JP4287546B2 - Manufacturing method of glyceryl ether - Google Patents

Manufacturing method of glyceryl ether Download PDF

Info

Publication number
JP4287546B2
JP4287546B2 JP21202199A JP21202199A JP4287546B2 JP 4287546 B2 JP4287546 B2 JP 4287546B2 JP 21202199 A JP21202199 A JP 21202199A JP 21202199 A JP21202199 A JP 21202199A JP 4287546 B2 JP4287546 B2 JP 4287546B2
Authority
JP
Japan
Prior art keywords
palladium
glyceryl ether
phosphite
tertiary phosphine
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21202199A
Other languages
Japanese (ja)
Other versions
JP2001039914A (en
Inventor
宗尚 奥津
敦志 永澤
智人 木附
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP21202199A priority Critical patent/JP4287546B2/en
Priority to DE2000136423 priority patent/DE10036423B4/en
Publication of JP2001039914A publication Critical patent/JP2001039914A/en
Application granted granted Critical
Publication of JP4287546B2 publication Critical patent/JP4287546B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/03Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
    • C07C43/04Saturated ethers
    • C07C43/13Saturated ethers containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1845Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はグリセリルエーテルの製法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
モノアルキルグリセリルエーテルは乳化剤、分散剤、洗浄剤等として優れた非イオン性界面活性剤であり、その中でもモノオクチルグリセリルエーテルは特に有用なものの一つである。
【0003】
モノアルキルグリセリルエーテルの製法としては、(1) アルコールとエピクロロヒドリン等のエピハロヒドリンからグリシジルエーテルを合成し、更に加水分解する方法が一般的である。またその他、(2) グリセリンとアルキルハライドを塩基を用いて反応させる方法、(3) アルコールとグリセリンを酸触媒により直接反応させる方法、(4) アルコールとグリシドールを酸又は塩基性触媒を用いて反応させる方法なども知られている。
【0004】
しかし、(1) の方法では、グリシジルエーテルを選択的に合成することが難しく、また原料由来の有機塩素化物が混入するおそれもある。また、(2) の方法は、モノアルキルエーテルの選択的合成が困難であるだけでなく、大量に生成する塩の処理が必要であり、更に生成物が著しく着色するといった問題があり、(3) の方法は、同様にモノアルキルエーテルの選択的合成が困難で、ジアルキル体やα-分岐エーテル結合物のほか、アルコール同士が反応したジアルキルエーテルの副生が避けられないという問題があり、(4) の方法は、グリシドール自身の重合や生成物へのグリシドールの過剰付加を避けることが難しいといった問題がある。
【0005】
一方、共役アルカジエンがアルコールやポリオールによってテロメル化し、1,7-又は2,7-アルカジエニルエーテルが得られることは知られているが、そのうち特表平6-509339号公報には、共役ジエンとポリオール、特にグリセリンを用いてテロメリゼーションによりオクタジエニルグリセリルエーテルを合成する方法が開示されている。そしてこのオクタジエニルグリセリルエーテルは水素添加によりオクチルグリセリルエーテルとすることが可能であるが、このグリセリンのテロメリゼーション法では、生成物がモノオクタジエニルグリセリルエーテルとジオクタジエニルグリセリルエーテル、更にはトリオクタジエニルグリセリルエーテルとの混合物になってしまい、選択的にモノオクタジエニルグリセリルエーテルのみを合成することが困難であった。また更にグリセリンを反応させるためにはイソプロピルアルコールのような第二級アルコールを溶媒として用いる必要があるため、より選択的に、簡便かつ安価にモノアルキルグリセリルエーテルを製造する方法が望まれていた。
【0006】
【課題を解決するための手段】
本発明は、一般式(1)
【0007】
【化2】

Figure 0004287546
【0008】
〔式中、R1 及びR2 は同一又は異なって、水素原子又は炭素数1〜10の炭化水素基を示す。ただし、R1 とR2 は同時に水素原子となることはなく、またこれらが連結して隣接する炭素原子とともに環を形成してもよい。〕
で表されるグリセリン誘導体に、パラジウム化合物及び第三級ホスフィン若しくはホスファイトの存在下、又はパラジウム−第三級ホスフィン錯体若しくはパラジウム−ホスファイト錯体の存在下、共役ジエンを反応させて、共役ジエンが2量化したアルカジエニル基を有するエーテル体を得る工程(以下、第一の工程という)の後、得られたエーテル体に対して、水素雰囲気中で第VIII族(8〜10族)元素を含有する触媒の存在下にアルカジエニル基を水素添加する工程、及び酸触媒の存在下にアセタール(又はケタール)を加水分解する工程を行うモノアルキルグリセリルエーテルの製法を提供するものである。
【0009】
【発明の実施の形態】
第一の工程においては、グリセリン誘導体(1) と共役ジエンとを、パラジウム化合物及び第三級ホスフィン若しくはホスファイトの存在下、又はパラジウム−第三級ホスフィン錯体若しくはパラジウム−ホスファイト錯体の存在下に反応させることにより、グリセリン誘導体(1) のアルカジエニルエーテル化物が得られる。
【0010】
本工程で使用されるグリセリン誘導体(1) は、例えばグリセリンと下記一般式(2)
【0011】
【化3】
Figure 0004287546
【0012】
〔式中、R1 及びR2 は前記と同じ意味を示す。〕
で表されるカルボニル化合物をp-トルエンスルホン酸等の酸触媒を用いて反応させることにより、容易に合成することができる。ただし、R1 が水素の場合は、混合物として2-アルキル-1,3-ジオキサン-5-オールが含有されやすくなるため、カルボニル化合物(2) としては、ケトンがより好ましい。
【0013】
カルボニル化合物(2) としては、例えば、アセトン、メチルエチルケトン、メチルプロピルケトン、メチルイソプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、ジエチルケトン、エチルプロピルケトン、エチルブチルケトン、ジプロピルケトン、ジイソプロピルケトン、ジブチルケトン、ジイソブチルケトン、ジペンチルケトン、ジヘキシルケトン等の非環状ケトンのほか、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン、エチルシクロヘキサノン、プロピルシクロヘキサノン、ブチルシクロヘキサノン等のアルキル基が置換してもよい5又は6員の環状ケトンが挙げられるが、アセトン、メチルエチルケトン、メチルイソブチルケトン等のR1 及びR2 が炭素数1〜6、特に炭素数1〜4のアルキル基であるジアルキルケトンがより好ましい。
【0014】
共役ジエンとしては、1,3-アルカジエン、2,4-アルカジエン等が挙げられるが、炭素数4〜6の1,3-アルカジエンが好ましく、具体的には1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、イソプレン等が挙げられる。このうち1,3-ブタジエンが特に好ましく用いられ、この場合に非イオン界面活性剤として優れた性能を有するモノオクチルグリセリルエーテルを製造することができる。
【0015】
第一の工程で使用されるパラジウム化合物としては、例えばビス(アセチルアセトナト)パラジウム(II)、酢酸パラジウム(II)、塩化パラジウム(II)等が挙げられるが、なかでもビス(アセチルアセトナト)パラジウム(II)及び酢酸パラジウムが好ましく、特に塩基触媒共存の条件においてはビス(アセチルアセトナト)パラジウム(II)が好ましい。またパラジウム錯体としては、例えばテトラキス(トリフェニルホスフィン)パラジウム(0)等が挙げられる。これらパラジウム化合物又はパラジウム錯体の使用量は、グリセリン誘導体に対しモル比率で0.0001〜0.01、特に0.001〜0.01が好ましい。
【0016】
また第三級ホスフィン又はホスファイトとしては、トリメチルホスフィン、トリエチルホスフィン、トリプロピルホスフィン、トリブチルホスフィン等の脂肪族トリアルキルホスフィン;ジメチルフェニルホスフィン、メチルジフェニルホスフィン、ジエチルフェニルホスフィン、エチルジフェニルホスフィン、トリフェニルホスフィン等の芳香族ホスフィン;1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、1,4-ビス(ジフェニルホスフィノ)ブタン、1,4-ビス(ジメチルホスフィノ)ブタン、1,2-ビス(ジメチルホスフィノ)エタン等の二座配位子となるホスフィン;これらと同様の構造を持つトリアルキルホスファイト等が挙げられる。またスルホン酸基やカルボキシル基を置換基として持つトリアリールホスフィンも回収等の点から好ましい。第三級ホスフィン又はホスファイトのパラジウム化合物に対する使用量としては、パラジウム化合物に対して0.1〜4モル当量、特に1〜2.5モル当量が好ましい。また二座配位子となるホスフィン又はホスファイトの場合は、パラジウム化合物に対して0.1〜2モル当量、特に0.5〜1.5モル当量が好ましい。
【0017】
第一の工程における反応系には、塩基を共存させるのが好ましく、このような塩基としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物;ナトリウムメトキシド、カリウム t-ブトキシド等の低級アルコール又は第3級アルコールから導かれるアルカリ金属アルコキシド;その他水素化ナトリウム、金属ナトリウム等が挙げられるが、なかでもアルカリ金属アルコキシドが好ましい。これら塩基の使用量としては、グリセリン誘導体(1) に対して0.1〜10重量%が好ましい。
【0018】
共役ジエンは、オートクレーブ等の反応容器中に一括して仕込んでも、また連続的に導入してもよいが、グリセリン誘導体(1)に対して1.0〜3.0モル当量(グリセリン誘導体(1) 1モルに対して2〜6モル)となるように仕込むのが好ましい。
【0019】
グリセリン誘導体(1)と共役ジエンを反応させる際の反応温度は、10〜100℃、特に40〜90℃に保つのが好ましい。また未反応の共役ジエンは、反応後に低沸点物として回収することも可能である。
【0020】
続く第二及び第三の工程においては、以上の第一の工程で生成したアルカジエニルエーテル化物に対し、(a)水素雰囲気下で第VIII族(8〜10族)元素を含有する触媒によるアルカジエニル基の水素添加、及び(b)酸触媒の存在下にアセタール(又はケタール)の加水分解を行うことにより、目的のモノアルキルグリセリルエーテルを得る。これら(a)と(b)の順序は限定されず、すなわちいずれを第二の工程とし、第三の工程としてもよいが、(a)アルカジエニル基の水素添加の後に、(b)アセタール(又はケタール)の加水分解を行うのがより好ましい。
【0021】
(a)のアルカジエニル基の水素添加工程で使用する第VIII族(8〜10族)元素を含有する触媒としては、Pd、Rh、Ru、Ni、Pt等の金属が低酸化数状態で含有されているものが挙げられ、特にこれらの金属がカーボン、ゼオライト、シリカアルミナ等に1〜10重量%担持されたものや、ラネーニッケル、それらの金属の酸化物が好ましい。触媒の使用量はアルカジエニルエーテル化物に対して0.1〜10重量%が好ましい。また水素圧は特に制限されないが、常圧〜20MPaの範囲が好ましい。
【0022】
(b)のアセタール(又はケタール)の加水分解工程で使用する酸触媒としては、p-トルエンスルホン酸、硫酸等の通常用いられるものが挙げられ、また加水分解の方法も常法に従うことが好ましいが、工業的な観点から、水蒸気を用いて加水分解とケトンの回収を同時に行う方法も好ましい。
【0023】
【実施例】
実施例1
1Lオートクレーブ中に2,2-ジメチル-4-ヒドロキシメチル-1,3-ジオキソラン250g(1.9mol)、ビス(アセチルアセトナト)パラジウム(II)152mg(0.5mmol)、トリブチルホスフィン202mg(1.0mmol)及びt-ブトキシカリウム5.0g(0.05mol)を加え、更に1,3-ブタジエン300g(5.6mol)を一括で導入し、攪拌しながら70℃に昇温した。オートクレーブ内の圧力は初期に0.7MPaを示したが徐々に減少した。70℃で10時間攪拌後、室温まで放冷し、未反応のブタジエン及び副生したオクタトリエンを減圧下で除き、更に水洗して、425gの2,2-ジメチル-4-ヒドロキシメチル-1,3-ジオキソランのオクタジエニルエーテル化物を淡赤黄色の透明オイルとして得た。
得られたオクタジエニルエーテル化物300g及び5%Pd-シリカアルミナ(NEケムキャット社製)10gを500mlオートクレーブに加え、1〜5MPaの圧力の水素雰囲気下、25〜70℃で12時間攪拌した。反応終了後、触媒をろ過により除去し、300gの2,2-ジメチル-4-ヒドロキシメチル-1,3-ジオキソランのオクチルエーテル化物を無色透明オイルとして得た。
オクチルエーテル化物300g(1.2mol)、水1000g及びp-トルエンスルホン酸3.0gを1L四つ口フラスコに入れ、50℃、200mmHgの減圧下、12時間加水分解を行った。反応終了後、更に等量の温水で水洗し、250gのモノオクチルグリセリルエーテルを無色透明オイルとして得た。GC分析より純度は97%であり、モノ(2-オクチル)グリセリルエーテルを3%含有していた。
【0024】
比較例1
1Lオートクレーブ中にグリセリン150g(1.6mol)、2-プロパノール230g、ビス(アセチルアセトナト)パラジウム(II) 60mg(0.2mmol)及びトリフェニルホスフィン103mg(0.4mmol)を加え、更に1,3-ブタジエン100g(1.85mol)を一括で導入し、攪拌しながら70℃に昇温した。オートクレーブ内の圧力は初期に0.7MPaを示したが徐々に減少し、3時間後に圧力は常圧となった。室温まで放冷後、生成物に10gの5%Pd-Cを加えて、2MPaの圧力の水素雰囲気下、70℃で10時間水素添加を行った。反応終了後GC分析した結果、反応混合物中のモノオクチルグリセリルエーテルは55%であり、ジオクチルグリセリルエーテルが22%副生しており、未反応のグリセリンが14%残存していた。
【0025】
実施例2
実施例1において、第一の工程をトリブチルホスフィンに代えてトリフェニルホスフィン262mg(1.0mmol)を用いて同様に行い、415gのオクタジエニルエーテル化物を淡赤黄色の透明オイルとして得た。
続く水素添加工程を70℃で15時間行う以外は実施例1と同様に行い、300gのオクチルエーテル化物を無色透明オイルとして得、加水分解工程は実施例1と全く同様に行って、250gのモノオクチルグリセリルエーテルを無色透明オイルとして得た。GC分析より純度は97%であり、モノ(2-オクチル)グリセリルエーテルを3%含有していた。
【0026】
実施例3
1Lオートクレーブ中に、2-メチル-2-エチル-4-ヒドロキシメチル-1,3-ジオキソラン275g(1.9mol)及びナトリウムメチラートの28%メタノール溶液5.0g(0.05mol)を加え、200mmHgの減圧下、90℃でメタノールを留去した。更にビス(アセチルアセトナト)パラジウム(II)152mg(0.5mmol)及びトリブチルホスフィン202mg(1.0mmol)を加え、更に1,3-ブタジエン300g(5.6mol)を一括で導入し、攪拌しながら、70℃に昇温した。オートクレーブ内の圧力は初期に0.7MPaを示したが徐々に減少した。70℃で10時間攪拌後、室温まで放冷し、未反応のブタジエン及び副生したオクタトリエンを減圧下で除き、更に水洗して、450gの2-メチル-2-エチル-4-ヒドロキシメチル-1,3-ジオキソランのオクタジエニルエーテル化物を得た。
続く水素添加工程を実施例1と全く同様に行い、300gの2-メチル-2-エチル-4-ヒドロキシメチル-1,3-ジオキソランのオクチルエーテル化物を得、加水分解工程をp-トルエンスルホン酸に代えて硫酸1gを用いて実施例1と同様に行い、235gのモノオクチルグリセリルエーテルを無色透明オイルとして得た。GC分析より純度は97%であり、モノ(2-オクチル)グリセリルエーテルを3%含有していた。
【0027】
実施例4
実施例3において、第一の工程をトリブチルホスフィンに代えてジメチルフェニルホスフィン138mg(1.0mmol)を用いて同様に行い、450gのオクタジエニルエーテル化物を得た。
続く水素添加工程を実施例3と全く同様に行い、300gのオクチルエーテル化物を得、加水分解工程も実施例3と全く同様に行って、235gのモノオクチルグリセリルエーテルを無色透明オイルとして得た。GC分析より純度は94%であり、モノ(2-オクチル)グリセリルエーテルを6%含有していた。
【0028】
実施例5
実施例1において、第一の工程をトリブチルホスフィンに代えて1,2-ビス(ジフェニルホスフィノ)ブタン400mg(1.0mmol)を用いる以外は同様に行い、420gのオクタジエニルエーテル化物を得た。
続く水素添加工程を実施例1と全く同様に行い、300gのオクチルエーテル化物を得、加水分解工程も実施例1と全く同様に行って、250gのモノオクチルグリセリルエーテルを無色透明オイルとして得た。GC分析より純度は97%であり、モノ(2-オクチル)グリセリルエーテルを3%含有していた。
【0029】
実施例6
実施例1において、第一の工程をビス(アセチルアセトナト)パラジウム(II)とトリブチルホスフィンの組合わせに代えてテトラキス(トリフェニルホスフィン)パラジウム(0) 450mg(0.39mmol)を用いて同様に行い、420gのオクタジエニルエーテル化物を得た。
続く水素添加工程を実施例1と全く同様に行い、300gのオクチルエーテル化物を得、加水分解工程も実施例1と全く同様に行って、250gのモノオクチルグリセリルエーテルを無色透明オイルとして得た。GC分析より純度は97%であり、モノ(2-オクチル)グリセリルエーテルを3%含有していた。
【0030】
実施例7
実施例1において、第一の工程をビス(アセチルアセトナト)パラジウム(II)に代えて酢酸パラジウム(II) 112mg(0.5mmol)を用い、トリブチルホスフィンに代えてトリフェニルホスフィン262mg(1.0mmol)を用い、塩基を用いない以外は同様に行い、405gのオクタジエニルエーテル化物を得た。
得られたオクタジエニルエーテル化物300g及び酸化パラジウム(II) 2gを500mlオートクレーブに加え、常圧水素雰囲気下、室温で24時間攪拌した。反応終了後、触媒をろ過により除去し、300gのオクチルエーテル化物を無色透明オイルとして得た。
加水分解工程は実施例1と全く同様に行い、250gのモノオクチルグリセリルエーテルを無色透明オイルとして得た。GC分析より純度は95%であり、モノ(2-オクチル)グリセリルエーテルを5%含有していた。
【0031】
実施例8
1Lオートクレーブ中に2-メチル-2-エチル-4-ヒドロキシメチル-1,3-ジオキソラン275g(1.9mol)、ビス(アセチルアセトナト)パラジウム(II)152mg(0.5mmol)、トリブチルホスフィン202mg(1.0mmol)及びt-ブトキシカリウム5.0g(0.05mol)を加え、更にイソプレン380g(5.6mol)を一括で導入し、窒素で置換した後、70℃に昇温した。そのまま70℃で16時間攪拌後、室温まで放冷し、未反応のイソプレン及び副生したジメチルオクタトリエンを減圧下で除き、更に水洗して、470gの2-メチル-2-エチル-4-ヒドロキシメチル-1,3-ジオキソランの(ジメチルオクタジエニル)エーテル化物を赤黄色の透明オイルとして得た。
得られた(ジメチルオクタジエニル)エーテル化物300g及び5%Pd-シリカアルミナ(NEケムキャット社製)10gを500mlオートクレーブに加え、1〜5MPaの圧力の水素雰囲気下、25〜70℃で12時間攪拌した。反応終了後、触媒をろ過により除去し、300gの2-メチル-2-エチル-4-ヒドロキシメチル-1,3-ジオキソランの(ジメチルオクチル)エーテル化物を淡黄色透明オイルとして得た。
得られた(ジメチルオクチル)エーテル化物300g(1.2mol)、水1000g及び硫酸1gを2L四つ口フラスコに入れ、50℃、200mmHgの減圧下、12時間加水分解を行った。反応終了後、更に等量の温水で水洗し、255gのモノ(ジメチルオクチル)グリセリルエーテルを淡黄色透明オイルとして得た。この生成モノ(ジメチルオクチル)グリセリルエーテルは、(3,7-ジメチル-1-オクチル)グリセリルエーテル、(3,6-ジメチル-1-オクチル)グリセリルエーテル等のメチル基の位置が異なる異性体の混合物として得られ、(ジメチルオクチル)グリセリルエーテルとしての純度はGC分析より96%であった。
【0032】
【発明の効果】
本発明によれば、より選択的に、簡便かつ安価に、しかも溶媒を用いることなくモノアルキルグリセリルエーテルを製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for producing glyceryl ether.
[0002]
[Prior art and problems to be solved by the invention]
Monoalkyl glyceryl ether is a nonionic surfactant excellent as an emulsifier, a dispersant, a cleaning agent, etc. Among them, monooctyl glyceryl ether is one of particularly useful ones.
[0003]
As a method for producing a monoalkyl glyceryl ether, (1) a method in which glycidyl ether is synthesized from an alcohol and an epihalohydrin such as epichlorohydrin and then hydrolyzed is generally used. In addition, (2) a method of reacting glycerin and alkyl halide using a base, (3) a method of reacting alcohol and glycerin directly with an acid catalyst, and (4) a reaction of alcohol and glycidol using an acid or basic catalyst. The method of making it known is also known.
[0004]
However, in the method (1), it is difficult to selectively synthesize glycidyl ether, and organic chlorinated products derived from raw materials may be mixed. In addition, the method (2) not only makes it difficult to selectively synthesize monoalkyl ethers, but also requires the treatment of a large amount of salt, and further has a problem that the product is markedly colored. ) Method is similarly difficult to selectively synthesize monoalkyl ethers, and there is a problem that dialkyl ethers and α-branched ether conjugates as well as by-products of dialkyl ethers reacted with alcohols cannot be avoided. The method 4) has a problem that it is difficult to avoid polymerization of glycidol itself and excessive addition of glycidol to the product.
[0005]
On the other hand, it is known that conjugated alkadienes are telomerized with alcohols or polyols to give 1,7- or 2,7-alkadienyl ethers. And a method of synthesizing octadienyl glyceryl ether by telomerization using polyol and in particular glycerin. And this octadienyl glyceryl ether can be converted to octyl glyceryl ether by hydrogenation, but in this glycerin telomerization method, the product is monooctadienyl glyceryl ether and dioctadienyl glyceryl ether, Became a mixture with trioctadienyl glyceryl ether, and it was difficult to selectively synthesize only monooctadienyl glyceryl ether. Further, in order to further react glycerin, it is necessary to use a secondary alcohol such as isopropyl alcohol as a solvent. Therefore, a more selective and simple method for producing monoalkyl glyceryl ether has been desired.
[0006]
[Means for Solving the Problems]
The present invention relates to general formula (1)
[0007]
[Chemical formula 2]
Figure 0004287546
[0008]
[Wherein, R 1 and R 2 are the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms. However, R 1 and R 2 do not simultaneously become hydrogen atoms, and they may be linked to form a ring together with adjacent carbon atoms. ]
Is reacted with a conjugated diene in the presence of a palladium compound and a tertiary phosphine or phosphite, or in the presence of a palladium-tertiary phosphine complex or a palladium-phosphite complex. After the step of obtaining an ether body having a dimerized alkadienyl group (hereinafter referred to as the first step), the obtained ether body contains a Group VIII (Group 8 to 10) element in a hydrogen atmosphere. The present invention provides a method for producing a monoalkyl glyceryl ether which comprises a step of hydrogenating an alkadienyl group in the presence of a catalyst and a step of hydrolyzing an acetal (or ketal) in the presence of an acid catalyst.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the first step, the glycerol derivative (1) and the conjugated diene are combined in the presence of a palladium compound and a tertiary phosphine or phosphite, or in the presence of a palladium-tertiary phosphine complex or a palladium-phosphite complex. By reacting, an alkadienyl etherified product of the glycerin derivative (1) is obtained.
[0010]
The glycerin derivative (1) used in this step is, for example, glycerin and the following general formula (2)
[0011]
[Chemical 3]
Figure 0004287546
[0012]
[Wherein, R 1 and R 2 have the same meaning as described above. ]
Can be easily synthesized by reacting the carbonyl compound represented by the formula (1) with an acid catalyst such as p-toluenesulfonic acid. However, when R 1 is hydrogen, 2-alkyl-1,3-dioxane-5-ol is likely to be contained as a mixture, so that the carbonyl compound (2) is more preferably a ketone.
[0013]
Examples of the carbonyl compound (2) include acetone, methyl ethyl ketone, methyl propyl ketone, methyl isopropyl ketone, methyl butyl ketone, methyl isobutyl ketone, diethyl ketone, ethyl propyl ketone, ethyl butyl ketone, dipropyl ketone, diisopropyl ketone, dibutyl ketone. In addition to acyclic ketones such as diisobutyl ketone, dipentyl ketone, and dihexyl ketone, 5- or 6-membered cyclics that may be substituted by an alkyl group such as cyclopentanone, cyclohexanone, methylcyclohexanone, ethylcyclohexanone, propylcyclohexanone, and butylcyclohexanone Although ketone, acetone, methyl ethyl ketone, R 1 and R 2 is 1 to 6 carbon atoms such as methyl isobutyl ketone, in particular der alkyl group having 1 to 4 carbon atoms Dialkyl ketones is more preferable.
[0014]
Examples of the conjugated diene include 1,3-alkadiene, 2,4-alkadiene, etc., and 1,3-alkadiene having 4 to 6 carbon atoms is preferable, specifically 1,3-butadiene, 1,3- Examples include pentadiene, 1,3-hexadiene, and isoprene. Of these, 1,3-butadiene is particularly preferably used. In this case, monooctyl glyceryl ether having excellent performance as a nonionic surfactant can be produced.
[0015]
Examples of the palladium compound used in the first step include bis (acetylacetonato) palladium (II), palladium (II) acetate, palladium (II) chloride, etc., among which bis (acetylacetonato) Palladium (II) and palladium acetate are preferred, and bis (acetylacetonato) palladium (II) is particularly preferred under the conditions of coexistence with a base catalyst. Examples of the palladium complex include tetrakis (triphenylphosphine) palladium (0). The amount of these palladium compounds or palladium complexes used is preferably from 0.0001 to 0.01, particularly preferably from 0.001 to 0.01, in terms of a molar ratio to the glycerol derivative.
[0016]
Tertiary phosphine or phosphite includes aliphatic trialkylphosphine such as trimethylphosphine, triethylphosphine, tripropylphosphine, tributylphosphine; dimethylphenylphosphine, methyldiphenylphosphine, diethylphenylphosphine, ethyldiphenylphosphine, triphenylphosphine. Aromatic phosphines such as 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane, 1,4-bis (diphenylphosphino) butane, 1,4-bis (dimethylphosphine) Phosphine) butane, 1,2-bis (dimethylphosphino) ethane and other bidentate phosphines; trialkyl phosphites having the same structure as these. Triarylphosphine having a sulfonic acid group or a carboxyl group as a substituent is also preferable from the viewpoint of recovery. As the usage-amount with respect to the palladium compound of tertiary phosphine or a phosphite, 0.1-4 molar equivalent with respect to a palladium compound, Especially 1-2.5 molar equivalent is preferable. Moreover, in the case of the phosphine or phosphite used as a bidentate ligand, 0.1-2 molar equivalent with respect to a palladium compound, Especially 0.5-1.5 molar equivalent is preferable.
[0017]
The reaction system in the first step preferably contains a base. Examples of such a base include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; sodium methoxide, potassium t-butoxide and the like. Alkali metal alkoxides derived from lower alcohols or tertiary alcohols; other examples include sodium hydride and sodium metal, among which alkali metal alkoxides are preferred. The amount of these bases used is preferably 0.1 to 10% by weight based on the glycerin derivative (1).
[0018]
The conjugated diene may be charged all at once in a reaction vessel such as an autoclave or may be continuously introduced. The conjugated diene is 1.0 to 3.0 molar equivalents per 1 mole of the glycerin derivative (1). 2 to 6 mol) is preferably charged.
[0019]
The reaction temperature when the glycerin derivative (1) is reacted with the conjugated diene is preferably maintained at 10 to 100 ° C, particularly 40 to 90 ° C. Unreacted conjugated diene can also be recovered as a low boiling point product after the reaction.
[0020]
In the subsequent second and third steps, (a) a catalyst containing a Group VIII (Group 8-10) element in a hydrogen atmosphere with respect to the alkadienyl etherified product formed in the first step above. The target monoalkyl glyceryl ether is obtained by hydrogenation of the alkadienyl group and (b) hydrolysis of the acetal (or ketal) in the presence of an acid catalyst. The order of these (a) and (b) is not limited, that is, either may be the second step and may be the third step. (A) After hydrogenation of the alkadienyl group, (b) an acetal (or More preferably, the ketal) is hydrolyzed.
[0021]
As a catalyst containing a Group VIII (Group 8-10) element used in the hydrogenation step of the alkadienyl group in (a), metals such as Pd, Rh, Ru, Ni, Pt are contained in a low oxidation number state. In particular, those in which these metals are supported on carbon, zeolite, silica alumina or the like in an amount of 1 to 10% by weight, Raney nickel, and oxides of these metals are preferable. The amount of the catalyst used is preferably 0.1 to 10% by weight based on the alkadienyl etherified product. The hydrogen pressure is not particularly limited, but is preferably in the range of normal pressure to 20 MPa.
[0022]
Examples of the acid catalyst used in the acetal (or ketal) hydrolysis step (b) include commonly used ones such as p-toluenesulfonic acid and sulfuric acid, and the hydrolysis method is preferably in accordance with a conventional method. However, from the industrial viewpoint, a method of simultaneously performing hydrolysis and recovery of ketones using water vapor is also preferred.
[0023]
【Example】
Example 1
In a 1 L autoclave, 250 g (1.9 mol) of 2,2-dimethyl-4-hydroxymethyl-1,3-dioxolane, 152 mg (0.5 mmol) of bis (acetylacetonato) palladium (II), 202 mg (1.0 mmol) of tributylphosphine and t-Butoxy potassium (5.0 g, 0.05 mol) was added, and 1,3-butadiene (300 g, 5.6 mol) was added all at once, and the temperature was raised to 70 ° C. with stirring. The pressure in the autoclave initially showed 0.7 MPa, but gradually decreased. After stirring at 70 ° C. for 10 hours, the mixture was allowed to cool to room temperature, unreacted butadiene and by-produced octatriene were removed under reduced pressure, further washed with water, and 425 g of 2,2-dimethyl-4-hydroxymethyl-1, An octadienyl etherified product of 3-dioxolane was obtained as a pale red yellow transparent oil.
300 g of the obtained octadienyl ether compound and 10 g of 5% Pd-silica alumina (manufactured by NE Chemcat) were added to a 500 ml autoclave and stirred at 25 to 70 ° C. for 12 hours in a hydrogen atmosphere at a pressure of 1 to 5 MPa. After completion of the reaction, the catalyst was removed by filtration to obtain 300 g of octyl etherified product of 2,2-dimethyl-4-hydroxymethyl-1,3-dioxolane as a colorless transparent oil.
300 g (1.2 mol) of octyl etherified product, 1000 g of water and 3.0 g of p-toluenesulfonic acid were placed in a 1 L four-necked flask and hydrolyzed under reduced pressure at 50 ° C. and 200 mmHg for 12 hours. After completion of the reaction, the mixture was further washed with an equal amount of warm water to obtain 250 g of monooctyl glyceryl ether as a colorless transparent oil. According to GC analysis, the purity was 97%, and it contained 3% mono (2-octyl) glyceryl ether.
[0024]
Comparative Example 1
In a 1 L autoclave, 150 g (1.6 mol) of glycerin, 230 g of 2-propanol, 60 mg (0.2 mmol) of bis (acetylacetonato) palladium (II) and 103 mg (0.4 mmol) of triphenylphosphine are added, and 100 g of 1,3-butadiene is further added. (1.85 mol) was introduced all at once, and the temperature was raised to 70 ° C. while stirring. The pressure in the autoclave initially showed 0.7 MPa, but gradually decreased, and after 3 hours, the pressure became normal. After allowing to cool to room temperature, 10 g of 5% Pd—C was added to the product, and hydrogenated at 70 ° C. for 10 hours in a hydrogen atmosphere at a pressure of 2 MPa. As a result of GC analysis after completion of the reaction, monooctyl glyceryl ether in the reaction mixture was 55%, dioctyl glyceryl ether was by-produced by 22%, and unreacted glycerin remained 14%.
[0025]
Example 2
In Example 1, the first step was carried out in the same manner using 262 mg (1.0 mmol) of triphenylphosphine instead of tributylphosphine, and 415 g of octadienyl etherified product was obtained as a pale red yellow transparent oil.
Except that the subsequent hydrogenation step was carried out at 70 ° C. for 15 hours, it was carried out in the same manner as in Example 1 to obtain 300 g of octyl etherified product as a colorless transparent oil, and the hydrolysis step was carried out in exactly the same manner as in Example 1 to obtain 250 g of monoester. Octyl glyceryl ether was obtained as a colorless transparent oil. According to GC analysis, the purity was 97%, and it contained 3% mono (2-octyl) glyceryl ether.
[0026]
Example 3
In a 1 L autoclave, add 275 g (1.9 mol) of 2-methyl-2-ethyl-4-hydroxymethyl-1,3-dioxolane and 5.0 g (0.05 mol) of a 28% methanol solution of sodium methylate, and under reduced pressure of 200 mmHg. The methanol was distilled off at 90 ° C. Further, 152 mg (0.5 mmol) of bis (acetylacetonato) palladium (II) and 202 mg (1.0 mmol) of tributylphosphine were added, and 300 g (5.6 mol) of 1,3-butadiene was introduced all at once, while stirring at 70 ° C. The temperature was raised to. The pressure in the autoclave initially showed 0.7 MPa, but gradually decreased. After stirring at 70 ° C. for 10 hours, the mixture was allowed to cool to room temperature, unreacted butadiene and by-produced octatriene were removed under reduced pressure, washed with water, and 450 g of 2-methyl-2-ethyl-4-hydroxymethyl- An octadienyl etherified product of 1,3-dioxolane was obtained.
The subsequent hydrogenation step was performed in exactly the same manner as in Example 1 to obtain 300 g of octyl etherified product of 2-methyl-2-ethyl-4-hydroxymethyl-1,3-dioxolane, and the hydrolysis step was carried out with p-toluenesulfonic acid. Instead of 1 g of sulfuric acid, the same procedure as in Example 1 was carried out to obtain 235 g of monooctylglyceryl ether as a colorless transparent oil. According to GC analysis, the purity was 97%, and it contained 3% mono (2-octyl) glyceryl ether.
[0027]
Example 4
In Example 3, the first step was carried out in the same manner using 138 mg (1.0 mmol) of dimethylphenylphosphine instead of tributylphosphine, and 450 g of octadienyl etherified product was obtained.
The subsequent hydrogenation step was performed in exactly the same manner as in Example 3 to obtain 300 g of octyl etherified product, and the hydrolysis step was also performed in exactly the same manner as in Example 3 to obtain 235 g of monooctyl glyceryl ether as a colorless transparent oil. According to GC analysis, the purity was 94% and it contained 6% mono (2-octyl) glyceryl ether.
[0028]
Example 5
In Example 1, the first step was carried out in the same manner except that 400 mg (1.0 mmol) of 1,2-bis (diphenylphosphino) butane was used in place of tributylphosphine, and 420 g of octadienyl etherified product was obtained.
The subsequent hydrogenation step was performed in exactly the same manner as in Example 1 to obtain 300 g of octyl etherified product, and the hydrolysis step was also performed in exactly the same manner as in Example 1 to obtain 250 g of monooctyl glyceryl ether as a colorless transparent oil. According to GC analysis, the purity was 97%, and it contained 3% mono (2-octyl) glyceryl ether.
[0029]
Example 6
In Example 1, the first step was similarly carried out using 450 mg (0.39 mmol) of tetrakis (triphenylphosphine) palladium (0) instead of the combination of bis (acetylacetonato) palladium (II) and tributylphosphine. 420 g of octadienyl etherified product was obtained.
The subsequent hydrogenation step was performed in exactly the same manner as in Example 1 to obtain 300 g of octyl etherified product, and the hydrolysis step was also performed in exactly the same manner as in Example 1 to obtain 250 g of monooctyl glyceryl ether as a colorless transparent oil. According to GC analysis, the purity was 97%, and it contained 3% mono (2-octyl) glyceryl ether.
[0030]
Example 7
In Example 1, 112 mg (0.5 mmol) of palladium (II) acetate was used instead of bis (acetylacetonato) palladium (II) in the first step, and 262 mg (1.0 mmol) of triphenylphosphine was used instead of tributylphosphine. Used in the same manner except that no base was used, to obtain 405 g of octadienyl etherified product.
300 g of the obtained octadienyl ether compound and 2 g of palladium (II) oxide were added to a 500 ml autoclave, and the mixture was stirred at room temperature for 24 hours under a normal pressure hydrogen atmosphere. After completion of the reaction, the catalyst was removed by filtration to obtain 300 g of octyl etherified product as a colorless transparent oil.
The hydrolysis step was performed in exactly the same manner as in Example 1 to obtain 250 g of monooctyl glyceryl ether as a colorless transparent oil. According to GC analysis, the purity was 95%, and it contained 5% mono (2-octyl) glyceryl ether.
[0031]
Example 8
In a 1 L autoclave, 2-methyl-2-ethyl-4-hydroxymethyl-1,3-dioxolane 275 g (1.9 mol), bis (acetylacetonato) palladium (II) 152 mg (0.5 mmol), tributylphosphine 202 mg (1.0 mmol) ) And 5.0 g (0.05 mol) of t-butoxypotassium were added, and 380 g (5.6 mol) of isoprene was introduced all at once, followed by replacement with nitrogen, and the temperature was raised to 70 ° C. After stirring at 70 ° C. for 16 hours, the mixture was allowed to cool to room temperature, unreacted isoprene and by-produced dimethyloctatriene were removed under reduced pressure, and further washed with water to give 470 g of 2-methyl-2-ethyl-4-hydroxy. A (dimethyloctadienyl) etherified product of methyl-1,3-dioxolane was obtained as a red-yellow transparent oil.
300 g of the obtained (dimethyloctadienyl) etherification product and 10 g of 5% Pd-silica alumina (manufactured by NE Chemcat) were added to a 500 ml autoclave and stirred at 25 to 70 ° C. for 12 hours in a hydrogen atmosphere at a pressure of 1 to 5 MPa. did. After completion of the reaction, the catalyst was removed by filtration to obtain 300 g of (dimethyloctyl) etherified product of 2-methyl-2-ethyl-4-hydroxymethyl-1,3-dioxolane as a pale yellow transparent oil.
300 g (1.2 mol) of the obtained (dimethyloctyl) etherified product, 1000 g of water and 1 g of sulfuric acid were placed in a 2 L four-necked flask and hydrolyzed under reduced pressure at 50 ° C. and 200 mmHg for 12 hours. After completion of the reaction, the mixture was further washed with an equal amount of warm water to obtain 255 g of mono (dimethyloctyl) glyceryl ether as a pale yellow transparent oil. The resulting mono (dimethyloctyl) glyceryl ether is a mixture of isomers having different methyl groups such as (3,7-dimethyl-1-octyl) glyceryl ether and (3,6-dimethyl-1-octyl) glyceryl ether. The purity as (dimethyloctyl) glyceryl ether was 96% by GC analysis.
[0032]
【The invention's effect】
According to the present invention, monoalkyl glyceryl ether can be produced more selectively, simply and inexpensively, and without using a solvent.

Claims (5)

一般式(1)
Figure 0004287546
〔式中、R1 及びR2 は同一又は異なって、水素原子又は炭素数1〜10の炭化水素基を示す。ただし、R1 とR2 は同時に水素原子となることはなく、またこれらが連結して隣接する炭素原子とともに環を形成してもよい。〕
で表されるグリセリン誘導体に、パラジウム化合物及び第三級ホスフィン若しくはホスファイトの存在下、又はパラジウム−第三級ホスフィン錯体若しくはパラジウム−ホスファイト錯体の存在下、共役ジエンを反応させて、共役ジエンが2量化したアルカジエニル基を有するエーテル体を得る工程(第一の工程という)の後、得られたエーテル体に対して、水素雰囲気中で第VIII族(8〜10族)元素を含有する触媒の存在下にアルカジエニル基を水素添加する工程、及び酸触媒の存在下にアセタール(又はケタール)を加水分解する工程を行うモノアルキルグリセリルエーテルの製法。
General formula (1)
Figure 0004287546
[Wherein, R 1 and R 2 are the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms. However, R 1 and R 2 do not simultaneously become hydrogen atoms, and they may be linked to form a ring together with adjacent carbon atoms. ]
Is reacted with a conjugated diene in the presence of a palladium compound and a tertiary phosphine or phosphite, or in the presence of a palladium-tertiary phosphine complex or a palladium-phosphite complex. After the step of obtaining an ether body having a dimerized alkadienyl group (referred to as the first step), the obtained ether body is subjected to a catalyst containing a Group VIII (Group 8 to 10) element in a hydrogen atmosphere. A process for producing a monoalkyl glyceryl ether, comprising a step of hydrogenating an alkadienyl group in the presence and a step of hydrolyzing an acetal (or ketal) in the presence of an acid catalyst.
第一の工程において、反応系に塩基を共存させる請求項1記載のモノアルキルグリセリルエーテルの製法。The process for producing a monoalkyl glyceryl ether according to claim 1, wherein a base is allowed to coexist in the reaction system in the first step. 第一の工程において、反応系にパラジウム化合物及び第三級ホスフィン若しくはホスファイトを共存させる場合、第三級ホスフィン又はホスファイトのパラジウム化合物に対するモル比率が0.1〜4である請求項1又は2記載のモノアルキルグリセリルエーテルの製法。3. The molar ratio of the tertiary phosphine or phosphite to the palladium compound is 0.1 to 4 when the palladium compound and tertiary phosphine or phosphite coexist in the reaction system in the first step. Manufacturing method of monoalkyl glyceryl ether. 第一の工程において、パラジウム化合物又はパラジウム−第三級ホスフィン錯体若しくはパラジウム−ホスファイト錯体のグリセリン誘導体(1)に対するモル比率が0.0001〜0.01である請求項1〜3のいずれかに記載のモ ノアルキルグリセリルエーテルの製法。The monomer according to any one of claims 1 to 3, wherein in the first step, the molar ratio of the palladium compound, the palladium-tertiary phosphine complex or the palladium-phosphite complex to the glycerol derivative (1) is 0.0001 to 0.01. A process for producing alkyl glyceryl ethers. 第一の工程において、共役ジエンが1,3-ブタジエンである請求項1〜4のいずれかに記載のモノアルキルグリセリルエーテルの製法。The process for producing a monoalkyl glyceryl ether according to any one of claims 1 to 4, wherein the conjugated diene is 1,3-butadiene in the first step.
JP21202199A 1999-07-27 1999-07-27 Manufacturing method of glyceryl ether Expired - Fee Related JP4287546B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP21202199A JP4287546B2 (en) 1999-07-27 1999-07-27 Manufacturing method of glyceryl ether
DE2000136423 DE10036423B4 (en) 1999-07-27 2000-07-26 Process for the preparation of glyceryl ether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21202199A JP4287546B2 (en) 1999-07-27 1999-07-27 Manufacturing method of glyceryl ether

Publications (2)

Publication Number Publication Date
JP2001039914A JP2001039914A (en) 2001-02-13
JP4287546B2 true JP4287546B2 (en) 2009-07-01

Family

ID=16615570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21202199A Expired - Fee Related JP4287546B2 (en) 1999-07-27 1999-07-27 Manufacturing method of glyceryl ether

Country Status (2)

Country Link
JP (1) JP4287546B2 (en)
DE (1) DE10036423B4 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8785697B2 (en) 2011-06-24 2014-07-22 Eastman Chemical Company Nickel modified catalyst for the production of hydroxy ether hydrocarbons by vapor phase hydrogenolysis of cyclic acetals and ketals
US8829207B2 (en) 2011-06-24 2014-09-09 Eastman Chemical Company Production of cyclic acetals by reactive distillation
US8969598B2 (en) 2011-06-24 2015-03-03 Eastman Chemical Company Production of cyclic acetals or ketals using liquid-phase acid catalysts
US9000229B2 (en) 2011-06-24 2015-04-07 Eastman Chemical Company Production of hydroxy ether hydrocarbons by vapor phase hydrogenolysis of cyclic acetals and ketals
US9056313B2 (en) 2011-06-24 2015-06-16 Eastman Chemical Company Catalysts for the production of hydroxy ether hydrocarbons by vapor phase hydrogenolysis of cyclic acetals and ketals
US9388105B2 (en) 2011-06-24 2016-07-12 Eastman Chemical Company Production of hydroxy ether hydrocarbons by liquid phase hydrogenolysis of cyclic acetals or cyclic ketals
US9440944B2 (en) 2011-06-24 2016-09-13 Eastman Chemical Company Production of cyclic acetals or ketals using solid acid catalysts
KR101817754B1 (en) 2011-06-09 2018-01-12 주식회사 엘지생활건강 Personal cleaning solvent, and composition containing the same solvent

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006009167A1 (en) * 2004-07-22 2006-01-26 Kuraray Co., Ltd. Method for producing ethers
DE102005016152A1 (en) 2005-04-07 2006-10-12 Basf Ag Preparation of (co) surfactants by reaction of polyols with olefins
AU2006318475B2 (en) 2005-11-22 2012-02-23 Gfbiochemicals Limited Glycerol levulinate ketals and their use
CN101896474B (en) 2007-10-09 2016-02-03 希凯迪斯股份有限公司 Prepare the method for ketal and acetal
JP5301901B2 (en) * 2008-07-07 2013-09-25 花王株式会社 Method for producing cellulose ethers
CN102239156B (en) 2008-09-25 2014-10-15 塞格提斯有限公司 ketal ester derivatives
CN102459219A (en) 2009-06-22 2012-05-16 赛格提斯公司 Ketal compounds and uses thereof
AU2011250963B2 (en) 2010-05-10 2014-08-21 Gfbiochemicals Limited Alkyl ketal esters as dispersants and slip agents for particulate solids, methods of manufacture, and uses thereof
SG187044A1 (en) 2010-08-03 2013-02-28 Segetis Inc Methods for the manufacture of acetals and ketals, and the acetals and ketals produced thereby
WO2012021824A2 (en) 2010-08-12 2012-02-16 Segetis, Inc. Carboxy ester ketal removal compositions, methods of manufacture, and uses thereof
EP2603565B1 (en) 2010-08-12 2015-10-07 Segetis, Inc. Latex coating compositions including carboxy ester ketal coalescents, methods of manufacture, and uses thereof
US8632612B2 (en) 2010-09-07 2014-01-21 Segetis, Inc. Compositions for dyeing keratin fibers
WO2012037122A2 (en) 2010-09-13 2012-03-22 Segetis, Inc. Fabric softener compositions and methods of manufacture thereof
WO2012054505A2 (en) 2010-10-18 2012-04-26 Segetis, Inc. Water reducible coating compositions including carboxy ester ketals, methods of manufacture, and uses thereof
US9458414B2 (en) 2012-09-21 2016-10-04 Gfbiochemicals Limited Cleaning, surfactant, and personal care compositions
WO2014085609A1 (en) 2012-11-29 2014-06-05 Segetis, Inc. Carboxy ester ketals, methods of manufacture, and uses thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198598A (en) * 1991-07-19 1993-03-30 Henkel Kommanditgesellschaft Auf Aktien Telomerization process of a conjugated alkadiene with a polyol

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101817754B1 (en) 2011-06-09 2018-01-12 주식회사 엘지생활건강 Personal cleaning solvent, and composition containing the same solvent
US8785697B2 (en) 2011-06-24 2014-07-22 Eastman Chemical Company Nickel modified catalyst for the production of hydroxy ether hydrocarbons by vapor phase hydrogenolysis of cyclic acetals and ketals
US8829207B2 (en) 2011-06-24 2014-09-09 Eastman Chemical Company Production of cyclic acetals by reactive distillation
US8969598B2 (en) 2011-06-24 2015-03-03 Eastman Chemical Company Production of cyclic acetals or ketals using liquid-phase acid catalysts
US9000229B2 (en) 2011-06-24 2015-04-07 Eastman Chemical Company Production of hydroxy ether hydrocarbons by vapor phase hydrogenolysis of cyclic acetals and ketals
US9056313B2 (en) 2011-06-24 2015-06-16 Eastman Chemical Company Catalysts for the production of hydroxy ether hydrocarbons by vapor phase hydrogenolysis of cyclic acetals and ketals
US9315485B2 (en) 2011-06-24 2016-04-19 Eastman Chemical Company Production of cyclic acetals by reactive distillation
US9382179B2 (en) 2011-06-24 2016-07-05 Eastman Chemical Company Nickel modified catalyst for the production of hydroxy ether hydrocarbons by vapor phase hydrogenolysis of cyclic acetals and ketals
US9388105B2 (en) 2011-06-24 2016-07-12 Eastman Chemical Company Production of hydroxy ether hydrocarbons by liquid phase hydrogenolysis of cyclic acetals or cyclic ketals
US9394271B2 (en) 2011-06-24 2016-07-19 Eastman Chemical Company Production of cyclic acetals or ketals using liquid-phase acid catalysts
US9440944B2 (en) 2011-06-24 2016-09-13 Eastman Chemical Company Production of cyclic acetals or ketals using solid acid catalysts

Also Published As

Publication number Publication date
DE10036423B4 (en) 2013-01-17
DE10036423A1 (en) 2001-03-15
JP2001039914A (en) 2001-02-13

Similar Documents

Publication Publication Date Title
JP4287546B2 (en) Manufacturing method of glyceryl ether
US8791305B2 (en) Ligands and catalyst systems for hydroformylation processes
JPH06263677A (en) Production of ether alcohol
JP2001072636A (en) Production polyol alkyl ether
US7989665B2 (en) Hydrogenation of esters with Ru/tetradentate ligands complexes
WO1990013531A2 (en) Octadienyl ethers and a process for making octadienyl ethers
US5043487A (en) Preparation of octadienols
JPH08508982A (en) Continuous production of tertiary alcohols by radical addition of secondary alcohols to alkenes.
JP3828370B2 (en) Production method of monoalkyl ether
JP6803324B2 (en) Method for producing 3,7-dimethyl-7-octenol and method for producing 3,7-dimethyl-7-octenyl = carboxylate compound
JP3946911B2 (en) Ether production
US20120190811A1 (en) Process for the preparation of an allyl alkyl ether by catalytic allylation
CN107304163B (en) Method for producing aliphatic aldehyde compound having terminal conjugated diene structure and intermediate for use in said method
JPH02219A (en) Preparation of unsaturated alcohol
JPH0873403A (en) Production of halogen-substituted benzoic acids
JP2000502077A (en) Catalytic addition of nucleophiles to alkynes or allenes
EP3468943B1 (en) Process for the preparation of alcohols from alfa,beta-unsaturated aldehydes and ketones
JP4396068B2 (en) Method for producing carbonyl compound
KR102712847B1 (en) Novel organic phosphorus compound and method of preparing linear dinitrile compounds using the same
TWI423956B (en) Allyl compound isomerization method and manufacturing method thereof
JP3003268B2 (en) Method for producing alkoxy alkadiene
JPH05247019A (en) Preparation of octadienyl ether and novel 3-(ethyl-3-((2,7-octadienyloxy)methyl)-oxetane compound
JP2010024171A (en) Process for producing carbonyl compound
TW200811094A (en) Process and novel intermediates for the preparation of 3,3'-dihydroxyisorenieratine
WO2010086137A1 (en) Process for the preparation of an allyl aryl ether by catalytic o-allylaton

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060718

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090327

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees