mm.
[0062]
Further, a creep test at 450 ° C. was performed using a test piece collected from the heat-treated material at 550 ° C. In the creep test, an elongation strain gauge with a gauge length of 30 mm is attached to a test piece, heated to 450 ° C. and soaked at that temperature, and then subjected to a stress of 294 MPa and held for 1 hour, and the stress has a constant value of 294 MPa. Increased strain was measured as indicated. In addition, since actual steel materials for frames are subjected to plastic working such as press forming, roll forming, pultrusion, etc., and heat treatment at around 550 ° C. is applied, the work hardening and age hardening are combined and the data shown in this example is combined. High temperature characteristics are improved.
[0063]
Table 2 shows the results obtained. In Table 2, normal temperature characteristic 1 is a tensile test of a steel plate subjected to 800 ° C. heat treatment, normal temperature characteristic 2 is a tensile test of a steel plate subjected to 800 ° C. heat treatment + 550 ° C. heat treatment, and 450 ° C. characteristic 1 is a test piece in a state of normal temperature characteristic 2 Means a tensile test conducted at 450 ° C.
[0064]
[Table 2]
[0065]
As apparent from Table 2, in Test Nos. 1 to 14 using steel satisfying the conditions specified by the present invention, the TS at room temperature has a high strength in the range of 600 to 800 MPa, and the elongation is 20 % Or more and good workability. Furthermore, both steels have a creep elongation of less than 0.1%, and exhibit good spring sag resistance at 450 ° C.
[0066]
On the other hand, since test number 15 is the chemical composition of steel and all of P, Mo, V, and W are outside the range specified by the present invention, test number 16 was excessive because the V content of the steel was excessive. The strength decreased, test number 18 was less than 15% of the GP of the steel, so softening progressed by 550 ° C. strain relief annealing, the strength at 450 ° C. decreased, both creep elongation exceeded 0.1%, Spring sag resistance was poor. In Test No. 17, the GP of the steel exceeded 50%, so that the normal temperature characteristic 1, TS exceeded 800 MPa, the elongation was less than 20%, and the workability was not inferior.
[0067]
In Test No. 19, the C content of the steel was too low, resulting in insufficient strength and spring sag resistance at high temperatures. In Test No. 20, the C content of the steel was excessive, so workability was not sufficient. In Test No. 21, the coefficient of thermal expansion was not reduced because the Cr content of the steel was insufficient. In Test No. 22, the Cr content of the steel was excessive, so the strength was low and the creep elongation was large.
[0068]
(Example 2)
Two types of steel X and steel Y having the chemical composition shown in Table 3 are melted by the AOD method and continuously cast to cast five slabs each having a thickness of 200 mm, a width of 1030 mm, and a mass of about 15 tons. Then, these slabs are heated to 1180 ° C. or 1210 ° C., subjected to hot rolling with a finishing temperature in the range of 860 to 940 ° C., air cooled without accelerated cooling, and wound into a coil at 660 to 730 ° C. Thickness: 5 mm hot rolled sheet. Annealing and pickling were performed by a method of treating these hot-rolled sheets with a continuous annealing pickling line or a method of performing batch annealing with a box-type annealing furnace and then pickling with another line.
[0069]
[Table 3]
[0070]
The conditions for performing hot-rolled sheet annealing by continuous annealing were set so that the in-furnace time was 5 minutes and the temperature at the soaking zone was 800 ° C. As a batch annealing condition, coils are stacked on a pedestal of a three-stage box-type annealing furnace, and annealing is performed with a pattern in which the temperature of the pedestal (the temperature of the bottom surface of the lowermost coil) reaches 760 ° C and soaks for 7 hours. I did it. The pickling was performed in a continuous annealing pickling line by mechanical descaling by bender and shot blasting and chemical descaling by a combination of sulfuric acid and nitric hydrofluoric acid. About the steel strip which gave batch annealing, it pickled only using the continuous annealing pickling line which has not ignited the annealing furnace.
[0071]
The tensile test characteristics and creep test characteristics of the test pieces obtained from these pickled steel sheets were investigated under the same conditions as described in Example 1. FIG. 1 is a graph showing an example of the obtained stress-strain curve during the creep test.
[0072]
Table 4 shows hot rolling conditions and obtained characteristic values. The specimen sampling position is the central part in the width direction of the steel sheet, and the symbol T in the column of the part in Table 4 is the rolling tip of the hot-rolled steel sheet (the innermost edge of the coil when wound around the coil during batch annealing). B means the rolling end portion of the hot-rolled steel sheet (the outermost peripheral end of the coil in the state of being wound around the coil during batch annealing).
[0073]
[Table 4]
[0074]
As is apparent from the results of Test Nos. 31 and 32 in Table 4, Steel X having a chemical composition within the condition range defined by the present invention has 20% at room temperature characteristics 1 at any part of the continuously annealed hot-rolled steel sheet. In addition to the above elongation, the creep elongation was 0.1% or less, indicating good workability and spring sag resistance. On the other hand, as shown in Test Nos. 33 and 34, the steel Y in which the content of the strengthening element in the steel did not satisfy the conditions specified by the present invention was not good because the creep elongation exceeded 0.1%. In the test numbers 35 and 36 in which the annealing process was batch annealing, the difference in strength and elongation between the inner and outer circumferences of the coil was large, and the creep elongation was also large exceeding 0.2%.
[0075]
【The invention's effect】
The stainless steel of the present invention has a spring sag resistance and excellent workability at high temperatures, has little fluctuation in characteristic values, and can be manufactured at low cost. Therefore, it is very suitable as a frame member for a high-definition television, and the frame member can be thinned.
[Brief description of the drawings]
FIG. 1 is a graph showing an example of a stress-strain curve in a creep test.
Claims (2)
GP=700C+800N+20Ni+10(Cu+Mn)−6.2Cr−9.2Si−9.3Mo− 4.5W−14V−74.4Ti−37.2Al+63.2
ただし、上記式の各元素の値は質量%を表す。C: 0.020 to 0.08% by mass, Si: 2.0% or less, Mn: 1.0% or less, Cr: 10.5 to 16.0%, Cu: 0.1 to 1.0 %, Ni: 0.1 to 0.50%, Ti: 0.003 to 0.03%, Nb: 0.01 to 0.05%, Al: 0.001 to 0.05%, and P: 0 One selected from the group consisting of 0.040 to 0.10%, Mo: 0.02 to 1.0%, V: 0.02 to 0.30%, and W: 0.02 to 1.0% Alternatively , it contains two or more types, the balance is Fe and inevitable impurities, and the chemical composition is adjusted so that GP represented by the following formula is in a range of 15 to 50%. Ferritic stainless steel material for CRT mask frames:
GP = 700C + 800N + 20Ni + 10 (Cu + Mn) -6.2Cr-9.2Si-9.3Mo-4.5W-14V-74.4Ti-37.2Al + 63.2
However, the value of each element in the above formula represents mass%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36805599A JP4342061B2 (en) | 1999-12-24 | 1999-12-24 | Ferritic stainless steel material for frame and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36805599A JP4342061B2 (en) | 1999-12-24 | 1999-12-24 | Ferritic stainless steel material for frame and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001181801A JP2001181801A (en) | 2001-07-03 |
JP4342061B2 true JP4342061B2 (en) | 2009-10-14 |
Family
ID=18490871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP36805599A Expired - Lifetime JP4342061B2 (en) | 1999-12-24 | 1999-12-24 | Ferritic stainless steel material for frame and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4342061B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1528995B1 (en) * | 2002-08-16 | 2006-07-05 | Stahlwerk Ergste Westig GmbH | Spring element made from a ferritic chrome steel |
WO2019195998A1 (en) * | 2018-04-10 | 2019-10-17 | 南京恒固五金制品有限公司 | Surface treatment method for imitation copper stainless steel nails |
CN113025929A (en) * | 2021-03-09 | 2021-06-25 | 江苏盛玛特新材料科技有限公司 | Manufacturing method of W fiber reinforced TiNi alloy tube with high X-ray visibility |
-
1999
- 1999-12-24 JP JP36805599A patent/JP4342061B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001181801A (en) | 2001-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4812176A (en) | Process for the production of a strip of a chromium stainless steel of a duplex structure having high strength and elongation as well as reduced plane antisotropy | |
EP3473742A1 (en) | Ultrahigh-strength high-ductility steel sheet having excellent yield strength, and manufacturing method therefor | |
KR20120008033A (en) | Cold-rolled steel sheet having excellent slow-aging property and high curability in baking, and method for producing same | |
CN115087755B (en) | Hot stamping formed product | |
CN108707823A (en) | Ultrahigh-strength steel plates and preparation method thereof and unimach slab products | |
JP4910898B2 (en) | High strength steel plate and manufacturing method thereof | |
CN107058866B (en) | Ferrito-martensite cold-rolled biphase steel and preparation method thereof | |
JP4650006B2 (en) | High carbon hot-rolled steel sheet excellent in ductility and stretch flangeability and method for producing the same | |
CN110343970A (en) | A kind of hot rolling high strength and ductility medium managese steel and preparation method thereof having lower Mn content | |
CN1978689A (en) | Low-carbon hot-rolled deep-drawing steel sheet | |
CN111032898B (en) | Ferritic stainless steel hot-rolled annealed steel sheet and method for producing same | |
JP4214671B2 (en) | Ferritic Cr-containing cold-rolled steel sheet excellent in ductility, workability and ridging resistance and method for producing the same | |
JP4342061B2 (en) | Ferritic stainless steel material for frame and manufacturing method thereof | |
JP3422864B2 (en) | Stainless steel with excellent workability and method for producing the same | |
JP3551878B2 (en) | High-ductility, high-hole-expansion high-tensile steel sheet and method for producing the same | |
JP3622680B2 (en) | Ferritic stainless steel continuously annealed steel for mask frame of cathode ray tube and manufacturing method thereof | |
JP2001207244A (en) | Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method | |
CN117280063A (en) | Steel sheet for hot stamping and hot stamping molded article | |
JPH06179922A (en) | Production of high tensile strength steel sheet for deep drawing | |
JP5076691B2 (en) | Manufacturing method of high-strength cold-rolled steel sheet | |
JP2022515107A (en) | High-strength steel plate with excellent ductility and workability, and its manufacturing method | |
JP3362315B2 (en) | Method for producing ultrafine wire of austenitic stainless steel and ultrafine wire | |
JPH1112691A (en) | Ferritic stainless cold rolled steel sheet having excellent formability and its manufacture | |
JP3023014B2 (en) | Cold rolled mild steel sheet for ultra deep drawing | |
JPH0774412B2 (en) | High-strength thin steel sheet excellent in workability and resistance to placement cracking and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20050131 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050304 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051020 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080123 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080212 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080407 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090421 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R155 | Notification before disposition of declining of application |
Free format text: JAPANESE INTERMEDIATE CODE: R155 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090707 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120717 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4342061 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120717 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130717 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |