JP4340855B2 - Manufacturing method of dynamic pressure generating groove - Google Patents

Manufacturing method of dynamic pressure generating groove Download PDF

Info

Publication number
JP4340855B2
JP4340855B2 JP2003116659A JP2003116659A JP4340855B2 JP 4340855 B2 JP4340855 B2 JP 4340855B2 JP 2003116659 A JP2003116659 A JP 2003116659A JP 2003116659 A JP2003116659 A JP 2003116659A JP 4340855 B2 JP4340855 B2 JP 4340855B2
Authority
JP
Japan
Prior art keywords
flange portion
dynamic pressure
shaft member
pressure generating
generating groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003116659A
Other languages
Japanese (ja)
Other versions
JP2004324684A (en
Inventor
康人 友近
武則 小村
高橋  毅
健治 荻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2003116659A priority Critical patent/JP4340855B2/en
Publication of JP2004324684A publication Critical patent/JP2004324684A/en
Application granted granted Critical
Publication of JP4340855B2 publication Critical patent/JP4340855B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、軸にフランジ部を一体的に形成した軸部材と、これら軸部とフランジ部との間に僅かな隙間を設けたスリーブと、より成る動圧軸受において、前記フランジ表面に塑性加工により動圧発生用溝を形成する際の動圧発生用溝の製造方法、特に、引き抜き材を用いた軸部材のフランジ部とスリーブアキシャル面との間の隙間を殆ど均一とすることのできる動圧発生用溝の製造方法に関する。
【0002】
【従来の技術】
動圧軸受として使用される軸部とフランジ部とを一体形成した軸部材は、旋削加工した後、フランジ部表面に形成する動圧発生用溝をプレス等により塑性加工して形成する場合がある。例えば、スピンドルモータには、動圧軸受が使用されることがあるが、この場合、回転軸に形成する円盤状軸受部材の表面の動圧軸受は、プレス加工によって製作される(特許文献1)。また、プレス加工等の塑性変形で動圧発生用溝を加工するとき、フランジ部の内側周囲を外側より一段低く形成し、外側周囲に動圧発生用溝を形成して加工時内側周囲が盛り上がるのを防止する製造方法も提案されている(特許文献2)。
【0003】
【特許文献1】
特開平6−338125
【特許文献2】
特開平8−210345
【0004】
【発明が解決しようとする課題】
プレス加工等の塑性加工で動圧発生用溝を形成する加工方法は、銅合金等の軟質材に対しては有効であるが、ステンレス鋼等のような硬質材でフランジ部の上下面に同一形状を安定的に形成するのは困難である。特に、冷間引き抜き加工材に塑性加工を施して安定的に動圧発生用溝を形成するのは難しい。
即ち、図8に示すように、冷間引き抜き加工材(以下、単に引き抜き材とする)から取り出した軸部2とフランジ部3とより成る軸部材1のフランジ部3の表面3a,3bにプレス加工等の塑性加工を施して動圧発生用溝を形成しても、これら軸部材1とスリーブとで形成された動圧軸受に適切な動圧が得られなくなるという現象があった。その原因は、引き抜き材に残留応力が存在しているため、旋削加工後に設計どおりプレス加工(塑性加工)しても(図9)、動圧発生溝4を形成した後フランジ部3が変形し(図10参照、この逆方向の変形もあり得る)、スリーブ6との間の隙間5が設計どおりの正確な状態でなくなる(図11参照)ことが大きな原因であると考えられる。尚、残留応力が存在する場合、これを除去するため焼鈍による方法も考えられる。しかし、焼鈍によると、材料が柔らかくなりすぎてプレス加工のような塑性加工による動圧発生用溝の形成は不可能である。また、スリーブ内周面やスラスト板等に動圧発生用溝を加工するのは煩雑でコストがかかり、安定的に同一の溝を形成するのは難しい。
【0005】
この発明は、上記する課題に対処するためになされたものであり、引き抜き材を使用し内部に残留応力が存在し、動圧発生用溝を形成するための塑性加工後でも軸部とフランジ部とを一体とした軸部材とスリーブ内周面との間の隙間が意図したとおりの状態となる動圧軸受を得ることのできる動圧発生用溝の製造方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
即ち、この発明は上記する課題を提供するために、請求項1に記載の発明は、軸部とフランジ部とを形成した軸部材と、これら軸部とフランジ部との間に隙間を設けて該軸部材を嵌め入れたスリーブと、で構成される動圧軸受の前記フランジ部の表面に動圧発生用溝を塑性加工により形成する動圧発生用溝の製造方法において、
引き抜き方向の判明している引き抜き材から旋削加工により前記軸部材を形成するに際し、先ず寸法通りの軸部材を引き抜き材の引き抜き方向に沿って軸部を平行にして、軸部やフランジ部を切削加工して取り出し、
前記フランジ部の表面に動圧発生用溝を形成して該フランジ部の軸部の軸方向に直角な方向に対する傾斜角度、或いは、該フランジ部における中心側端部と外周端部との軸方向の位置の差を測定し、次にこの測定値をフィードバックして引き抜き材から軸部材を取り出し、フランジ部に塑性加工を施すことを特徴とするものである。
【0007】
また、請求項2に記載の発明は、前記フランジ部は、内径部から外径部にかけて肉厚が薄くなるように形成したものであることを特徴とするものである。
【0008】
また、請求項3に記載の発明は、前記フランジ部は、内径部から外径部にかけて肉厚が厚くなるように形成したものであることを特徴とするものである。
【0009】
【発明の実施の形態】
以下、本発明の具体的な実施の形態について図面を参照して説明する。
図1は、本発明の第1の実施の形態の動圧発生用溝(以下、動圧溝とする)の製造方法を実施するに際して軸部材を取り出す前の引き抜き材を示す。この場合、引き抜き材Wは、先を細くした穴をもつダイス(工具)を通して素材を引き抜き、その断面積を減少させて製作したものである。この実施の形態では該引き抜き材Wを旋削加工を施して、T字形の軸部材1を取り出す。この軸部材1は、軸部2とフランジ部3とよりなるが、該フランジ部3の両面に、ヘリングボーン形やV字形或いは一部螺旋形の動圧溝をプレス加工(塑性加工)により形成する。
【0010】
前記軸部材1のフランジ部3に動圧溝を形成するに際しては、先ず、図1に示すように、引き抜き材Wの表面に、目安として多数の細かい横線X,X,・・・と、縦線Y,Y,・・・を入れておき、これらの横線X,X,・・や縦線Y,Y,・・に沿って平行に軸部2やフランジ部3を旋削加工して図8に示したのと同様の軸部材1を形成する。これらのX,・・、Y,・・は、後述するように、一旦、旋削加工して軸部材1を取り出しプレス加工(塑性加工)した後、図10に示すように、のフランジ部の傾斜角度α或いは、軸2に対して直角方向と外周端部における高さの差d(フランジ部3における下側面3bの中心側端部3cと外周端部3dとの軸方向の位置の差)を測定し、その数値をフィードバックして改めて旋削加工後プレス加工して正確な軸部材1を取り出すための目安とする。
【0011】
次に、フランジ部3の両面に図9に示すように、プレス加工により動圧溝4,,4を形成した状態の軸部材1を製作する。この場合、前記軸部材1は、元の材料の引き抜き材W内に残留応力が生じているため、当初の図8に示す設計図通りの寸法とはならず、図10に示すように、若干フランジ部3はある程度の角度(α)傾斜した状態となる。従って、予め動圧溝を形成する場合、プレス加工してこのようにフランジ部3がα傾斜することが判っていれば、この傾斜角度αをフィードバックして、図2に示すように、図1においてT字形の軸部材1を取り出すとき、逆方向にこの角度(α)分傾斜した状態で旋削加工してプレス加工すれば、加工後のフランジ部3は、図3(A)に示すように、正確な状態の軸部材1とすることができる。従って、図3(B)に示すように、その表面に動圧溝4を形成したフランジ部3とスリーブ6との間の隙間5は、適正な隙間となる。
【0012】
上記するように、フランジ部3の傾斜角度αは、通常、微小な角度であり、正確な角度が測定できない場合は、軸2に対して直角方向と外周端部における高さの差d(フランジ部3における下側面3bの中心側端部3cと外周端部3dとの軸方向の位置の差)を測定し、その数値をフィードバックしても良い。
【0013】
尚、正確な軸部材1を形成するにあたっては、元の引き抜き材Wの素材の種類(例えば、ステンレス鋼、炭素鋼等)、引き抜き方向及び素材メーカー等が明確になっていなければならない。蓋し、そのような素材情報が明確でないと、引き抜き後の内部の残留応力の状態(大きさや方向)旋削加工時の旋削方向が判らず、その都度、プレス加工後の変形状態を調査して旋削加工とプレス加工を繰り返さなければ正確な加工が出来ないからである。
【0014】
次に、軸部材1に形成されるフランジ部3の上下面に傾斜を設ける場合について説明する。先ず、引き抜き材Wから旋削加工により軸部材1を取り出して、フランジ部3の内径部から外径部(外周端部)にかけて肉厚が薄くなるように形成する場合(第2の実施の形態)について説明する。
引き抜き材Wから旋削加工により軸部材1を取り出して、フランジ部3の内径部から外径部(外周端部)にかけて肉厚が薄くなるように形成する場合、前記軸部材1の上側面3aと下側面3bの肉厚部と上下の外周端部の上下の軸2に対して直角方向に対するそれぞれの高さの差を、図4(A)に示すように、h,hとしてプレス加工すると、該軸部材1の内部には残留応力が生じているため、当初の設計予定通りの(h,h)とはならず、図4(B)に示すように、h1 、h2 で且つh1 <h2 となる。即ち、上側面3aと下側面3bとは内部の残留応力の分布状態が異なっているので同一とはならない。
【0015】
次に、図5(A)に示すように、引き抜き材Wから旋削加工により軸部材1を取り出すとき、上側面3aと下側面3bの肉厚部と外周端部のそれぞれのフランジ部3の上下の軸2に対して直角方向に対する高さの差を、h1 、h2 とし且つh1 >h2 となるようにする。そして、この状態でプレス加工により動圧溝4,4を形成すると、図5(B)に示すように、動圧溝4,4を形成した後のフランジ部3の上側面3aと下側面3bの肉厚部と外周端部のそれぞれの上下の軸2に対する直角方向に対する高さの差は、ほぼ同じh、hとなる。
【0016】
上記するように、プレス加工のような塑性加工をしてみてフランジ部3の上下面3a、3bの端部の軸2に対して直角方向に対する高さの差がh1 、h2 で且つh1 <h2 となることが判れば、図1において、T字形の軸部材1を取り出すとき、これらの高さの差(h1 ,h2 )をフィードバックして、図5(A)に示すよう逆方向に、予め高さの差を設けて旋削加工する。即ち、軸部材1を旋削加工して取り出すとき、上側面3aと下側面3bの肉厚部と外周端部のそれぞれの高さをh1 ,h2 とし且つh1 >h2 とすれば、図5(B)に示すように、プレス加工後のフランジ部3の上下面3a、3bのの肉厚部と外周端部のそれぞれの軸2に対して直角方向に対する高さの差がほぼh、hとなる軸部材1を得ることができる。
【0017】
次に、軸側材1に形成されるフランジ部3に傾斜を設ける場合であって、フランジ部3の上下面3a,3bは、内径部から外径部(外周端部)にかけて肉厚が厚くなるように形成する場合(第3の実施の形態)について説明する。
引き抜き材Wから旋削加工により軸部材1を取り出して、フランジ部3の内径部から外径部(外周端部)にかけて肉厚が厚くなるように形成する場合、前記軸部材1の上側面3aと下側面3bの肉厚部と外周端部のそれぞれの高さを差を図6(A)に示すように、j,jとしてプレス加工すると、該軸部材1の内部には残留応力が生じているため、この場合も当初の設計予定通りの(j,j)とはならず、図6(B)に示すように、若干フランジ部3の上下の軸2に対して直角方向に対する高さの差は、j1 ,j2 で且つj1 <j2 となる。即ち、上側面と下側面とは残留応力の分布状態が異なっているので同一とはならない。
【0018】
次に、引き抜き材Wから旋削加工により軸部材1を取り出すとき、上側面3aと下側面3bの肉厚部と外周端部のそれぞれのフランジ部3の上下の軸2に対して直角方向に対する高さの差を、j1 、j2 とし且つj1 >j2 となるようにする。そして、この状態でプレス加工により動圧溝4,4を形成すると、図7(B)に示すように、動圧溝4,4を形成した後のフランジ部3の上側面3aと下側面3bの肉厚部と外周端部のそれぞれの上下の軸2に対する直角方向に対する高さの差は、ほぼ同じj、jとなる。
【0019】
従って、この場合も塑性加工してみてフランジ部3の上下面3a、3bの端部の軸2に対して直角方向に対する高さの差がj1 ,j2 となることが判れば、図1において、T字形の軸部材1を取り出すとき、これらの高さの差(j1 ,j2 )をフィードバックして、図7(A)に示すよう逆方向に、予め高さの差を設ければ良い。即ち、軸部材1を旋削加工して取り出すとき、上側面3aと下側面3bの肉厚部と外周端部のそれぞれの高さがj1 ,j2 て且つj1 >j2 とすれば、図7(B)に示すように、プレス加工後のフランジ部3の上下面3a、3bのの肉厚部と外周端部のそれぞれの軸2に対して直角方向に対する高さの差がほぼj、jとなる軸部材1を得ることができる。
【0020】
本発明の実施の形態においては、軸部材1がT字形の場合について説明したが、勿論、軸部2の途中の周囲にフランジ部3を形成した軸部材であっても良い。
また、フランジ部3の上面3aのみ或いは下面3bのみに傾斜を設けたり、動圧発生用溝4を形成する場合にも適用することができる。更に、T字形の軸部材1では、図に示すように、T字形の頂点中央部には、凹部3cを形成してあるが、この頂点中央部が面一の水平の平面状態であっても良い。
【0021】
表1は、本発明の動圧発生用溝の製造方法において、特に、第3の実施の形態において、実際に引き抜き材W(ステンレス材)から旋削加工により軸部2とフランジ部3とより成る軸部材1を取り出し、軸部材1の上側面3aと下側面3bの肉厚部と外周端部のそれぞれの高さを差を図6(A)に示すように、プレス加工前にj1 ,j2 の値をそれぞれ3回製作し、プレス加工後の値を測定した結果を示す表である。
【表1】

Figure 0004340855
この表1に示すように、引き抜き材から旋削加工により取り出した軸部材1は、その残留応力の影響を考慮して、フィードバックしてフランジ部3を形成すれば、軸部2とフランジ部3とが ほぼ正確な直角度を有する軸部材1とすることができることが判明した。
【0022】
【発明の効果】
以上、詳述したように、本発明の動圧発生用溝の製造方法によれば、ステンレス鋼や炭素鋼等の引き抜き材を使用する場合、内部に残留応力が存在してプレス加工のような塑性加工により動圧発生用溝を加工した後の軸とフランジ部とを一体とした軸部材とスリーブ内周面との間の隙間が意図したとおりの正確な動圧軸受を得ることができる。また、本発明の製造方法によれば、スリーブやスラスト板等に動圧発生用溝の煩雑な加工が不要となる。更に、軸に設けたフランジ部の上下両面に同時に同じ動圧発生用溝を加工することができるので工程数を低減することができる。また、軸に設けたフランジ部の上下両面に動圧発生用溝を加工する場合、同じ形状の動圧発生用溝が安定的に得られるので、組立完了後の精度が良くなり、不良品発生率も低下しその分製造コストを低減することができる。
【図面の簡単な説明】
【図1】本発明の動圧発生用溝の製造方法を実施するに際して軸部材を取り出す前の冷間引き抜き加工材を示す図である。
【図2】T字形の軸部材を取り出すとき、予めプレス加工した結果を考慮して逆方向に生じた歪の角度分傾斜した状態で旋削加工した軸部材を示す図である。
【図3】図3(A)は、予めプレス加工した結果を考慮して逆方向に生じた歪の角度分傾斜した状態で旋削加工した軸部材をプレス加工した状態の軸部材を示す図であり、図3(B)は、この軸部材をスリーブに嵌め入れた状態の断面図である。
【図4】引き抜き材から取り出した軸部材のフランジ部の内径部から外径部(外周端部)にかけて肉厚が薄くなるように形成する場合であって、図4(A)は、プレス加工前の状態を示す一部断面図であり、図4(B)は、付パス加工後の状態を示す一部断面図である。
【図5】引き抜き材から取り出した軸部材のフランジ部の内径部から外径部(外周端部)にかけて肉厚が薄くなるように形成する場合であって、図5(A)は、プレス加工前の状態を示す一部断面図であり、図5(B)は、プレス加工後の状態を示す一部断面図である。
【図6】引き抜き材から取り出した軸部材のフランジ部の内径部から外径部(外周端部)にかけて肉厚が厚くなるように形成する場合であって、図6(A)は、プレス加工前の状態を示す一部断面図であり、図6(B)は、付パス加工後の状態を示す一部断面図である。
【図7】引き抜き材から取り出した軸部材のフランジ部の内径部から外径部(外周端部)にかけて肉厚が厚くなるように形成する場合であって、図7(A)は、プレス加工前の状態を示す一部断面図であり、図7(B)は、プレス加工後の状態を示す一部断面図である。
【図8】冷間引き抜き加工材から旋削加工により取り出した軸部とフランジ部からなるT字形の軸部材を示す図である。
【図9】冷間引き抜き加工材から旋削加工により取り出した軸部材のフランジ部に動圧発生用溝を形成するためのプレス加工する状態を示す図である。
【図10】冷間引き抜き加工材から旋削加工により取り出した軸部材のフランジ部に動圧発生用溝を形成するためプレス加工した状態を示す図である。
【図11】冷間引き抜き加工材から旋削加工により取り出した軸部材のフランジ部に動圧発生用溝を形成した後この軸部材をスリーブに嵌め入れた状態の動圧軸受の断面図を示す図である。
【符号の説明】
1 軸部材
2 軸部
3 フランジ部
4 動圧発生用溝[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrodynamic bearing comprising a shaft member in which a flange portion is integrally formed on a shaft, and a sleeve having a slight gap between the shaft portion and the flange portion, and plastic processing is performed on the flange surface. The method for manufacturing the dynamic pressure generating groove when forming the dynamic pressure generating groove by the above-mentioned method, in particular, the movement that can make the gap between the flange portion of the shaft member using the drawing material and the sleeve axial surface almost uniform. The present invention relates to a method for manufacturing a pressure generating groove.
[0002]
[Prior art]
A shaft member integrally formed with a shaft portion and a flange portion used as a hydrodynamic bearing may be formed by turning a dynamic pressure generating groove formed on the surface of the flange portion by plastic working after turning. . For example, a dynamic pressure bearing may be used for the spindle motor. In this case, the dynamic pressure bearing on the surface of the disk-shaped bearing member formed on the rotating shaft is manufactured by press working (Patent Document 1). . Also, when machining the dynamic pressure generating groove by plastic deformation such as press working, the inner periphery of the flange is formed one step lower than the outer side, and the dynamic pressure generating groove is formed around the outer periphery, and the inner periphery rises during processing. A manufacturing method for preventing this has also been proposed (Patent Document 2).
[0003]
[Patent Document 1]
JP-A-6-338125
[Patent Document 2]
JP-A-8-210345
[0004]
[Problems to be solved by the invention]
Forming grooves for generating dynamic pressure by plastic working such as press working is effective for soft materials such as copper alloy, but it is the same on the upper and lower surfaces of the flange part with a hard material such as stainless steel. It is difficult to form the shape stably. In particular, it is difficult to form a dynamic pressure generating groove stably by plastic working the cold drawn material.
That is, as shown in FIG. 8, press is applied to the surfaces 3a and 3b of the flange portion 3 of the shaft member 1 composed of the shaft portion 2 and the flange portion 3 taken out from the cold drawn material (hereinafter simply referred to as a drawn material). Even if plastic working such as machining is performed to form the dynamic pressure generating groove, there is a phenomenon that an appropriate dynamic pressure cannot be obtained in the dynamic pressure bearing formed by the shaft member 1 and the sleeve. The reason for this is that residual stress is present in the drawn material. Therefore, even after press working (plastic working) as designed after turning (FIG. 9), the flange 3 is deformed after the formation of the dynamic pressure generating groove 4. (Refer to FIG. 10, there may be a deformation in the opposite direction.) The gap 5 between the sleeve 6 and the sleeve 6 is not as accurate as designed (see FIG. 11). In addition, in order to remove this when residual stress exists, the method by annealing is also considered. However, by annealing, the material becomes too soft, and it is impossible to form a dynamic pressure generating groove by plastic working such as press working. Further, it is complicated and expensive to process the dynamic pressure generating groove on the sleeve inner peripheral surface, the thrust plate, or the like, and it is difficult to stably form the same groove.
[0005]
The present invention has been made in order to cope with the above-described problems, and a shaft portion and a flange portion are used even after plastic working for forming a dynamic pressure generating groove by using a drawn material and having a residual stress inside. It is an object of the present invention to provide a method of manufacturing a dynamic pressure generating groove that can obtain a dynamic pressure bearing in which a gap between a shaft member and a sleeve inner peripheral surface is in an intended state.
[0006]
[Means for Solving the Problems]
In other words, in order to provide the above-described problem, the invention according to the first aspect provides a shaft member in which a shaft portion and a flange portion are formed, and a gap is provided between the shaft portion and the flange portion. In the manufacturing method of the dynamic pressure generating groove, the dynamic pressure generating groove is formed by plastic working on the surface of the flange portion of the dynamic pressure bearing constituted by the sleeve fitted with the shaft member,
When the shaft member is formed by turning from a drawn material whose drawing direction is known , first the shaft member according to the dimension is made parallel to the drawing direction of the drawn material, and the shaft portion and the flange portion are cut. Processed and taken out,
A groove for generating dynamic pressure is formed on the surface of the flange portion , and an inclination angle with respect to a direction perpendicular to the axial direction of the shaft portion of the flange portion, or the axial direction between the center side end portion and the outer peripheral end portion of the flange portion The difference between the positions is measured, the measured value is fed back, the shaft member is taken out from the drawn material, and the flange portion is plastically processed.
[0007]
The invention according to claim 2 is characterized in that the flange portion is formed so as to become thinner from the inner diameter portion to the outer diameter portion.
[0008]
The invention according to claim 3 is characterized in that the flange portion is formed so as to increase in thickness from an inner diameter portion to an outer diameter portion.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a drawing material before a shaft member is taken out when a method for producing a dynamic pressure generating groove (hereinafter referred to as a dynamic pressure groove) according to a first embodiment of the present invention is carried out. In this case, the drawing material W is manufactured by drawing a material through a die (tool) having a tapered hole and reducing its cross-sectional area. In this embodiment, the drawing material W is turned to take out the T-shaped shaft member 1. The shaft member 1 is composed of a shaft portion 2 and a flange portion 3, and herringbone, V-shaped, or partially helical dynamic pressure grooves are formed on both surfaces of the flange portion 3 by press working (plastic working). To do.
[0010]
When forming the dynamic pressure grooves in the flange portion 3 of the shaft member 1, first, as shown in FIG. 1, a large number of fine horizontal lines X, X,. Lines Y, Y,... Are inserted, and the shaft portion 2 and the flange portion 3 are turned in parallel along the horizontal lines X, X,... And the vertical lines Y, Y,. A shaft member 1 similar to that shown in FIG. These X,..., Y,... Are inclined as shown in FIG. 10 after turning the shaft member 1 and press-working (plastic working). The angle α or the height difference d between the direction perpendicular to the shaft 2 and the outer peripheral end (the difference in axial position between the center side end 3c of the lower surface 3b and the outer peripheral end 3d of the flange 3). The measured value is fed back and used as a standard for taking out the accurate shaft member 1 by pressing after turning again.
[0011]
Next, as shown in FIG. 9, the shaft member 1 in which the dynamic pressure grooves 4, 4 are formed on both surfaces of the flange portion 3 by pressing is manufactured. In this case, since the residual stress is generated in the drawing material W of the original material, the shaft member 1 does not have the dimensions according to the original design drawing shown in FIG. The flange part 3 will be in the state inclined to a certain angle ((alpha)). Therefore, when the dynamic pressure groove is formed in advance, if it is known that the flange portion 3 is inclined by α by pressing as described above, the inclination angle α is fed back, as shown in FIG. When the T-shaped shaft member 1 is taken out in FIG. 3A, the flange portion 3 after processing is processed as shown in FIG. The shaft member 1 can be in an accurate state. Therefore, as shown in FIG. 3B, the gap 5 between the flange portion 3 and the sleeve 6 having the dynamic pressure groove 4 formed on the surface thereof is an appropriate gap.
[0012]
As described above, the inclination angle α of the flange portion 3 is usually a minute angle, and when an accurate angle cannot be measured, the height difference d between the direction perpendicular to the shaft 2 and the outer peripheral end portion (flange) The difference in axial position between the center side end 3c and the outer peripheral end 3d of the lower surface 3b of the portion 3 may be measured, and the numerical value may be fed back.
[0013]
In forming the accurate shaft member 1, the material type (for example, stainless steel, carbon steel, etc.) of the original drawing material W, the drawing direction, the material manufacturer, etc. must be clear. If the material information is not clear, the state of residual stress after pulling (size and direction), the turning direction during turning cannot be determined, and in each case, the deformation state after press working should be investigated. This is because accurate machining cannot be performed unless turning and pressing are repeated.
[0014]
Next, the case where an inclination is provided in the upper and lower surfaces of the flange part 3 formed in the shaft member 1 is demonstrated. First, when the shaft member 1 is taken out from the drawn material W by turning and formed so that the thickness decreases from the inner diameter portion to the outer diameter portion (outer peripheral end portion) of the flange portion 3 (second embodiment). Will be described.
When the shaft member 1 is taken out from the drawn material W by turning and formed so that the thickness decreases from the inner diameter portion to the outer diameter portion (outer peripheral end portion) of the flange portion 3, the upper surface 3 a of the shaft member 1 When the difference in height with respect to the direction perpendicular to the upper and lower shafts 2 of the thick portion of the lower side surface 3b and the upper and lower outer peripheral ends is pressed as h and h, as shown in FIG. Residual stress is generated inside the shaft member 1, so that it does not become (h, h) as originally planned, but h 1 , h 2 and h as shown in FIG. 1 a <h 2. That is, the upper side surface 3a and the lower side surface 3b are not the same because the distribution state of the internal residual stress is different.
[0015]
Next, as shown in FIG. 5 (A), when the shaft member 1 is taken out from the drawn material W by turning, the upper and lower sides of the flange portions 3 of the thick portions and the outer peripheral end portions of the upper side surface 3a and the lower side surface 3b. The height difference in the direction perpendicular to the axis 2 is set to h 1 and h 2 and h 1 > h 2 . When the dynamic pressure grooves 4 and 4 are formed by pressing in this state, as shown in FIG. 5B, the upper side surface 3a and the lower side surface 3b of the flange portion 3 after the formation of the dynamic pressure grooves 4 and 4 are formed. The difference in height with respect to the direction perpendicular to the upper and lower shafts 2 of the thick wall portion and the outer peripheral edge portion is substantially the same h.
[0016]
As described above, when plastic working such as press working is performed, the height difference in the direction perpendicular to the axis 2 at the ends of the upper and lower surfaces 3a, 3b of the flange portion 3 is h 1 , h 2 and h If it is found that 1 <h 2 , when the T-shaped shaft member 1 is taken out in FIG. 1, the height difference (h 1 , h 2 ) is fed back and shown in FIG. 5 (A). In the opposite direction, turning is performed in advance with a difference in height. That is, when the shaft member 1 is turned and taken out, if the heights of the thick part and the outer peripheral end part of the upper side surface 3a and the lower side surface 3b are h 1 and h 2 and h 1 > h 2 , As shown in FIG. 5 (B), the height difference in the direction perpendicular to the axis 2 of the thick part and the outer peripheral end part of the upper and lower surfaces 3a, 3b of the flange part 3 after the press work is almost h. , H can be obtained.
[0017]
Next, in the case where the flange portion 3 formed on the shaft side member 1 is inclined, the upper and lower surfaces 3a and 3b of the flange portion 3 are thick from the inner diameter portion to the outer diameter portion (outer peripheral end portion). A case of forming in such a manner (third embodiment) will be described.
When the shaft member 1 is taken out from the drawn material W by turning and formed so as to increase in thickness from the inner diameter portion to the outer diameter portion (outer peripheral end portion) of the flange portion 3, As shown in FIG. 6 (A), when the thickness of the lower surface 3b and the outer peripheral end are different from each other by pressing j and j, residual stress is generated inside the shaft member 1. Therefore, in this case as well, (j, j) as originally planned is not achieved, and as shown in FIG. The difference is j 1 , j 2 and j 1 <j 2 . That is, the upper side surface and the lower side surface are not the same because the residual stress distribution is different.
[0018]
Next, when the shaft member 1 is taken out from the drawn material W by turning, the height of the upper surface 3a and the lower surface 3b with respect to the upper and lower shafts 2 of the upper and lower shafts 2 of the flange portions 3 at the outer peripheral ends is high. The difference in height is j 1 , j 2 and j 1 > j 2 . When the dynamic pressure grooves 4 and 4 are formed by pressing in this state, as shown in FIG. 7B, the upper side surface 3a and the lower side surface 3b of the flange portion 3 after the formation of the dynamic pressure grooves 4 and 4 are formed. The difference in height with respect to the direction perpendicular to the upper and lower axes 2 of the thick wall portion and the outer peripheral edge portion is substantially the same j and j.
[0019]
Accordingly, in this case as well, if it is found that the difference in height with respect to the direction perpendicular to the shaft 2 at the ends of the upper and lower surfaces 3a and 3b of the flange portion 3 becomes j 1 and j 2 , FIG. When the T-shaped shaft member 1 is taken out, the height difference (j 1 , j 2 ) is fed back to provide a height difference in the reverse direction in advance as shown in FIG. It ’s fine. That is, when the shaft member 1 is turned and taken out, if the heights of the thick portion and the outer peripheral end of the upper side surface 3a and the lower side surface 3b are j 1 and j 2 and j 1 > j 2 , As shown in FIG. 7B, the difference in height in the direction perpendicular to the axis 2 of the thick part and the outer peripheral end part of the upper and lower surfaces 3a, 3b of the flange part 3 after the press work is substantially j. , J can be obtained.
[0020]
In the embodiment of the present invention, the case where the shaft member 1 is T-shaped has been described. Of course, a shaft member in which the flange portion 3 is formed around the shaft portion 2 may be used.
Further, the present invention can also be applied to a case where only the upper surface 3 a or only the lower surface 3 b of the flange portion 3 is inclined or the dynamic pressure generating groove 4 is formed. Further, in the T-shaped shaft member 1, as shown in the drawing, a concave portion 3 c is formed at the center of the vertex of the T-shape, but even if the center of the vertex is in a flat horizontal state. good.
[0021]
Table 1 shows the manufacturing method of the dynamic pressure generating groove according to the present invention, and in particular, in the third embodiment, the shaft portion 2 and the flange portion 3 are actually formed from the drawing material W (stainless steel) by turning. the shaft member 1 is taken out, the difference between the respective heights of the thick portion and the outer peripheral edge portion of the side surface 3a and the lower surface 3b on the shaft member 1, as shown in FIG. 6 (a), j 1 before pressing, j 2 values were produced 3 times respectively, a table showing the results of measuring the value after pressing.
[Table 1]
Figure 0004340855
As shown in Table 1, when the shaft member 1 taken out from the drawn material by turning is fed back to form the flange portion 3 in consideration of the effect of the residual stress, the shaft portion 2 and the flange portion 3 It has been found that the shaft member 1 having an almost accurate squareness can be obtained.
[0022]
【The invention's effect】
As described above in detail, according to the method for producing a dynamic pressure generating groove of the present invention, when a drawing material such as stainless steel or carbon steel is used, there is a residual stress inside, and the like It is possible to obtain an accurate hydrodynamic bearing as intended by the gap between the shaft member integrated with the shaft and the flange portion after processing the dynamic pressure generating groove by plastic working and the inner peripheral surface of the sleeve. Further, according to the manufacturing method of the present invention, complicated processing of the dynamic pressure generating groove on the sleeve, the thrust plate, or the like is not required. Furthermore, since the same dynamic pressure generating groove can be processed simultaneously on the upper and lower surfaces of the flange portion provided on the shaft, the number of steps can be reduced. Also, when dynamic pressure generating grooves are machined on both the upper and lower surfaces of the flange part provided on the shaft, the same shape of dynamic pressure generating grooves can be stably obtained, so the accuracy after assembly is completed and defective products are generated. The rate is also reduced, and the manufacturing cost can be reduced accordingly.
[Brief description of the drawings]
FIG. 1 is a view showing a cold drawn material before a shaft member is taken out when a method for producing a dynamic pressure generating groove according to the present invention is carried out.
FIG. 2 is a view showing a shaft member that is turned in a state where the T-shaped shaft member is tilted by an angle of distortion generated in the reverse direction in consideration of a result of pre-pressing when the T-shaped shaft member is taken out.
FIG. 3A is a diagram showing a shaft member in a state in which a shaft member that has been turned in a state inclined by an angle of strain generated in the reverse direction in consideration of the result of pre-pressing is pressed. FIG. 3B is a cross-sectional view of the shaft member fitted into the sleeve.
FIG. 4 shows a case where the thickness is reduced from the inner diameter portion to the outer diameter portion (outer end portion) of the flange portion of the shaft member taken out from the drawn material, and FIG. FIG. 4B is a partial cross-sectional view showing the state after the pass process with the attached pass.
FIG. 5 shows a case where the thickness is reduced from the inner diameter portion to the outer diameter portion (outer end portion) of the flange portion of the shaft member taken out from the drawn material, and FIG. FIG. 5B is a partial cross-sectional view showing a previous state, and FIG. 5B is a partial cross-sectional view showing a state after press working.
FIG. 6 shows a case where the thickness is increased from the inner diameter portion to the outer diameter portion (outer end portion) of the flange portion of the shaft member taken out from the drawn material, and FIG. FIG. 6B is a partial cross-sectional view showing the state after the pass process with the attached pass.
FIG. 7 shows a case where the thickness is increased from the inner diameter portion to the outer diameter portion (outer end portion) of the flange portion of the shaft member taken out from the drawn material, and FIG. FIG. 7B is a partial cross-sectional view showing a previous state, and FIG. 7B is a partial cross-sectional view showing a state after press working.
FIG. 8 is a view showing a T-shaped shaft member including a shaft portion and a flange portion taken out from a cold drawn material by turning.
FIG. 9 is a diagram showing a state in which press working is performed to form a dynamic pressure generating groove in the flange portion of the shaft member taken out from the cold drawn material by turning.
FIG. 10 is a view showing a state in which a dynamic pressure generating groove is formed in a flange portion of a shaft member taken out from a cold drawn material by turning.
FIG. 11 is a cross-sectional view of a hydrodynamic bearing in a state where a dynamic pressure generating groove is formed in a flange portion of a shaft member taken out from a cold drawn material by turning and the shaft member is fitted into a sleeve. It is.
[Explanation of symbols]
1 Shaft member 2 Shaft portion 3 Flange portion 4 Dynamic pressure generating groove

Claims (3)

軸部とフランジ部とを形成した軸部材と、これら軸部とフランジ部との間に隙間を設けて該軸部材を嵌め入れたスリーブと、で構成される動圧軸受の前記フランジ部の表面に動圧発生用溝を塑性加工により形成する動圧発生用溝の製造方法において、
引き抜き方向の判明している引き抜き材から旋削加工により前記軸部材を形成するに際し、先ず寸法通りの軸部材を引き抜き材の引き抜き方向に沿って軸部を平行にして、軸部やフランジ部を切削加工して取り出し、
前記フランジ部の表面に動圧発生用溝を形成して該フランジ部の軸部の軸方向に直角な方向に対する傾斜角度、或いは、該フランジ部における中心側端部と外周端部との軸方向の位置の差を測定し、次にこの測定値をフィードバックして引き抜き材から軸部材を取り出し、フランジ部に塑性加工を施すことを特徴とする動圧発生用溝の製造方法。
The surface of the flange portion of the hydrodynamic bearing comprising: a shaft member having a shaft portion and a flange portion; and a sleeve in which a gap is provided between the shaft portion and the flange portion and the shaft member is fitted therein In the manufacturing method of the dynamic pressure generating groove, the dynamic pressure generating groove is formed by plastic working.
When the shaft member is formed by turning from a drawn material whose drawing direction is known , first the shaft member according to the dimension is made parallel to the drawing direction of the drawn material, and the shaft portion and the flange portion are cut. Processed and taken out,
A groove for generating dynamic pressure is formed on the surface of the flange portion , and an inclination angle with respect to a direction perpendicular to the axial direction of the shaft portion of the flange portion, or the axial direction between the center side end portion and the outer peripheral end portion of the flange portion A method for producing a dynamic pressure generating groove, characterized in that a difference in position is measured, then the measured value is fed back, a shaft member is taken out from the drawn material, and the flange portion is plastically processed.
前記フランジ部は、内径部から外径部にかけて肉厚が薄くなるように形成したものである請求項1に記載の動圧発生用溝の製造方法。  The method for producing a dynamic pressure generating groove according to claim 1, wherein the flange portion is formed so as to be thinned from an inner diameter portion to an outer diameter portion. 前記フランジ部は、内径部から外径部にかけて肉厚が厚くなるように形成したものである請求項1に記載の動圧発生用溝の製造方法。  The method for manufacturing a dynamic pressure generating groove according to claim 1, wherein the flange portion is formed so as to increase in thickness from an inner diameter portion to an outer diameter portion.
JP2003116659A 2003-04-22 2003-04-22 Manufacturing method of dynamic pressure generating groove Expired - Fee Related JP4340855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003116659A JP4340855B2 (en) 2003-04-22 2003-04-22 Manufacturing method of dynamic pressure generating groove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003116659A JP4340855B2 (en) 2003-04-22 2003-04-22 Manufacturing method of dynamic pressure generating groove

Publications (2)

Publication Number Publication Date
JP2004324684A JP2004324684A (en) 2004-11-18
JP4340855B2 true JP4340855B2 (en) 2009-10-07

Family

ID=33496795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003116659A Expired - Fee Related JP4340855B2 (en) 2003-04-22 2003-04-22 Manufacturing method of dynamic pressure generating groove

Country Status (1)

Country Link
JP (1) JP4340855B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101244271B1 (en) 2004-03-30 2013-03-18 엔티엔 가부시키가이샤 Dynamic pressure bearing device
DE102011085681A1 (en) * 2011-11-03 2013-05-08 Abb Turbo Systems Ag Hydrodynamic thrust bearing

Also Published As

Publication number Publication date
JP2004324684A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
JP3578500B2 (en) Spindle and manufacturing method thereof
JP2002213476A (en) Method of manufacturing tripod constant velocity universal joint outer race
JP4340855B2 (en) Manufacturing method of dynamic pressure generating groove
JP2003154432A (en) Method of manufacturing outer and inner rings for bearing
JP3667814B2 (en) Synchronizer ring manufacturing method
JP3503816B2 (en) Bevel gear with web cold forging die and method of manufacturing bevel gear with web
KR20070062494A (en) Shaft member for dynamic pressure bearing device and method of producing the same
JPH0910885A (en) Formation of disk-like stock
JP2833418B2 (en) Mold for cold forging
JPS6040625A (en) Working method of cylinder end part
JP2006123003A (en) Method and apparatus for producing high precision ring
JP2001047127A (en) Manufacture of intermediate drawn tube
JPS63272463A (en) Tool for smoothing work
JP3128208B2 (en) Manufacturing method of ring-shaped parts
JP3308503B2 (en) Manufacturing method of intermediate restriction pipe
JP4234224B2 (en) Groove machining method and manufacturing method for automobile steering main shaft
JP2826464B2 (en) Forging method and forging device for crown-shaped parts
JPS59220240A (en) Forming by plastic working
JPS622895B2 (en)
JP3194634B2 (en) Manufacturing method of needle bearing case
JP2891976B1 (en) Manufacturing method of cylindrical material
JPH10148211A (en) Thrust dynamic pressure bearing and its manufacture
JP3962350B2 (en) Molding method of internal gear
JP3484334B2 (en) Cold rolling method
JP3768652B2 (en) Engine valve cold forging method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees