JP4300496B2 - Optical profile measuring method and apparatus - Google Patents

Optical profile measuring method and apparatus Download PDF

Info

Publication number
JP4300496B2
JP4300496B2 JP11917499A JP11917499A JP4300496B2 JP 4300496 B2 JP4300496 B2 JP 4300496B2 JP 11917499 A JP11917499 A JP 11917499A JP 11917499 A JP11917499 A JP 11917499A JP 4300496 B2 JP4300496 B2 JP 4300496B2
Authority
JP
Japan
Prior art keywords
measured
light
optical
point
position detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11917499A
Other languages
Japanese (ja)
Other versions
JP2000310520A (en
Inventor
武人 八木
勉 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP11917499A priority Critical patent/JP4300496B2/en
Publication of JP2000310520A publication Critical patent/JP2000310520A/en
Application granted granted Critical
Publication of JP4300496B2 publication Critical patent/JP4300496B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高炉炉頂面のプロフィルを測定する光学式プロフィル測定方法に関わり、更に詳しくは、被測定面のレーザ照射位置を検出する光位置検出方法と装置に関する。
【0002】
【従来の技術】
鉄鉱石を溶解する高炉では、通常、炉の上部からコークスと鉄鉱石を交互に挿入し、その後攪拌機により炉頂面のプロフィル(表面形状)の断面がV字形となるように設定する。炉頂プロフィルを所望のV字形にすることは高炉の燃費を節約する上で重要な意味をもっており、従って炉頂プロフィルを正確に測定する手段が要求される。
【0003】
この要求を満たすために、三角測量を応用した光学式プロフィル測定手段が提案され出願されている(例えば、特開昭54−65059号)。この「プロファイル測定装置」は、図6に模式的に示すように、繰り返し発振するパルスレーザを光源としてレーザビーム5で被測定面3を走査し、被測定面3からの散乱光6を所定の開口径をもつ受光光学系7で集光し、その受光光学系7の焦点面上に描かれる像の軌跡から被測定面3のプロフィルを求めるものである。
【0004】
【発明が解決しようとする課題】
上述した光学式プロフィル測定手段では、図7に原理図を示すように、ビーム投光点Aとビーム受光点Bを基準長Lを隔てて設置し、基準長Lに対する投光角αと受光角βとから被測定面3の垂直高さHとその水平位置(例えば投光点Aからの水平距離C)を演算するようになっている。
【0005】
また、実際のプロフィル測定装置では、受光角βの測定精度を高めるために、図6の受光光学系7の前に受光ミラー(又はスキャニングミラー:図示せず)を設け、その傾斜角度をレーザのスポット光位置(照射点P)に追従させ、受光光学系7の焦点面上に位置決めした光位置検出器8で照射点Pの位置を検出している。すなわち、受光角βは、受光ミラーの受光角度と光位置検出器8上の照射点Pの位置から演算される。
【0006】
更に、光位置検出器8は、多数の光電変換器を直線状に配列したものであり、照射点Pの位置は、散乱光6による各光電変換器の出力レベルを比較し、その最大出力位置としている。
【0007】
しかしかかる光学式プロフィル測定装置において、投光点Aから照射したレーザビーム5は、内部の粉塵で散乱されながら炉頂面上の照射点Pに達する。そのため、炉頂部の粉塵が激しい場合に、粉塵からの散乱光(以後ミー散乱光と称す)が強く、光電変換器の出力の山が2つ現れ、そのピーク値の差が小さいと、雑音信号の影響で照射点Pの位置を誤検出することがあった。
【0008】
すなわち、光位置検出器を用いた三角測量方式のプロフィル測定装置では、従来から、その光位置検出にPSD(Position Sencing Device))またはリニアCCDなどの多チャンネル検出器が用いられ、その出力のピーク位置が被測定面3の照射点Pの位置となるが、上述したように、高粉塵環境下では、強いミー散乱光により出力の山が2つでき、スポット光位置を誤って検知することがある。かかる誤検出が発生すると、図6における受光角βの測定精度が大幅に悪化するばかりでなく、この誤検出に追従して受光ミラー(スキャニングミラー)の受光角度も大きく変化し、結果として測定したデータが全く使えなくなる問題点があった。
【0009】
本発明は、かかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、粉塵が激しく、粉塵からのミー散乱光が強い場合でも、被測定面のレーザ照射位置Pを確実に検出することができ、これにより、雑音信号が大きく計測誤差がある場合でも、誤検出を大幅に低減し被測定面のプロフィルを正確に測定することができる光学式プロフィル測定方法と装置を提供することにある。
【0010】
【課題を解決するための手段】
本発明によれば、ビーム投光点Aとビーム受光点Bを基準長Lを隔てて設置し、ビーム投光点Aから被測定面(3)にレーザビーム(5)を走査し、ビーム受光点Bで被測定面側からの散乱光(6)を集光して光位置検出器(20)に導き、その出力から被測定面の形状を測定する光学式プロフィル測定方法において、前記光位置検出器(20)は、ビーム投光側からビーム受光側に直線状に配列した複数の光電変換器(20a)からなり、各光電変換器の受光感度は、前記ビーム投光点Aから前記被測定面(3)の照射点に達する前までのビーム光路からの散乱光を受ける側が相対的に低く、前記照射点からの反射光を受ける側が相対的に高くなるように傾斜感度に設定されており、更に、各光電変換器の出力レベルを比較し、その最大出力位置を光位置検出器上の被測定面の照射点Pと判断する、ことを特徴とする光学式プロフィル測定方法が提供される。
また、本発明によれば、ビーム投光点Aとビーム受光点Bを基準長Lを隔てて設置し、ビーム投光点Aから被測定面(3)にレーザビーム(5)を走査し、ビーム受光点Bで被測定面側からの散乱光(6)を集光して光位置検出器(20)に導き、その出力から被測定面の形状を測定する光学式プロフィル測定装置において、前記光位置検出器(20)は、ビーム投光側からビーム受光側に直線状に配列した複数の光電変換器(20a)からなり、各光電変換器の受光感度は、前記ビーム投光点Aから前記被測定面(3)の照射点に達する前までのビーム光路からの散乱光を受ける側が相対的に低く、前記照射点からの反射光を受ける側が相対的に高くなるように傾斜感度に設定されており、更に、各光電変換器の出力レベルを比較し、その最大出力位置を光位置検出器上の被測定面の照射点Pと判断するシステム制御部を備える、ことを特徴とする光学式プロフィル測定装置が提供される。
【0011】
粉塵によるミー散乱は、ビーム投光点Aから照射されたレーザビーム(5)が被測定面(3)の照射点Pに達するまでのビーム光路からの散乱光であるため、光電変換器において前記ビーム投光点Aから前記被測定面(3)の照射点に達する前までのビーム光路からの散乱光を受ける側が強いが、照射点Pからの反射光を受ける側にはほとんど発生しない。また、レーザビームが被測定面に十分達する条件下で計測を行うため、定常状態では照射点Pからの反射光強度が最も強い。従って、粉塵からのミー散乱光が強く、光電変換器の出力の山が2つ現れる場合には、ビーム投光側の山は粉塵からのミー散乱光によるものであり、ビーム受光側の山が必ず照射点Pからの反射光である。従って、これを識別するために、ビーム投光側からビーム受光側に直線状に配列した複数の光電変換器(20a)の受光感度を、前記ビーム投光点Aから前記被測定面(3)の照射点Pに達する前までのビーム光路からの散乱光を受ける側が相対的に低く、前記照射点からの反射光を受ける側が相対的に高くなるように傾斜感度に設定することにより、通常弱いビーム光路からの散乱光の強度を更に弱めることができ、照射点Pからの反射光強度を相対的に高めることができる。これにより、更に、各光電変換器の出力レベルを比較し、その最大出力位置を検出するだけで、雑音信号が大きく計測誤差がある場合でも、確実に被測定面の照射点Pを検出でき、誤検出を大幅に低減することができる。
【0012】
言い換えれば、光学的物理現象であるミー散乱は、必ずスポット位置の光路上流側にのみ発生し、スポット光の先には発生しないため、単純に受光感度に傾斜を付けるだけで、単にピーク値を取る処理で、確実な測定を行なうことができ、誤検知の防止とシステムの簡素化を両立させることができる。
【0013】
【発明の実施の形態】
以下、本発明の実施形態を図面を参照して説明する。
図1は、本発明の方法を適用する光学式プロフィル測定装置の全体構成図である。この図において、光学式プロフィル測定装置10は、被測定面3にレーザビーム5(レーザ光)を投光する投光部12と、被測定面3のスポット光位置(照射点P)からのレーザ光の散乱光6を受光する受光部14とを備えている。被測定面3は、この図では高炉に装入されたコークスと鉄鋼石の積層面であるが、本発明はこれに限定されず、その他の被測定面にも適用することができる。
【0014】
図1において、投光部12は、レーザコントローラ12a、レーザ電源部12b、レーザ発振器12c及びミラースキャナ13からなり、レーザ発振器12cから出射されたレーザビーム5を被測定面3に向けて反射し、かつミラーの揺動により被測定面3を走査するようになっている。
受光部14は、ミラースキャナ14a、レンズ14b、回転式光減衰器14c、受光器アレイ20(光位置検出器)及び受光制御盤15からなり、投光部12で投光される被測定面3の照射点Pに応じてミラーを揺動させ、被測定面3の照射点Pからの散乱光6を常に安定して光位置検出器20に向けて反射させるようになっている。更に、図中の16はシステム制御部、16aはシステム制御盤、16bはディスプレイであり、光位置検出器20で得られたデータを基に被測定面3のプロフィルをディスプレイ16b上に表示するようになっている。
【0015】
図2は、図1の装置により実際にプロフィルを測定した一例である。この図において、(A)は光位置検出器20を構成する光電変換器20aの出力図、(B)はこの出力データから得られた被測定面3のプロフィル図である。
受光器アレイ、すなわち、光位置検出器20は、図2(A)に示すように、ビーム投光側からビーム受光側に直線状に配列した複数(この例では32チャンネル)の光電変換器20aからなる。また、システム制御盤16aにより、各光電変換器20aの出力レベルを比較し、その最大出力位置(この例では第17チャンネル)を光位置検出器上の照射点Pと判断する。従って、図2(B)に示すように、受光角βをミラースキャナ14a(受光ミラー)の受光角度と検出された光位置検出器上の照射点Pの位置から求め、基準長Lに対する投光角αと受光角βとから被測定面3の垂直高さHとその水平位置を演算し、被測定面3のプロフィルを求めることができる。
【0016】
図3は、図1の光位置検出器による各光電変換器の別の出力例である。この図において、(A)は従来の出力例、(B)は本発明の方法における感度比率、(C)は本発明の方法を適用した出力例である。すなわち、本発明の光学式プロフィル測定方法では、各光電変換器20aの受光感度が、前記ビーム投光点Aから前記被測定面(3)の照射点Pに達する前までのビーム光路からの散乱光を受ける側が相対的に低く、前記照射点からの反射光を受ける側が相対的に高くなるように傾斜感度に設定されている。なお、この傾斜感度の比率は、この例では、32チャンネルの隣接する各光電変換器20aの感度が、反射光を受ける側散乱光を受ける側より1%高く設定され、全体として投光側の第1チャンネルに対して受光側の第32チャンネルが約1.36倍の感度を有するように設定されている。なお、傾斜感度の比率は、好ましくは直線上であり、かつ比率が高いほど粉塵や外乱(雑音信号)に強くなるが、高すぎると正確なピーク位置に隣接する別の位置を照射点Pとして誤認し、検出位置精度がわずかに低下するおそれがある。従って、この比率は、全体として、散乱光を受ける側に対して反射光を受ける側が1.2〜2.0倍程度に設定するのがよい。
【0017】
図3(C)は、(A)の出力データを(B)の感度比率で補正したものである。この図から、図3(A)の各光電変換器の出力レベルを比較し、その最大出力位置を光位置検出器上の被測定面の照射点Pと判断した場合には、ピーク位置がこの例では、第3チャンネルと第17チャンネルにピークがあるため、外乱(雑音信号)が大きい場合には、第3チャンネルをピークとして誤検出するおそれがある。
【0018】
図4は、このような誤検出が生じた場合の、被測定面3のプロフィルの測定例を示している。(A)(B)とも、図3とほぼ同一条件下で発生した誤検出であり、受光角βの測定精度が大幅に悪化するばかりでなく、この誤検出に追従して受光ミラー(スキャニングミラー)の受光角度も大きく変化するため、実際の照射点Pと全くかけ離れた位置を照射点Pとして演算し、結果として測定したデータが全く使えなくなる。
【0019】
これに対して、図3(B)(C)に示すように、ビーム投光側からビーム受光側に直線状に配列した複数の光電変換器(20a)の受光感度を、前記ビーム投光点Aから前記被測定面(3)の照射点Pに達する前までのビーム光路からの散乱光を受ける側が相対的に低く、前記照射点からの反射光を受ける側が相対的に高くなるように傾斜感度に設定することにより、通常弱いビーム光路からの散乱光(この例で第3チャンネル)の強度を更に弱めることができ、照射点Pからの反射光強度(この例で第17チャンネル)を相対的に高めることができる。これにより、更に、各光電変換器の出力レベルを比較し、その最大出力位置(第17チャンネル)を確実に検出できる。
【0020】
図5は、本発明の方法によるプロフィル測定例である。(A)(B)とも、図3とほぼ同一条件下での測定であるが、誤検出がほとんどなく、また、雑音信号が大きく計測誤差がある場合でも、確実に被測定面の照射点Pを検出できることが確認された。
【0021】
なお、本発明の方法は、上述した実施例に限定されず、本発明の要旨を逸脱しない範囲で種々に変更できることは勿論である。
【0022】
【発明の効果】
上述したように、光学的物理現象であるミー散乱は、必ずスポット位置の光路上流側にのみ発生し、スポット光の先には発生しないため、本発明の方法により、単純に受光感度に傾斜を付けるだけで、単にピーク値を取る処理で、確実な測定を行なうことができ、誤検知の防止とシステムの簡素化を両立させることができる。
【0023】
すなわち、本発明の光学式プロフィル測定方法と装置は、粉塵が激しく、粉塵からのミー散乱光が強い場合でも、被測定面のレーザ照射位置Pを確実に検出することができ、これにより、雑音信号が大きく計測誤差がある場合でも、誤検出を大幅に低減し被測定面のプロフィルを正確に測定することができる、等の優れた効果を有する。
【図面の簡単な説明】
【図1】本発明の方法を適用する光学式プロフィル測定装置の全体構成図である。
【図2】図1の装置によるプロフィル測定例である。
【図3】図1の光位置検出器による各光電変換器の出力例である。
【図4】従来の方法によるプロフィル測定例である。
【図5】本発明の方法によるプロフィル測定例である。
【図6】従来の光学式プロフィル測定装置の模式的構成図である。
【図7】光学式プロフィル測定装置の原理図である。
【符号の説明】
3 被測定面
5 レーザビーム
6 散乱光
7 受光光学系
8 光位置検出器
8a 光電変換器
10 光学式プロフィル測定装置
12 投光部
12a レーザコントローラ
12b レーザ電源部
12c レーザ発振器
13 ミラースキャナ
14 受光部
14a ミラースキャナ
14b レンズ
14c 回転式光減衰器
15 受光制御盤
16 システム制御部
16a システム制御盤
16b ディスプレイ
20 受光器アレイ(光位置検出器)
20a 光電変換器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical profile measuring method for measuring the profile of the top surface of a blast furnace furnace, and more particularly to an optical position detecting method and apparatus for detecting a laser irradiation position on a measured surface.
[0002]
[Prior art]
In a blast furnace for melting iron ore, coke and iron ore are usually inserted alternately from the top of the furnace, and then the profile of the top surface of the furnace (surface shape) is set to be V-shaped by a stirrer. Making the furnace top profile the desired V shape has important implications for saving fuel consumption in the blast furnace, so a means for accurately measuring the furnace top profile is required.
[0003]
In order to satisfy this requirement, an optical profile measuring means applying triangulation has been proposed and applied (for example, Japanese Patent Laid-Open No. 54-65059). As schematically shown in FIG. 6, this “profile measurement device” scans the surface to be measured 3 with a laser beam 5 using a pulsed laser that oscillates repeatedly as a light source, and scatters light 6 from the surface to be measured 3 in a predetermined manner. The light is collected by the light receiving optical system 7 having an aperture diameter, and the profile of the measured surface 3 is obtained from the locus of the image drawn on the focal plane of the light receiving optical system 7.
[0004]
[Problems to be solved by the invention]
In the optical profile measuring means described above, as shown in FIG. 7, the beam projection point A and the beam receiving point B are set apart from the reference length L, and the projection angle α and the receiving angle with respect to the reference length L are set. From β, the vertical height H of the surface to be measured 3 and its horizontal position (for example, the horizontal distance C from the projection point A) are calculated.
[0005]
Further, in the actual profile measuring apparatus, in order to increase the measurement accuracy of the light receiving angle β, a light receiving mirror (or scanning mirror: not shown) is provided in front of the light receiving optical system 7 in FIG. The position of the irradiation point P is detected by an optical position detector 8 positioned on the focal plane of the light receiving optical system 7 so as to follow the spot light position (irradiation point P). That is, the light receiving angle β is calculated from the light receiving angle of the light receiving mirror and the position of the irradiation point P on the optical position detector 8.
[0006]
Further, the optical position detector 8 is a linear arrangement of a large number of photoelectric converters, and the position of the irradiation point P is compared with the output level of each photoelectric converter by the scattered light 6 and its maximum output position. It is said.
[0007]
However, in such an optical profile measuring apparatus, the laser beam 5 irradiated from the projection point A reaches the irradiation point P on the top surface of the furnace while being scattered by internal dust. Therefore, when the dust at the top of the furnace is intense, scattered light from the dust (hereinafter referred to as Mie scattered light) is strong, two peaks of the output of the photoelectric converter appear, and if the difference between the peak values is small, the noise signal The position of the irradiation point P may be erroneously detected due to the influence of.
[0008]
That is, in a triangulation type profile measuring apparatus using an optical position detector, a multi-channel detector such as a PSD (Position Sencing Device) or a linear CCD is conventionally used for detecting the optical position, and the peak of the output is obtained. Although the position is the position of the irradiation point P on the surface 3 to be measured, as described above, in the high dust environment, two peaks of output can be generated by strong Mie scattered light, and the spot light position can be detected erroneously. is there. When such a false detection occurs, not only does the measurement accuracy of the light receiving angle β in FIG. 6 significantly deteriorate, but also the light receiving angle of the light receiving mirror (scanning mirror) changes greatly following this false detection, and the measurement is performed as a result. There was a problem that data could not be used at all.
[0009]
The present invention has been developed to solve such problems. That is, the object of the present invention is to reliably detect the laser irradiation position P on the surface to be measured even when the dust is intense and the Mie scattered light from the dust is strong, which results in a large noise signal and a measurement error. In some cases, it is an object to provide an optical profile measuring method and apparatus that can greatly reduce the false detection and accurately measure the profile of the surface to be measured.
[0010]
[Means for Solving the Problems]
According to the present invention, the beam projection point A and the beam reception point B are set apart from each other by the reference length L, the laser beam (5) is scanned from the beam projection point A to the measurement surface (3), and the beam reception is performed. In the optical profile measuring method of collecting the scattered light (6) from the surface to be measured at point B and guiding it to the optical position detector (20) and measuring the shape of the surface to be measured from the output, The detector (20) is composed of a plurality of photoelectric converters (20a) arranged linearly from the beam projecting side to the beam receiving side, and the light receiving sensitivity of each photoelectric converter is from the beam projecting point A to the subject. The inclination sensitivity is set so that the side receiving the scattered light from the beam optical path before reaching the irradiation point on the measurement surface (3) is relatively low and the side receiving the reflected light from the irradiation point is relatively high. In addition, the output level of each photoelectric converter is compared and its maximum output Position is determined that the irradiation point P of the surface to be measured on the light position detector, an optical profile measuring method, characterized in that there is provided.
Further, according to the present invention, the beam projection point A and the beam receiving point B are set apart from the reference length L, and the laser beam (5) is scanned from the beam projection point A to the surface to be measured (3), In the optical profile measuring apparatus for collecting the scattered light (6) from the surface to be measured at the beam receiving point B and guiding it to the optical position detector (20) and measuring the shape of the surface to be measured from its output. The optical position detector (20) includes a plurality of photoelectric converters (20a) linearly arranged from the beam projecting side to the beam receiving side, and the light receiving sensitivity of each photoelectric converter is determined from the beam projecting point A. The inclination sensitivity is set so that the side that receives the scattered light from the beam optical path before reaching the irradiation point of the surface to be measured (3) is relatively low and the side that receives the reflected light from the irradiation point is relatively high. Furthermore, the output level of each photoelectric converter is compared and Comprising a system controller for determining the large output position and the irradiation point P of the surface to be measured on the light position detector, the optical profile measuring apparatus is provided, characterized in that.
[0011]
Mie scattering by dust, since the beam projected laser beam emitted from the light spot A (5) is a scattered light from the beam path to reach the irradiation point P of the surface to be measured (3), wherein the photoelectric converter The side that receives scattered light from the beam light path from the beam projection point A to the point before the irradiation point of the surface to be measured (3) is strong is strong, but hardly occurs on the side that receives the reflected light from the irradiation point P. Further, since the measurement is performed under the condition that the laser beam sufficiently reaches the surface to be measured, the reflected light intensity from the irradiation point P is the strongest in the steady state. Therefore, when Mie scattered light from dust is strong and two peaks of output from the photoelectric converter appear, the peak on the beam projection side is due to Mie scattered light from the dust, and the peak on the beam receiving side is It is always reflected light from the irradiation point P. Therefore, in order to identify this, the light receiving sensitivity of the plurality of photoelectric converters (20a) arranged linearly from the beam projecting side to the beam receiving side is determined from the beam projecting point A to the measured surface (3). By setting the tilt sensitivity so that the side that receives the scattered light from the beam optical path before reaching the irradiation point P is relatively low and the side that receives the reflected light from the irradiation point is relatively high, it is usually weak The intensity of scattered light from the beam optical path can be further reduced, and the intensity of reflected light from the irradiation point P can be relatively increased. Thereby, by comparing the output level of each photoelectric converter and detecting the maximum output position, even when the noise signal is large and there is a measurement error, the irradiation point P on the surface to be measured can be reliably detected, False detection can be greatly reduced.
[0012]
In other words, Mie scattering, which is an optical physical phenomenon, always occurs only on the upstream side of the optical path of the spot position and does not occur at the tip of the spot light. In this processing, reliable measurement can be performed, and both prevention of erroneous detection and simplification of the system can be achieved.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an overall configuration diagram of an optical profile measuring apparatus to which the method of the present invention is applied. In this figure, an optical profile measuring apparatus 10 includes a light projecting unit 12 that projects a laser beam 5 (laser light) onto a surface to be measured 3 and a laser from a spot light position (irradiation point P) on the surface to be measured 3. A light receiving unit 14 that receives the scattered light 6 of the light. The surface to be measured 3 is a laminated surface of coke and iron ore charged in a blast furnace in this figure, but the present invention is not limited to this and can be applied to other surfaces to be measured.
[0014]
1, the light projecting unit 12 includes a laser controller 12a, a laser power source unit 12b, a laser oscillator 12c, and a mirror scanner 13. The light projecting unit 12 reflects the laser beam 5 emitted from the laser oscillator 12c toward the measurement surface 3, Further, the surface to be measured 3 is scanned by swinging the mirror.
The light receiving unit 14 includes a mirror scanner 14 a, a lens 14 b, a rotary optical attenuator 14 c, a light receiver array 20 (optical position detector), and a light reception control panel 15, and the measured surface 3 to be projected by the light projecting unit 12. The mirror is oscillated according to the irradiation point P, and the scattered light 6 from the irradiation point P on the surface to be measured 3 is always reflected toward the optical position detector 20 stably. Further, in the figure, 16 is a system control unit, 16a is a system control panel, and 16b is a display. The profile of the surface to be measured 3 is displayed on the display 16b based on the data obtained by the optical position detector 20. It has become.
[0015]
FIG. 2 is an example in which the profile was actually measured by the apparatus of FIG. In this figure, (A) is an output diagram of the photoelectric converter 20a constituting the optical position detector 20, and (B) is a profile diagram of the surface to be measured 3 obtained from this output data.
As shown in FIG. 2A, the light receiver array, that is, the optical position detector 20, is a plurality of (in this example, 32 channels) photoelectric converters 20a arranged linearly from the beam projecting side to the beam receiving side. Consists of. Further, the system control panel 16a compares the output levels of the photoelectric converters 20a, and determines the maximum output position (the 17th channel in this example) as the irradiation point P on the optical position detector. Therefore, as shown in FIG. 2B, the light receiving angle β is obtained from the light receiving angle of the mirror scanner 14a (light receiving mirror) and the detected position of the irradiation point P on the optical position detector, and the light is projected to the reference length L. By calculating the vertical height H of the surface to be measured 3 and its horizontal position from the angle α and the light receiving angle β, the profile of the surface to be measured 3 can be obtained.
[0016]
FIG. 3 shows another output example of each photoelectric converter by the optical position detector of FIG. In this figure, (A) is a conventional output example, (B) is a sensitivity ratio in the method of the present invention, and (C) is an output example to which the method of the present invention is applied. That is, in the optical profile measurement method of the present invention, the light receiving sensitivity of each photoelectric converter 20a is scattered from the beam optical path from the beam projection point A to the irradiation point P of the surface to be measured (3). The inclination sensitivity is set so that the side receiving light is relatively low and the side receiving light reflected from the irradiation point is relatively high . In this example, the ratio of the gradient sensitivity is set such that the sensitivity of the adjacent photoelectric converters 20a of 32 channels is 1% higher on the side that receives the reflected light than the side that receives the scattered light. The thirty-second channel on the light receiving side is set to have a sensitivity of about 1.36 times that of the first channel. In addition, the ratio of the tilt sensitivity is preferably linear, and the higher the ratio, the stronger the dust and disturbance (noise signal), but if it is too high, another position adjacent to the accurate peak position is used as the irradiation point P. There is a risk that the detection position accuracy is slightly lowered. Therefore, as a whole, the ratio is preferably set to about 1.2 to 2.0 times on the side that receives the reflected light with respect to the side that receives the scattered light .
[0017]
FIG. 3C is obtained by correcting the output data of (A) with the sensitivity ratio of (B). From this figure, when the output level of each photoelectric converter in FIG. 3A is compared, and the maximum output position is determined to be the irradiation point P of the surface to be measured on the optical position detector, the peak position is this In the example, since the third channel and the 17th channel have peaks, when the disturbance (noise signal) is large, the third channel may be erroneously detected as a peak.
[0018]
FIG. 4 shows a measurement example of the profile of the measurement target surface 3 when such erroneous detection occurs. Both (A) and (B) are false detections that occur under almost the same conditions as in FIG. 3, and not only the measurement accuracy of the light receiving angle β is greatly deteriorated, but also the light receiving mirror (scanning mirror) follows this false detection. ) Also changes greatly, so that a position far from the actual irradiation point P is calculated as the irradiation point P, and as a result, the measured data cannot be used at all.
[0019]
On the other hand, as shown in FIGS. 3B and 3C, the light receiving sensitivity of a plurality of photoelectric converters (20a) arranged linearly from the beam projecting side to the beam receiving side is expressed as the beam projecting point. Inclination is such that the side that receives scattered light from the beam optical path before reaching the irradiation point P on the surface to be measured (3) is relatively low, and the side that receives the reflected light from the irradiation point is relatively high. By setting the sensitivity, the intensity of the scattered light from the normally weak beam path (in this example, the third channel) can be further reduced, and the reflected light intensity from the irradiation point P (in this example, the seventeenth channel) is made relative. Can be enhanced. As a result, the output levels of the photoelectric converters can be compared to reliably detect the maximum output position (the 17th channel).
[0020]
FIG. 5 is an example of profile measurement by the method of the present invention. Both (A) and (B) are measured under substantially the same conditions as in FIG. 3, but there is almost no false detection, and even when the noise signal is large and there is a measurement error, the irradiation point P on the surface to be measured is surely obtained. It was confirmed that can be detected.
[0021]
It should be noted that the method of the present invention is not limited to the above-described embodiments, and can be variously modified without departing from the gist of the present invention.
[0022]
【The invention's effect】
As described above, Mie scattering, which is an optical physical phenomenon, always occurs only on the upstream side of the optical path of the spot position, and does not occur at the tip of the spot light. By simply attaching, it is possible to perform reliable measurement simply by taking a peak value, and it is possible to achieve both prevention of erroneous detection and simplification of the system.
[0023]
That is, the optical profile measurement method and apparatus of the present invention can reliably detect the laser irradiation position P on the surface to be measured even when the dust is intense and the Mie scattered light from the dust is strong. Even when the signal is large and there is a measurement error, it has an excellent effect that the false detection can be greatly reduced and the profile of the surface to be measured can be accurately measured.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of an optical profile measuring apparatus to which a method of the present invention is applied.
FIG. 2 is a profile measurement example using the apparatus of FIG.
FIG. 3 is an output example of each photoelectric converter by the optical position detector of FIG. 1;
FIG. 4 is an example of profile measurement by a conventional method.
FIG. 5 is a profile measurement example according to the method of the present invention.
FIG. 6 is a schematic configuration diagram of a conventional optical profile measuring device.
FIG. 7 is a principle diagram of an optical profile measuring apparatus.
[Explanation of symbols]
3 Measurement surface 5 Laser beam 6 Scattered light 7 Light receiving optical system 8 Optical position detector 8a Photoelectric converter 10 Optical profile measuring device 12 Light projecting unit 12a Laser controller 12b Laser power source unit 12c Laser oscillator 13 Mirror scanner 14 Light receiving unit 14a Mirror scanner 14b Lens 14c Rotating optical attenuator 15 Light reception control panel 16 System control unit 16a System control panel 16b Display 20 Light receiver array (light position detector)
20a photoelectric converter

Claims (2)

ビーム投光点Aとビーム受光点Bを基準長Lを隔てて設置し、ビーム投光点Aから被測定面(3)にレーザビーム(5)を走査し、ビーム受光点Bで被測定面側からの散乱光(6)を集光して光位置検出器(20)に導き、その出力から被測定面の形状を測定する光学式プロフィル測定方法において、
前記光位置検出器(20)は、ビーム投光側からビーム受光側に直線状に配列した複数の光電変換器(20a)からなり、
各光電変換器の受光感度は、前記ビーム投光点Aから前記被測定面(3)の照射点に達する前までのビーム光路からの散乱光を受ける側が相対的に低く、前記照射点からの反射光を受ける側が相対的に高くなるように傾斜感度に設定されており、更に、各光電変換器の出力レベルを比較し、その最大出力位置を光位置検出器上の被測定面の照射点Pと判断する、ことを特徴とする光学式プロフィル測定方法。
A beam projection point A and a beam reception point B are set apart from each other by a reference length L, the laser beam (5) is scanned from the beam projection point A to the surface to be measured (3), and the surface to be measured at the beam reception point B. In the optical profile measuring method of collecting the scattered light (6) from the side and guiding it to the optical position detector (20) and measuring the shape of the surface to be measured from its output,
The optical position detector (20) includes a plurality of photoelectric converters (20a) arranged linearly from the beam projecting side to the beam receiving side,
The light receiving sensitivity of each photoelectric converter is relatively low on the side that receives scattered light from the beam light path from the beam projection point A to before reaching the irradiation point of the surface to be measured (3). The tilt sensitivity is set so that the side that receives the reflected light is relatively high , and the output level of each photoelectric converter is compared, and the maximum output position is set as the irradiation point on the surface to be measured on the optical position detector. An optical profile measuring method, characterized in that P is determined.
ビーム投光点Aとビーム受光点Bを基準長Lを隔てて設置し、ビーム投光点Aから被測定面(3)にレーザビーム(5)を走査し、ビーム受光点Bで被測定面側からの散乱光(6)を集光して光位置検出器(20)に導き、その出力から被測定面の形状を測定する光学式プロフィル測定装置において、
前記光位置検出器(20)は、ビーム投光側からビーム受光側に直線状に配列した複数の光電変換器(20a)からなり、
各光電変換器の受光感度は、前記ビーム投光点Aから前記被測定面(3)の照射点に達する前までのビーム光路からの散乱光を受ける側が相対的に低く、前記照射点からの反射光を受ける側が相対的に高くなるように傾斜感度に設定されており、
更に、各光電変換器の出力レベルを比較し、その最大出力位置を光位置検出器上の被測定面の照射点Pと判断するシステム制御部を備える、ことを特徴とする光学式プロフィル測定装置。
A beam projection point A and a beam reception point B are set apart from each other by a reference length L, the laser beam (5) is scanned from the beam projection point A to the surface to be measured (3), and the surface to be measured at the beam reception point B. In the optical profile measuring device that collects the scattered light (6) from the side and guides it to the optical position detector (20) and measures the shape of the surface to be measured from its output,
The optical position detector (20) includes a plurality of photoelectric converters (20a) arranged linearly from the beam projecting side to the beam receiving side,
The light receiving sensitivity of each photoelectric converter is relatively low on the side that receives scattered light from the beam light path from the beam projection point A to before reaching the irradiation point of the surface to be measured (3). The tilt sensitivity is set so that the side that receives the reflected light is relatively high,
The optical profile measuring device further comprises a system control unit for comparing the output levels of the photoelectric converters and determining the maximum output position as the irradiation point P on the surface to be measured on the optical position detector. .
JP11917499A 1999-04-27 1999-04-27 Optical profile measuring method and apparatus Expired - Fee Related JP4300496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11917499A JP4300496B2 (en) 1999-04-27 1999-04-27 Optical profile measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11917499A JP4300496B2 (en) 1999-04-27 1999-04-27 Optical profile measuring method and apparatus

Publications (2)

Publication Number Publication Date
JP2000310520A JP2000310520A (en) 2000-11-07
JP4300496B2 true JP4300496B2 (en) 2009-07-22

Family

ID=14754752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11917499A Expired - Fee Related JP4300496B2 (en) 1999-04-27 1999-04-27 Optical profile measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP4300496B2 (en)

Also Published As

Publication number Publication date
JP2000310520A (en) 2000-11-07

Similar Documents

Publication Publication Date Title
US6781705B2 (en) Distance determination
JPH0351004B2 (en)
US5489985A (en) Apparatus for inspection of packaged printed circuit boards
JP3614741B2 (en) Defect detection optical system and the surface defect inspection apparatus
JP3186876B2 (en) Surface profile measuring device
JP4300496B2 (en) Optical profile measuring method and apparatus
JPH04132909A (en) Size measuring apparatus with electron beam
US6313915B1 (en) Displacement measuring method and apparatus
JP2000088519A (en) Optical sensor
JPH11101872A (en) Laser range finder
JPH04151502A (en) Photosensor device
JPH06258232A (en) Defect inspection device for glass substrate
JPH0448204A (en) Height measurement system
JPH10339605A (en) Optical range finder
JP3091276B2 (en) Displacement measuring device
JPH05215528A (en) Three-dimensional shape measuring apparatus
JP4284675B2 (en) Substrate inspection device with height measurement
JPS5826325Y2 (en) position detection device
JPH10185515A (en) Coil position detector
JP3444575B2 (en) Rangefinder
JPH02157613A (en) Distance measuring instrument
JPS59226802A (en) Edge detector of optical measuring equipment
JPH0579994A (en) Transparent body defect inspecting device
JPH10213418A (en) Shape measuring apparatus
JPH0679016B2 (en) Method and apparatus for ultrasonic inspection of concave corners

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees