JP4283222B2 - Gasification furnace and gasification method - Google Patents

Gasification furnace and gasification method Download PDF

Info

Publication number
JP4283222B2
JP4283222B2 JP2004528865A JP2004528865A JP4283222B2 JP 4283222 B2 JP4283222 B2 JP 4283222B2 JP 2004528865 A JP2004528865 A JP 2004528865A JP 2004528865 A JP2004528865 A JP 2004528865A JP 4283222 B2 JP4283222 B2 JP 4283222B2
Authority
JP
Japan
Prior art keywords
chamber
gasification
fluid medium
fluidized
char combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004528865A
Other languages
Japanese (ja)
Other versions
JPWO2004016716A1 (en
Inventor
慶 松岡
達夫 徳留
修吾 細田
誠一郎 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Publication of JPWO2004016716A1 publication Critical patent/JPWO2004016716A1/en
Application granted granted Critical
Publication of JP4283222B2 publication Critical patent/JP4283222B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/723Controlling or regulating the gasification process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/09Mechanical details of gasifiers not otherwise provided for, e.g. sealing means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1625Integration of gasification processes with another plant or parts within the plant with solids treatment
    • C10J2300/1637Char combustion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

本発明は、各種廃棄物や固体燃料等を熱分解してガス化するガス化炉に関する。  The present invention relates to a gasification furnace that thermally decomposes and gasifies various wastes, solid fuel, and the like.

各種の廃棄物や固体燃料を熱分解してガス化する流動床式のガス化炉において、反応に関わる諸因子のうち、例えばガス化炉の流動層の層温を変えるためには、ガス化炉内に供給する酸素の流量、または酸素を含むガス(例えば空気など)の流量を変えることが行われていた。
しかし、酸素の供給を増やした場合は、生成ガスに含まれる燃焼ガスの量が増加し、生成ガスの発熱量が低下する。一方、酸素の供給を減らした場合には、チャー、タール等のガス化残渣の発生量が増大し、ガス化効率が低下する。
これに対処するため、各種廃棄物や固体燃料のガス化を行うガス化ゾーンと、ガス化により発生したチャー、タール等のガス化残渣を燃焼する燃焼ゾーンとを備え、燃焼ゾーンで発生した燃焼熱をガス化ゾーンでのガス化反応熱に利用し、さらに、ガス化ゾーン及び燃焼ゾーンのそれぞれを流動層装置とし、上記のガス化残渣及び熱の移動を流動媒体を介して行う、内部循環流動床式のガス化炉を採用する方法がある。
内部循環流動床式のガス化炉では、ガス化ゾーンから燃焼ゾーンへのガス化残渣の移動、燃焼ゾーンからガス化ゾーンへの熱の移動を円滑に行うため、流動媒体粒子の移動量を精緻に制御することが重要である。しかし、この従来の内部循環流動床式のガス化炉では、流動媒体粒子の移動量を制御するために、流動層装置に供給する流動化ガスの量を大幅に変化させる必要があり、装置の操作条件が大きく変化してしまうという問題があった。また、制御の容易さ、制御の自由度、運転の安定特性、制御の精度、制御の幅、制御の速度の向上等が望まれる状況にあった。
本発明は、上記の従来技術の問題点に鑑みてなされたもので、制御特性を大幅に向上させた内部循環流動床式のガス化炉を提供することを目的とする。
In a fluidized bed gasification furnace that thermally decomposes and gasifies various wastes and solid fuels, among various factors related to the reaction, for example, to change the temperature of the fluidized bed of the gasification furnace, gasification The flow rate of oxygen supplied into the furnace or the flow rate of a gas containing oxygen (for example, air) has been changed.
However, when the supply of oxygen is increased, the amount of combustion gas contained in the product gas increases and the heat generation amount of the product gas decreases. On the other hand, when the supply of oxygen is reduced, the generation amount of gasification residues such as char and tar increases, and the gasification efficiency decreases.
In order to cope with this, it has a gasification zone that gasifies various wastes and solid fuel, and a combustion zone that burns gasification residues such as char and tar generated by gasification, and combustion generated in the combustion zone Internal circulation that uses heat for gasification reaction heat in the gasification zone, and further uses each of the gasification zone and the combustion zone as a fluidized bed device to transfer the gasification residue and heat through the fluidized medium. There is a method using a fluidized bed gasifier.
In the internal circulation fluidized bed type gasification furnace, the movement of gasification residue from the gasification zone to the combustion zone and the heat transfer from the combustion zone to the gasification zone are performed smoothly. It is important to control. However, in this conventional internally circulating fluidized bed type gasification furnace, in order to control the moving amount of the fluidized medium particles, it is necessary to greatly change the amount of fluidizing gas supplied to the fluidized bed apparatus. There was a problem that the operating conditions changed greatly. Further, there has been a demand for improvement in ease of control, degree of freedom of control, stability characteristics of operation, accuracy of control, width of control, speed of control, and the like.
The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide an internal circulation fluidized bed type gasifier having greatly improved control characteristics.

本発明は、例えば図1に示すように、高温の流動媒体cを内部で流動させ、第1の界面を有するガス化室流動床を形成し、前記ガス化室流動床内で被処理物aをガス化するガス化室1と;高温の流動媒体cを内部で流動させ、第2の界面を有するチャー燃焼室流動床を形成し、ガス化室1でのガス化に伴い発生するチャーhを前記チャー燃焼室流動床内で燃焼させ流動媒体cを加熱するチャー燃焼室2とを備え;ガス化室1とチャー燃焼室2とは、前記それぞれの流動床の界面より鉛直方向上方においてはガスの流通がないように仕切壁11、15により仕切られ、仕切壁11、15の下部にはガス化室1とチャー燃焼室2とを連通する連通口21、25であって、該連通口21、25の上端の高さは前記第1の界面および第2の界面以下である連通口21、25が形成され、該連通口21、25を挟むガス化室1とチャー燃焼室2のうち一方の室の連通口21、25近傍における流動媒体cの流動化状態が、他方の室の連通口21、25近傍における流動媒体cの流動化状態よりも強く、該連通口21、25を通じて、前記弱い流動化状態の方から強い流動化状態の方に流動媒体cが移動するように構成され;さらに、前記弱い流動化状態の流動の強弱を調節することにより、ガス化室1とチャー燃焼室2との間で流通する流動媒体cの量を制御して、ガス化室1又はチャー燃焼室2の温度を制御する制御装置6を備える;ガス化炉101を提供することを目的とする。
このように構成すると、ガス化室1と、チャー燃焼室2と、制御装置6とを備えるので、弱い流動化状態の流動の強弱を調節することにより、ガス化室1とチャー燃焼室2の間で流通する流動媒体cの量を制御して、ガス化室1又はチャー燃焼室2の温度を制御することができる。制御装置6は、強い流動化状態の強さをも併せて調節するようにしてもよい。ガス化室1の温度は典型的にはガス化流動床の温度であり、チャー燃焼室2の温度は典型的にはチャー燃焼室流動床の温度である。また、弱い流動化状態の流動の強弱を調節するので、流動媒体cの量を制御するために生じる流動化ガスg1、g2、g4の流量の変化が小さく、他の操業条件に大きな影響を与えることなくガス化室1またはチャー燃焼室2の温度を制御することができる。
流動床は典型的には炉底から吹き出す流動化ガスgにより流動化する。流動化ガスgの吹き出し速度、吹き出し量により流動化状態を調節できる。炉底には散気装置31〜35を配置し、複数の区画1a、1b、2a、2b、4aに分割するとよい。流動化ガスg1、g2、g4の量を調節したい各区画毎に流動化ガスg1、g2、g4の流量を調節する調節弁61〜65を設けてもよい。連通口21、25を挟むガス化室1とチャー燃焼室2のそれぞれの区画1a、1b、2a、2b、4aの調節弁61〜65の開度を制御装置6により調節することにより、流動化ガスg1、g2、g4の吹き出し速度、吹き出し量を調節し流動化状態を調節できる。
ガス化炉101は、例えば、図1に示すように、被処理物aを高温の流動媒体cで熱分解してガスbとチャーhを生成するガス化室1と;ガス化室1で生成したチャーhを燃焼して流動媒体cを加熱するチャー燃焼室2とを備え;流動媒体cはガス化室1とチャー燃焼室2との間で循環するように構成され;さらに、流動媒体cの循環量を調節することにより、ガス化室1で発生するガスbの組成を制御する制御装置6を備えるものであってもよい。
このように構成すると、ガス化室1と、チャー燃焼室2と、制御装置6とを備えるので、流動媒体cの循環量を調節することにより、ガス化室1で発生するガスbの組成を制御することができる。当該制御装置6は、1種類のガス種の濃度を制御するものであってもよいし、複数のガスの濃度比を所定の設定値に制御するものであってもよい。
ガス化炉101は、例えば図1に示すように、高温の流動媒体cを内部で流動させ、第1の界面を有するガス化室流動床を形成し、前記ガス化室流動床内で被処理物aをガス化するガス化室1と;高温の流動媒体cを内部で流動させ、第2の界面を有するチャー燃焼室流動床を形成し、ガス化室1でのガス化に伴い発生するチャーhを前記チャー燃焼室流動床内で燃焼させ流動媒体cを加熱するチャー燃焼室2とを備え;ガス化室1とチャー燃焼室2とは、前記それぞれの流動床の界面より鉛直方向上方においてはガスの流通がないように仕切壁11、15により仕切られ、仕切壁11、15の下部にはガス化室1とチャー燃焼室2とを連通する連通口21、25であって、該連通口21、25の上端の高さは前記第1の界面および第2の界面以下である連通口21、25が形成され、該連通口21、25を挟むガス化室1とチャー燃焼室2のうち一方の室の連通口21、25近傍における流動媒体cの流動化状態が、他方の室の連通口21、25近傍における流動媒体cの流動化状態よりも強く、該連通口21、25を通じて、前記弱い流動化状態の方から強い流動化状態の方に流動媒体cが移動するように構成され;さらに、前記弱い流動化状態の流動の強弱を調節することにより、ガス化室1とチャー燃焼室2の間で流通する流動媒体cの量を制御して、前記ガス化により発生するガスbの組成を制御する制御装置6を備えるものであってもよい。
このように構成すると、ガス化室1と、チャー燃焼室2と、制御装置6とを備えるので、弱い流動化状態の流動の強弱を調節することにより、ガス化室1とチャー燃焼室2の間で流通する流動媒体cの量を制御して、ガス化により発生するガスbの組成を制御することができる。また、弱い流動化状態の流動の強弱を調節するので、流動媒体cの量を制御するために生じる流動化ガスg1、g2、g4の流量の変化が小さく、他の操業条件に大きな影響を与えることなくガス化室1より発生するガスbの組成を制御することができる。
ガス化炉101は、例えば、図1に示すように、さらにチャー燃焼室2から流動媒体cを導入する熱回収室3であって、チャー燃焼室2からの流動媒体cから熱を回収する熱回収装置41を有する熱回収室3と;該熱回収室3内の流動の強弱を調節することにより、熱回収装置41における熱回収量を制御する制御装置6を備えるものであってもよい。
このように構成すると、熱回収装置41を有する熱回収室3と、制御装置6とを備えるので、制御装置6によって熱回収室3内の流動の強弱を調節することにより、熱回収装置41における熱回収量を制御することができる。熱回収室3は、典型的にはチャー燃焼室2に隣接して設けられた熱回収室3である。熱回収装置41は典型的には層内伝熱管41を含んで構成される。熱回収装置41は典型的には回収した熱により蒸気s1を過熱する。制御装置6は過熱される蒸気s1の量を制御するようにしてもよい。
ガス化炉101が、チャー燃焼室2に接して設けられた熱回収室3を備える場合は、チャー燃焼室2と熱回収室3との間には前記チャー燃焼室流動床の流動層部を仕切る仕切壁12が設けられ、仕切壁12の下部には開口部22が形成され、チャー燃焼室2の流動媒体cは仕切壁12の上部から熱回収室3に流入し、開口部22を通じてチャー燃焼室2に戻る循環流が形成されるように構成するとよい。
ガス化炉101は、例えば、図1に示すように、さらに熱回収量を制御する制御装置6が、熱回収装置41における熱回収量を制御し、チャー燃焼室2の温度を制御するものであってもよい。
ガス化炉101は、例えば図1に示すように、さらにガス化室1の第1の界面より上部の第1の圧力と、チャー燃焼室2の第2の界面より上部の第2の圧力とを測定する圧力測定装置81、82と;ガス化室1から発生するガスbの、ガス化室1から排出する第1の排出線速度と、およびチャー燃焼室2から発生する燃焼ガスeの、チャー燃焼室2から排出する第2の排出線速度とを調節する調節装置78、79と;前記第1の圧力と前記第2の圧力との圧力差を所定の値とするように調節装置78、79を制御する制御装置6とを備えるものであってもよい。
このように構成すると、圧力測定装置81、82と、調節装置78、79と、制御装置6とを備えるので、圧力測定装置81、82によって第1圧力と、第2の圧力とを測定し、調節装置78、79によって第1の排出線速度と、第2の排出線速度とを調整し、制御装置6によって、第1の圧力と第2の圧力との圧力差を所定の値とするように調節装置78、79を制御することができる。
第1の圧力と第2の圧力との圧力差を所定の値とすることができるので、ガス化室1とチャー燃焼室2の間の流動媒体粒子の移動量に与える圧力の影響を一定の値に抑えることができ、流動媒体粒子の移動量を精緻に制御することが容易となる。なお、所定の値はほぼゼロに等しくてもよく、第1の圧力と第2の圧力とがほぼ等しくなるように制御装置6が調節装置78、79を制御するものであってもよい。
この出願は、日本国で2002年8月15日に出願された特願2002−236997号に基づいており、その内容は本出願の内容として、その一部を形成する。
また、本発明は以下の詳細な説明によりさらに完全に理解できるであろう。本発明のさらなる応用範囲は、以下の詳細な説明により明らかとなるであろう。しかしながら、詳細な説明及び特定に実例は、本発明の望ましい実施の形態であり、説明の目的のためにのみ記載されているものである。この詳細な説明から、種々の変更、改変が、本発明の精神の範囲内において、当業者にとって明らかであるからである。
出願人は、記載された実施の形態のいずれをも公衆に献上する意図はなく、開示された改変、代替案のうち、特許請求の範囲内に文言上含まれないかもいれないものも、均等論下での発明の一部とする。
In the present invention, for example, as shown in FIG. 1, a high-temperature fluid medium c is flowed inside to form a gasification chamber fluidized bed having a first interface, and an object to be processed a in the gasification chamber fluidized bed. A gasification chamber 1 for gasifying the gas; a high-temperature fluid medium c is flowed inside to form a char combustion chamber fluidized bed having a second interface, and the char h generated by gasification in the gasification chamber 1 is formed. And a char combustion chamber 2 for heating the fluid medium c in the fluidized bed of the char combustion chamber; the gasification chamber 1 and the char combustion chamber 2 are vertically above the interface between the fluidized beds. There are communication ports 21 and 25 that are partitioned by the partition walls 11 and 15 so that there is no gas flow, and the gasification chamber 1 and the char combustion chamber 2 communicate with each other below the partition walls 11 and 15. The height of the upper ends of 21 and 25 is below the first interface and the second interface. Communication ports 21 and 25 are formed, and the fluidized state of the fluid medium c in the vicinity of the communication ports 21 and 25 in one of the gasification chamber 1 and the char combustion chamber 2 sandwiching the communication ports 21 and 25 is the other. The fluid medium c is stronger than the fluidized state of the fluid medium c in the vicinity of the communication ports 21 and 25 of the chamber, and the fluid medium c moves through the communication ports 21 and 25 from the weak fluidized state to the strong fluidized state. Furthermore, by adjusting the strength of the weak fluidized state, the amount of the fluid medium c flowing between the gasification chamber 1 and the char combustion chamber 2 is controlled, and the gasification chamber 1 or 2 includes a control device 6 for controlling the temperature of the char combustion chamber 2;
If comprised in this way, since the gasification chamber 1, the char combustion chamber 2, and the control apparatus 6 are provided, the gasification chamber 1 and the char combustion chamber 2 are adjusted by adjusting the strength of the weak fluidization state. It is possible to control the temperature of the gasification chamber 1 or the char combustion chamber 2 by controlling the amount of the fluid medium c that flows between them. The control device 6 may also adjust the strength of the strong fluidized state. The temperature of the gasification chamber 1 is typically the temperature of the gasification fluidized bed, and the temperature of the char combustion chamber 2 is typically the temperature of the char combustion chamber fluidized bed. In addition, since the strength of the flow in the weak fluidized state is adjusted, the change in the flow rate of the fluidized gases g1, g2, and g4 generated to control the amount of the fluid medium c is small and greatly affects other operating conditions. Without this, the temperature of the gasification chamber 1 or the char combustion chamber 2 can be controlled.
The fluidized bed is typically fluidized by a fluidized gas g blown from the furnace bottom. The fluidization state can be adjusted by the blowing speed and the blowing amount of the fluidizing gas g. It is good to arrange | position the diffuser 31-35 in a furnace bottom, and to divide | segment into several division 1a, 1b, 2a, 2b, 4a. You may provide the control valves 61-65 which adjust the flow volume of fluidizing gas g1, g2, g4 for every division which wants to adjust the quantity of fluidizing gas g1, g2, g4. By adjusting the opening degree of the control valves 61 to 65 of the respective compartments 1a, 1b, 2a, 2b, and 4a of the gasification chamber 1 and the char combustion chamber 2 across the communication ports 21 and 25, fluidization is achieved. The fluidization state can be adjusted by adjusting the blowing speed and amount of the gas g1, g2, g4.
For example, as shown in FIG. 1, the gasification furnace 101 includes a gasification chamber 1 that thermally decomposes an object to be processed a with a high-temperature fluid medium c to generate gas b and char h; A char combustion chamber 2 for burning the char h and heating the fluid medium c; the fluid medium c is configured to circulate between the gasification chamber 1 and the char combustion chamber 2; A control device 6 that controls the composition of the gas b generated in the gasification chamber 1 by adjusting the circulation amount of the gas may be provided.
If comprised in this way, since the gasification chamber 1, the char combustion chamber 2, and the control apparatus 6 are provided, the composition of the gas b generated in the gasification chamber 1 is adjusted by adjusting the circulation amount of the fluid medium c. Can be controlled. The control device 6 may control the concentration of one kind of gas, or may control the concentration ratio of a plurality of gases to a predetermined set value.
For example, as shown in FIG. 1, the gasification furnace 101 causes a high-temperature fluid medium c to flow inside to form a gasification chamber fluidized bed having a first interface, and to be treated in the gasification chamber fluidized bed. A gasification chamber 1 for gasifying the substance a; a high-temperature fluid medium c is flowed inside to form a char combustion chamber fluidized bed having a second interface, and is generated along with gasification in the gasification chamber 1 A char combustion chamber 2 for burning the char h in the char combustion chamber fluidized bed and heating the fluid medium c; the gasification chamber 1 and the char combustion chamber 2 are vertically above the interface between the fluidized beds. Are divided by partition walls 11 and 15 so that there is no gas flow, and communication ports 21 and 25 communicating the gasification chamber 1 and the char combustion chamber 2 at the lower part of the partition walls 11 and 15, The heights of the upper ends of the communication ports 21 and 25 are the first interface and the second boundary. The following communication ports 21 and 25 are formed, and the fluidized state of the fluid medium c in the vicinity of the communication ports 21 and 25 in one of the gasification chamber 1 and the char combustion chamber 2 sandwiching the communication ports 21 and 25 is The fluid medium c is stronger than the fluidized state of the fluid medium c in the vicinity of the communication ports 21 and 25 of the other chamber, and the fluid medium c passes through the communication ports 21 and 25 from the weak fluidized state to the stronger fluidized state. The gas flow is controlled by controlling the amount of the flow medium c flowing between the gasification chamber 1 and the char combustion chamber 2 by adjusting the strength of the flow in the weak fluidized state. A control device 6 that controls the composition of the gas b generated by the conversion may be provided.
If comprised in this way, since the gasification chamber 1, the char combustion chamber 2, and the control apparatus 6 are provided, the gasification chamber 1 and the char combustion chamber 2 are adjusted by adjusting the strength of the weak fluidization state. The composition of the gas b generated by gasification can be controlled by controlling the amount of the fluid medium c flowing between them. In addition, since the strength of the flow in the weak fluidized state is adjusted, the change in the flow rate of the fluidized gases g1, g2, and g4 generated to control the amount of the fluid medium c is small and greatly affects other operating conditions. The composition of the gas b generated from the gasification chamber 1 can be controlled without any problems.
For example, as shown in FIG. 1, the gasification furnace 101 is a heat recovery chamber 3 that further introduces a fluid medium c from the char combustion chamber 2, and heat that recovers heat from the fluid medium c from the char combustion chamber 2. A heat recovery chamber 3 having a recovery device 41; and a control device 6 that controls the amount of heat recovery in the heat recovery device 41 by adjusting the strength of the flow in the heat recovery chamber 3 may be provided.
If comprised in this way, since the heat recovery chamber 3 which has the heat recovery apparatus 41 and the control apparatus 6 are provided, by adjusting the strength of the flow in the heat recovery chamber 3 by the control apparatus 6, in the heat recovery apparatus 41 The amount of heat recovery can be controlled. The heat recovery chamber 3 is typically a heat recovery chamber 3 provided adjacent to the char combustion chamber 2. The heat recovery device 41 is typically configured to include an in-layer heat transfer tube 41. The heat recovery device 41 typically superheats the steam s1 with the recovered heat. The control device 6 may control the amount of steam s1 that is superheated.
When the gasification furnace 101 includes the heat recovery chamber 3 provided in contact with the char combustion chamber 2, the fluidized bed portion of the char combustion chamber fluidized bed is provided between the char combustion chamber 2 and the heat recovery chamber 3. A partition wall 12 is provided. An opening 22 is formed in the lower part of the partition wall 12, and the fluid medium c in the char combustion chamber 2 flows into the heat recovery chamber 3 from the upper part of the partition wall 12, and the char is passed through the opening 22. It is good to comprise so that the circulation flow which returns to the combustion chamber 2 may be formed.
In the gasification furnace 101, for example, as shown in FIG. 1, the control device 6 that further controls the heat recovery amount controls the heat recovery amount in the heat recovery device 41 and controls the temperature of the char combustion chamber 2. There may be.
For example, as shown in FIG. 1, the gasification furnace 101 further includes a first pressure above the first interface of the gasification chamber 1 and a second pressure above the second interface of the char combustion chamber 2. Pressure measuring devices 81 and 82 for measuring the gas b generated from the gasification chamber 1, the first discharge linear velocity discharged from the gasification chamber 1, and the combustion gas e generated from the char combustion chamber 2. Adjusting devices 78 and 79 for adjusting the second discharge linear velocity discharged from the char combustion chamber 2; and an adjusting device 78 so that the pressure difference between the first pressure and the second pressure is a predetermined value. , 79 may be provided.
If comprised in this way, since the pressure measuring devices 81 and 82, the adjusting devices 78 and 79, and the control device 6 are provided, the pressure measuring devices 81 and 82 measure the first pressure and the second pressure, The first discharge linear velocity and the second discharge linear velocity are adjusted by the adjusting devices 78 and 79, and the pressure difference between the first pressure and the second pressure is set to a predetermined value by the control device 6. The adjusting devices 78 and 79 can be controlled.
Since the pressure difference between the first pressure and the second pressure can be set to a predetermined value, the influence of the pressure on the moving amount of the fluid medium particles between the gasification chamber 1 and the char combustion chamber 2 is constant. Therefore, it is easy to precisely control the moving amount of the fluid medium particles. The predetermined value may be substantially equal to zero, or the control device 6 may control the adjusting devices 78 and 79 so that the first pressure and the second pressure are substantially equal.
This application is based on Japanese Patent Application No. 2002-236997 filed on August 15, 2002 in Japan, the contents of which form part of the present application.
The present invention will also be more fully understood from the following detailed description. Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, the detailed description and specific examples are the preferred embodiments of the present invention and are provided for illustrative purposes only. From this detailed description, various changes and modifications will be apparent to those skilled in the art within the spirit of the invention.
The applicant does not intend to contribute any of the described embodiments to the public, and the disclosed modifications and alternatives that may not be included in the scope of the claims are equivalent. It is part of the invention under discussion.

図1は、統合型ガス化炉の構成を概念的に示すブロック図である。
図2は、仕切壁により仕切られた二つの室の模式的側面断面図である。仕切壁の形態により(a)、(b)、(c)に分類される。
図3は、流動化ガス速度とみかけの層粘性の関係を示す図である。
図4は、流動化ガス速度と流動媒体の移動量の関係を示す図である。
図5は、所定の弱流動化域と強流動化域とを所定の開口部の近傍域と遠隔域とに分離した場合のブロック図である。
図6は、ガス化室と沈降チャー燃焼室の間を循環する流動媒体の循環量の定義を説明するための図である。
図7は、ガス化室と沈降チャー燃焼室の間の流動媒体の拡散を説明するための図である。
図8は、沈降チャー燃焼室の流動化ガスの空塔速度と、沈降チャー燃焼室からガス化室への熱移動量と循環量(対流)の関係を示す図である。
図9は、沈降チャー燃焼室の流動化ガスの空塔速度と、沈降チャー燃焼室からガス化室への流動媒体移動量(対流+拡散)の関係を示す図である。
図10は、流動層高と循環量の関係について説明する図である。
図11は、ケース1の場合の循環比とガス化室層温の関係を示す図である。
図12は、ケース2の場合の循環比とガス化室層温の関係を示す図である。
図13は、循環比と生成ガス組成の関係を示す図である。
図14は、循環比と生成ガスのH/CO比の関係を示す図である。
図15は、循環比と生成ガス発熱量の関係を示す図である。
図16は、ガス化室層温とガス化室出口熱量割合の関係を示す図である。
図17は、ガス化室層温と冷ガス効率の関係を示す図である。
図18は、循環比と生成ガス発熱量の関係を示す図である。
図19は、ガス化室層温と、原料中の炭素がタールに移行する割合との関係を示す図である。
図20は、循環量と、原料中の炭素がチャー燃焼室へ移行する割合との関係を示す図である。
図21は、ガス化室層温と、原料中の炭素がチャー燃焼室へ移行する割合との関係を示す図である。
図22は、流動媒体供給装置の構成を示すブロック図である。
FIG. 1 is a block diagram conceptually showing the structure of an integrated gasifier.
FIG. 2 is a schematic side cross-sectional view of two chambers partitioned by a partition wall. It is classified into (a), (b), and (c) according to the form of the partition wall.
FIG. 3 is a diagram showing the relationship between the fluidized gas velocity and the apparent layer viscosity.
FIG. 4 is a diagram showing the relationship between the fluidizing gas velocity and the amount of movement of the fluid medium.
FIG. 5 is a block diagram in the case where a predetermined weak fluidization region and a strong fluidization region are separated into a region near a predetermined opening and a remote region.
FIG. 6 is a view for explaining the definition of the circulation amount of the fluid medium circulating between the gasification chamber and the sedimentation char combustion chamber.
FIG. 7 is a view for explaining diffusion of the fluidized medium between the gasification chamber and the settled char combustion chamber.
FIG. 8 is a diagram showing the relationship between the superficial velocity of the fluidized gas in the settling char combustion chamber, the amount of heat transfer from the settling char combustion chamber to the gasification chamber, and the amount of circulation (convection).
FIG. 9 is a diagram showing the relationship between the superficial velocity of the fluidized gas in the settling char combustion chamber and the amount of movement of the fluid medium (convection + diffusion) from the settling char combustion chamber to the gasification chamber.
FIG. 10 is a diagram for explaining the relationship between the fluidized bed height and the circulation rate.
FIG. 11 is a diagram showing the relationship between the circulation ratio and the gasification chamber layer temperature in case 1.
FIG. 12 is a diagram showing the relationship between the circulation ratio and the gasification chamber layer temperature in case 2.
FIG. 13 is a diagram showing the relationship between the circulation ratio and the product gas composition.
FIG. 14 is a diagram showing the relationship between the circulation ratio and the H 2 / CO ratio of the product gas.
FIG. 15 is a diagram showing a relationship between the circulation ratio and the generated gas heat generation amount.
FIG. 16 is a diagram showing the relationship between the gasification chamber layer temperature and the gasification chamber outlet heat rate.
FIG. 17 is a diagram showing the relationship between the gasification chamber layer temperature and the cold gas efficiency.
FIG. 18 is a diagram showing the relationship between the circulation ratio and the generated gas heat generation amount.
FIG. 19 is a diagram showing the relationship between the gasification chamber layer temperature and the ratio of carbon in the raw material to tar.
FIG. 20 is a diagram showing the relationship between the circulation rate and the rate at which carbon in the raw material moves to the char combustion chamber.
FIG. 21 is a diagram showing the relationship between the gasification chamber layer temperature and the rate at which carbon in the raw material moves to the char combustion chamber.
FIG. 22 is a block diagram illustrating a configuration of the fluid medium supply device.

以下、本発明の実施の形態について、図面を参照して説明する。
図1は、ガス化炉としての統合型ガス化炉101の構成を概念的に示すブロック図である。
統合型ガス化炉101は、被処理物としての廃棄物または固体燃料aを熱分解ガス化するガス化室1と、ガス化室1において生成したチャー分hを燃焼するチャー燃焼室2とを含んで構成され、ガス化室1において生成した可燃性ガスであるガスとしての生成ガスbと、チャー燃焼室2において生成した燃焼ガスeとを統合型ガス化炉101の後段のガス利用装置(不図示)に分離して供給することを特徴とする。チャー燃焼室2は、チャー燃焼室本体部5と沈降チャー燃焼室(流動媒体沈降室)4とを含んで構成される。統合型ガス化炉101は、ガス化室1に接続されガス化室1で生成した生成ガスbを供給する生成ガス供給配管26と、チャー燃焼室本体部5に接続されチャー燃焼室本体部5で発生した燃焼ガスeを供給する燃焼ガス供給配管27とを備える。統合型ガス化炉101は、さらに生成ガス供給配管26に設置され、生成ガスbのガス組成を測定するガス組成測定器46を備える。
統合型ガス化炉101は、生成ガス供給配管26に設置され、生成ガス供給配管26から排出される生成ガスbの排出線速度(第1の排出線速度)を調整する調整装置としての調節弁78(例えば、ダンパ)と、燃焼ガス供給配管27に設置され、燃焼ガス供給配管27から排出される燃焼ガスeの排出線速度(第2の排出線速度)を調整する調整装置としての調節弁79(例えば、ダンパ)とを備える。
本統合型ガス化炉101は、前述の熱分解ガス化、チャー燃焼の機能をそれぞれ担当するガス化室1、チャー燃焼室2に加え、熱回収の機能を担当する熱回収室3を備え、ガス化室1、チャー燃焼室2、熱回収室3は、例えば全体が円筒形又は矩形を成した炉体内に収納されている。本統合型ガス化炉101は、後述の調節弁61、62、63、64、65、66、67(61〜67)をそれぞれ制御する制御装置6を備える。制御装置6は、前述の調節弁78、79をも制御する。ガス化室1、チャー燃焼室2、熱回収室3は仕切壁11〜15で分割されており、それぞれの底部に高温の流動媒体cを含む濃厚層である流動床が形成される。
ガス化室1、チャー燃焼室本体部5には、それぞれの濃厚層の層温を測定する温度測定器42、43が設置されている。本実施の形態では、ガス化室1の濃厚層の層温が、ガス化室1の温度であり、チャー燃焼室本体部5の濃厚層の層温がチャー燃焼室2の温度であるとしている。温度測定器42、43は、測定された温度に基づく温度信号i3(図中、破線で部分的に表示)を制御装置6に送る。制御装置6は、後述のように、温度信号i3に基づきガス化室1の温度チャー燃焼室2の温度が設定された値になるよう、調節弁61〜67を制御するように構成することができ、この場合制御装置6は、本発明の、温度を制御する制御装置である。また、前述のガス組成測定器46は、測定されたガス組成に基づくガス組成信号i4を制御装置6に送る。制御装置6は、後述のように、ガス組成信号i4に基づき生成ガスbのガス組成が設定された値になるよう、調節弁61〜67を制御するように構成することができ、この場合制御装置6は、本発明の、ガスの組成を制御する制御装置である。温度測定器42、43は、熱電対を使用している。
ガス化室1、チャー燃焼室本体部5には、それぞれのフリーボード部の圧力を測定する圧力測定器81、82が設置されている。ガス化室1のフリーボード部の圧力が本発明の第1の圧力であり、チャー燃焼室本体部5のフリーボード部の圧力が本発明の第2の圧力である。なお、フリーボード部については後述する。圧力測定装置81、82は、測定された圧力に基づく圧力信号i5(図中、破線で部分的に表示)を制御装置6に送る。制御装置6は、圧力信号i5に基づき、ガス化室1の圧力と、チャー燃焼室2の圧力を所定の値とするよう、調節弁61〜67を制御するように構成することができる。
ガス組成信号i4は、H、CO、CO、CH、HO等のモル%とするとよい。制御装置6は、ガス組成信号i4を得て、H/CO比等を計算し、さらにガス組成信号i4と、温度測定器42により測定された生成ガスbの温度信号i3と、圧力測定器81により測定された生成ガスbの圧力信号i5とにより生成ガスbのガスの発熱量を計算するように構成するとよい。
各室1〜3の流動床、即ちガス化室流動床、チャー燃焼室流動床、熱回収室流動床の流動媒体cを流動させるために、各室1〜3の底である炉底には、流動媒体c中に流動化ガスg1、g2、g3、g4(流動化ガスg1、g2、g3、g4の区別は後述する、以下流動化ガスを総称する場合は符号gをつける)を吹き込む散気装置31〜36が設けられている。即ち、ガス化室1には散気装置31、32が、チャー燃焼室2には散気装置33、34、35が、熱回収装置3には散気装置36が設けられている。各散気装置31〜36は、散気装置31〜36が設置されている炉底部に敷かれた例えば多孔板を含んで構成され、該多孔板を広さ方向に区分して複数の部屋に分割されている。
統合型ガス化炉101は、散気装置31に接続された供給配管51、散気装置32に接続された供給配管52、散気装置33に接続された供給配管53、散気装置34に接続された供給配管54、散気装置35に接続された供給配管55、散気装置36に接続された供給配管56を備える。供給配管51〜56は、それぞれ調節装置としての調節弁61〜66と、流量測定器71〜76とを備え、流動化ガスgを各散気装置31〜36へ供給する。調節弁61〜66は、各散気装置31〜36への流動化ガスgの供給量を調節する。よって、各散気装置31〜36は、各室1〜3内の各部(図中、室1の1a、1bで示す箇所、室2の2a、2b、4aで示す箇所、室3の3aで示す箇所)の空塔速度を変えるために、散気装置31〜36の各部屋から多孔板を通して吹き出す流動化ガスgの流速を変化させるように構成されている。流量測定器71〜76は、各供給配管51〜56の調節弁61〜66の下流側に設置され、流動化ガスgの流量を測定する。調節弁61〜66は、制御装置6から送られる別々の制御信号i1(図中、破線で部分的に表示)を受けてそれぞれ作動し開度を変える。流量測定器71〜76は、測定された流量に基づく流量信号i2(図中、破線で部分的に表示)を制御装置6に送る。
また、空塔速度は、室1〜3の各部で相対的に異なるので各室1〜3内の流動媒体cも室1〜3の各部で流動化状態が異なり、そのため内部旋回流が形成される。また室1〜3の各部で流動化状態が異なるところから、内部旋回流は、炉内の各室1〜3を循環する。図中、散気装置31〜36に示す白抜き矢印の大きさは、吹き出される流動化ガスgの流速を示している。例えば2bで示す箇所の太い矢印は、2aで示す箇所の細い矢印よりも流速が大きい。また、白抜きの矢印で示される箇所の流速は、その箇所の全体に渡り均一である。
ガス化室1とチャー燃焼室本体部5の間は仕切壁11及び仕切壁15で仕切られ、チャー燃焼室本体部5と熱回収室3の間は仕切壁12で仕切られ、ガス化室1と熱回収室3の間は仕切壁13で仕切られている(なお本図は、炉を平面的に展開して図示しているため、仕切壁11はガス化室1とチャー燃焼室本体部5の間にはないかのように、また仕切壁13はガス化室1と熱回収室3の間にはないかのように示されている)。即ち、統合型ガス化炉101は、各1〜3室が別々の炉として構成されておらず、一つの炉として一体に構成されている。さらに、チャー燃焼室本体部5のガス化室1と接する面の近傍には、流動媒体cが下降するべく沈降チャー燃焼室4を設ける。即ち、前述のようにチャー燃焼室2は沈降チャー燃焼室4と沈降チャー燃焼室4以外のチャー燃焼室本体部5とに分かれる。このため、沈降チャー燃焼室4をチャー燃焼室2の他の部分(チャー燃焼室本体部5)と仕切るための仕切壁14が設けられている。また沈降チャー燃焼室4とガス化室1とは、図1に示すように、仕切壁15で仕切られている。
ここで、流動床と界面について説明する。流動床は、その鉛直方向下方部にある、流動化ガスgにより流動化状態に置かれている流動媒体c(例えば珪砂)を濃厚に含む濃厚層と、その濃厚層の鉛直方向上方部にある流動媒体cと多量のガスが共存し、流動媒体cが勢いよくはねあがっているスプラッシュゾーンとからなる。流動床の上方即ちスプラッシュゾーンの上方には流動媒体cをほとんど含まずガスを主体とするフリーボード部がある。界面は、ある厚さをもった前記スプラッシュゾーンをいうが、またスプラッシュゾーンの上面と下面(濃厚層の上面)との中間にある仮想的な面ととらえてもよい。
また「流動床の界面より鉛直方向上方においてはガスの流通がないように仕切壁により仕切られ」というとき、さらに界面より鉛直方向下方の濃厚層の上面より鉛直方向上方においてガスの流通がないようにするのが好ましい。
ガス化室1とチャー燃焼室本体部5の間の仕切壁11は、炉の天井19から炉底(散気装置31の多孔板)に向かってほぼ全面的に仕切っているが、下端は炉底に接することはなく、炉底近傍に連通口としての開口部21がある。但しこの開口部21の上端が、第1の界面としてのガス化室流動床界面、第2の界面としてのチャー燃焼室流動床界面のいずれの界面よりも上部にまで達することはない。さらに好ましくは、開口部21の上端が、ガス化室流動床の濃厚層の上面、チャー燃焼室流動床の濃厚層の上面のいずれよりも上部にまで達することはないようにする。言い換えれば、開口部21は、常に濃厚層に潜っているように構成するのが好ましい。即ち、ガス化室1とチャー燃焼室2とは、少なくともフリーボード部においては、さらに言えば界面より上方においては、さらに好ましくは濃厚層の上面より上方ではガスの流通がないように仕切壁により仕切られていることになる。
またチャー燃焼室2と熱回収室3の間の仕切壁12はその上端が界面近傍、即ち濃厚層の上面よりは上方であるが、スプラッシュゾーンの上面よりは下方に位置しており、仕切壁12の下端は炉底近傍までであり、仕切壁11と同様に下端が炉底に接することはなく、炉底近傍に濃厚層の上面より上方に達することのない開口部22がある。言い換えれば、チャー燃焼室2と熱回収室3の間は流動層部のみ仕切壁12で仕切られており、その仕切壁12の炉床面近傍には開口部22を有し、チャー燃焼室2の流動媒体cは仕切壁12の上部から熱回収室3に流入し、仕切壁12の炉床面近傍の開口部22を通じて再びチャー燃焼室2に戻る循環流を有するように構成されている。
ガス化室1と熱回収室3の間の仕切壁13は炉底から炉の天井にわたって完全に仕切っている。沈降チャー燃焼室4を設けるべくチャー燃焼室2内を仕切る仕切壁14の上端は流動床の界面近傍で、下端は炉底に接している。仕切壁14の上端と流動床との関係は、仕切壁12と流動床との関係と同様である。沈降チャー燃焼室4とガス化室1を仕切る仕切壁15は、仕切壁11と同様であり、炉の天井から炉底に向かってほぼ全面的に仕切っており、下端は炉底に接することはなく、炉底近傍に連通口としての開口部25があり、この開口の上端が濃厚層の上面より下にある。即ち、開口部25と流動床の関係は、開口部21と流動床の関係と同様である。
ガス化室1に投入された廃棄物または固体燃料aは流動媒体cから熱を受け、熱分解、ガス化され、生成ガスbが生成される。典型的には、廃棄物または燃料aはガス化室1では燃焼せず、いわゆる乾留される。残った乾溜チャーhは流動媒体cと共に仕切壁11の下部にある開口部21からチャー燃焼室本体部5に流入する。このようにしてガス化室1から導入されたチャーhはチャー燃焼室本体部5で燃焼して流動媒体cを加熱する。チャー燃焼室本体部5でチャーhの燃焼熱によって加熱された流動媒体cは仕切壁12の上端を越えて熱回収室3に流入し、熱回収室3内で界面よりも下方にあるように配設された熱回収装置としての層内伝熱管41で収熱され、冷却された後、再び仕切壁12の下部の開口部22を通ってチャー燃焼室本体部5に流入する。
層内伝熱管41は、熱回収室3内に配置された層内伝熱管本体41Aと、蒸気s1を層内伝熱管本体41Aに導く導入部41Bと、層内伝熱管本体41Aから過熱蒸気s2を排出する排出部41Cからなる。層内伝熱管本体41Aに導入された蒸気s1は過熱され過熱蒸気s2となる。
統合型ガス化炉101は、温度測定器44、45と、調節弁67と、流量測定器77とを備える。温度測定器44は、導入部41Bに設置され、蒸気s1の温度を測定する。調節弁67は、導入部41Bに設置され、蒸気s1の流量を制御する。流量測定器77は、導入部41Bに設置され、蒸気s1の流量を測定する。温度測定器45は、排出部41Cに設置され、過熱蒸気s2の温度を測定する。調節弁67は、制御装置6から送られる制御信号i1(図中、破線で部分的に表示)を受けて作動し開度を変える。流量測定器77は、測定された流量に基づく流量信号i2(図中、破線で部分的に表示)を制御装置6に送り、温度測定器44、45は、測定された温度に基づく温度信号i3(図中、破線で部分的に表示)を制御装置6に送る。制御装置6は、本発明の熱回収量を制御する制御装置である。
ここで、熱回収室3は本発明の実施の形態である統合型ガス化炉101において必須ではない。即ち、ガス化室1で主として揮発成分がガス化した後に残る主としてカーボンからなるチャーhの量と、チャー燃焼室2で流動媒体cを加熱するのに必要とされるチャーの量がほぼ等しければ、流動媒体cから熱を奪うことになる熱回収室3は不要である。また前記チャーhの量の差が小さければ、例えば、ガス化室1でのガス化温度が高目になり、ガス化室1で発生するCOガスの量が増えるという形で、バランス状態が保たれる。
しかしながら図1に示すように熱回収室3を備える場合は、チャーhの発生量の大きい石炭から、ほとんどチャーhを発生させない都市ゴミまで、幅広く多種類の廃棄物または燃料aに対応することができる。即ち、どのような廃棄物または燃料aであっても、熱回収室3における熱回収量を加減することにより、チャー燃焼室本体部5の燃焼温度を適切に調節し、流動媒体cの温度を適切に保つことができる。また、流動化ガスg3の散気装置36への供給量を調節弁66によって調節し、弱い流動化状態に維持される弱流動化域3aを有する熱回収室3内の流動化状態の強弱を調節することにより、熱回収室3における熱回収量を制御することができる。よって、熱回収量を制御する制御装置6が、層内伝熱管41における熱回収量を制御し、チャー燃焼室2の温度を制御する。
一方チャー燃焼室本体部5で加熱された流動媒体cは仕切壁14の上端を越えて沈降チャー燃焼室4に流入し、次いで仕切壁15の下部にある開口部25からガス化室1に流入する。
ここで、図2(a)、(b)、(c)の模式的側面断面図を参照して、炉F内に形成された仕切壁X、仕切壁Yあるいは仕切壁Zで仕切られた二つの室Ra、Rb間の流動媒体cの流動化状態及び移動について説明する。図2(a)では、二つの室Ra、Rbは、上部のみに開口部Pxを有する仕切壁Xによって仕切られる。図2(b)では、二つの室Ra、Rbは、下部にのみ開口部Qyを有する仕切壁Yによって仕切られる。図2(c)では、二つの室Ra、Rbは、上部に開口部Pz、さらに下部に開口部Qzを有する仕切壁Zによって仕切られる。図2(a)、(b)、(c)において、共に、流動媒体cを収納する各室Ra、Rbの炉底には、それぞれ流動化ガスga、gbを吹き込む散気装置Da、Dbが、設けられている。また、仕切壁X、Zの上端は、界面の高さ近傍にあり、開口部Qy、Qzは、濃厚層に潜った位置にあるものとする。また、図2(a)、(b)、(c)において、室Ra内の流動化状態は、室Ra内で均一であり、室Rb内の流動化状態は、室Rb内で均一であるとする。
仕切壁X、仕切壁Yあるいは仕切壁Zにより仕切られた2室Ra、Rb間の流動媒体cの移動は、室Ra側と室Rb側との流動化状態の強弱差により引き起こされるので、室Ra側と室Rb側との流動化状態の強弱差を実用上任意に変えることにより、室Raと室Rb間の開口部Px、Qy、Pz、Qzを介した流動媒体cの移動量と移動方向(室Raから室Rbへ、あるいは室Rbから室Raへ)を調節することができる。以下では、室Raと室Rbの流動化状態をどのように変えた場合に、室Raと室Rb間の流動媒体cの移動量をどのように調節できるかについて具体的に説明する。
なお、開口部Qy、Qzを介して移動する、室Raと室Rb間の流動媒体cの移動は、一般的には室Ra側の開口部Qy、Qz近傍における流動化状態と、室Rb側の開口部Qy、Qz近傍における流動化状態の強弱差に影響され、弱い流動化状態の室から強い流動化状態の室へ、流動媒体cが移動する。図2(a)、(b)、(c)では、室Ra内の流動化状態が室Ra内で均一であり、また室Rb内の流動化状態が室Rb内で均一であるので、室Ra内、室Rb内の流動化ガスga、gbのガス速度の差で論じることができ、ガス速度の遅い室から、ガス速度の速い方の室へ、流動媒体cが移動する。
まず、図2(a)を参照して、2室Ra、Rbが、上端が界面の高さ近傍にある仕切壁Xによって仕切られる場合について説明する。2室Ra、Rbの流動化状態が等しい場合は、室Ra側からはねあがった流動媒体cが仕切壁Xを越えて室Rb側に移動する量と、室Rb側からはねあがった流動媒体cが仕切壁Xを越えて室Ra側へ移動する量が平均的に等しくなる。よって、局所的には2室Ra、Rb間の流動媒体cの移動は生じているが、全体的(室Ra、及び室Rbそれぞれ全体、以下同様)には流動媒体cの移動量は0となる。
例えば、室Rbの流動化状態を一定に保ったまま、室Raの流動化状態を室Rbの流動化状態よりも強くした場合、即ち室Rbの流動化ガス速度を一定に保ったまま室Raの流動化ガス速度を室Rbの流動化ガス速度よりも大きくした場合、室Ra側からはねあがった流動媒体cが仕切壁Xを超えて室Rb側へ移動する量より、室Rb側からはねあがった流動媒体cが仕切壁Xを超えて室Ra側へ移動する量が多くなるため、室Ra側から室Rb側への全体的な流動媒体cの移動量は0とはならず、室Ra側から室Rb側への流動媒体cの移動が生じる(図中、この状態を白抜き矢印で表示している)。
なお、ここでは室Rbの流動化ガス速度を一定に保ったまま室Raの流動化ガス速度を大きくするように変化する場合を考えたが、逆に室Raの流動化ガス速度を一定に保ったまま室Rbの流動化ガス速度を小さくするように変化させても、同様の効果が得られる。
いま、室Ra、室Rbにおいて流動媒体cの外部からの補充や、外部への抜き出しを行わないものとすると、室Ra側から室Rb側への流動媒体cの移動により、室Raの流動層高は次第に低下し、室Rbの流動層高は次第に上昇することになる。
室Ra側からはねあがり仕切壁Xを超えて室Rb側へ移動する流動媒体cの量は、室Ra側の流動層界面が低くなるほど減少するから、上述の室Raの流動層高の低下により、室Ra側から室Rb側への流動媒体cの移動量は減少する。同様に、室Rb側からはねあがりが仕切壁Xを超えて室Ra側へ移動する流動媒体cの量は、室Rb側の流動層界面が高くなるほど増加するから、上述の室Rbの流動層高の上昇により、室Rb側から室Ra側への流動媒体cの移動量は増加する。
このため、室Raと室Rbの流動化ガスga、gbのガス速度が同じである場合を初期状態として、室Raの流動化ガス速度が室Rbの流動化ガス速度より大きくなるように一定量の差をつけた場合、始めは室Ra側から室Rb側への全体的な流動媒体cの移動が生じるが、ある程度室Raの流動層高が低下し、室Rbの流動層高が上昇した段階において、再度室Ra側から室Rb側への局所的な流動媒体cの移動量と室Rb側から室Ra側への局所的な流動媒体cの移動量が全体として釣り合うことにより、2室Ra、Rb間の流動媒体cの全体的な移動量は再び0となる。
したがって、室Raの流動化ガス速度が、室Rbの流動化ガス速度より大きくなるように一定量の差をつけた場合において、室Raから室Rbへの流動媒体cの移動を連続的に行うためには、両室Ra、Rbに充填されている流動媒体cの量、即ち流動層高が一定となるように、外部から室Raへ流動媒体cが供給され、かつ室Rbから外部へ流動媒体cが抜き出されるような構成とすればよいことになる。
この場合、室Raと室Rbの流動化ガス速度の差を大きくするほど室Raから室Rbへの流動媒体cの移動量を大きく確保することができるため、室Rbの流動化を止めた状態または最低流動化に近い状態、即ち好ましくは流動化速度が2Umf以下、さらに好ましくは1Umf以下になるようにし、室Raの流動化速度をこれに比べて十分高い状態、好ましくは流動化速度が4Umf以上、さらに好ましくは5Umf以上に保った場合に最大の流動媒体cの移動量を確保することができる。ここで、Umfとは最低流動化速度(流動化が開始される流動化ガスの速度)を1Umfとした単位である。即ち、5Umfは最低流動化速度の5倍の速度である。
次に、図2(b)に示すように、2室Ra、Rbが濃厚層に潜った開口部Qyを有する仕切壁Yによって仕切られている場合について考える。2室Ra、Rbの流動化状態等しい場合(室Raの流動化ガス速度と、室Rbの流動化ガス速度とが等しい場合)は、開口部Qyを介しての室Ra側から室Rb側への、あるいは室Ra側から室Rb側への流動媒体cの拡散量は釣り合うため、局所的には2室Ra、Rb間の流動媒体cの移動は生じているけれども、全体的な流動媒体cの移動量は0である。
室Rbの流動化状態を同一に保ったまま、室Raの流動化状態を室Rbの流動化状態よりも強くした場合、即ち室Rbの流動化ガス速度を一定に保ったまま室Raの流動化ガス速度を室Rbの流動化ガス速度よりも大きくした場合、室Raの濃厚層内には室Rbの濃厚層内に比べより多量の気泡が発生するため、室Raのみかけの層密度は室Rbのみかけの層密度に比べて低下する。このため、室Raと室Rbの各々の流動層高が等しければ、室Raの層下部の開口部Qy近傍における圧力は、室Rbの層下部の開口部Qy近傍における圧力より低くなる。この圧力差を駆動力とする誘引作用により、室Rb側から室Ra側へと流動媒体cの移動が開口部Qy全体に渡って生じる(図中、この状態を白抜き矢印で表示している)。
逆に、室Raの流動化ガス速度を一定に保ったまま室Rbの流動化ガス速度を小さくした場合は、若干状況が異なる。ここで考えている流動媒体cの移動は、濃厚層内に設けられた仕切壁Yの開口部Qyを介して生じており、室Raと室Rbの層下部の開口部Qy近傍における圧力差がその駆動力となっている。言い換えれば、室Raと室Rbの層下部の開口部Qy近傍における圧力差が、流動媒体cが開口部Qyを通過して移動するのに必要な抵抗力と釣り合っていることになるが、この抵抗力は、粒子層のみかけの層粘性と密接な関係がある。
次に、図2(b)、図3、図4を参照して説明する。
図3に、流動媒体cの流動化状態と粒子層のみかけの層粘性との関係を示す。室Rbの流動化ガスgbのガス速度を、図3に示す範囲で変化させ、一方、室Raの流動化ガスgaのガス速度は、一定に保った場合を示している。単純バブリング流動層(沈降流なし)の場合、流動化ガス速度が1Umf以下の固定層では流動層の粘性が無限大にほぼ等しくなる。流動化ガス速度が1Umf以上で流動層の粘性が急激に減少する。室Rb(沈降室)の場合、沈降する流動媒体と上昇する流動化ガスの相対速度が生じるので、流動化ガス速度が、1Umf以下でも、流動化ガス相対速度が、1Umf以上の流動層となるので、粘性が変化し、移動量(循環量)が制御できる。よって、流動媒体cの移動量(循環量)を制御するための流動化ガス量の変化量を最小にすることができる。すなわち、循環量を制御するためのプロセス因子(ここでは流動化ガス量)の変化が、他のプロセス因子に及ぼす影響を最小にすることができる。
したがって、室Raの流動化ガス速度を一定に保ったまま室Rbの流動化ガス速度を小さくした場合、室Rbの流動化ガス速度の絶対値に応じて、流動媒体cの移動量の変化の挙動が異なる。初期状態において、室Ra及び室Rbの双方が十分強流動化した状態、即ち流動化ガス速度が5Umfを超える状態にあったとする。この状態から、室Rbの流動化ガス速度を減じてゆくと、室Rbの流動化ガス相対速度(流動媒体の沈降速度と流動化ガスの上昇速度との相対速度)が2Umf程度を超える範囲では、室Rbの流動化ガス速度を小さくするほど、室Raと室Rbの層下部の開口部Py近傍における圧力差が大きくなるため、室Rbから室Raへの流動媒体cの移動量が大きくなる。しかし、室Rbの流動化ガス相対速度(流動媒体の沈降速度と流動化ガスの上昇速度との相対速度)が2Umf程度より小さい範囲では、室Rbの流動化ガス速度が小さいほど、層粘性が急激に大きくなり、流動媒体cが仕切壁Yの開口部Qyを通過するための抵抗力が大きくなるため、室Rbから室Raへの流動媒体cの移動量は逆に小さくなる。
図4に、室Raの流動化ガスgaのガス相対速度(流動媒体の沈降速度と流動化ガスの上昇速度との相対速度)を、一定に保った場合(4Umf、5Umf、6Umfの3つのケースをそれぞれ示す)に、室Rbの流動化ガスgbのガス速度を変化させた場合に、室Raから室Rbへの流動媒体cの移動量がどのように変化するかを示す。図4に示すように、室Rbの流動化ガス相対速度(流動媒体の沈降速度と流動化ガスとの相対速度)が2Umf程度より小さい範囲において、流動化ガス相対速度(流動媒体の沈降速度と流動化ガスの上昇速度との相対速度)に対して、ほぼ線形的に流動媒体cの移動量が変化することがわかる。即ち、この範囲を積極的に利用することにより、少ない流動化ガス量のもとで、流動化ガス量のわずかな変化により大きな流動媒体cの移動量の変化を引き起こすことができる。また、図4では室Raの流動化状態が一定に保たれている場合を示しているが、本図のように室Raの流動化状態は十分強い流動化の状態に保たれていることが特に好ましい。
発明者らの知見によれば、図4における室Raから室Rbへの流動媒体cの移動量の最大値を与える流動化ガスgbのガス相対速度(流動媒体の沈降速度と流動化ガスとの相対速度)は約1.7Umfである。以上の観点からは、室Rbの流動化ガス相対速度(流動媒体の沈降速度と流動化ガスとの相対速度)は好ましくは1Umf〜2Umfの範囲、さらに好ましくは1Umf〜1.7Umfの範囲で調整するのがよく、また室Raの流動化ガス速度は、好ましくは4Umf以上、さらに好ましくは5Umf以上に保つのがよい。
なお、室Rbの流動化ガスgbのガス速度を一定に保ったまま室Raの流動化ガスgaのガス速度を大きくした場合でも、あるいは室Raの流動化ガスgaのガス速度を一定に保ったまま室Rbの流動化ガスgbのガス速度を小さくした場合でも、流動媒体cの外部からの補充や、外部への抜き出しを行わないものとすると、室Rb側から室Ra側への流動媒体cの移動により、室Rbの流動層高は低下し、室Raの流動層高は上昇することになる。
即ち、室Raと室Rbの流動化ガス速度が同じである場合を初期状態として、室Ra側の流動化ガス速度が室Rb側の流動化ガス速度より大きくなるように、一定量の差をつけた場合、差をつけた直後は室Rb側から室Ra側への流動媒体cの移動が生じるが、ある程度室Raの流動層高が上昇し、室Rbの流動層高が低下すると、室Raの層下部の開口部Qy近傍における圧力が高くなり、室Rbの層下部の開口部Qy近傍における圧力が低くなるため、流動媒体cの移動の駆動力であった室Raと室Rbの層下部の開口部Qy近傍における圧力差が小さくなる。この圧力差が0となった段階において、2室Ra、Rb間の流動媒体cの全体的な移動量は再び0となる。
したがって、室Raの流動化ガス速度が、室Rbの流動化ガス相対速度(流動媒体の沈降速度と流動化ガスの上昇速度との相対速度)より大きくなるように一定量の差をつけた場合において、室Rbから室Raへの流動媒体cの移動を連続的に行うためには、両室Ra、Rbに充填されている流動媒体cの量、即ち流動層高が一定となるように、外部から室Rbへ流動媒体cが供給され、かつ室Raから外部へ流動媒体cが抜き出されるような構成とすればよいことになる。
次に、図2(c)を参照して説明する。図2(c)では、上部に開口部Pzを、下部に開口部Qzを有するので、上部の開口部Pzでは、図2(a)に関し前述した現象が生じ、下部の開口部Qzでは、図2(b)に関し前述した現象が生じる。
したがって、例えば、室Rbの流動化状態を一定に保ったまま、室Raの流動化状態を室Rbの流動化状態よりも強くした場合、逆に室Raの流動化ガス速度を一定に保ったまま室Rbの流動化ガス相対速度(流動媒体の沈降速度と流動化ガスとの相対速度)を小さくするように変化させた場合、開口部Pzでは、室Ra側から室Rb側への流動媒体cの移動が生じ、開口部Qzでは、室Ra側から室Rb側への流動媒体cの移動が生じる。よって、室Raと室Rb間で流動媒体cの循環が生じる。
この場合、開口部Qzを介する流動媒体cの移動量と、開口部Pzを介する流動媒体cの移動量は、室Raの流動化状態を室Rbの流動化状態よりも強くした初期の状態では、必ずしも等しくはない。しかし、ある過渡状態を経た後には、流動媒体cの移動量の相違に起因する流動層高の変化により、各々の開口部Qz、Pzを介する流動媒体cの移動量が等しくなり、ある定常的な流動媒体cの循環状態が得られる。
例えば、開口部Qzを介する流動媒体cの室Rbから室Raへの移動量が、開口部Pzを介する流動媒体cの室Raから室Rbへの移動量よりも大きい場合について考える。この場合、室Rbの流動層高は次第に低くなり、同時に室Raの流動層高は次第に高くなる。室Rbの流動層高の低下は室Rbの炉床近傍の圧力を低下させ、一方で室Raの流動層高の上昇は室Raの炉床近傍の圧力を上昇させる。これにより、開口部Qzを挟んだ室Raと室Rbの圧力差が小さくなり、すなわち開口部Qzを介した室Rbから室Raへの流動媒体cの移動量は減少する。また、室Raの流動層高が上昇することにより、仕切壁Zの上端を超えて室Raから室Rbへ流動媒体cが飛び込みやすくなる。即ち、開口部Pzを介する流動媒体cの室Raから室Rbへの移動量は増加する。以上の効果により、開口部Qzを介する流動媒体cの室Rbから室Raへの移動量は減少し、開口部Pzを介する流動媒体cの室Raから室Rbへの移動量は増加するため、室Raと室Rbの流動層高はさらに変化し、流動媒体cの室Rbから室Raへの移動量と室Raから室Rbへの移動量が等しくなるところでバランスする。
以上において、最終的にバランスして得られた流動媒体cの移動量(循環量)は、開口部Qzの幅、高さ、面積及び形状と、仕切壁Zの高さなどの炉Fの形状の条件と、各室に供給する流動化ガス量によって決まる。したがって、所望の循環量が得られるようにするためには、流動化ガス量の供給量を考慮して、開口部Qzの幅、高さ、面積及び形状と、仕切壁Zの高さなどの炉Fの形状を決定すれば良い。
ここで、図6を参照して、ガス化室1と沈降チャー燃焼室4との間を開口部25を通って循環する流動媒体cの循環量の定義について以下説明する。図中、ガス化炉101は、図1に記載されたものと同じ構成であるが、説明をわかりやすくするため、ガス化室1の強流動化域1bと、弱流動化域4aである沈降チャー燃焼室4と、開口部25が形成された仕切壁15とで構成されるように記載され、他の構成要素は省略してある。
ガス化室1の強流動化域1bの流動化ガスg1(図1)の空塔速度をV1bとし、弱流動化域4aである沈降チャー燃焼室4の流動化ガスg4(図1)の空塔速度をV4aとする。空塔速度V1bは、空塔速度V4aより大きいので(V1b>V4a)、ガス化室1の流動化状態は、沈降チャー燃焼室4の流動化状態より強く、沈降チャー燃焼室4の炉底部B4aとガス化室1の強流動化域1bの炉底部B1bとにおいて圧力差がつき、両流動化域の間に存在する仕切壁15の下部の開口部25を通り流動媒体cが循環し移動する。炉底部圧力(炉底部における流動層圧力)をPm[Pa]、流動層のかさ密度をDf[kg/m]、重力加速度をga[kg/s]、流動層の高さ(層高)をHf[m]とすれば、
Pm=Df×ga×Hf・・・(1) の関係が成立する。
沈降チャー燃焼室4は弱流動化域4aであり、気泡が少ないため、流動層かさ密度Df4aが大きい(空隙が少なく、粒子濃度が濃い)。一方、ガス化室1の強流動化域1bでは、気泡が多いため、流動層かさ密度Df1bが小さい(空隙が多く、粒子密度が薄い)。よって、沈降チャー燃焼室4(弱流動化域4a)の流動層かさ密度Df4aは、ガス化室1の強流動化域1bの流動層かさ密度Df1bよりも大きくなり(Df4a>Df1b)、圧力差が生じて、チャー燃焼室4(弱流動化域4a)からガス化室1の強流動化域1bの方へ流動媒体cが移動する。
これに対して、図7に示すように、ガス化室1の強流動化域1bの空塔速度V1bが、沈降チャー燃焼室4の空塔速度V4aに等しいとき(V1b=V4a)は、ガス化室1の強流動化域1bの炉底部B1bにおける炉底部圧力Pm1bは、沈降チャー燃焼室4の炉底部B4aにおける炉底部圧力Pm4aに等しくなる(Pm1b=Pm4a)ので、仕切壁15の下部の開口部25では、マクロ的にみると沈降チャー燃焼室4からガス化室1の強流動化域1bへの流動媒体cの移動も、ガス化室1から沈降チャー燃焼室4への流動媒体cの移動も生じない。
しかし、流動層内のすべての流動化域で同じ空塔速度である流動層において、ミクロ的に1個1個の粒子に着目すると、粒子は任意の方向に絶えず移動しているので、ガス化室1と沈降チャー燃焼室4の間の仕切壁15の下部の開口部25にて、ガス化室1と沈降チャー燃焼室4との間を流動媒体粒子cの双方向の流れが生じ、流動媒体粒子cの交換が生じている。
図6のようなガス化室1と沈降チャー燃焼室4との間の流動媒体cのマクロな一方向の移動を対流と称することにする。図7のような流動媒体cのガス化室1と沈降チャー燃焼室4との間の双方向の粒子の移動を拡散と称することにする。図6の対流が生じている領域でも、ミクロな領域での1個1個の粒子に着目すると、図7のような拡散が生じている。
これに対し、図6にようなマクロな一方向流れの質量流量[kg/s]を循環量と定義する。この循環量は、流動層の炉底部の圧力差と、上流側の流動層の粘性と下流側の流動層の粘性によって定まる(特に、上流側の流動層の粘性が支配的である)。図6において、沈降チャー燃焼室4の炉底部B4aの炉底部圧力Pm4aと、ガス化室1の炉底部B1bの炉底部圧力Pm1bとの差が大きいほど、仕切壁15の下部の開口部25を通じて、沈降チャー燃焼室4からガス化室1への流動媒体cの移動量(循環量)は、増加する。また、仕切壁15の下部の開口部25は、流動媒体cの流れに対して絞り抵抗になる。したがって、沈降チャー燃焼室4の流動層のみかけの粘性が小さいほど、開口部25での絞り抵抗を流動媒体cが流れやすくなり、循環量が増加する。流動層のみかけの粘性は、流動層の流動化状態、すなわち流動化ガスの空塔速度V1b、V4aに依存して決まる。したがって、ガス化室1の強流動化域1bの流動化ガス速度V1bを変化させ、あるいは沈降チャー燃焼室4の流動化ガスの空塔速度V4aを変化させて、みかけの粘性を変化させることで、循環量を制御することができる。
例えば、ガス化室1の全領域の流動化状態と、沈降チャー燃焼室4の全領域の流動化状態とを同じにすれば、循環量は0になる。しかし、このようにして、循環量を0にしても、仕切壁15の下部の開口部25では拡散による2室1、4間の流動媒体cの交換が行われるので、この流動媒体cの交換に同伴して、ガス化室1の強流動化域1bの熱分解残渣(流動化しない大型の残渣は除く)は沈降チャー燃焼室4へ移動して、燃焼する。
したがって、吸熱反応である原料の熱分解が行われるガス化室1よりも、残渣燃焼が行われる沈降チャー燃焼室4の方が流動層温度が高くなる。仕切壁15の下部の開口部25では拡散による2室1、4間の流動媒体cの交換が行われるので、この流動媒体cの交換により、流動媒体cのもつ顕熱も、2室1、4間で交換される。したがって、温度の高い沈降チャー燃焼室4から、温度の低いガス化室1へ流動媒体cの顕熱が移動する。
以上のことから、沈降チャー燃焼室4の流動化ガス速度(流動化ガスの空塔速度)と、循環量(対流)および熱移動量とには、図8のような関係がある。すなわち、沈降チャー燃焼室4の流動媒体cの空塔速度が0になると、循環量(対流)は0になるが、熱移動量は0にはならない。これは、ガス化室1とチャー燃焼室本体部5の仕切壁11の下部の開口部21にて、ガス化室1とチャー燃焼室本体部5間の拡散による、流動媒体cの交換が生じ、それにともなって、残渣移動と熱移動が存在するからである。
図9に、流動媒体cが沈降する弱流動化域4aである沈降チャー燃焼室4の流動化ガスの空塔速度(単位をUmfとする)を0Umfから約1.7Umfまで変化させたときの沈降チャー燃焼室4からガス化室1への流動媒体移動量(対流+拡散)(単位kg/s)の変化を示す。図に示すように、空塔速度の増加により流動媒体移動量がほぼ直線的に増加する。1Umf以下でも、流動媒体移動量が変化し制御範囲内である。ここで、Umfとは最低流動化速度(流動化が開始される流動化ガスの空塔速度)を1Umfとした単位である。また、図中、沈降チャー燃焼室4の流動化速度を0にしたときに、沈降チャー燃焼室4から、ガス化室1への流動媒体移動量が0になっていない。これは、ガス化室1と沈降チャー燃焼室4の間の仕切壁15に形成された開口部25間の拡散による流動媒体移動が生じているためである。よって、沈降チャー燃焼室4の流動化状態を停止して、対流による熱移動量を0にして、ガス化室1と沈降チャー燃焼室4の開口部25周辺の流動化状態を変える(流動化ガス量を変える)ことにより、ガス化室1と沈降チャー燃焼室4の開口部25周辺での拡散による熱移動量を変化させることで、熱移動量をより小さい範囲で制御することが可能になる。
したがって、ガス化室1の弱流動化域1aで開口部21に近い領域と、チャー燃焼室本体5の強流動化域2bで開口部21に近い領域に供給する流動化ガス量g1、g2を測定する流量測定装置71、74と、その流量を変化させる流量制御装置(例えば流量制御弁61、64)を設けることで、ガス化室1とチャー燃焼室本体5の開口部周辺での拡散による熱移動量を制御することが可能になる。
例えば、熱移動量を小さい値に制御したい場合、熱移動量制御装置としての制御装置6は、沈降チャー燃焼室4の流動化ガス流量制御装置(例えば流量制御弁65)に流量を0にする信号を送る。その結果、沈降チャー燃焼室4の流動化は停止して、ガス化室1とチャー燃焼室2の間の対流による流動媒体の移動は起こらなくなる。さらに、熱移動量制御装置としての制御装置6は、ガス化室1の弱流動化域1aで開口部21に近い領域に供給する流動化ガスg1を制御する流動化ガス量制御装置(例えば流量制御弁61)と、チャー燃焼室本体5の強流動化域2bで開口部21に近い領域に供給する流動化ガスg2を制御する流動化ガス量制御装置(例えば流量制御弁63)に、流量を下げる信号を送る。その結果、ガス化室1の弱流動化域1aで開口部21に近い領域と、チャー燃焼室本体5の強流動化域2bで開口部21に近い領域の流動化ガス量が減少し、開口部21周辺での拡散が弱くなり、熱移動量が減少する。
図10を参照して、流動層高と循環量の関係について記述する。図中、炉102は、仕切壁Wに仕切られた二つの室Rpと室Rqを含んで構成される。室Rpと室Rqは流動媒体cを収納する。仕切壁Wには上部に開口部Pwが、下部に開口部Qwが形成されている。室Rpの炉底には流動化ガスを吹き込む散気装置Dpa、散気装置Dpbが設けられ、室Rqの炉底には流動化ガスを吹き込む散気装置Dqaが設けられている。仕切壁Wの上端は界面の高さの近傍にあり、開口部Qwは濃厚層に潜った位置にあるものとする。室Rpは散気装置Dpaの真上の流動化の状態の弱い弱流動化域paと、散気装置Dpbの真上の流動化状態の強い強流動化域pbとの二つの区画に区分される。室Rqは流動化状態の弱い弱流動化域qaである。また、流動化状態は、室Rpの弱流動化域pa内、室Rpの強流動化域pb内、室Rq内でそれぞれ均一であるとする。室Rpの強流動化域pbは炉底部Bpbを有し、室Rqは炉底部Bqaを有するとする。
以下に示す2つの理由により、流動層高が高いほど、循環量は多くなる。前述したとおり、弱流動化域qaである室Rqの炉底部Bqaにおける炉底部圧力Pmqaと、室Rpの強流動化域pbの炉底部Bpbの炉底部圧力Pmpbとの圧力差がつくことで、両領域の間の仕切壁Wの下部の開口部Qwから流動媒体が移動する。炉底部での圧力は前述のように、Pm=Df×ga×Hf・・・(1)から求められる。ここで、Pm[Pa]が炉底部圧力、Df[kg/m]が流動層のかさ弱流動化域qaである室Rqでは、気泡が少ないため、流動層かさ密度Dfqaが大きい(空隙が少なく、粒子濃度が濃い)。室Rpの強流動化域pbでは、気泡が多いため、流動層かさ密度Dfpbが小さい(空隙が多く、粒子密度が薄い)。よって、弱流動化域qaである室Rqの流動層かさ密度Dfqaは、室Rpの強流動化域pbの流動層かさ密度Dfpbよりも大きくなり(Dfqa>Dfpb)、よって室Rqの炉底部Bqaの炉底部圧力Pmqaが、室Rpの強流動化域pbの炉底部Bpbの炉底部圧力Pmpbよりも大きくなり(Pmqa>Pmpb)、圧力差が生じて、弱流動化域qaである室Rqから室Rpの強流動化域pbへ開口部Qwを通って流動媒体がc移動する。
(1)式により、流動層高が高いほど、それに比例して、室Rqの弱流動化域qaの炉底部Bqaの圧力Pmqaと、室Rpの強流動化域pbの炉底部Bpbの圧力Pmpbとの圧力差が大きくなるので、流動層高が高いほうが移動量が多くなる。室Rqから室Rpへ移動する流動媒体cの移動量が多いほど、循環量は多くなる(流動層高が高いほど、循環量が多くなる第一の理由)。
図10に示すように、室Rpの強流動化域pbの上部で気泡の破裂が起こり、この気泡の破裂によって流動媒体cが周囲に飛散し、室Rpから室Rqへ開口部Pwを通って流動媒体cの移動が生じる。流動層高が高いほど、室Rqと室Rpの間の仕切壁Wの上端から流動層上面までの距離(図のΔH)が高くなり、室Rpの上部での気泡の破裂に伴う流動媒体cの粒子の移動により、室Rqへ移動する流動媒体cの量が多くなるので、循環量が多くなる(層高さが高いほど、循環量が多くなる第二の理由)。室Rpの上部での気泡の破裂により、流動媒体cが室Rqへ移動する現象は、気泡の破裂する流動層上方付近のある限られた範囲で起こるので、ある値以上に、流動層高を高くしても、流動媒体cの移動は増加しなくなる。
したがって、ある範囲内であれば流動層高を高くすることで、循環量を増加させることが可能である。運転中に、循環量を調整したいときに、室Rq、室Rp内に流動媒体cを供給して、流動層高を高くして、循環量を増加させたり、流動媒体cを室Rq、室Rpから抜き出して、流動層高を低くして、循環量を低下させたりすることが可能である。
次に、図6を参照して、流動層高の測定の方法について説明する。図に示すように、沈降チャー燃焼室4には二つの圧力測定装置91、92が、沈降チャー燃焼室4の流動層中の上下2点(水平位置は同じが望ましい)の流動層圧力を測定するよう設置されている。圧力測定装置91、92によって圧力を測定することにより、流動層高を算出し、循環量の制御を行うことができる。ただし、流動層高算出のための圧力測定の箇所は沈降チャー燃焼室4でなく、ガス化室1であってもよい。まず、流動層圧力と流動層高の関係について述べる。流動層圧力Pfと流動層高Hfには以下に述べる関係にある。
Pf=Df×ga×Hfx+P0・・・(2)
ここに、Pfは流動層圧力[Pa]、Dfは流動層かさ密度[kg/m]、gaは重力加速度[kg/s]、Hfxは上方に存在する流動層高[m]、P0はフリーボードにおける圧力[Pa]である。
(2)式から、炉底部B4aに近い測定点における流動層圧力をPf1、上方の流動層高をHfx1とすれば、
Pf1=Df4a×ga×Hfx1+P0・・・(2)’
炉底部B4aから遠い測定点における流動層圧力をPf2、上方の流動層高をHfx2とすれば、
Pf2=Df4a×ga×Hfx2+P0・・・(2)”
となる。ここで、測定点間距離をΔHf(既知)とすると、ΔHf=Hfx1−Hfx2である。流動層圧力を表す両式(2)’、(2)”の差を取ると、
Pf1−Pf2=Df4a×ga×ΔHf・・・(3) となる。
以下のステップにより、流動層高を算出することができる。まず、流動層中の上下2点(水平位置は同じが望ましい)での各々の流動層圧力Pf1、Pf2を測定し、各流動層圧力の圧力差ΔP(=Pf1−Pf2)を計算する。次に、(3)式から流動層かさ密度Df4aを計算する(上下2点間の高さΔHfは既知)。どちらかの測定点の流動層圧力(測定層高さは既知であり、また炉底部B4aに近いほうを選択することが望ましい)の値と、フリーボードでの圧力はほとんど0であるので、P0=0から、(2)’式を用いて、流動層圧力測定点から流動層上面までの高さHfx1を計算する。流動層高をHf、炉底部B4aに近い測定点の高さをHf1(既知)とすれば、Hf=Hf1+Hfx1となり、この式から流動層層高さHfを計算する。
圧力測定装置91、92を設け、流動層圧力Pf1、Pf2を測定し、圧力測定装置91、92から測定値に基づく圧力信号を演算器としての制御装置6に送り、制御装置6によって流動層高Hfを演算することができる。このように演算した流動層高Hfを制御装置6でコントロールすることで、循環量の制御を行うことができる。制御装置6は、演算した流動層高Hfを表す流動層高信号を出力するようにしてもよい。
圧力測定装置91,92は、流動化が緩慢で、圧力変動が小さい、沈降チャー燃焼室4、ガス化室1の弱流動化域1a、チャー燃焼室本体部5の弱流動化域2aに設置することが望ましいが、ガス化室1の強流動化域1b、チャー燃焼室本体部5の強流動化域2bに設置してもよい。流動層高を変化させることで、循環量を制御できる。流動層高を変化させるためには、流動層高を増加させる場合は流動媒体を供給し、流動層高を減少させる場合は流動媒体を抜き出す。よって、流動層高を変化させるためには、流動媒体を供給する流動媒体供給装置を設け流動媒体を供給し、流動媒体を抜き出す流動媒体抜出装置を設け流動媒体を抜き出せばよい。
図22に示すように、流動媒体供給装置111は、流動媒体cを貯留する流動媒体貯留装置112と、流動媒体cの流動媒体貯留装置112からの流動媒体cの供給量を測定し、当該供給量を表す流動媒体供給量信号i21を出力する流動媒体供給量測定装置113と、流動媒体cの流動媒体貯留装置112内の流動媒体貯留槽からの供給量を制御する流動媒体供給量制御装置114とを含んで構成される。
流動媒体供給量制御装置114は、例えば流動媒体貯留装置112から流動媒体を自由落下させて例えばガス化室1に搬送するライン115に設置されると共に流動媒体cの供給量を制御する制御弁である。流動媒体供給量測定装置113は、例えば流動媒体貯留装置112内の流動媒体貯留槽の重量の経時変化を測定し、測定した経時変化から流動媒体供給量を求めるものである。
流動媒体供給量制御装置114(例えば前述の制御弁)は、流動媒体供給量測定装置113からの流動媒体供給量信号i21と制御装置6(図1)からの後述の流動媒体循環量信号を受け、流動媒体供給量を制御する。
流動媒体抜出装置116は、例えばガス化室1の炉底に設けられた流動媒体抜出管117と流動媒体搬送装置118(スクリューコンベヤ、エプロンコンベヤなど)とを含んで構成される。流層媒体抜出装置116により抜き出され搬送された流動媒体cは、前述の流動媒体貯留装置112に供給され貯留される。流動媒体抜出量制御装置119(例えばスクリューコンベヤのオンオフスイッチ、あるいは、スクリューコンベヤの回転数制御装置)は、流動媒体抜出量測定装置120からの流動媒体抜出信号i22と制御装置6(図1)からの後述の循環量信号を受け、流動媒体抜出装置116へ流動媒体抜出装置駆動信号i23を送り流動媒体抜出量を制御する。ここで、本実施の形態では、流動媒体供給量測定装置113と流動媒体抜出量測定装置120は同一物であり、例えば流動媒体貯留装置112内の流動媒体貯留槽の重量の経時変化を測定し、測定した経時変化から流動媒体抜出量を求めるものである。流動媒体抜出量測定装置120を、流動媒体供給量測定装置113と別のものとし、流動媒体搬送装置118によって搬送される流動媒体cの搬送量を抜出量として直接計測するものであってもよい。
次に図6を参照して循環量の測定方法について、説明する。
沈降チャー燃焼室4のように、流動媒体cの沈降流がある流動層における流動化ガスの圧力損失は、沈降流のない流動層における流動化ガスの圧力損失に比べて、大きくなる。この理由は、流動化ガスは上昇流であるため、流動媒体の沈降流と逆行することから、流動化ガスの抵抗が大きくなるためである。流動層中の高さの異なる上下二点(水平位置は同じが望ましい)間において、流動化ガスの圧力損失を考える。流動媒体の沈降流がない場合の流動化ガスの抵抗をPnとし、流動媒体の沈降流がある場合の流動化ガスの抵抗をPdとすると、両者の差Pd−Pnは、流動媒体の沈降流が速いほど、大きくなる。この現象を利用することで、流動媒体の沈降流の速度を測定することができ、その結果から、流動媒体cの循環量を測定することができる。
すなわち、以下の現象を利用して循環量を測定することができる。(1)循環量が大きいほど、流動媒体沈降流の速度は速くなる。(2)流動媒体沈降流の速度が早いほど、流動化ガスの圧力損失は大きくなる。(3)流動化ガス速度Vgが速いほど、流動化ガスの圧力損失は大きくなる。
例えば、沈降チャー燃焼室4においては、以下の式を用いて、循環量を測定することができる。
(循環量)[kg/s]=(流動層かさ密度)[kg/m]×(流動媒体沈降速度)[m/s])×(沈降チャー燃焼室断面積)[m]・・・▲1▼
(流動媒体沈降速度)=α×F1(Pd−Pn)×F2(Vg)・・・▲2▼
(Pd−Pn)の関数であるF1、Vgの関数であるF2については、例えば、以下のように表すことができる。
F1(Pd−Pn)=a0+a1×(Pd−Pn)+a2×(Pd−Pn)+a3×(Pd−Pn)+・・・▲3▼
あるいは、
F1(Pd−Pn)=β(Pd−Pn)γ・・・▲4▼ F2(Vg)=b0+b1×Vg+b2×Vg+b3×Vg+・・・▲5▼
あるいは、
F2(Vg)=ξVgζ・・・▲6▼
ここで、α、β、γ、ξ、ζ、a0、a1、a2、a3、…、b0、b1、b2、b3、…はガス化炉101の形状により決まる定数である。▲3▼式および▲5▼式において、3次近似の式としているが、それぞれ1次近似、2次近似としてもよい。
ここで、沈降流がない場合の上下二点間の圧力差Pf1−Pf2は、Pf1−Pf2=Pn、沈降流がある場合の上下二点間の圧力差Pf1−Pf2は、Pf1−Pf2=Pd、である。沈降流がない状態を例えば試運転段階で各種条件下で発生させ、上下二点間の圧力を測定し、測定したデータを制御装置6(図1)に送り、沈降流がない場合の上下二点間の圧力差Pnを制御装置6に計算させて記憶させておく。ガス化炉101の実際の生成ガスの製造運転時に沈降流がある場合の上下二点間の圧力を測定し、測定したデータを制御装置6に送り、沈降流がある場合の上下二点間の圧力差Pdを制御装置6に計算させて、さらに(Pd−Pn)を制御装置6に計算させる。
沈降チャー燃焼室4(図1)へ供給する流動化ガスg4(図1)の流量は、流量測定器75(図1)によって側定され、流量信号i2(図1)が制御装置6に送られるので、制御装置6は、沈降チャー燃焼室4の流動化ガス速度Vg(Vg4)を計算することができる。
よって、制御装置6に、式▲5▼(または式▲6▼)にVgを代入しF2を求め、式▲3▼(または式▲4▼)に(Pd−Pn)を代入しF1を求め、式▲2▼にF1、F2を代入して流動媒体沈降速度を求める。このように求めた流動媒体沈降速度と、前述の(3)式から求めた流動層かさ密度を、▲1▼式に代入し、αは既知(試運転時等に経験的に求めておくことができる)であることから、循環量を求めることができる。このようにして求められた循環量を用いて、循環量の制御を行うことができる。すなわち、求めた循環量が適切な値になるように、沈降チャー燃焼室4の流動化ガス量を制御することで、ガス化室層温、および、ガス化室出口ガス組成をコントロールすることができる。制御装置6は、流動媒体の循環量を表す流動媒体循環量信号を出力するようにしてもよい。
以上説明したように、沈降チャー燃焼室4の流動層中の上下2点の流動層圧力を測定するための圧力測定装置91、92と、沈降チャー燃焼室4の流動化ガスg4の流量測定装置(流量測定器)75(図1)と、上下2点の流動層圧力の差と流動化ガス量から循環量を計算するための演算装置としての制御装置6を設けるので、循環量を測定することができる。
前述の原理により、沈降チャー燃焼室4の流動化ガス量は、循環量制御の操作因子である。したがって、循環量を制御するために、沈降チャー燃焼室4の流動化ガス流量を変化させるための流量制御弁(調節弁)65(図1)を設けているので、循環量制御を行うことができる。
これまでに述べた流動層高の測定と循環量の測定とを組み合わせて、循環量の制御をおこなうことができる。
循環量の制御は以下のように行う。まず流動層高の測定を行う(ステップ1)。流動層高の測定を行うためには、流動層中の2点間に設置された各圧力測定装置91、92によって各点の流動層圧力を測定する。流動層圧力の測定値が流動層高を計算するための演算装置としての制御装置6に入力され、そこで、流動層高が計算される。計算された流動層高は、循環量制御のための制御装置6に入力される(制御装置6内でデータのやりとりを行う)。
次に循環量の測定を行う(ステップ2)。
沈降チャー燃焼室4の流動層中の2点間に設置された圧力測定装置91、92による測定値と、沈降チャー燃焼室4の流動化ガス流量測定のために設置された流量測定装置75の測定値が、循環量を計算する計算するための演算装置としての制御装置6に入力され、制御装置6で、循環量が計算される。計算された循環量は、循環量制御のための制御装置6に入力される(制御装置6内でデータのやりとりを行う)。
次に循環量の制御を行う(ステップ3)。
例えばある時点で、Wpの循環量であるものをWsの循環量に制御する場合、ステップ2で計算された循環量の測定値Wpに対応する信号と、設定したい循環量であるWsに対応する信号が制御装置6に送られる。もし、Ws<Wpならば、制御装置6は、流動層高を上げる信号を、流動媒体供給量制御装置114(図22)に送り、Ws>Wpならば、制御装置6は、流動層高を下げる信号を、流動媒体抜出装置118(図22)に送る。
流動媒体供給量制御装置114(図22)が、流動層高を上げる信号を受け取ったとき、流動媒体供給量制御装置114は、流動媒体供給量を増やすために、例えば制御弁開度を開ける信号を制御弁に送る。その結果、制御弁の開度が開くことにより、流動媒体が炉内に供給されて、流動層高が増加し、循環量が増加する。また、流動媒体供給量制御装置114は、流動媒体供給量測定装置113(図22)からも信号を受け取り、急激に流動媒体が炉内に供給されないように、流動媒体供給量を定める動作も行う(流動媒体貯留装置112(図22)の流動媒体貯留層に貯留された流動媒体は、炉内温度より低いため、流動媒体の急激な供給により炉内温度が下がり過ぎないようにする)。
流動媒体抜出量制御装置119(図22)が、流動層高を下げる信号を受け取ったら、流動媒体供給量を減らすために、例えば流動媒体抜出しのためのスクリューコンベヤ118(図22)にスイッチオンの信号を送るか、あるいは、スクリューコンベヤの回転数をあげる信号を送る。その結果、スクリューコンベヤが作動するか、あるいは、スクリューコンベヤの回転数が増加するなどして、その結果、流動媒体抜出管117(図22)を介して、流動媒体が炉内から抜出されて、流動層高が減少し、循環量が減少する。
上記の構成によって、流動層高を変化させて循環量を制御することが可能になる。
次に、図1を参照して説明する。本発明における統合型ガス化炉101では、上部に開口部を有する仕切壁14によって仕切られたチャー燃焼室本体部5と沈降チャー燃焼室4(上部に開口部Pxを有する仕切壁Xで仕切られた室Aと室Bに相当(図2(a)参照))との間の流動媒体cの移動と、下部に開口部21を有する仕切壁11によって仕切られたガス化室1とチャー燃焼室本体部5(下部に開口部Qyを有する仕切壁Yで仕切られた室Aと室Bに相当(図2(b)参照))間の流動媒体cの移動、下部に開口部25を有する仕切壁15によって仕切られた沈降チャー燃焼室4とガス化室1(下部に開口部Qyを有する仕切壁Yで仕切られた室Aと室Bに相当(図2(b)参照))間の流動媒体cの移動、上部の開口部と下部の開口部22とを有する仕切壁12によって仕切られた熱回収室3とチャー燃焼室本体部5(上部の開口部Pzと下部の開口部Qzを有する仕切壁Zで仕切られた室Aと室Bに相当(図2(c)参照))間との流動媒体cの移動を適宜組み合わせることによって、隣接する室間の流動媒体cの移動を連続的に行い、かつその移動量を調節することが可能なように構成されている。
ガス化室1の内部で沈降チャー燃焼室4との間の仕切壁15に接する面寄りには、沈降チャー燃焼室4の弱い流動化状態が維持される弱流動化域4aの流動化状態と比べて強い流動化状態が維持される区画としての強流動化域1bが配置されている。全体としては投入された燃料と流動媒体cの混合拡散が促進されるように、場所によって流動化ガスの空塔速度を変化させるのが良く、一例として図2に示したように、強流動化域1bの他に弱い流動化状態が維持される区画としての弱流動化域1aを設けて旋回流を形成させるようにする。強流動化域1b、と弱流動化領域1aでは、流動化ガスg1はそれぞれ領域の全体に渡って均一の流動化速度を有する。
チャー燃焼室本体部5は中央部に弱い流動化状態が維持される区画としての弱流動化域2a、周辺部に強い流動化状態が維持される区画としての強流動化域2bを有し、流動媒体cおよびチャーhが内部旋回流を形成している。強流動化域2b、と弱流動化領域2aでは、流動化ガスg2はそれぞれ領域の全体に渡って均一の流動化速度を有する。ガス化室1、チャー燃焼室本体部5内の強流動化域2bの流動化速度は5Umf以上、弱流動化域2aの流動化速度は5Umf以下とするのが好適であるが、弱流動化域2aと強流動化域2bに相対的な明確な流動化速度の差を設ければ、この範囲を超えても特に差し支えはない。チャー燃焼室本体部5内の熱回収室3、および沈降チャー燃焼室4に接する部分には強流動化域2bを配するようにするのがよい。また、熱回収室3内には弱流動化域3a、沈降チャー燃焼室4内には弱流動化域4aを配する。弱流動化域3a、と弱流動化領域4aでは、流動化ガスg3、g4は、それぞれ領域の全体に渡って均一の流動化速度を有する。また必要に応じて炉底には弱流動化域側から強流動化域側に下るような勾配を設けるのがよい(不図示)。
このように、チャー燃焼室本体部5と熱回収室3との仕切壁12近傍のチャー燃焼室本体部5側の流動化状態を熱回収室3側の流動化状態よりも相対的に強い流動化状態に保つことによって、流動媒体cは仕切壁12の流動床の界面近傍にある上端を越えてチャー燃焼室本体部5側から熱回収室3側に流入し、流入した流動媒体cは熱回収室3内の相対的に弱い流動化状態即ち高密度状態のために下方(炉底方向)に移動し、仕切壁12の炉底近傍にある下端(の開口部22)をくぐって熱回収室3側からチャー燃焼室本体部5側に移動する。流動媒体cが開口部22をくぐって熱回収室3側からチャー燃焼室本体部5側に移動するのは、チャー燃焼室本体部5の強流動化域2bの開口部22近傍の流動媒体cの流動化状態と、熱回収室3の弱流動化域3aの開口部22近傍の流動媒体cの流動化状態とを比較すると、前者の方が後者よりも強いからである。
同様に、チャー燃焼室本体部5と沈降チャー燃焼室4との仕切壁14近傍のチャー燃焼室本体部5側の流動化状態を沈降チャー燃焼室4側の流動化状態よりも相対的に強い流動化状態に保つことによって、流動媒体cは仕切壁14の流動床の界面近傍にある上端を越えてチャー燃焼室本体部5の側から沈降チャー燃焼室4の側に移動流入する。沈降チャー燃焼室4の側に流入した流動媒体cは、沈降チャー燃焼室4内の相対的に弱い流動化状態即ち高密度状態のために下方(炉底方向)に移動し、仕切壁15の炉底近傍にある下端(の開口部25)をくぐって沈降チャー燃焼室4側からガス化室1側に移動する。なおここで、ガス化室1の強流動化域1bの開口部25近傍の流動媒体cの流動化状態と、沈降チャー燃焼室4の弱流動化域4aの開口部25近傍の流動媒体cの流動化状態とを比較すると、前者の方が後者よりも強い。これにより流動媒体cの沈降チャー燃焼室4からガス化室1への移動を誘引作用により助ける。
同様に、ガス化室1とチャー燃焼室本体部5との間の仕切壁11近傍のチャー燃焼室本体部5側の流動化状態はガス化室1側の流動化状態よりも相対的に強い流動化状態に保たれている。したがって、流動媒体cは仕切壁11の流動床の界面より下方、好ましくは濃厚層の上面よりも下方にある(濃厚層に潜った)開口部21を通してチャー燃焼室本体部5の側に流入する。流動媒体cが開口部21を通ってガス化室1側からチャー燃焼室本体部5側に移動するのは、チャー燃焼室本体部5の強流動化域2bの開口部21近傍の流動媒体cの流動化状態と、ガス化室1の弱流動化域1aの開口部21近傍の流動媒体cの流動化状態とを比較すると、前者の方が後者よりも強いからである。
前述のように熱回収室3は全体が均等に流動化され、通常は最大でも熱回収室3に接したチャー燃焼室本体部5の流動化状態より弱い流動化状態となるように維持される。したがって、熱回収室3の流動化ガスg3の空塔速度は0〜3Umfの間で制御され、流動媒体cは緩やかに流動しながら沈降流動層を形成する。なおここで0Umfとは、流動化ガスg3が止まった状態である。このような状態にすれば、熱回収室3での熱回収を最小にすることができる。即ち、熱回収室3は流動媒体cの流動化状態を変化させることによって回収熱量を最大から最小の範囲で任意に調節することができる。また、熱回収室3では、流動化を室全体で一様に発停あるいは強弱を調節してもよいが、その一部の領域の流動化を停止し他を流動化状態に置くこともできるし、その一部の領域の流動化状態の流動の強弱を調節してもよい。
さらに図1を参照し、ガス化室1とチャー燃焼室本体部5の間の流動媒体cの循環量を調節する方法について、以下において具体的に説明する。
ガス化室1とチャー燃焼室本体部5とを仕切る仕切壁11の下端に設けられた開口部21のガス化室1側に配置された弱流動化域1aの流動化ガス速度を変化させることにより、開口部21を介したガス化室1からチャー燃焼室本体部5への流動媒体cの移動量を増加させた場合を考える。この場合、開口部21を介したガス化室1からチャー燃焼室本体部5への流動媒体cの移動量がまず増加することにより、チャー燃焼室本体部5の流動層高の上昇と、ガス化室1の流動層高の低下が一時的に起こる。
前述したように、このような流動層高の変化により、開口部21を介した流動媒体cの移動は抑えられる方向に作用し、ある状態でバランスすることになる。一方では、チャー燃焼室本体部5の流動層高の上昇は、チャー燃焼室本体部5から沈降チャー燃焼室4へ仕切壁14を越えて飛び込む流動媒体cの飛び込み量の増加をもたらす。これにより、沈降チャー燃焼室4の炉底部の圧力は上昇し、一方ではガス化室1の流動層高の低下により、ガス化室1の炉底部の圧力は低下する。
このため、ガス化室1と沈降チャー燃焼室4とを仕切る仕切壁15の下端に設けられた開口部25に注目すると、沈降チャー燃焼室4側の圧力は上昇し、ガス化室1側の圧力は低下するから、その圧力差を駆動力として、開口部25を介した沈降チャー燃焼室4からガス化室1への流動媒体cの移動量が増加する。
このように、最初に与えたガス化室1からチャー燃焼室本体部5への流動媒体cの移動量の増加により、流動層高の変化が生じて、そのためにガス化室1からチャー燃焼室本体部5への流動媒体cの移動量増加が若干打ち消され、またチャー燃焼室本体部5から沈降チャー燃焼室4を経由してガス化室1に至る流動媒体cの移動量が増加するような作用がもたらされる。この機構により、最終的にはガス化室1とチャー燃焼室本体部5との間の流動媒体cの粒子移動量が釣り合うようにガス化室1とチャー燃焼室本体部5との流動層高が変化して安定するが、安定した状態での粒子移動量は、最初の状態より増加した状態に保たれることになる。
即ち、ガス化室1とチャー燃焼室本体部5との間の流動媒体cの循環量を調節するためには、ガス化室1からチャー燃焼室本体部5への流動媒体cの移動量を変化させてもよい。また、チャー燃焼室本体部5からガス化室1への流動媒体cの移動量を変化させてもよいし、あるいはその両者を変化させるようにしてもよいが、実際上は各室の流動層高が変化することにより、どちらか一方の移動量を変化させる操作を行うだけで、ガス化室1からチャー燃焼室本体部5への流動媒体cの移動量と、チャー燃焼室本体部5からガス化室1への流動媒体cの移動量が釣り合うような状態で安定させることが可能である。
したがって、ガス化室1とチャー燃焼室本体部5との間の流動媒体cの移動量を調節するためには、前述のように開口部21を介したガス化室1からチャー燃焼室本体部5への流動媒体cの移動量を調節してもよいし、または仕切壁14の上端を超えてのチャー燃焼室本体部5から沈降チャー燃焼室4への流動媒体cの移動量を調節してもよいし、あるいは開口部25を介した沈降チャー燃焼室4からガス化室1への流動媒体cの移動量を調節してもよい。
ここで、いずれの方法の場合においても、流動媒体cの移動量の調節は、炉底部から供給される流動化ガスgの量を変化させることによって行われるが、ガス化炉101の機能を確保するためには、流動化ガスgの供給量を変化させたことにより、ガス化室1で行われる燃料のガス化反応、チャー燃焼室本体部5で行われるチャーの燃焼反応が影響を受けないようにすることが望ましい。即ち、ガス化室1に供給される流動化ガスg1の総量、あるいはチャー燃焼室本体部5に供給される流動化ガスg2の総量が変化しないようにすることが望ましい。
例えば、ガス化室1の開口部21の近く弱流動化域1aの流動化ガスg1の供給量を減少させ、チャー燃焼室本体部5の開口部21の近傍の強流動化域2bの流動化ガスg2の供給量を増加させることで、開口部21を介したガス化室1からチャー燃焼室本体部5への流動媒体cの移動量を増加させるように調節する場合、ガス化室1の開口部21の強流動化域1bへの流動化ガスg1の供給量を増加させ、チャー燃焼室本体部5の開口部21の弱流動化域2aの流動化ガスg2の供給量を減少させることで、ガス化室1とチャー燃焼室本体部5の各々に供給される各々の流動化ガスg1、g2の供給量を加えた総量が変化しないような操作を行うことが望ましい。
また、チャー燃焼室本体部5の仕切壁14の近くの強流動化域2bの流動化ガスg2の供給量を増加させ、チャー燃焼室本体部5から沈降チャー燃焼室4へ仕切壁14を越えて飛び込む流動媒体cの飛び込み量を増加させることで、チャー燃焼室本体部5から沈降チャー燃焼室4への流動媒体cの移動量を増加させるように調節する場合、チャー燃焼室本体部5の仕切壁14から離れた弱流動化域2aへの流動化ガスg2の供給量を減少させることで、チャー燃焼室本体部5に供給される流動化ガスg2の総量が変化しないような操作を行うことが望ましい。
これに対して、開口部25を介した、沈降チャー燃焼室4からガス化室1への流動媒体cの移動量を調節する場合は、ガス化室1あるいはチャー燃焼室本体部5への流動化ガスg1、g2の供給量を変化させることなく、沈降チャー燃焼室4への流動化ガスg4の供給量を変化させるのみで流動媒体cの移動量を調節することができるので、特に好適である。
この場合、ガス化室1側の開口部25寄りは強流動化域1bであるので強流動化状態に保たれ、沈降チャー燃焼室4側は区画としての弱流動化域4aであるので弱流動化状態に保たれているから、ガス化室1側の強流動化域1bの強流動化状態を一定に保ったまま、沈降チャー燃焼室4側の弱流動化状態の強弱を変化させることによって、効果的に沈降チャー燃焼室4からガス化室1への流動媒体cの移動量を調節することができる。
既に説明したように、開口部25のガス化室1側の近傍の強流動化域1bは、強流動化状態に保たれていることが望ましく、流動化ガス速度が好ましくは4Umf以上、さらに好ましくは5Umf以上に保たれているのがよい。この場合、沈降チャー燃焼室4の流動化ガス速度を、4Umf以下の範囲(強流動化域1bの流動化ガスの流速が4Umf以上の場合)または5Umf以下の範囲(強流動化域1bの流動化ガスの流速が5Umf以上の場合)で変化させることにより、沈降チャー燃焼室4からガス化室1への流動媒体cの移動量を、図4によって示される特性に従って調節することができる。
なお図4によれば、特に沈降チャー燃焼室4側の流動化ガス速度を、好ましくは1Umf〜2Umfの範囲、さらに好ましくは1Umf〜1.7Umfの範囲で変化させた場合に、流動媒体cの移動量がほぼ線形的に大きく変化することがわかる。この場合、沈降チャー燃焼室4に供給される流動化ガスg4の量を少なくして、かつ流動媒体cの移動量を細かく調節することができるため、特に好適である。
もちろんこれとは逆に、沈降チャー燃焼室4の弱流動化の状態を一定として、ガス化室1の強流動化の状態を変化させて、沈降チャー燃焼室4からガス化室1への流動媒体cの移動量を変化させることも可能ではある。しかし、その場合には流動媒体cの移動量を変化させるための流動化ガスg1の流量の変化が大きくなり、ガス化室1におけるガス化反応の条件も変わってしまうため好適ではない。すなわち、後で述べるように、実用上はガス化室1の層温を変化させることが生成ガスbの性状を制御する上で非常に重要であるが、ガス化室1の強流動化の状態を変化させる場合は、層温の変化に付随してガス化室1の反応条件も変わってしまい、ガス化室1の層温だけを独立に制御することが難しくなる。これに対して、上記で説明した沈降チャー燃焼室4の弱流動化の状態を変化させることによる流動媒体cの移動量の制御の場合は、流動化ガスg4の流量の変化が非常に少なくても流動媒体cの移動量の大きな変化を実現することができるため(図4参照)、制御性が良い、プロセス全体の効率に与える影響が少ないなどの利点に加えて、ガス化室1に供給する流動化ガスg1の流量を変えずにガス化室1の層温のを制御することができるという大きな利点がある。
次に図1を参照して流動化ガスgのガス速度の制御について説明する。まず、ガス化室1に供給される流動化ガスg1のガス速度の制御について説明する。前述のように、ガス化室1の弱流動化域1aに対応する炉底に配置された散気装置31に接続された供給配管51に設置された調節弁61は、制御装置6からの制御信号i1を受けて弁開度を設定する。弁開度に対応した流量の流動化ガスg1が調節弁61を介して散気装置31に供給される。供給される流動化ガスの流量によって決まる流動化ガス速度で弱流動化域1aに流動化ガスg1が供給される。流動化ガスg1の流量は、供給配管51上の調節弁61の下流側に設置された流量測定器71によって測定され、測定された流量は流量信号i2として流量測定器71から制御装置6に送られる。制御装置6は、測定された流量信号i2と内部に記憶された弱流動化域1aの目標流量と比較し、流量信号i2が目標値に近づくように調節弁61への制御信号i1の値を変更し、変更された制御信号i1が制御装置6から調節弁61に送られる。
以上、ガス化室1の弱流動化域1aの流動化ガスg1のガス速度の制御について説明したが、ガス化室1の強流動化域1b、チャー燃焼室2の弱流動化域2a、強流動化域2b、弱流動化域4a、熱回収室3の弱流動化域3aについても同様である。
ガス化室1の弱流動化域1aに供給される流動化ガスg1の流量の目標値、強流動化域1bに供給される流動化ガスg1の流量の目標値は、目標とするガス化室1内部での流動化状態の強さ、ガス化室1の弱流動化域1aから開口部21を介してチャー燃焼室本体部5の弱流動化域1aへ移動する流動媒体cの移動量、沈降チャー燃焼室4からガス化室1の強流動化域1bへ移動する流動媒体cの移動量、温度測定器42によって測定されたガス化室1の層温、ガス組成測定器46により測定された生成ガスbのガス組成を総合的に勘案し、ガス化室1の層温が所定の値(例えば、600〜800℃)になるように、あるいはガス組成が所定の内容(例えば、H/COモル比が2.6〜5.8)になるように決めるとよい。
チャー燃焼室2の弱流動化域2aに供給される流動化ガスg2の流量の目標値、強流動化域2bに供給される流動化ガスg2の流量の目標値は、沈降チャー燃焼室4に供給される流動化ガスg4の流量の目標値は、目標とするチャー燃焼室本体部5内部での流動化状態の強さ、目標とする沈降チャー燃焼室4での流動化状態の強さ、チャー燃焼室本体部5の強流動化域2bから仕切壁14の上端を越えて沈降チャー燃焼室4に移動する流動媒体cの移動量、沈降チャー燃焼室4から開口部25を介してガス化室1の強流動化域2bへ移動する流動媒体cの移動量、熱回収室3から開口部22を介してチャー燃焼室本体部5の強流動化域2bへ移動する流動媒体cの移動量、チャー燃焼室本体部5の強流動化域2bから仕切壁12の上端を越えて熱回収室3に移動する流動媒体cの移動量、温度測定器43によって測定されたチャー燃焼室本体部5の層温を総合的に勘案し、チャー燃焼室本体部5の層温が所定の値(例えば、850〜950℃)になり、かつガス化室1から供給されるガス化残渣(チャー、タール等)が完全燃焼されるように決めるとよい。
熱回収室3を有する場合、チャー燃焼室本体部5の層温は、熱回収室3で回収される熱回収量の影響を受け、熱回収量が増えればチャー燃焼室本体部5の層温は低下し、熱回収量が減ればチャー燃焼室本体部5の層温は増加する。
次に熱回収室3で、熱回収量を増減するための制御の方法について説明する。熱回収室3における熱回収量は、流動媒体cと層内伝熱管41Aとの間の熱伝達係数によって決まる。この熱伝達係数は、熱回収室3における流動化の強弱に密接な関係があり、流動化が強いほど熱伝達係数が大きくなり、層内伝熱管が流動媒体から熱を奪う量が増加する。したがって、チャー燃焼室本体部5の層温を一定に保つためには、熱回収室3の流動層に供給される流動化ガスg3の流量を制御することにより、熱回収室3における流動化の強弱を変化させればよい。
熱回収室3に供給される流動化ガスg3を導入する供給配管56に設置された調節弁66は、制御装置6からの制御信号i1を受けて弁開度を設定する。弁開度に対応した流量の流動化ガスg3が調節弁66を介して熱回収室3の流動層に供給される。流動化ガスg3の流量は調節弁66の下流に設置された流量測定器76によって測定され、測定された流量は制御信号i2として制御装置6に送られる。前述のように、流動化ガスg3の流量が大きいほど熱回収室3の流動化が強くなり、熱回収量が増加するから、チャー燃焼室本体部5の層温が目標値より高い場合には、制御装置6はチャー燃焼室本体部5の層温が目標値に近づくように調節弁66への制御信号i1の値を変更し、流動化ガスg3の流量を増加させるように構成すればよい。またチャー燃焼室本体部5の層温が目標値より低い場合には、制御装置6はチャー燃焼室本体部5の層温が目標値に近づくように調節弁66への制御信号i1の値を変更し、流動化ガスg3の流量を減少させるように構成すればよい。
一方、蒸気については、層内伝熱管41の導入部41Bに設置された調節弁67が、制御装置6からの制御信号i1を受けて弁開度を設定する。弁開度に対応した流量の蒸気s1が調節弁67を介して層内伝熱管本体41Aに供給される。層内伝熱管本体41Aに導入された蒸気s1は熱回収室3の流動化状態によって決まる熱伝達係数に応じた熱量を流動媒体cから受けて加熱され過熱蒸気s2となり、排出部41Cから排出される。蒸気s1の流量は、導入部41B上の調節弁67の下流側に設置された流量測定器77によって測定され、測定された流量は流量信号i2として、流量測定器77から制御装置6に送られる。過熱前の蒸気s1の温度は、導入部41Bに設置された温度測定器44によって測定され、測定された温度は温度信号i3として制御装置6に送られる。過熱後の蒸気s2の温度は、排出部41Cに設置された温度測定器45によって測定され、測定された温度は温度信号i3として制御装置6に送られる。
例えば熱回収室3の流動化の強弱を強めて熱回収量を増加させた場合、層内伝熱管41に供給される蒸気s1の流量が一定に保たれているとすると、得られる過熱蒸気s2の温度が上昇する。過熱蒸気s2の利用形態上、温度が上昇することが好ましくない場合には、供給する蒸気s1の流量を増加させることで、熱回収量の増加を回収される過熱蒸気s2の流量の増加に反映させることができる。この場合、制御装置6は、過熱後の蒸気s2の温度信号i3が蒸気s2の目標温度より高い場合には、調節弁67への制御信号i1の値を変更して蒸気s1の流量を増加させるように構成すればよい。逆に過熱後の蒸気s2の温度信号i3が蒸気s2の目標温度より低い場合には、調節弁67への制御信号i1の値を変更して蒸気s1の流量を減少させるように構成すればよい。
廃棄物または燃料a中に含まれる比較的大きな不燃物はガス化室1の炉底に設けた不燃物排出口(不図示)から排出する。また、各室の炉底面は水平でもよいが、流動媒体cの流れの滞留部を作らないようにするために、炉底近傍の流動媒体cの流れに従って、炉底を傾斜させてもよい。なお、不燃物排出口(不図示)は、ガス化室1の炉底だけでなく、チャー燃焼室本体部5、沈降チャー燃焼室4あるいは熱回収室3の炉底に設けてもよい。
ガス化室1の流動化ガスg1として最も好ましいのは生成ガスbを昇圧してリサイクル使用することである。このようにすればガス化室1から出る生成ガスbは純粋に燃料から発生した生成ガスbのみとなり、非常に高品質の生成ガスbを得ることができる。それが不可能な場合は水蒸気、炭酸ガス(CO2)あるいはチャー燃焼室2から得られる燃焼排ガス等、できるだけ酸素を含まないガス(無酸素ガス)を流動化ガスg1として用いるのがよい。ガス化の際の吸熱反応によって流動媒体cの層温が低下する場合は、必要に応じて熱分解温度より温度の高い燃焼排ガスを供給するか、あるいは無酸素ガスに加えて、酸素もしくは酸素を含むガス、例えば空気を供給して生成ガスbの一部を燃焼させるようにしてもよい。チャー燃焼室2に供給する流動化ガスg2、g4は、チャー燃焼に必要な酸素を含むガス、例えば空気、酸素と蒸気の混合ガスを供給する。燃料aの発熱量(カロリー)が低い場合は、酸素量を多くする方が好ましく、酸素をそのまま供給する。また熱回収室3に供給する流動化ガスg3は、空気、水蒸気、燃焼排ガス等を用いる。
ガス化室1とチャー燃焼室2の流動床の上面(スプラッシュゾーンの上面)より上方の部分即ちフリーボード部は完全に仕切壁11、15で仕切られている。さらに言えば、流動床の濃厚層の上面より上方の部分即ちスプラッシュゾーン及びフリーボード部は完全に仕切壁で仕切られているので、チャー燃焼室2とガス化室1のそれぞれのフリーボード部の圧力のバランスが多少乱れても、双方の流動層の界面の位置の差、あるいは濃厚層の上面の位置の差、即ち流動層高差が多少変化するだけで乱れを吸収することができる。即ち、ガス化室1とチャー燃焼室2とは、仕切壁11、15で仕切られているので、それぞれの室の圧力が変動しても、この圧力差は流動層高差で吸収でき、どちらかの層が開口部21、25の上端に下降するまで吸収可能である。したがって、流動層高差で吸収できるチャー燃焼室2とガス化室1のフリーボードの圧力差の上限値は、互いを仕切る仕切壁11、15の下部の開口21、25の上端からの、ガス化室流動床のヘッドと、チャー燃焼室流動床のヘッドとのヘッド差にほぼ等しい。
ただし、上記において、圧力バランスの多少の乱れを、流動層高差で吸収する場合、流動層高の変化に応じて、流動媒体cの各室間の移動量に変化が生じる。したがって、流動媒体cの各室間の移動量を一定に保つためには、圧力バランスの乱れを最小限に抑える制御機構を付加することが重要となる。
図1を参照して、圧力バランスの乱れを抑えるための制御の方法について、以下で説明する。ガス化室1から排出される生成ガスbと、チャー燃焼室2から排出されるチャー燃焼ガスeは、それぞれ後段に設置された圧力制御用の調節弁78または調節弁79を経由して排出され利用される。
ここで、図1ではガス化室1から、あるいはチャー燃焼室2からガスが排出された直後に調節弁78及び調節弁79が設置されている様に描かれているが、その他の機器を通過した後に調節弁78あるいは調節弁79が設置されていても、調節弁78あるいは調節弁79の開度を調節することにより対応するガス化室1あるいはチャー燃焼室2からのガスの排出の抵抗を変化させ、ガス化室1あるいはチャー燃焼室2の圧力を変化させることができるのであれば構わない。ガス化室1のフリーボード部と、チャー燃焼室2のフリーボード部には、それぞれ圧力測定装置としての圧力測定器81、82が設置されており、各々の室1、2の圧力が検出されて圧力信号i5として制御装置6に送られる。制御装置6は、ガス化室1のフリーボード部の圧力信号i5と、チャー燃焼室2のフリーボード部の圧力信号i5を比較して、その差が流動媒体cの各室間の移動量に影響を及ぼさない一定の範囲内、好ましくは両室1、2の圧力差がガス化室1またはチャー燃焼室2の流動層の圧力損失の±10%以下、さらに好ましくは±5%以下、さらに好ましくは両室1、2の圧力が等しくなるように、制御信号i1を調節弁78あるいは調節弁79に送り、調節弁78あるいは調節弁79の開度を変化させる。
以上説明した統合型ガス化炉101では、一つの流動床炉の内部に、ガス化室、1、チャー燃焼室2、熱回収室の3つを、それぞれ隔壁を介して設け、さらにチャー燃焼室2とガス化室1、チャー燃焼室2と熱回収室3はそれぞれ隣接して設けられている。この統合型ガス化炉101は、チャー燃焼室2とガス化室1間に大量の流動媒体cの循環を可能にしているので、流動媒体cの顕熱だけでガス化のための熱量を充分に供給できる。
さらに以上の統合型ガス化炉101では、チャー燃焼ガスeと生成ガスbの間のシールが完全にされるので、ガス化室1とチャー燃焼室2の圧力バランス制御がうまくなされ、燃焼ガスeと生成ガスbが混ざることがなく、生成ガスbの性状を低下させることもない。
また、熱媒体としての流動媒体cとチャーhはガス化室1側からチャー燃焼室2側に流入するようになっており、さらに同量の流動媒体cがチャー燃焼室2側からガス化室1側に戻るように構成されているので、自然にマスバランスがとれ、流動媒体cをチャー燃焼室2側からガス化室1側に戻すために、コンベヤ等を用いて機械的に搬送する必要もなく、高温粒子のハンドリングの困難さ、顕熱ロスが多いといった問題もない。
次に、図1を参照して統合型ガス化炉101の生成ガスbのガス組成の制御について説明する。
本発明では、前述のようにガス化室1とチャー燃焼室2の間の流動媒体cの移動量、即ち内部循環量を調節することにより、ガス化室1及びチャー燃焼室2の流動層温度をそれぞれ実用上任意に制御し、あるいはガス化室1から発生する生成ガスbの組成を変化させることを目的としている。このため、統合型ガス化炉101の運転上は、制御装置6に流動化ガス量に変化を与える指令を出させることになる。即ち、制御装置6から調節弁61〜67に流量を制御する制御信号i1が送られ調節弁61〜67が流動化ガス流量を調節する。流動化ガス流量が調整されることは流動化ガス速度が調節されることである。流動化ガス速度が調節されると内部循環量がどのように調節され、それによってガス化室1及びチャー燃焼室2の流動層温度、さらにはガス化室1から発生する生成ガスbの組成がどのように変化するかを計測し、その結果をもとに流動化ガス量を調節するような、制御ロジックを制御装置6に構成することが好ましい。
例えば、ガス化室1の流動層温度を変化させることを目的として内部循環量を調節する場合について、以下説明する。
具体的に、沈降チャー燃焼室4の流動化ガス速度が1Umf〜2Umf程度の範囲の弱流動化状態にあって、ガス化室1の流動層温度の温度測定器42の測定値が、目標とするガス化室1の流動層温度よりも低い場合を考える。この場合、既に説明したように、沈降チャー燃焼室4の流動化ガス量を1Umf〜2Umfの範囲内で増加させることによって沈降チャー燃焼室4の流動層粘性を低下させ(図3参照)、沈降チャー燃焼室4からガス化室1への流動媒体cの移動量を増やすことができる(図4参照)。
先に述べたように、このとき沈降チャー燃焼室4からガス化室1への流動媒体cの移動量が増えると、ガス化室1の層高が一時的に上昇することにより、ガス化室1からチャー燃焼室2への流動媒体cの移動量が増加し、チャー燃焼室2の層高も若干上昇する。すると、チャー燃焼室2から沈降チャー燃焼室4への流動媒体cの飛び込み量も増加し、結果としてガス化室1からチャー燃焼室2、チャー燃焼室2から沈降チャー燃焼室4、沈降チャー燃焼室4からガス化室1への全ての流動媒体cの移動量が初期の状態よりも増加した状態で安定することになる。このとき、ガス化室1とチャー燃焼室2の相互間の流動媒体cの移動量の増加により、ガス化室1とチャー燃焼室2の温度差は小さくなる。即ちガス化室1の流動層温度は上昇し、チャー燃焼室2の流動層温度は低下することになる。なお以下では、ガス化室1からチャー燃焼室2、チャー燃焼室2から沈降チャー燃焼室4、沈降チャー燃焼室4からガス化室1への全ての流動媒体cの移動量が同じ値に安定した状態での、ガス化室1とチャー燃焼室2の相互間の流動媒体cの移動量を「内部循環量」と呼ぶ。
ある一定時間が経過して、ガス化室1の流動層温度が安定した段階において、その安定した温度が目標とする流動層温度よりもまだ低ければ、沈降チャー燃焼室4の流動化ガス量をさらに増加させればよい。また、その安定した温度が目標とする流動層温度よりも高ければ、沈降チャー燃焼室4の流動化ガス量をいくらか減少させればよい。
以上のような操作は、図1に示したような構成により、演算装置を内包する制御装置6に対してガス化室1の流動層温度の測定値と目標値とを入力し、その差分の大小に基づいて沈降チャー燃焼室4への流動化ガスg4の供給量を変化させるように調節弁65への制御信号i1が変化し調節弁65の開度を変化させるよう構成することで、容易に実現することができる。
前述において、弱流動化域1a、2a、3a、4a、強流動化域1b、2bは、それぞれ一つの調節弁61〜66が接続された散気装置31〜36を有するとして説明した。
しかし、図5(統合型ガス化炉101の一部を省略)に示すように、例えば、開口部21を挟む弱流動化域1a、強流動化域2bを、それぞれ開口部21に直接隣接する近傍域1ax、2bxと、近傍域1ax、2bx以外の遠隔域1ay、2byとに分離し、散気装置31、34を、それぞれ近傍域1ax、2bxに対応する近傍部分31x、34xと、遠隔域1ay、2byに対応する遠隔部31y、34yに分離するように構成してもよい。
散気装置31、34の遠隔部31y、34yに前述の供給配管51、54をそれぞれ接続し、散気装置31、34の近傍部31x、34xに、流量測定器71x、74x及び調節弁61x、64xが設置された供給配管51x、54xを接続するようにしてもよい。開口部21を介して流動媒体cが移動する移動量を制御するために供給される流動化ガスg1、g2の速度をそれぞれ弱流動化域1a、強流動化域2b全域に渡って制御する代わりに、近傍域1ax、2bxから供給される流動化ガスg1、g2のガス流速をそれぞれ制御するようにしてもよい。この制御は、前述のように制御装置6(図1参照)により調節弁61x、64xを制御することにより行う。
開口部25を挟む弱流動化域4a、強流動化域1b、開口部22を挟む弱流動化域3a、強流動化域2bも同様に、開口部25、22に直接隣接する不図示の近傍域と近傍域以外の不図示の遠隔域に分離し、開口部25、22を介して流動媒体cが移動する移動量を制御するために供給される流動化ガスの速度をそれぞれ弱流動化域4a、3a、強流動化域1b、2b全域に渡って制御する代わりに、近傍域から供給される流動化ガスのガス流速をそれぞれ制御するようにしてもよい。
統合型ガス化炉101のある一つの安定した運転状態から内部循環量を変化させた場合に発生する現象、得られる効果について以下で述べる。まず、内部循環量の変化に対応してガス化室1あるいはチャー燃焼室2の層温の変化が生じる。内部循環量を増加させた場合は、ガス化室1の層温は上昇し、チャー燃焼室2の層温は低下する。逆に内部循環量を減少させた場合、ガス化室1の層温は低下し、チャー燃焼室2の層温は上昇する。
また、ガス化室1、チャー燃焼室2ともに、室1、2内の流動媒体cの滞留時間が変化する。例えば、内部循環量を1/2に減らした場合、各室1、2内の流動媒体cの滞留時間は2倍となる。逆に、内部循環量を2倍に増やした場合、各室1、2内の流動媒体cの滞留時間は1/2となる。
また、ガス化室1でのチャーhの発生量が変化する。例えば、内部循環量を減少させた場合、ガス化室1の層温の低下を反映し、ガス化室1でのチャーhの発生量は増加する。一般にチャーhの発生量は、層温が低いほど増加する。内部循環量を増加させた場合、ガス化室1の層温の上昇を反映し、チャーhの発生量は減少する。一般にチャーhの発生量は、ガス化室1の層温が高いほど減少する。
チャーhの発生量の変化とガス化室1の層温の変化を反映して、ガス化室1で生成される生成ガスbのガス組成が変化する。これは、チャーhの発生量(ガス化室1からチャー燃焼室2に移動する可燃分の量)が変化することによる元素バランス(炭素、水素、酸素等のモル比(%))の変化と、温度によるガス成分の平衡状態の変化による。
生成ガス組成の変化により生成ガスbのH/CO比、ガス発熱量等が変化する。H2/CO比は、生成ガスbからの水素、液体燃料等の製造効率に関わる重要因子である。ガス発熱量は、生成ガスbを燃焼利用する場合の重要因子である。
以上から、内部循環量を変化させることにより、ガス化室1の層温を実用上任意に制御し、それにより生成ガスbの組成(H、CO、CO、CH、HO等のモル%に加え、H2/CO比、ガス発熱量など、生成ガス組成によって決まる因子を含む概念とする。)を変化させることができる。
この場合、例えばガス化室1の層温を下げるように制御すると、対応してチャー燃焼室2の層温は上昇する。逆に、ガス化室1の層温を上げるように制御すると、対応してチャー燃焼室2の層温は低下する。チャー燃焼室の運転温度は、ガス化室1から移動してきたチャーhやタール分を完全燃焼するのに最適な温度範囲、好ましくは850〜950℃に保つことが好ましいから、内部循環量を変化させることでガス化室1の層温を変化させた場合には、チャー燃焼室2の温度が上記の最適な範囲を外れないように別の方法で調節する必要がある。
そのためには、既に説明したように熱回収室3を有する場合には、熱回収室3における熱回収量を制御することによりチャー燃焼室本体部5の層温を一定に保つように制御を行うことができる。また、用いられる原料の一部を直接にチャー燃焼室へ供給したり、あるいはその供給量を変化させることにより、チャー燃焼室における可燃分の燃焼量を直接に変化させるように制御を行ってもよい。また、チャー燃焼室2の温度が非常に高くなってしまう場合には、流動層部に水を供給したり、あるいはその供給量を変化させることにより直接に流動層の温度を冷却するような制御を行ってもよい。
以下に、統合型ガス化炉101(図1)を想定した試算結果の一例を示す(図11、図13〜図15)。原料aは、木質系バイオマス、ガス化室1は200℃の蒸気によりガス化し、チャー燃焼室2は、空気によりチャーhを燃焼するものとした。チャー燃焼室2の層温は、熱回収室3の熱回収量の制御によって900℃で一定に保ち、内部循環量を変化させた場合に、ガス化室1の層温がどう変わるか、それに伴って生成ガスbの組成や発熱量がどう変わるかを試算した。なお、内部循環量については、媒体粒子の循環量(kg/h)を原料aの投入量(kg/h)で除した無次元数(以下「循環比」という)によって整理してある。
図11に、ケース1の内部循環量(循環比)とガス化室層温(単位℃)の関係を示し、図12にケース2の内部循環量(循環比)とガス化室層温(単位℃)の関係を示す。図11、図12は、計算結果である。ガス化炉1のスケール、原料a、プロセス条件(流動化蒸気、空気など)により、低下するガス化室層温の絶対値は異なるが、図11および、図12に示すように、内部循環量(循環比)を減少させるほど、ガス化室1の層温は低下し、内部循環量(循環比)を増加させるほど、ガス化室1の層温は上昇する。例えば、図11(ケース1)では、ガス化室1の層温を800℃に保つための内部循環量を基準として、700℃に保つための内部循環量は約44%(20/45)、600℃に保つための循環量は約22%(10/45)となる。以上から、ガス化室1の層温を600〜800℃の範囲で制御可能とするためには、流動媒体cの内部循環量は、最大値から最大値の20%程度の範囲で実用上任意に変化させることができるように構成することが好ましい。典型的には、ガス化室1の層温が一定になるように、内部循環量を制御する。
図13に内部循環量(循環比)と生成ガス組成の関係を示す。本図は、ガス化室1でのガス滞留時間が十分長いと仮定した場合、あるいは、触媒等によって反応が平衡組成に近い状態まで進行した場合の計算結果である。
図に示すように、内部循環量(循環比)を減少させるほど、ガス化室1の層温が低下するため、生成ガスbの組成は、H、COが減り、CO、HOが増える。特に内部循環量(循環比)が少なく、ガス化室1の層温が低い場合は、CHの量が顕著に増加し、H、COがこれに対応して大きく減少する。内部循環量(循環比)を変化させることにより、所望の図に示すガス組成を得るよう制御することができる。
図14に内部循環量(循環比)と生成ガスのH/CO比の関係を示す。本図は、ガス化室1でのガス滞留時間が十分長いと仮定した場合、あるいは、触媒等によって反応が平衡組成に近い状態まで進行した場合の計算結果である。
図に示すように、生成ガス組成の変化に対応して、内部循環量(循環比)を減少させるほど、H/CO比が大きくなる。したがって、内部循環量(循環比)の制御によりH/COを比2.6から5.7の間の所望の値に制御することが可能である。
図15に内部循環量(循環比)と生成ガス発熱量の関係を示す。本図は、ガス化室1(図1)でのガス滞留時間が十分長いと仮定した場合、あるいは、触媒等によって反応が平衡組成に近い状態まで進行した場合の計算結果である。
図に示すように、全体としては、生成ガス組成の変化に対応して、内部循環量(循環比)を減少させるほど、CO濃度が低下するため、生成ガス発熱量が減少する傾向にある。特に、内部循環量(循環比)が少なく、ガス化室1の層温が低い場合は、CH濃度が増加するため、発熱量が上昇する。内部循環量(循環比)を変えることにより、約10,600から約10,900(HHV D.B.)kJ/m−NTPの間で所望の値に制御することができる。
ガス化室1でのガス滞留時間が短く、ガス組成が平衡組成と異なる場合には、以下のような現象となる。
ガス化炉101(図1)のガス性状の第1の制御について説明する。図16は、ガス化原料aをバイオマスとしたときの、ガス化室層温(単位℃)とガス化室(GC)出口ガス熱量割合(タールを発熱量にカウントする)(単位%)の関係を示す。ガス化室層温が低温の場合は、顕熱ロスが少ないので、ガス化室出口ガス発熱量は高くなり、ガス化室層温が高温の場合は、顕熱ロスが多いので、ガス化室出口ガス発熱量は低くなる。ガス化室層温と循環量に依存関係があることから、循環量を小さくすることによってガス化室出口ガス発熱量を高くすることができる。ガス化室出口熱量割合とは、ガス化室出口における単位重量のガス化原料から発生するガス(タールを含む)の発熱量を、単位重量のガス化原料の燃焼による発熱量で割ったパーセントをいう。
図17に、ガス化原料aをバイオマスとしたときの、ガス化室層温(単位℃)と冷ガス効率(単位%)(ガス化室出口のタールを除く可燃ガス発熱量を基に求める)の関係を示す。ガス化室層温が低温の場合は、タール発生が多くなるので、冷ガス効率が下がり、ガス化室層温が高温の場合は、タール発生が少なくなるので、冷ガス効率が上がる。冷ガス効率とは、ガス化室出口における単位重量のガス化原料から発生するガス(タールを含まず)の発熱量を、単位重量のガス化原料の燃焼による発熱量で割ったパーセントをいう。
図18に、ガス化原料aをバイオマスとしたときの、内部循環量(循環比)とガス化室出口の生成ガス発熱量(タールを除く)(HHV D.B)(単位KJ/m−NPT)の関係を示す。内部循環量(循環比)が小さいとガス化室層温が低温になり、タール発生が多くなるので、発熱量が下がり、内部循環量(循環比)が大きいとガス化室層温が高温になり、タール発生が少なくなるので、発熱量が上がる。
図19に、ガス化原料aをバイオマスとしたときの、ガス化室層温(単位℃)と、原料a中の炭素(C)がタールに移行した割合(単位%)との関係を示す。図は、ガス化室層温が低いほど、タール発生量が多いことを示し、ガス化室層温が高いほど、タール発生量が少ないことを示す。
したがって、バイオマスのようなタール発生量が多く、発熱量の低い原料aにおいて、冷ガス効率を高くするためには、(1)ガス化室層温を低温として顕熱ロスを低くして、かつ、その際に発生したタールを分解(低分子化)するか、(2)循環量を増加して、ガス化室層温を高くしてタール発生量を抑える方法がある。
次に、ガス化炉101(図1)のガス性状の第2の制御について説明する。
循環量を制御することにより、ガス化原料aの揮発分放出量を制御し、原料a中の炭素の、チャー燃焼室2へ移動させる量をコントロールすることができる。
図20に、ガス化原料aをバイオマスとしたときの、循環量(単位kg/h)と、ガス化室1に供給された原料a中の炭素のチャー燃焼室2への移行割合(単位%)との関係を示す。図は、循環量が大きくなると、揮発分として未放出状態の炭素がチャー燃焼室2へ移行する割合が大きくなり、循環量が小さくなると、揮発分として未放出状態の炭素がチャー燃焼室2へ移行する割合が小さくなることを示している。
図21に、ガス化原料aをバイオマスとしたときの、ガス化室層温(単位℃)と、ガス化室1に供給されたガス化原料a中の炭素のチャー燃焼室2へ移行する割合(単位%)との関係を示す。層温が高い場合は、揮発分放出量が多く(揮発量残存量が少ない)、かつ、揮発分放出速度も速いので、原料a中の炭素がチャー燃焼室2へ移行する割合は小さくなると考えられるが、図ではその逆の現象となっている。すなわち、ガス化室層温が高い場合は、原料a中の炭素がチャー燃焼室2へ移行する割合は大きくなり、ガス化室層温が低い場合は、原料a中の炭素がチャー燃焼室2へ移行する割合は、小さくなる。これは、ガス化室層温が高いということは、すなわち、循環量が大きいことを意味するので、流動媒体に同伴して、揮発分未放出のガス化原料a(ここではバイオマス)がチャー燃焼室2へ移行することが支配的であることが示されている。
以上のことから、循環量を制御することによって、チャー燃焼室2での燃焼量をコントロールすることが可能であるため、ガス化原料aの変動に応じて、チャー燃焼室2での燃焼量を最適にコントロールすることができる。
なお、図示の実施の形態はあくまでも例示であり、本発明の技術的範囲を限定する趣旨の記述ではない。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a block diagram conceptually showing the configuration of an integrated gasification furnace 101 as a gasification furnace.
The integrated gasification furnace 101 includes a gasification chamber 1 that thermally decomposes and gasifies waste or solid fuel a as an object to be processed, and a char combustion chamber 2 that burns the char fraction h generated in the gasification chamber 1. A gas utilization device (in the latter stage of the integrated gasification furnace 101) that includes the product gas b as a combustible gas generated in the gasification chamber 1 and the combustion gas e generated in the char combustion chamber 2. (Not shown) and supplied separately. The char combustion chamber 2 includes a char combustion chamber main body 5 and a sedimentation char combustion chamber (fluid medium sedimentation chamber) 4. The integrated gasification furnace 101 is connected to the gasification chamber 1 and is connected to the char combustion chamber main body 5 and the generated gas supply pipe 26 for supplying the generated gas b generated in the gasification chamber 1 and the char combustion chamber main body 5. And a combustion gas supply pipe 27 for supplying the combustion gas e generated in the above. The integrated gasification furnace 101 further includes a gas composition measuring device 46 that is installed in the product gas supply pipe 26 and measures the gas composition of the product gas b.
The integrated gasification furnace 101 is installed in the product gas supply pipe 26 and is a control valve as an adjustment device that adjusts the discharge linear velocity (first exhaust linear velocity) of the product gas b exhausted from the product gas supply piping 26. 78 (for example, a damper) and a control valve as an adjusting device that is installed in the combustion gas supply pipe 27 and adjusts the discharge linear velocity (second exhaust linear velocity) of the combustion gas e exhausted from the combustion gas supply piping 27 79 (for example, a damper).
The integrated gasification furnace 101 includes a heat recovery chamber 3 in charge of a heat recovery function in addition to the gasification chamber 1 and char combustion chamber 2 in charge of the above-described pyrolysis gasification and char combustion functions, respectively. The gasification chamber 1, the char combustion chamber 2, and the heat recovery chamber 3 are accommodated in a furnace body that is entirely cylindrical or rectangular, for example. The integrated gasification furnace 101 includes a control device 6 that controls control valves 61, 62, 63, 64, 65, 66, and 67 (61 to 67) described later. The control device 6 also controls the control valves 78 and 79 described above. The gasification chamber 1, the char combustion chamber 2, and the heat recovery chamber 3 are divided by partition walls 11 to 15, and a fluidized bed that is a dense layer containing a high-temperature fluidized medium c is formed at the bottom of each.
The gasification chamber 1 and the char combustion chamber main body 5 are provided with temperature measuring devices 42 and 43 for measuring the layer temperatures of the respective thick layers. In the present embodiment, the layer temperature of the rich layer in the gasification chamber 1 is the temperature of the gasification chamber 1, and the layer temperature of the rich layer in the char combustion chamber body 5 is the temperature of the char combustion chamber 2. . The temperature measuring devices 42 and 43 send to the control device 6 a temperature signal i3 (partially indicated by a broken line in the figure) based on the measured temperature. As will be described later, the control device 6 may be configured to control the control valves 61 to 67 so that the temperature of the temperature char combustion chamber 2 of the gasification chamber 1 becomes a set value based on the temperature signal i3. In this case, the control device 6 is the control device for controlling the temperature of the present invention. Further, the gas composition measuring device 46 described above sends a gas composition signal i4 based on the measured gas composition to the control device 6. As will be described later, the control device 6 can be configured to control the control valves 61 to 67 so that the gas composition of the generated gas b becomes a set value based on the gas composition signal i4. The apparatus 6 is a control apparatus for controlling the gas composition of the present invention. The temperature measuring devices 42 and 43 use thermocouples.
The gasification chamber 1 and the char combustion chamber main body 5 are provided with pressure measuring devices 81 and 82 for measuring the pressures of the respective free board portions. The pressure of the free board part of the gasification chamber 1 is the first pressure of the present invention, and the pressure of the free board part of the char combustion chamber main body part 5 is the second pressure of the present invention. The free board unit will be described later. The pressure measuring devices 81 and 82 send a pressure signal i5 (partially indicated by a broken line in the drawing) to the control device 6 based on the measured pressure. The control device 6 can be configured to control the control valves 61 to 67 so that the pressure in the gasification chamber 1 and the pressure in the char combustion chamber 2 are set to predetermined values based on the pressure signal i5.
The gas composition signal i4 is H 2 , CO, CO 2 , CH 4 , H 2 It is good to set it as mol%, such as O. The control device 6 obtains the gas composition signal i4, and H 2 / CO ratio etc. is calculated, and further generated by the gas composition signal i4, the temperature signal i3 of the product gas b measured by the temperature measuring device 42, and the pressure signal i5 of the product gas b measured by the pressure measuring device 81 The calorific value of the gas b may be calculated.
In order to flow the fluidized media c in the fluidized beds of the chambers 1 to 3, that is, the gasification chamber fluidized bed, the char combustion chamber fluidized bed, and the heat recovery chamber fluidized bed, The fluidized gas g1, g2, g3, and g4 (discrimination of fluidized gases g1, g2, g3, and g4 will be described later; hereinafter, the fluidized gas is collectively referred to as “g”) is blown into the fluidized medium c. Air devices 31-36 are provided. That is, the gasification chamber 1 is provided with air diffusers 31, 32, the char combustion chamber 2 is provided with air diffusers 33, 34, 35, and the heat recovery device 3 is provided with an air diffuser 36. Each of the air diffusers 31 to 36 includes, for example, a perforated plate laid on the bottom of the furnace where the air diffusers 31 to 36 are installed, and the perforated plates are divided in a width direction into a plurality of rooms. It is divided.
The integrated gasification furnace 101 is connected to a supply pipe 51 connected to the diffuser 31, a supply pipe 52 connected to the diffuser 32, a supply pipe 53 connected to the diffuser 33, and the diffuser 34. The supply pipe 54, the supply pipe 55 connected to the air diffuser 35, and the supply pipe 56 connected to the air diffuser 36 are provided. The supply pipes 51 to 56 include control valves 61 to 66 as flow control devices and flow rate measuring devices 71 to 76, respectively, and supply the fluidized gas g to the air diffusers 31 to 36. The control valves 61-66 adjust the supply amount of the fluidized gas g to the air diffusers 31-36. Therefore, each of the air diffusers 31 to 36 is provided in each part in each of the chambers 1 to 3 (in the figure, the locations indicated by 1a and 1b of the chamber 1, the locations indicated by 2a, 2b and 4a of the chamber 2, and the 3a of the chamber 3 In order to change the superficial velocity at the location (shown), the flow velocity of the fluidized gas g blown out from each room of the diffusers 31 to 36 through the perforated plate is changed. The flow rate measuring devices 71 to 76 are installed on the downstream side of the control valves 61 to 66 of the supply pipes 51 to 56, and measure the flow rate of the fluidized gas g. The control valves 61 to 66 are operated in response to different control signals i1 (partially indicated by broken lines in the drawing) sent from the control device 6 to change the opening degree. The flow rate measuring devices 71 to 76 send a flow rate signal i2 (partially indicated by a broken line in the drawing) to the control device 6 based on the measured flow rate.
Moreover, since the superficial velocity is relatively different in each part of the chambers 1 to 3, the fluidized medium c in each of the chambers 1 to 3 is also in a different fluidized state in each part of the chambers 1 to 3, so that an internal swirl flow is formed. The Moreover, since the fluidization state differs in each part of the chambers 1 to 3, the internal swirl circulates through the chambers 1 to 3 in the furnace. In the figure, the size of the white arrow shown in the air diffusers 31 to 36 indicates the flow velocity of the fluidized gas g to be blown out. For example, the thick arrow at the location indicated by 2b has a higher flow velocity than the thin arrow at the location indicated by 2a. Further, the flow velocity at the location indicated by the white arrow is uniform throughout the location.
The gasification chamber 1 and the char combustion chamber body 5 are partitioned by a partition wall 11 and a partition wall 15, and the char combustion chamber body 5 and the heat recovery chamber 3 are partitioned by a partition wall 12. And the heat recovery chamber 3 are partitioned by a partition wall 13 (note that since this figure shows the furnace expanded in a plane, the partition wall 11 includes the gasification chamber 1 and the char combustion chamber main body. The partition wall 13 is shown as if not between the gasification chamber 1 and the heat recovery chamber 3). That is, in the integrated gasification furnace 101, each of the first to third chambers is not configured as a separate furnace, but is configured integrally as one furnace. Further, a settling char combustion chamber 4 is provided in the vicinity of the surface of the char combustion chamber main body 5 in contact with the gasification chamber 1 so that the fluid medium c descends. That is, as described above, the char combustion chamber 2 is divided into the settling char combustion chamber 4 and the char combustion chamber main body 5 other than the settling char combustion chamber 4. Therefore, a partition wall 14 is provided for partitioning the settled char combustion chamber 4 from the other portion of the char combustion chamber 2 (the char combustion chamber main body 5). The sedimentation char combustion chamber 4 and the gasification chamber 1 are partitioned by a partition wall 15 as shown in FIG.
Here, the fluidized bed and the interface will be described. The fluidized bed is located in a vertically lower portion of the fluidized bed, and a dense layer containing the fluidized medium c (for example, silica sand) in a fluidized state by the fluidized gas g, and a vertically upper portion of the dense layer. It consists of a splash zone in which a large amount of gas coexists with the fluid medium c, and the fluid medium c repels vigorously. Above the fluidized bed, that is, above the splash zone, there is a free board portion that contains almost no fluid medium c and is mainly gas. The interface refers to the splash zone having a certain thickness, but may also be considered as a virtual surface intermediate between the upper surface and the lower surface of the splash zone (the upper surface of the dense layer).
In addition, when “partitioned by a partition wall so that there is no gas flow in the vertical direction above the fluidized bed interface”, there is no gas flow in the vertical direction above the upper surface of the dense layer vertically below the interface. Is preferable.
The partition wall 11 between the gasification chamber 1 and the char combustion chamber main body 5 is partitioned almost entirely from the ceiling 19 of the furnace to the bottom of the furnace (the perforated plate of the air diffuser 31). There is no contact with the bottom, and there is an opening 21 as a communication port near the bottom of the furnace. However, the upper end of the opening 21 does not reach the upper part of any of the gasification chamber fluidized bed interface as the first interface and the char combustion chamber fluidized bed interface as the second interface. More preferably, the upper end of the opening 21 does not reach the upper part of either the upper surface of the rich layer of the gasification chamber fluidized bed or the upper surface of the rich layer of the char combustion chamber fluidized bed. In other words, the opening 21 is preferably configured so as to be always hidden in the thick layer. That is, the gasification chamber 1 and the char combustion chamber 2 are separated by partition walls so that there is no gas flow at least in the freeboard portion, more specifically above the interface, and more preferably above the upper surface of the dense layer. It will be partitioned.
The partition wall 12 between the char combustion chamber 2 and the heat recovery chamber 3 has an upper end near the interface, that is, above the upper surface of the dense layer, but below the upper surface of the splash zone. The lower end of 12 extends to the vicinity of the furnace bottom, and the lower end does not contact the furnace bottom as in the partition wall 11, and there is an opening 22 in the vicinity of the furnace bottom that does not reach above the upper surface of the thick layer. In other words, only the fluidized bed portion is partitioned between the char combustion chamber 2 and the heat recovery chamber 3 by the partition wall 12, the opening 22 is provided in the vicinity of the hearth surface of the partition wall 12, and the char combustion chamber 2 The fluid medium c flows from the upper part of the partition wall 12 into the heat recovery chamber 3 and has a circulation flow that returns to the char combustion chamber 2 again through the opening 22 near the hearth surface of the partition wall 12.
The partition wall 13 between the gasification chamber 1 and the heat recovery chamber 3 is completely partitioned from the furnace bottom to the furnace ceiling. The upper end of the partition wall 14 that partitions the char combustion chamber 2 to provide the sedimentation char combustion chamber 4 is in the vicinity of the interface of the fluidized bed, and the lower end is in contact with the furnace bottom. The relationship between the upper end of the partition wall 14 and the fluidized bed is the same as the relationship between the partition wall 12 and the fluidized bed. The partition wall 15 that partitions the settling char combustion chamber 4 and the gasification chamber 1 is the same as the partition wall 11 and is partitioned almost entirely from the ceiling of the furnace to the bottom of the furnace, and the lower end is in contact with the bottom of the furnace. There is an opening 25 as a communication port in the vicinity of the furnace bottom, and the upper end of this opening is below the upper surface of the thick layer. That is, the relationship between the opening 25 and the fluidized bed is the same as the relationship between the opening 21 and the fluidized bed.
The waste or solid fuel a put into the gasification chamber 1 receives heat from the fluid medium c, and is pyrolyzed and gasified to produce a product gas b. Typically, the waste or fuel a does not burn in the gasification chamber 1, but is so-called dry distillation. The remaining dry distillation char h flows into the char combustion chamber main body 5 from the opening 21 at the lower part of the partition wall 11 together with the fluid medium c. The char h introduced from the gasification chamber 1 in this way is combusted in the char combustion chamber main body 5 and heats the fluid medium c. The fluid medium c heated by the combustion heat of the char h in the char combustion chamber main body 5 passes over the upper end of the partition wall 12 and flows into the heat recovery chamber 3 so that it is below the interface in the heat recovery chamber 3. After the heat is collected and cooled by the in-layer heat transfer tube 41 as a heat recovery device arranged, it flows into the char combustion chamber main body 5 again through the opening 22 at the lower part of the partition wall 12.
The in-layer heat transfer tube 41 includes an in-layer heat transfer tube main body 41A disposed in the heat recovery chamber 3, an introduction portion 41B for introducing the steam s1 to the in-layer heat transfer tube main body 41A, and the superheated steam s2 from the in-layer heat transfer tube main body 41A. It consists of the discharge part 41C which discharges. The steam s1 introduced into the in-layer heat transfer tube main body 41A is superheated to become superheated steam s2.
The integrated gasification furnace 101 includes temperature measuring devices 44 and 45, a control valve 67, and a flow rate measuring device 77. The temperature measuring device 44 is installed in the introduction part 41B and measures the temperature of the steam s1. The regulating valve 67 is installed in the introduction part 41B and controls the flow rate of the steam s1. The flow rate measuring device 77 is installed in the introduction part 41B and measures the flow rate of the steam s1. The temperature measuring device 45 is installed in the discharge unit 41C and measures the temperature of the superheated steam s2. The control valve 67 operates in response to a control signal i1 (partially indicated by a broken line in the drawing) sent from the control device 6 to change the opening degree. The flow rate measuring device 77 sends a flow rate signal i2 (partially indicated by a broken line in the figure) based on the measured flow rate to the control device 6, and the temperature measuring devices 44 and 45 are temperature signals i3 based on the measured temperature. (Partially indicated by broken lines in the figure) is sent to the control device 6. The control device 6 is a control device that controls the heat recovery amount of the present invention.
Here, the heat recovery chamber 3 is not essential in the integrated gasification furnace 101 according to the embodiment of the present invention. That is, if the amount of char h mainly composed of carbon remaining after gasification of the volatile component in the gasification chamber 1 is substantially equal to the amount of char required for heating the fluid medium c in the char combustion chamber 2. The heat recovery chamber 3 that takes heat away from the fluid medium c is not necessary. If the difference in the amount of char h is small, for example, the gasification temperature in the gasification chamber 1 becomes high, and the balance state is maintained in the form that the amount of CO gas generated in the gasification chamber 1 increases. Be drunk.
However, when the heat recovery chamber 3 is provided as shown in FIG. 1, it is possible to deal with a wide variety of wastes or fuels a, ranging from coal with a large amount of char h to municipal waste that hardly generates char h. it can. That is, for any waste or fuel a, by adjusting the amount of heat recovered in the heat recovery chamber 3, the combustion temperature of the char combustion chamber main body 5 is adjusted appropriately, and the temperature of the fluid medium c is adjusted. Can be kept appropriate. Further, the amount of fluidized gas g3 supplied to the diffuser 36 is adjusted by a control valve 66, and the strength of the fluidized state in the heat recovery chamber 3 having the weak fluidized region 3a maintained in a weak fluidized state is adjusted. By adjusting, the heat recovery amount in the heat recovery chamber 3 can be controlled. Therefore, the control device 6 that controls the heat recovery amount controls the heat recovery amount in the in-layer heat transfer tube 41 and controls the temperature of the char combustion chamber 2.
On the other hand, the fluid medium c heated in the char combustion chamber body 5 passes over the upper end of the partition wall 14 and flows into the settled char combustion chamber 4, and then flows into the gasification chamber 1 from the opening 25 at the lower part of the partition wall 15. To do.
Here, referring to the schematic side cross-sectional views of FIGS. 2A, 2B, and 2C, the partition wall X, the partition wall Y, or the partition wall Z formed in the furnace F are separated. The fluidized state and movement of the fluid medium c between the two chambers Ra and Rb will be described. In FIG. 2A, the two chambers Ra and Rb are partitioned by a partition wall X having an opening Px only at the top. In FIG. 2B, the two chambers Ra and Rb are partitioned by a partition wall Y having an opening Qy only at the lower part. In FIG. 2C, the two chambers Ra and Rb are partitioned by a partition wall Z having an opening Pz in the upper part and an opening Qz in the lower part. 2 (a), 2 (b), and 2 (c), air diffusers Da and Db for blowing fluidized gases ga and gb are respectively placed in the furnace bottoms of the chambers Ra and Rb that store the fluid medium c. , Provided. In addition, the upper ends of the partition walls X and Z are in the vicinity of the height of the interface, and the openings Qy and Qz are in positions that are submerged in the thick layer. 2A, 2B, and 2C, the fluidized state in the chamber Ra is uniform in the chamber Ra, and the fluidized state in the chamber Rb is uniform in the chamber Rb. And
Since the movement of the fluid medium c between the two chambers Ra and Rb partitioned by the partition wall X, the partition wall Y, or the partition wall Z is caused by the difference in strength between the fluidization states of the chamber Ra side and the chamber Rb side, The amount of movement and movement of the fluid medium c through the openings Px, Qy, Pz, Qz between the chamber Ra and the chamber Rb can be changed practically by arbitrarily changing the difference in strength between the Ra side and the chamber Rb side. The direction (from chamber Ra to chamber Rb or from chamber Rb to chamber Ra) can be adjusted. Below, it demonstrates concretely how the movement amount of the fluid medium c between the chamber Ra and the chamber Rb can be adjusted when the fluidization state of the chamber Ra and the chamber Rb is changed.
The movement of the fluid medium c between the chamber Ra and the chamber Rb, which moves through the openings Qy and Qz, generally depends on the fluidization state in the vicinity of the openings Ra and Qz on the chamber Ra side and the chamber Rb side. The fluid medium c moves from a weakly fluidized chamber to a strongly fluidized chamber due to the difference in strength between fluidized states in the vicinity of the openings Qy and Qz. 2A, 2B, and 2C, the fluidized state in the chamber Ra is uniform in the chamber Ra, and the fluidized state in the chamber Rb is uniform in the chamber Rb. This can be discussed by the difference in gas velocity between the fluidized gases ga and gb in Ra and the chamber Rb. The fluid medium c moves from the chamber having the lower gas velocity to the chamber having the higher gas velocity.
First, the case where the two chambers Ra and Rb are partitioned by a partition wall X whose upper end is in the vicinity of the height of the interface will be described with reference to FIG. When the fluidization states of the two chambers Ra and Rb are equal, the amount of the flow medium c splashed from the chamber Ra side moves over the partition wall X to the chamber Rb side, and the flow splashed from the chamber Rb side The amount by which the medium c moves over the partition wall X toward the chamber Ra becomes equal on average. Therefore, although the movement of the fluid medium c between the two chambers Ra and Rb occurs locally, the movement amount of the fluid medium c is 0 as a whole (the whole of the chamber Ra and the chamber Rb, respectively). Become.
For example, when the fluidization state of the chamber Ra is made stronger than the fluidization state of the chamber Rb while the fluidization state of the chamber Rb is kept constant, that is, the chamber Ra is kept constant while the fluidization gas velocity of the chamber Rb is kept constant. When the fluidizing gas velocity of the chamber Rb is larger than the fluidizing gas velocity of the chamber Rb, the amount of the fluid medium c splashed from the chamber Ra side moves from the chamber Rb side beyond the partition wall X to the chamber Rb side. Since the amount of the fluid medium c that has been splashed moves beyond the partition wall X toward the chamber Ra increases, the total amount of fluid medium c that moves from the chamber Ra side to the chamber Rb side does not become zero. Then, the fluid medium c moves from the chamber Ra side to the chamber Rb side (this state is indicated by a white arrow in the figure).
Although the case where the fluidizing gas velocity in the chamber Ra is changed to be increased while the fluidizing gas velocity in the chamber Rb is kept constant is considered here, conversely, the fluidizing gas velocity in the chamber Ra is kept constant. Even if the fluidizing gas velocity in the chamber Rb is changed so as to decrease, the same effect can be obtained.
Assuming that the fluid medium c is not replenished or extracted from the outside in the chamber Ra and the chamber Rb, the fluidized bed of the chamber Ra is moved by the movement of the fluid medium c from the chamber Ra side to the chamber Rb side. The height gradually decreases, and the fluidized bed height of the chamber Rb gradually increases.
Since the amount of the fluid medium c that moves from the chamber Ra side to the chamber Rb side beyond the splash partition wall X decreases as the fluidized bed interface on the chamber Ra side decreases, the fluidized bed height of the chamber Ra described above decreases. Thus, the moving amount of the fluid medium c from the chamber Ra side to the chamber Rb side decreases. Similarly, the amount of the fluid medium c in which splashing from the chamber Rb side moves to the chamber Ra side beyond the partition wall X increases as the fluidized bed interface on the chamber Rb side becomes higher. As the bed height increases, the amount of movement of the fluid medium c from the chamber Rb side to the chamber Ra side increases.
For this reason, assuming that the gas velocities of the fluidizing gases ga and gb in the chamber Ra and the chamber Rb are the same, a certain amount is set so that the fluidizing gas velocity in the chamber Ra is larger than the fluidizing gas velocity in the chamber Rb. When the difference is given, initially, the entire fluid medium c moves from the chamber Ra side to the chamber Rb side, but the fluidized bed height of the chamber Ra decreases to some extent, and the fluidized bed height of the chamber Rb increases. In the stage, the amount of movement of the local fluid medium c from the chamber Ra side to the chamber Rb side again and the amount of movement of the local fluid medium c from the chamber Rb side to the chamber Ra side as a whole are balanced. The total movement amount of the fluid medium c between Ra and Rb becomes 0 again.
Therefore, when a certain amount of difference is given so that the fluidizing gas velocity in the chamber Ra is larger than the fluidizing gas velocity in the chamber Rb, the fluid medium c is continuously moved from the chamber Ra to the chamber Rb. For this purpose, the fluid medium c is supplied from the outside to the chamber Ra and flows from the chamber Rb to the outside so that the amount of the fluid medium c filled in both the chambers Ra and Rb, that is, the fluidized bed height is constant. A configuration in which the medium c is extracted is sufficient.
In this case, the larger the difference between the fluidizing gas velocities of the chamber Ra and the chamber Rb, the larger the amount of movement of the fluid medium c from the chamber Ra to the chamber Rb, so that the fluidization of the chamber Rb is stopped. Alternatively, a state close to the minimum fluidization, that is, preferably the fluidization rate is 2 Umf or less, more preferably 1 Umf or less, and the fluidization rate of the chamber Ra is sufficiently higher than this, preferably the fluidization rate is 4 Umf. As described above, more preferably, the maximum moving amount of the fluid medium c can be secured when it is maintained at 5 Umf or more. Here, Umf is a unit in which the minimum fluidization speed (fluidization gas speed at which fluidization is started) is 1 Umf. That is, 5 Umf is 5 times the minimum fluidization speed.
Next, as shown in FIG. 2B, consider a case where the two chambers Ra and Rb are partitioned by a partition wall Y having an opening Qy that is submerged in a thick layer. When the fluidization states of the two chambers Ra and Rb are equal (when the fluidization gas velocity in the chamber Ra is equal to the fluidization gas velocity in the chamber Rb), the chamber Ra side to the chamber Rb side through the opening Qy Although the amount of diffusion of the fluid medium c from the chamber Ra side to the chamber Rb side is balanced, the movement of the fluid medium c between the two chambers Ra and Rb occurs locally, but the overall fluid medium c The amount of movement is zero.
When the fluidization state of the chamber Ra is made stronger than the fluidization state of the chamber Rb while the fluidization state of the chamber Rb is kept the same, that is, the flow of the chamber Ra while keeping the fluidization gas velocity of the chamber Rb constant. When the gasification gas velocity is higher than the fluidization gas velocity in the chamber Rb, a larger amount of bubbles are generated in the dense layer of the chamber Ra than in the dense layer of the chamber Rb. The chamber Rb is lower than the apparent layer density. For this reason, if the fluidized bed heights of the chamber Ra and the chamber Rb are equal, the pressure in the vicinity of the opening Qy at the lower layer of the chamber Ra becomes lower than the pressure in the vicinity of the opening Qy at the lower layer of the chamber Rb. Due to the attracting action using the pressure difference as a driving force, the fluid medium c moves from the chamber Rb side to the chamber Ra side over the entire opening Qy (this state is indicated by a white arrow in the figure). ).
Conversely, when the fluidizing gas velocity in the chamber Rb is reduced while the fluidizing gas velocity in the chamber Ra is kept constant, the situation is slightly different. The movement of the fluid medium c considered here occurs through the opening Qy of the partition wall Y provided in the dense layer, and the pressure difference in the vicinity of the opening Qy at the lower layer of the chamber Ra and the chamber Rb is reduced. This is the driving force. In other words, the pressure difference in the vicinity of the opening Qy at the lower layer of the chamber Ra and the chamber Rb is balanced with the resistance force required for the fluid medium c to move through the opening Qy. The resistance force is closely related to the apparent layer viscosity of the particle layer.
Next, a description will be given with reference to FIGS. 2B, 3 and 4. FIG.
FIG. 3 shows the relationship between the fluidized state of the fluid medium c and the apparent layer viscosity of the particle layer. The gas velocity of the fluidizing gas gb in the chamber Rb is changed in the range shown in FIG. 3, while the gas velocity of the fluidizing gas ga in the chamber Ra is kept constant. In the case of a simple bubbling fluidized bed (no settling flow), the fluidized bed viscosity is almost equal to infinity in a fixed bed with a fluidizing gas velocity of 1 Umf or less. When the fluidizing gas velocity is 1 Umf or more, the viscosity of the fluidized bed decreases rapidly. In the case of the chamber Rb (sedimentation chamber), the relative velocity of the flowing fluid medium and the rising fluidized gas is generated, so that even if the fluidized gas velocity is 1 Umf or less, the fluidized gas relative velocity is 1 Umf or more. Therefore, the viscosity changes and the movement amount (circulation amount) can be controlled. Therefore, the change amount of the fluidized gas amount for controlling the moving amount (circulating amount) of the fluid medium c can be minimized. That is, it is possible to minimize the influence of changes in the process factor (here, the amount of fluidized gas) for controlling the circulation rate on other process factors.
Therefore, when the fluidizing gas velocity in the chamber Rb is reduced while the fluidizing gas velocity in the chamber Ra is kept constant, the movement amount of the fluid medium c is changed in accordance with the absolute value of the fluidizing gas velocity in the chamber Rb. The behavior is different. Assume that in the initial state, both the chamber Ra and the chamber Rb are sufficiently strong fluidized, that is, the fluidized gas velocity exceeds 5 Umf. If the fluidizing gas velocity in the chamber Rb is decreased from this state, the relative velocity of the fluidizing gas in the chamber Rb (relative velocity between the settling velocity of the fluid medium and the rising velocity of the fluidizing gas) exceeds about 2 Umf. As the fluidizing gas velocity in the chamber Rb is decreased, the pressure difference in the vicinity of the opening Py at the lower layer of the chamber Ra and the chamber Rb is increased, so that the moving amount of the fluid medium c from the chamber Rb to the chamber Ra is increased. . However, in the range where the relative fluidized gas velocity in the chamber Rb (relative velocity between the settling velocity of the fluidized medium and the rising velocity of the fluidized gas) is less than about 2 Umf, the lower the fluidized gas velocity in the chamber Rb, the lower the layer viscosity. Since the resistance force for the fluid medium c to pass through the opening Qy of the partition wall Y increases rapidly, the moving amount of the fluid medium c from the chamber Rb to the chamber Ra decreases conversely.
FIG. 4 shows three cases where the relative gas velocity of the fluidized gas ga in the chamber Ra (relative velocity between the sedimentation velocity of the fluidized medium and the rising velocity of the fluidized gas) is kept constant (4 Umf, 5 Umf, and 6 Umf). Shows how the moving amount of the fluid medium c from the chamber Ra to the chamber Rb changes when the gas velocity of the fluidizing gas gb in the chamber Rb is changed. As shown in FIG. 4, when the relative velocity of the fluidizing gas in the chamber Rb (the relative velocity between the sedimentation velocity of the fluidizing medium and the fluidizing gas) is less than about 2 Umf, the relative velocity of the fluidizing gas (the sedimentation velocity of the fluidizing medium) It can be seen that the amount of movement of the fluid medium c changes almost linearly with respect to the fluid velocity of the fluidizing gas. That is, by actively utilizing this range, a large change in the amount of movement of the fluid medium c can be caused by a slight change in the amount of fluidizing gas under a small amount of fluidizing gas. Further, FIG. 4 shows a case where the fluidization state of the chamber Ra is kept constant, but the fluidization state of the chamber Ra is kept in a sufficiently strong fluidization state as shown in the figure. Particularly preferred.
According to the knowledge of the inventors, the relative gas velocity of the fluidizing gas gb that gives the maximum amount of movement of the fluid medium c from the chamber Ra to the chamber Rb in FIG. Relative speed) is about 1.7 Umf. From the above viewpoint, the relative velocity of the fluidizing gas in the chamber Rb (the relative velocity between the sedimentation velocity of the fluidizing medium and the fluidizing gas) is preferably adjusted in the range of 1 Umf to 2 Umf, more preferably in the range of 1 Umf to 1.7 Umf. The fluidizing gas velocity in the chamber Ra is preferably 4 Umf or higher, more preferably 5 Umf or higher.
Even when the gas velocity of the fluidizing gas ga in the chamber Ra is increased while the gas velocity of the fluidizing gas gb in the chamber Rb is kept constant, or the gas velocity of the fluidizing gas ga in the chamber Ra is kept constant. Even when the gas velocity of the fluidizing gas gb in the chamber Rb is reduced, if the fluid medium c is not replenished from the outside or extracted to the outside, the fluid medium c from the chamber Rb side to the chamber Ra side is assumed. , The fluidized bed height of the chamber Rb decreases, and the fluidized bed height of the chamber Ra increases.
That is, assuming that the fluidizing gas velocities in the chamber Ra and the chamber Rb are the same, the difference in a certain amount is set so that the fluidizing gas velocity on the chamber Ra side is larger than the fluidizing gas velocity on the chamber Rb side. In this case, the fluid medium c moves from the chamber Rb side to the chamber Ra side immediately after making a difference, but when the fluidized bed height of the chamber Ra rises to some extent and the fluidized bed height of the chamber Rb falls, Since the pressure in the vicinity of the opening Qy in the lower layer of Ra is increased and the pressure in the vicinity of the opening Qy in the lower layer of the chamber Rb is decreased, the layers of the chamber Ra and the chamber Rb that are driving forces for moving the fluid medium c The pressure difference in the vicinity of the lower opening Qy is reduced. When this pressure difference becomes zero, the entire moving amount of the fluid medium c between the two chambers Ra and Rb becomes zero again.
Therefore, when a certain amount of difference is applied so that the fluidizing gas velocity in the chamber Ra is greater than the relative fluidizing gas velocity in the chamber Rb (the relative velocity between the settling velocity of the fluidizing medium and the rising velocity of the fluidizing gas). In order to continuously move the fluid medium c from the chamber Rb to the chamber Ra, the amount of the fluid medium c filled in both the chambers Ra and Rb, that is, the fluidized bed height is constant. A configuration may be employed in which the fluid medium c is supplied from the outside to the chamber Rb and the fluid medium c is extracted from the chamber Ra to the outside.
Next, a description will be given with reference to FIG. In FIG. 2C, the opening Pz is provided in the upper portion and the opening Qz is provided in the lower portion. Therefore, the phenomenon described above with reference to FIG. 2A occurs in the upper opening Pz. The phenomenon described above with respect to 2 (b) occurs.
Therefore, for example, when the fluidization state of the chamber Ra is made stronger than the fluidization state of the chamber Rb while the fluidization state of the chamber Rb is kept constant, the fluidization gas velocity of the chamber Ra is kept constant. When the fluidizing gas relative velocity in the chamber Rb (the relative velocity between the sedimentation velocity of the fluidizing medium and the fluidizing gas) is changed to be small, the fluidizing medium from the chamber Ra side to the chamber Rb side in the opening Pz. c moves, and in the opening Qz, the fluid medium c moves from the chamber Ra side to the chamber Rb side. Therefore, circulation of the fluid medium c occurs between the chamber Ra and the chamber Rb.
In this case, the amount of movement of the fluid medium c through the opening Qz and the amount of movement of the fluid medium c through the opening Pz are in the initial state where the fluidization state of the chamber Ra is stronger than the fluidization state of the chamber Rb. , Not necessarily equal. However, after a certain transient state, due to the change in the fluidized bed height caused by the difference in the amount of movement of the fluid medium c, the amount of movement of the fluid medium c through the openings Qz and Pz becomes equal, A circulating state of the fluid medium c is obtained.
For example, consider a case where the amount of movement of the fluid medium c from the chamber Rb to the chamber Ra via the opening Qz is larger than the amount of movement of the fluid medium c from the chamber Ra to the chamber Rb via the opening Pz. In this case, the fluidized bed height of the chamber Rb gradually decreases, and at the same time, the fluidized bed height of the chamber Ra gradually increases. A decrease in the fluidized bed height of the chamber Rb decreases the pressure near the hearth of the chamber Rb, while an increase of the fluidized bed height of the chamber Ra increases the pressure near the hearth of the chamber Ra. Thereby, the pressure difference between the chamber Ra and the chamber Rb across the opening Qz is reduced, that is, the amount of movement of the fluid medium c from the chamber Rb to the chamber Ra via the opening Qz is reduced. Further, the fluidized bed c in the chamber Ra rises, so that the fluid medium c easily jumps from the chamber Ra to the chamber Rb beyond the upper end of the partition wall Z. That is, the moving amount of the fluid medium c from the chamber Ra to the chamber Rb through the opening Pz increases. Due to the above effects, the amount of movement of the fluid medium c from the chamber Rb to the chamber Ra via the opening Qz decreases, and the amount of movement of the fluid medium c via the opening Pz from the chamber Ra to the chamber Rb increases. The fluidized bed heights of the chamber Ra and the chamber Rb further change, and balance is achieved where the amount of movement of the fluid medium c from the chamber Rb to the chamber Ra is equal to the amount of movement of the fluid medium c from the chamber Ra to the chamber Rb.
In the above, the moving amount (circulation amount) of the fluid medium c finally obtained by balancing is the shape of the furnace F such as the width, height, area and shape of the opening Qz and the height of the partition wall Z. And the amount of fluidized gas supplied to each chamber. Therefore, in order to obtain a desired circulation amount, the supply amount of the fluidizing gas amount is taken into consideration, such as the width, height, area and shape of the opening Qz, the height of the partition wall Z, and the like. What is necessary is just to determine the shape of the furnace F. FIG.
Here, with reference to FIG. 6, the definition of the circulation amount of the fluidized medium c circulating between the gasification chamber 1 and the settling char combustion chamber 4 through the opening 25 will be described below. In the figure, the gasification furnace 101 has the same configuration as that described in FIG. 1, but for the sake of easy understanding, the strong fluidization zone 1b of the gasification chamber 1 and the sedimentation which is the weak fluidization zone 4a. It is described so as to be constituted by the char combustion chamber 4 and the partition wall 15 in which the opening 25 is formed, and other components are omitted.
The superficial velocity of the fluidized gas g1 (FIG. 1) in the strong fluidization zone 1b of the gasification chamber 1 is V1b, and the fluidization gas g4 (FIG. 1) in the sedimentation char combustion chamber 4 which is the weak fluidization zone 4a is empty. The tower speed is V4a. Since the superficial velocity V1b is larger than the superficial velocity V4a (V1b> V4a), the fluidization state of the gasification chamber 1 is stronger than the fluidization state of the sedimentation char combustion chamber 4, and the bottom B4a of the sedimentation char combustion chamber 4 And the bottom B1b of the strong fluidization zone 1b of the gasification chamber 1 cause a pressure difference, and the fluid medium c circulates and moves through the opening 25 at the bottom of the partition wall 15 existing between the two fluidization zones. . The furnace bottom pressure (fluidized bed pressure at the furnace bottom) is Pm [Pa], and the bulk density of the fluidized bed is Df [kg / m. 3 ], Gravitational acceleration ga [kg / s 2 If the height of the fluidized bed (bed height) is Hf [m],
Pm = Df × ga × Hf (1) The relationship is established.
The sedimentation char combustion chamber 4 is a weak fluidization zone 4a, and has a small number of bubbles, so the fluidized bed bulk density Df4a is large (there are few voids and the particle concentration is high). On the other hand, in the strong fluidization zone 1b of the gasification chamber 1, since there are many bubbles, the fluidized bed bulk density Df1b is small (there are many voids and the particle density is thin). Therefore, the fluidized bed bulk density Df4a of the settled char combustion chamber 4 (weak fluidization zone 4a) becomes larger than the fluidized bed bulk density Df1b of the strong fluidization zone 1b of the gasification chamber 1 (Df4a> Df1b). Occurs, and the fluid medium c moves from the char combustion chamber 4 (weak fluidization region 4a) toward the strong fluidization region 1b of the gasification chamber 1.
In contrast, as shown in FIG. 7, when the superficial velocity V1b of the strong fluidization zone 1b of the gasification chamber 1 is equal to the superficial velocity V4a of the sedimentation char combustion chamber 4 (V1b = V4a), the gas The furnace bottom pressure Pm1b in the furnace bottom B1b of the strong fluidization zone 1b of the conversion chamber 1 is equal to the furnace bottom pressure Pm4a in the furnace bottom B4a of the sedimentation char combustion chamber 4 (Pm1b = Pm4a). In the opening 25, when viewed macroscopically, the movement of the fluid medium c from the sedimentation char combustion chamber 4 to the strong fluidization zone 1b of the gasification chamber 1 is also caused by the fluidization medium c from the gasification chamber 1 to the sedimentation char combustion chamber 4. No movement occurs.
However, in the fluidized bed, which has the same superficial velocity in all fluidized zones in the fluidized bed, focusing on the particles one by one microscopically, the particles are constantly moving in any direction. In the opening 25 at the lower part of the partition wall 15 between the chamber 1 and the settled char combustion chamber 4, a bidirectional flow of the fluidized medium particles c is generated between the gasification chamber 1 and the settled char combustion chamber 4. Exchange of medium particles c has occurred.
The macro unidirectional movement of the fluid medium c between the gasification chamber 1 and the settling char combustion chamber 4 as shown in FIG. 6 is referred to as convection. The bidirectional movement of particles between the gasification chamber 1 and the settled char combustion chamber 4 of the fluid medium c as shown in FIG. 7 is referred to as diffusion. Even in the region where convection occurs in FIG. 6, when attention is paid to individual particles in a microscopic region, diffusion as shown in FIG. 7 occurs.
On the other hand, a mass flow rate [kg / s] of a macro one-way flow as shown in FIG. 6 is defined as a circulation amount. This circulation amount is determined by the pressure difference at the bottom of the fluidized bed, the viscosity of the upstream fluidized bed, and the viscosity of the downstream fluidized bed (in particular, the viscosity of the upstream fluidized bed is dominant). In FIG. 6, the larger the difference between the furnace bottom pressure Pm4a of the furnace bottom B4a of the sedimentation char combustion chamber 4 and the furnace bottom pressure Pm1b of the furnace bottom B1b of the gasification chamber 1, the more the through the opening 25 at the lower part of the partition wall 15. The moving amount (circulation amount) of the fluid medium c from the sedimentation char combustion chamber 4 to the gasification chamber 1 increases. Further, the opening 25 at the lower part of the partition wall 15 becomes a squeezing resistance against the flow of the fluid medium c. Therefore, the smaller the apparent viscosity of the fluidized bed in the settled char combustion chamber 4, the easier it is for the fluid medium c to flow through the squeezing resistance at the opening 25, and the amount of circulation increases. The apparent viscosity of the fluidized bed is determined depending on the fluidized state of the fluidized bed, that is, the superficial velocities V1b and V4a of the fluidized gas. Therefore, the apparent viscosity is changed by changing the fluidizing gas velocity V1b in the strong fluidizing zone 1b of the gasification chamber 1 or changing the superficial velocity V4a of the fluidizing gas in the sedimentation char combustion chamber 4. The amount of circulation can be controlled.
For example, if the fluidization state of the entire region of the gasification chamber 1 and the fluidization state of the entire region of the settling char combustion chamber 4 are the same, the circulation amount becomes zero. However, even if the circulation amount is set to 0 in this way, the fluid medium c is exchanged between the two chambers 1 and 4 by diffusion in the opening 25 at the lower part of the partition wall 15. As a result, the pyrolysis residue (excluding large residue that does not fluidize) in the strong fluidization zone 1b of the gasification chamber 1 moves to the settling char combustion chamber 4 and burns.
Therefore, the fluidized bed temperature is higher in the settled char combustion chamber 4 in which the residue combustion is performed than in the gasification chamber 1 in which the raw material is thermally decomposed as an endothermic reaction. Since the fluid medium c is exchanged between the two chambers 1 and 4 by diffusion in the opening 25 at the lower part of the partition wall 15, the sensible heat of the fluid medium c is also changed by the exchange of the fluid medium c. 4 are exchanged. Therefore, the sensible heat of the fluidized medium c moves from the settling char combustion chamber 4 having a high temperature to the gasification chamber 1 having a low temperature.
From the above, the fluidizing gas velocity (fluidizing gas superficial velocity) of the settled char combustion chamber 4, the circulation amount (convection), and the heat transfer amount have a relationship as shown in FIG. That is, when the superficial velocity of the fluid medium c in the sedimentation char combustion chamber 4 becomes zero, the circulation amount (convection) becomes zero, but the heat transfer amount does not become zero. This is because exchange of the fluid medium c occurs due to diffusion between the gasification chamber 1 and the char combustion chamber body 5 at the opening 21 below the partition wall 11 of the gasification chamber 1 and the char combustion chamber body 5. This is because there is residue transfer and heat transfer.
In FIG. 9, when the superficial velocity (unit is Umf) of the fluidizing gas in the sedimentation char combustion chamber 4 which is the weak fluidization zone 4a in which the fluid medium c settles is changed from 0 Umf to about 1.7 Umf. The change of the moving medium movement amount (convection + diffusion) (unit kg / s) from the sedimentation char combustion chamber 4 to the gasification chamber 1 is shown. As shown in the figure, the flow rate of the fluid medium increases almost linearly as the superficial velocity increases. Even when it is 1 Umf or less, the moving medium movement amount changes and is within the control range. Here, Umf is a unit in which the minimum fluidization speed (superficial speed of fluidization gas at which fluidization is started) is 1 Umf. Further, in the figure, when the fluidization speed of the sedimentation char combustion chamber 4 is set to 0, the moving medium moving amount from the sedimentation char combustion chamber 4 to the gasification chamber 1 is not 0. This is because the fluid medium moves due to diffusion between the openings 25 formed in the partition wall 15 between the gasification chamber 1 and the sedimentation char combustion chamber 4. Therefore, the fluidization state of the sedimentation char combustion chamber 4 is stopped, the amount of heat transfer by convection is set to 0, and the fluidization state around the opening 25 of the gasification chamber 1 and the sedimentation char combustion chamber 4 is changed (fluidization). By changing the amount of gas), it is possible to control the amount of heat transfer in a smaller range by changing the amount of heat transfer due to diffusion around the opening 25 of the gasification chamber 1 and the settled char combustion chamber 4. Become.
Therefore, the fluidized gas amounts g1 and g2 supplied to the region close to the opening 21 in the weak fluidization region 1a of the gasification chamber 1 and the region close to the opening 21 in the strong fluidization region 2b of the char combustion chamber main body 5 are obtained. By providing flow rate measuring devices 71 and 74 for measuring and flow rate control devices (for example, flow rate control valves 61 and 64) for changing the flow rate, diffusion by the gasification chamber 1 and around the opening of the char combustion chamber body 5 is caused. It becomes possible to control the amount of heat transfer.
For example, when it is desired to control the heat transfer amount to a small value, the control device 6 as the heat transfer amount control device sets the flow rate to 0 in the fluidizing gas flow rate control device (for example, the flow rate control valve 65) of the sedimentation char combustion chamber 4. Send a signal. As a result, fluidization of the settled char combustion chamber 4 is stopped, and movement of the fluid medium due to convection between the gasification chamber 1 and the char combustion chamber 2 does not occur. Furthermore, the control device 6 as the heat transfer amount control device is a fluidized gas amount control device (for example, a flow rate) that controls the fluidized gas g1 supplied to the region close to the opening 21 in the weakly fluidized region 1a of the gasification chamber 1. The control valve 61) and the fluidizing gas amount control device (for example, the flow control valve 63) for controlling the fluidizing gas g2 supplied to the region close to the opening 21 in the strong fluidizing region 2b of the char combustion chamber main body 5 Send a signal to lower. As a result, the amount of fluidized gas in the region close to the opening 21 in the weak fluidization region 1a of the gasification chamber 1 and in the region close to the opening 21 in the strong fluidization region 2b of the char combustion chamber main body 5 is reduced. The diffusion around the portion 21 is weakened, and the amount of heat transfer is reduced.
The relationship between the fluidized bed height and the circulation rate will be described with reference to FIG. In the figure, the furnace 102 includes two chambers Rp and Rq partitioned by a partition wall W. The chamber Rp and the chamber Rq store the fluid medium c. The partition wall W has an opening Pw at the top and an opening Qw at the bottom. A diffuser Dpa and a diffuser Dpb for blowing fluidized gas are provided at the furnace bottom of the chamber Rp, and a diffuser Dqa for blowing fluidized gas is provided at the furnace bottom of the chamber Rq. It is assumed that the upper end of the partition wall W is in the vicinity of the height of the interface, and the opening Qw is in a position that is submerged in the thick layer. The chamber Rp is divided into two sections: a weak fluidization zone pa that is weakly fluidized right above the diffuser Dpa, and a strong fluidized zone pb that is strongly fluidized just above the diffuser Dpb. The The chamber Rq is a weak fluidization zone qa having a weak fluidization state. The fluidization state is assumed to be uniform in the weak fluidization zone pa of the chamber Rp, in the strong fluidization zone pb of the chamber Rp, and in the chamber Rq. The strong fluidization zone pb of the chamber Rp has a furnace bottom Bpb, and the chamber Rq has a furnace bottom Bqa.
For the following two reasons, the higher the fluidized bed height, the greater the amount of circulation. As described above, by creating a pressure difference between the furnace bottom pressure Pmqa in the furnace bottom Bqa of the chamber Rq that is the weak fluidization zone qa and the furnace bottom pressure Pmpb of the furnace bottom Bpb in the strong fluidization zone pb of the chamber Rp, The fluid medium moves from the opening Qw below the partition wall W between the two regions. As described above, the pressure at the bottom of the furnace is obtained from Pm = Df × ga × Hf (1). Here, Pm [Pa] is the furnace bottom pressure, Df [kg / m 3 In the chamber Rq where the fluidized bed is a weakly fluidized zone qa, the number of bubbles is small, and the fluidized bed bulk density Dfqa is large (there are few voids and the particle concentration is high). In the strong fluidization zone pb of the chamber Rp, since there are many bubbles, the fluidized bed bulk density Dfpb is small (there are many voids and the particle density is thin). Therefore, the fluidized bed bulk density Dfqa of the chamber Rq, which is the weak fluidization zone qa, is larger than the fluidized bed bulk density Dfpb of the strong fluidization zone pb of the chamber Rp (Dfqa> Dfpb), and thus the furnace bottom Bqa of the chamber Rq. The furnace bottom pressure Pmqa of the chamber Rp is larger than the furnace bottom pressure Pmpb of the furnace bottom Bpb of the strong fluidization zone pb of the chamber Rp (Pmqa> Pmpb), and a pressure difference is generated from the chamber Rq in the weak fluidization zone qa. The fluid medium moves c through the opening Qw to the strong fluidization zone pb of the chamber Rp.
According to the equation (1), the higher the fluidized bed height, the proportionally the pressure Pmqa of the furnace bottom Bqa in the weak fluidization zone qa of the chamber Rq and the pressure Pmpb of the furnace bottom Bpb of the strong fluidization zone pb of the chamber Rp. Therefore, the higher the fluidized bed height, the greater the amount of movement. The greater the amount of fluid medium c that moves from chamber Rq to chamber Rp, the greater the amount of circulation (the first reason why the amount of circulation increases as the fluidized bed height increases).
As shown in FIG. 10, bubbles burst in the upper part of the strong fluidization zone pb of the chamber Rp, and the fluid medium c scatters to the surroundings due to the burst of the bubbles, and passes through the opening Pw from the chamber Rp to the chamber Rq. Movement of the fluid medium c occurs. The higher the fluidized bed height, the higher the distance (ΔH in the figure) from the upper end of the partition wall W between the chamber Rq and the chamber Rp to the upper surface of the fluidized bed, and the fluid medium c accompanying the bursting of bubbles in the upper part of the chamber Rp. Since the amount of the fluid medium c that moves to the chamber Rq increases due to the movement of the particles, the amount of circulation increases (the second reason that the amount of circulation increases as the bed height increases). The phenomenon that the fluid medium c moves to the chamber Rq due to the burst of bubbles at the upper part of the chamber Rp occurs in a limited range near the fluidized bed where the bubbles burst, so that the fluidized bed height exceeds a certain value. Even if it is increased, the movement of the fluid medium c does not increase.
Therefore, if it is within a certain range, the circulating amount can be increased by increasing the fluidized bed height. When it is desired to adjust the circulation amount during operation, the fluid medium c is supplied into the chamber Rq and the chamber Rp, the fluidized bed height is increased, the circulation amount is increased, or the fluid medium c is increased to the chamber Rq, chamber. It is possible to extract from Rp, lower the fluidized bed height, and reduce the circulation rate.
Next, a method for measuring the fluidized bed height will be described with reference to FIG. As shown in the figure, two pressure measuring devices 91 and 92 for the sedimented char combustion chamber 4 measure the fluidized bed pressure at two upper and lower points (preferably the same horizontal position) in the fluidized bed of the sedimented char combustion chamber 4. It is installed to do. By measuring the pressure with the pressure measuring devices 91 and 92, the fluidized bed height can be calculated and the circulation rate can be controlled. However, the pressure measurement location for calculating the fluidized bed height may be the gasification chamber 1 instead of the sedimentation char combustion chamber 4. First, the relationship between fluidized bed pressure and fluidized bed height will be described. There is a relationship described below between the fluidized bed pressure Pf and the fluidized bed height Hf.
Pf = Df × ga × Hfx + P0 (2)
Where Pf is the fluidized bed pressure [Pa], Df is the fluidized bed bulk density [kg / m. 3 ], Ga is the acceleration of gravity [kg / s 2 ], Hfx is the fluid bed height [m] existing above, and P0 is the pressure [Pa] in the free board.
From the equation (2), if the fluidized bed pressure at the measurement point near the furnace bottom B4a is Pf1, and the upper fluidized bed height is Hfx1,
Pf1 = Df4a × ga × Hfx1 + P0 (2) ′
If the fluidized bed pressure at the measurement point far from the furnace bottom B4a is Pf2, and the upper fluidized bed height is Hfx2,
Pf2 = Df4a * ga * Hfx2 + P0 (2) "
It becomes. Here, when the distance between measurement points is ΔHf (known), ΔHf = Hfx1−Hfx2. Taking the difference between both formulas (2) ′ and (2) ″ representing the fluidized bed pressure,
Pf1−Pf2 = Df4a × ga × ΔHf (3)
The fluidized bed height can be calculated by the following steps. First, the fluidized bed pressures Pf1 and Pf2 at two upper and lower points in the fluidized bed (the same horizontal position is desirable) are measured, and the pressure difference ΔP (= Pf1−Pf2) of each fluidized bed pressure is calculated. Next, the fluidized bed bulk density Df4a is calculated from the equation (3) (the height ΔHf between the upper and lower two points is known). Since the value of the fluidized bed pressure at one of the measurement points (the height of the measurement bed is known and it is desirable to select the one closer to the furnace bottom B4a) and the pressure at the free board are almost zero, P0 From = 0, the height Hfx1 from the fluidized bed pressure measurement point to the upper surface of the fluidized bed is calculated using the formula (2) ′. If the fluidized bed height is Hf and the height of the measurement point near the furnace bottom B4a is Hf1 (known), Hf = Hf1 + Hfx1, and the fluidized bed height Hf is calculated from this equation.
Pressure measuring devices 91 and 92 are provided to measure the fluidized bed pressures Pf1 and Pf2, and pressure signals based on the measured values are sent from the pressure measuring devices 91 and 92 to the control device 6 as a computing unit. Hf can be calculated. By controlling the fluidized bed height Hf calculated in this way by the control device 6, the circulation amount can be controlled. The control device 6 may output a fluidized bed height signal representing the calculated fluidized bed height Hf.
The pressure measuring devices 91 and 92 are installed in the sedimentation char combustion chamber 4, the weak fluidization region 1 a of the gasification chamber 1, and the weak fluidization region 2 a of the char combustion chamber main body 5, where fluidization is slow and pressure fluctuation is small. However, it may be installed in the strong fluidization zone 1 b of the gasification chamber 1 and the strong fluidization zone 2 b of the char combustion chamber main body 5. The amount of circulation can be controlled by changing the fluidized bed height. In order to change the fluidized bed height, the fluidized medium is supplied when the fluidized bed height is increased, and the fluidized medium is extracted when the fluidized bed height is decreased. Therefore, in order to change the fluidized bed height, it is only necessary to provide a fluid medium supply device for supplying the fluid medium, supply the fluid medium, and provide a fluid medium extraction device for extracting the fluid medium to extract the fluid medium.
As shown in FIG. 22, the fluid medium supply device 111 measures the supply amount of the fluid medium c from the fluid medium storage device 112 that retains the fluid medium c and the fluid medium c from the fluid medium storage device 112 and supplies the fluid medium c. A fluid medium supply amount measuring device 113 that outputs a fluid medium supply amount signal i21 representing the amount, and a fluid medium supply amount control device 114 that controls the supply amount of the fluid medium c from the fluid medium storage tank in the fluid medium storage device 112. It is comprised including.
The fluid medium supply amount control device 114 is a control valve that is installed in a line 115 that, for example, freely drops the fluid medium from the fluid medium storage device 112 and conveys it to the gasification chamber 1, for example, and controls the amount of fluid medium c supplied. is there. The fluid medium supply amount measuring device 113 measures, for example, a change over time in the weight of the fluid medium storage tank in the fluid medium storage device 112, and obtains the fluid medium supply amount from the measured change over time.
The fluid medium supply amount control device 114 (for example, the aforementioned control valve) receives the fluid medium supply amount signal i21 from the fluid medium supply amount measurement device 113 and the fluid medium circulation amount signal described later from the control device 6 (FIG. 1). , Control the flow rate of fluid medium.
The fluid medium extraction device 116 includes, for example, a fluid medium extraction pipe 117 provided at the furnace bottom of the gasification chamber 1 and a fluid medium conveyance device 118 (screw conveyor, apron conveyor, etc.). The fluid medium c extracted and conveyed by the fluidized bed medium extraction device 116 is supplied to and stored in the fluid medium storage device 112 described above. The fluid medium extraction amount control device 119 (for example, the on / off switch of the screw conveyor or the rotation speed control device of the screw conveyor) is connected to the fluid medium extraction signal i22 from the fluid medium extraction amount measuring device 120 and the control device 6 (FIG. In response to a circulation amount signal described later from 1), a fluid medium extraction device drive signal i23 is sent to the fluid medium extraction device 116 to control the fluid medium extraction amount. Here, in the present embodiment, the fluid medium supply amount measuring device 113 and the fluid medium extraction amount measuring device 120 are the same, and for example, the change with time of the weight of the fluid medium storage tank in the fluid medium storage device 112 is measured. The amount of fluid medium extracted is determined from the measured change over time. The fluid medium extraction amount measurement device 120 is different from the fluid medium supply amount measurement device 113, and directly measures the conveyance amount of the fluid medium c conveyed by the fluid medium conveyance device 118 as the extraction amount. Also good.
Next, a method for measuring the circulation amount will be described with reference to FIG.
Like the sedimentation char combustion chamber 4, the pressure loss of the fluidized gas in the fluidized bed where the sedimentation flow of the fluidized medium c exists is larger than the pressure loss of the fluidized gas in the fluidized bed where there is no sedimentation flow. This is because the fluidizing gas is an upward flow, and therefore the resistance of the fluidizing gas is increased because the fluidizing gas is reverse to the settling flow of the fluid medium. Consider the pressure loss of fluidized gas between two upper and lower points (the same horizontal position is desirable) in the fluidized bed. When the resistance of the fluidizing gas when there is no settling flow of the fluidizing medium is Pn, and the resistance of the fluidizing gas when there is a settling flow of the fluidizing medium is Pd, the difference Pd−Pn between them is the settling flow of the fluidizing medium. The faster it gets, the bigger it becomes. By utilizing this phenomenon, the velocity of the settling flow of the fluid medium can be measured, and the circulation amount of the fluid medium c can be measured from the result.
That is, the circulation amount can be measured using the following phenomenon. (1) The larger the circulation amount, the faster the speed of the fluid medium sedimentation flow. (2) The higher the speed of the flowing medium sedimentation flow, the greater the pressure loss of the fluidizing gas. (3) The higher the fluidizing gas velocity Vg, the greater the pressure loss of the fluidizing gas.
For example, in the sedimentation char combustion chamber 4, the circulation amount can be measured using the following equation.
(Circulation amount) [kg / s] = (fluidized bed bulk density) [kg / m 3 ] X (fluid settling velocity) [m / s]) x (cross-sectional area of settling char combustion chamber) [m 2 ] ... (1)
(Fluid settling velocity) = α × F1 (Pd−Pn) × F2 (Vg) (2)
For example, F1 which is a function of (Pd−Pn) and F2 which is a function of Vg can be expressed as follows.
F1 (Pd−Pn) = a0 + a1 × (Pd−Pn) + a2 × (Pd−Pn) 2 + A3 × (Pd−Pn) 3 + ... ▲ 3 ▼
Or
F1 (Pd−Pn) = β (Pd−Pn) γ ... (4) F2 (Vg) = b0 + b1 * Vg + b2 * Vg 2 + B3 × Vg 3 + ... ▲ 5 ▼
Or
F2 (Vg) = ξVg ζ ・ ・ ・ ▲ 6 ▼
Here, α, β, γ, ξ, ζ, a0, a1, a2, a3, ..., b0, b1, b2, b3, ... are constants determined by the shape of the gasification furnace 101. In the formulas (3) and (5), a third-order approximation is used, but a first-order approximation and a second-order approximation may be used.
Here, the pressure difference Pf1-Pf2 between the upper and lower points when there is no settling flow is Pf1-Pf2 = Pn, and the pressure difference Pf1-Pf2 between the upper and lower points when there is a settling flow is Pf1-Pf2 = Pd . For example, a state where there is no settling flow is generated under various conditions in the trial operation stage, the pressure between the upper and lower two points is measured, and the measured data is sent to the control device 6 (FIG. 1). The pressure difference Pn between them is calculated by the control device 6 and stored. The pressure between the upper and lower two points when there is a settling flow during the actual production gas production operation of the gasification furnace 101 is measured, the measured data is sent to the control device 6, and the upper and lower two points when there is a settling flow. The pressure difference Pd is calculated by the control device 6 and (Pd−Pn) is further calculated by the control device 6.
The flow rate of the fluidized gas g4 (FIG. 1) supplied to the settling char combustion chamber 4 (FIG. 1) is determined by the flow rate measuring device 75 (FIG. 1), and the flow rate signal i2 (FIG. 1) is sent to the control device 6. Therefore, the control device 6 can calculate the fluidized gas velocity Vg (Vg4) of the settling char combustion chamber 4.
Therefore, F2 is calculated by substituting Vg into the equation (5) (or equation (6)), and F1 is calculated by substituting (Pd−Pn) into the equation (3) (or equation (4)). Substituting F1 and F2 into equation (2), the fluid medium settling velocity is obtained. Substituting the fluidized bed sedimentation velocity thus obtained and the fluidized bed bulk density obtained from the above-mentioned equation (3) into the equation (1), α is known (it can be obtained empirically during a trial run or the like). The amount of circulation can be determined. The circulation amount can be controlled using the circulation amount thus obtained. That is, the gasification chamber layer temperature and the gasification chamber outlet gas composition can be controlled by controlling the amount of fluidized gas in the sedimentation char combustion chamber 4 so that the obtained circulation amount becomes an appropriate value. it can. The control device 6 may output a fluid medium circulation amount signal representing the circulation amount of the fluid medium.
As described above, the pressure measuring devices 91 and 92 for measuring the fluidized bed pressure at the upper and lower two points in the fluidized bed of the settled char combustion chamber 4 and the flow rate measuring device of the fluidized gas g4 in the settled char combustion chamber 4. (Flow rate measuring device) 75 (FIG. 1) and a control device 6 as a calculation device for calculating the circulation amount from the difference between the fluidized bed pressure at the upper and lower two points and the fluidized gas amount are provided, so the circulation amount is measured. be able to.
Based on the above-described principle, the amount of fluidized gas in the settling char combustion chamber 4 is an operating factor for controlling the circulation rate. Therefore, since the flow rate control valve (control valve) 65 (FIG. 1) for changing the fluidizing gas flow rate in the sedimentation char combustion chamber 4 is provided to control the circulation rate, the circulation rate control can be performed. it can.
The circulating amount can be controlled by combining the measurement of the fluidized bed height described above and the measuring of the circulating amount.
The amount of circulation is controlled as follows. First, the fluidized bed height is measured (step 1). In order to measure the fluidized bed height, the fluidized bed pressure at each point is measured by the pressure measuring devices 91 and 92 installed between two points in the fluidized bed. The measured value of the fluidized bed pressure is input to the control device 6 as an arithmetic unit for calculating the fluidized bed height, where the fluidized bed height is calculated. The calculated fluidized bed height is input to the control device 6 for controlling the circulation rate (data exchange is performed in the control device 6).
Next, the circulation amount is measured (step 2).
The measured values by the pressure measuring devices 91 and 92 installed between two points in the fluidized bed of the settled char combustion chamber 4 and the flow rate measuring device 75 installed for measuring the fluidized gas flow rate in the settled char combustion chamber 4. The measurement value is input to the control device 6 as a calculation device for calculating the circulation amount, and the control device 6 calculates the circulation amount. The calculated circulation amount is input to the control device 6 for circulation amount control (data exchange is performed in the control device 6).
Next, the circulation amount is controlled (step 3).
For example, when controlling the circulation amount of Wp to the circulation amount of Ws at a certain point in time, a signal corresponding to the measurement value Wp of the circulation amount calculated in step 2 and the circulation amount Ws to be set are associated. A signal is sent to the control device 6. If Ws <Wp, the control device 6 sends a signal to increase the fluidized bed height to the fluidized medium supply amount control device 114 (FIG. 22). If Ws> Wp, the control device 6 increases the fluidized bed height. A signal to lower is sent to the fluid medium extractor 118 (FIG. 22).
When the fluid medium supply amount control device 114 (FIG. 22) receives a signal to increase the fluidized bed height, the fluid medium supply amount control device 114, for example, opens a control valve opening to increase the fluid medium supply amount. To the control valve. As a result, when the opening degree of the control valve is opened, the fluidized medium is supplied into the furnace, the fluidized bed height is increased, and the circulation rate is increased. The fluid medium supply amount control device 114 also receives a signal from the fluid medium supply amount measurement device 113 (FIG. 22), and also performs an operation of determining the fluid medium supply amount so that the fluid medium is not suddenly supplied into the furnace. (Because the fluid medium stored in the fluid medium reservoir of the fluid medium storage device 112 (FIG. 22) is lower than the furnace temperature, the furnace temperature is prevented from being excessively lowered by the rapid supply of the fluid medium.
When the fluid medium extraction amount control device 119 (FIG. 22) receives a signal for lowering the fluidized bed height, it switches on, for example, a screw conveyor 118 (FIG. 22) for fluid medium extraction to reduce the fluid medium supply amount. Or a signal to increase the rotational speed of the screw conveyor. As a result, the screw conveyor is operated or the rotational speed of the screw conveyor is increased. As a result, the fluid medium is withdrawn from the furnace via the fluid medium extraction pipe 117 (FIG. 22). As a result, the fluidized bed height decreases and the circulation rate decreases.
With the above configuration, the circulation amount can be controlled by changing the fluidized bed height.
Next, a description will be given with reference to FIG. In the integrated gasification furnace 101 according to the present invention, the char combustion chamber main body 5 and the settled char combustion chamber 4 (partition wall X having an opening Px in the upper part) are partitioned by a partition wall 14 having an opening in the upper part. Gas chamber 1 and char combustion chamber partitioned by a partition wall 11 having an opening 21 at the bottom, and the movement of the fluid medium c between the chamber A and the chamber B (refer to FIG. 2A)) Movement of the fluid medium c between the main body 5 (corresponding to the chamber A and the chamber B (see FIG. 2B) partitioned by the partition wall Y having the opening Qy in the lower part), the partition having the opening 25 in the lower part Flow between sedimentation char combustion chamber 4 and gasification chamber 1 (corresponding to chamber A and chamber B partitioned by partition wall Y having opening Qy in the lower portion (see FIG. 2B)) partitioned by wall 15 Due to the movement of the medium c, the partition wall 12 having an upper opening and a lower opening 22 The heat recovery chamber 3 and the char combustion chamber main body 5 separated by a partition (corresponding to a chamber A and a chamber B partitioned by a partition wall Z having an upper opening Pz and a lower opening Qz (see FIG. 2C). )), By appropriately combining the movement of the fluid medium c between the two chambers, the fluid medium c can be continuously moved between adjacent chambers, and the amount of movement can be adjusted.
Inside the gasification chamber 1, near the surface in contact with the partition wall 15 between the settling char combustion chamber 4 and the fluidized state of the weakly fluidized zone 4 a in which the weakly fluidized state of the settling char combustion chamber 4 is maintained. The strong fluidization zone 1b is arranged as a section where a stronger fluidization state is maintained. As a whole, it is preferable to change the superficial velocity of the fluidized gas depending on the location so that the mixed diffusion of the injected fuel and the fluid medium c is promoted. As shown in FIG. In addition to the zone 1b, a weakly fluidized zone 1a is provided as a section in which a weakly fluidized state is maintained to form a swirling flow. In the strong fluidization zone 1b and the weak fluidization zone 1a, the fluidizing gas g1 has a uniform fluidization speed over the entire zone.
The char combustion chamber main body 5 has a weak fluidization zone 2a as a zone where a weak fluidization state is maintained at the center, and a strong fluidization zone 2b as a zone where a strong fluidization state is maintained at the periphery, The fluid medium c and the char h form an internal swirl flow. In the strong fluidization zone 2b and the weak fluidization zone 2a, the fluidizing gas g2 has a uniform fluidization speed over the entire zone. The fluidization speed of the strong fluidization zone 2b in the gasification chamber 1 and the char combustion chamber main body 5 is preferably 5 Umf or more, and the fluidization speed of the weak fluidization zone 2a is preferably 5 Umf or less. If there is a clear difference in fluidization speed relative to the zone 2a and the strong fluidization zone 2b, there is no particular problem even if this range is exceeded. It is preferable that a strong fluidization zone 2 b is arranged in a portion in contact with the heat recovery chamber 3 and the settled char combustion chamber 4 in the char combustion chamber main body 5. Further, a weak fluidization zone 3 a is arranged in the heat recovery chamber 3, and a weak fluidization zone 4 a is arranged in the sedimentation char combustion chamber 4. In the weak fluidization zone 3a and the weak fluidization zone 4a, the fluidizing gases g3 and g4 have a uniform fluidization speed over the entire zone. Further, it is preferable to provide a gradient at the bottom of the furnace so as to descend from the weak fluidization zone side to the strong fluidization zone side (not shown).
Thus, the fluidization state on the char combustion chamber body 5 side in the vicinity of the partition wall 12 between the char combustion chamber body 5 and the heat recovery chamber 3 is relatively stronger than the fluidization state on the heat recovery chamber 3 side. The fluidized medium c flows from the char combustion chamber body 5 side to the heat recovery chamber 3 side over the upper end of the partition wall 12 near the fluidized bed interface, and the flowing fluid medium c is heated. Due to the relatively weak fluidized state in the recovery chamber 3, that is, the high density state, it moves downward (toward the furnace bottom) and passes through the lower end (opening 22) near the furnace bottom of the partition wall 12 to recover heat. It moves from the chamber 3 side to the char combustion chamber main body 5 side. The fluid medium c passes through the opening 22 and moves from the heat recovery chamber 3 side to the char combustion chamber body 5 side. The fluid medium c in the vicinity of the opening 22 in the strong fluidization zone 2b of the char combustion chamber body 5 This is because the former is stronger than the latter when the fluidized state of the fluidized state of the fluidized medium c in the vicinity of the opening 22 of the weakly fluidized region 3a of the heat recovery chamber 3 is compared.
Similarly, the fluidization state on the char combustion chamber body 5 side in the vicinity of the partition wall 14 between the char combustion chamber body 5 and the sedimentation char combustion chamber 4 is relatively stronger than the fluidization state on the sedimentation char combustion chamber 4 side. By maintaining the fluidized state, the fluid medium c moves and flows from the char combustion chamber main body 5 side to the settled char combustion chamber 4 side over the upper end of the partition wall 14 in the vicinity of the fluid bed interface. The fluid medium c flowing into the settled char combustion chamber 4 side moves downward (toward the furnace bottom) due to the relatively weak fluidized state, that is, the high density state in the settled char combustion chamber 4. It moves from the sedimentation char combustion chamber 4 side to the gasification chamber 1 side through the lower end (the opening 25) near the furnace bottom. Here, the fluidized state of the fluid medium c in the vicinity of the opening 25 in the strong fluidization zone 1 b of the gasification chamber 1 and the fluidized medium c in the vicinity of the opening 25 in the weak fluidization zone 4 a of the sedimentation char combustion chamber 4. When compared with the fluidized state, the former is stronger than the latter. Thereby, the movement of the fluidized medium c from the settling char combustion chamber 4 to the gasification chamber 1 is assisted by an attraction action.
Similarly, the fluidization state on the char combustion chamber body 5 side in the vicinity of the partition wall 11 between the gasification chamber 1 and the char combustion chamber body 5 is relatively stronger than the fluidization state on the gasification chamber 1 side. It is kept fluidized. Therefore, the fluid medium c flows into the char combustion chamber main body 5 through the opening 21 below the boundary of the fluidized bed of the partition wall 11, preferably below the upper surface of the dense layer (submerged in the dense layer). . The fluid medium c moves from the gasification chamber 1 side to the char combustion chamber main body 5 side through the opening 21 because the fluid medium c in the vicinity of the opening 21 of the strong fluidization zone 2b of the char combustion chamber main body 5 is. This is because the former is stronger than the latter when the fluidized state of the fluidized state of the fluidized medium c in the vicinity of the opening 21 of the weakly fluidized region 1a of the gasification chamber 1 is compared.
As described above, the entire heat recovery chamber 3 is fluidized evenly, and is usually maintained in a fluidized state that is weaker than the fluidized state of the char combustion chamber main body 5 in contact with the heat recovery chamber 3 at the maximum. . Therefore, the superficial velocity of the fluidized gas g3 in the heat recovery chamber 3 is controlled between 0 and 3 Umf, and the fluid medium c forms a sedimented fluidized bed while gently flowing. Here, 0 Umf is a state in which the fluidized gas g3 is stopped. In such a state, heat recovery in the heat recovery chamber 3 can be minimized. That is, the heat recovery chamber 3 can arbitrarily adjust the amount of recovered heat within the maximum to minimum range by changing the fluidization state of the fluid medium c. Further, in the heat recovery chamber 3, the fluidization may be uniformly started / stopped or the strength of the chamber may be adjusted, but the fluidization of a part of the region may be stopped and the others may be placed in the fluidized state. However, the strength of the fluidized state in a part of the region may be adjusted.
Further, referring to FIG. 1, a method for adjusting the circulation amount of the fluid medium c between the gasification chamber 1 and the char combustion chamber main body 5 will be specifically described below.
Changing the fluidizing gas velocity in the weak fluidizing zone 1a arranged on the gasifying chamber 1 side of the opening 21 provided at the lower end of the partition wall 11 that partitions the gasifying chamber 1 and the char combustion chamber main body 5. Thus, a case is considered in which the amount of movement of the fluid medium c from the gasification chamber 1 to the char combustion chamber body 5 through the opening 21 is increased. In this case, the amount of movement of the fluid medium c from the gasification chamber 1 to the char combustion chamber main body 5 through the opening 21 first increases, thereby increasing the fluidized bed height of the char combustion chamber main body 5 and the gas. The fluidized bed height of the chemical conversion chamber 1 is temporarily lowered.
As described above, due to such a change in the fluidized bed height, the movement of the fluidized medium c through the opening 21 acts in a direction to be suppressed, and balance is achieved in a certain state. On the other hand, the rise in the fluidized bed height of the char combustion chamber main body 5 causes an increase in the amount of the fluid medium c that jumps from the char combustion chamber main body 5 into the settled char combustion chamber 4 beyond the partition wall 14. As a result, the pressure at the bottom of the furnace of the sedimentation char combustion chamber 4 increases, while the pressure at the bottom of the gasification chamber 1 decreases due to the decrease in the fluidized bed height of the gasification chamber 1.
For this reason, when attention is paid to the opening 25 provided at the lower end of the partition wall 15 that partitions the gasification chamber 1 and the settling char combustion chamber 4, the pressure on the settling char combustion chamber 4 side increases, Since the pressure decreases, the amount of movement of the fluid medium c from the sedimentation char combustion chamber 4 to the gasification chamber 1 through the opening 25 increases using the pressure difference as a driving force.
In this way, the fluidized bed height changes due to the increase in the moving amount of the fluid medium c from the gasification chamber 1 to the char combustion chamber main body 5 given first, and therefore, the gasification chamber 1 to the char combustion chamber are changed. The increase in the amount of movement of the fluid medium c to the main body 5 is slightly canceled, and the amount of movement of the fluid medium c from the char combustion chamber main body 5 via the sedimentary char combustion chamber 4 to the gasification chamber 1 is increased. The effect is brought about. By this mechanism, the fluidized bed height between the gasification chamber 1 and the char combustion chamber main body 5 is finally adjusted so that the particle movement amount of the fluid medium c between the gasification chamber 1 and the char combustion chamber main body 5 is balanced. However, the amount of particle movement in the stable state is kept increased from the initial state.
That is, in order to adjust the circulation amount of the fluid medium c between the gasification chamber 1 and the char combustion chamber main body 5, the amount of movement of the fluid medium c from the gasification chamber 1 to the char combustion chamber main body 5 is set. It may be changed. Further, the moving amount of the fluid medium c from the char combustion chamber main body 5 to the gasification chamber 1 may be changed, or both of them may be changed. By changing the height, the amount of movement of the fluid medium c from the gasification chamber 1 to the char combustion chamber main body 5 and the char combustion chamber main body 5 can be changed only by performing an operation for changing one of the movement amounts. It is possible to stabilize in a state where the amount of movement of the fluid medium c to the gasification chamber 1 is balanced.
Therefore, in order to adjust the moving amount of the fluid medium c between the gasification chamber 1 and the char combustion chamber main body 5, the char combustion chamber main body from the gasification chamber 1 through the opening 21 as described above. The amount of movement of the fluid medium c to 5 may be adjusted, or the amount of movement of the fluid medium c from the char combustion chamber body 5 to the settling char combustion chamber 4 beyond the upper end of the partition wall 14 may be adjusted. Alternatively, the moving amount of the fluid medium c from the sedimentation char combustion chamber 4 to the gasification chamber 1 through the opening 25 may be adjusted.
Here, in any of the methods, the movement amount of the fluid medium c is adjusted by changing the amount of the fluidizing gas g supplied from the furnace bottom, but the function of the gasification furnace 101 is ensured. In order to achieve this, by changing the supply amount of the fluidized gas g, the fuel gasification reaction performed in the gasification chamber 1 and the char combustion reaction performed in the char combustion chamber body 5 are not affected. It is desirable to do so. That is, it is desirable that the total amount of the fluidizing gas g1 supplied to the gasification chamber 1 or the total amount of the fluidizing gas g2 supplied to the char combustion chamber main body 5 is not changed.
For example, the supply amount of the fluidized gas g1 in the weak fluidization zone 1a near the opening 21 of the gasification chamber 1 is decreased, and the fluidization of the strong fluidization zone 2b in the vicinity of the opening 21 of the char combustion chamber body 5 is achieved. When adjusting to increase the amount of movement of the fluid medium c from the gasification chamber 1 to the char combustion chamber main body 5 through the opening 21 by increasing the supply amount of the gas g2, Increasing the amount of fluidized gas g1 supplied to the strong fluidized zone 1b of the opening 21 and decreasing the amount of fluidized gas g2 supplied to the weakly fluidized zone 2a of the opening 21 of the char combustion chamber main body 5 Therefore, it is desirable to perform an operation such that the total amount of the fluidized gases g1 and g2 supplied to the gasification chamber 1 and the char combustion chamber main body 5 is not changed.
In addition, the supply amount of the fluidized gas g2 in the strong fluidization zone 2b near the partition wall 14 of the char combustion chamber main body 5 is increased, and the partition wall 14 is passed from the char combustion chamber main body 5 to the settled char combustion chamber 4. In the case where adjustment is made so that the moving amount of the fluid medium c from the char combustion chamber main body 5 to the settled char combustion chamber 4 is increased by increasing the amount of the fluid medium c that jumps in, the char combustion chamber main body 5 By reducing the amount of fluidized gas g2 supplied to the weakly fluidized zone 2a away from the partition wall 14, an operation is performed so that the total amount of fluidized gas g2 supplied to the char combustion chamber body 5 does not change. It is desirable.
On the other hand, when adjusting the amount of movement of the fluid medium c from the settled char combustion chamber 4 to the gasification chamber 1 through the opening 25, the flow to the gasification chamber 1 or the char combustion chamber main body 5 is performed. The amount of movement of the fluid medium c can be adjusted only by changing the supply amount of the fluidizing gas g4 to the sedimentation char combustion chamber 4 without changing the supply amounts of the chemical gases g1 and g2. is there.
In this case, the portion close to the opening 25 on the gasification chamber 1 side is a strong fluidization zone 1b, so that it is kept in a strong fluidization state, and the sedimentation char combustion chamber 4 side is a weak fluidization zone 4a as a compartment, so that it weakly flows. Since the strong fluidization state of the strong fluidization zone 1b on the gasification chamber 1 side is kept constant, the strength of the weak fluidization state on the sedimentation char combustion chamber 4 side is changed. The amount of movement of the fluid medium c from the sedimentation char combustion chamber 4 to the gasification chamber 1 can be adjusted effectively.
As already described, it is desirable that the strong fluidization zone 1b in the vicinity of the opening 25 on the gasification chamber 1 side is maintained in a strong fluidization state, and the fluidization gas velocity is preferably 4 Umf or more, and more preferably. Should be kept above 5 Umf. In this case, the fluidizing gas velocity in the sedimentation char combustion chamber 4 is in the range of 4 Umf or less (when the flow rate of the fluidizing gas in the strong fluidizing zone 1b is 4 Umf or more) or in the range of 5 Umf or less (flowing in the strong fluidizing zone 1b). 4), the amount of movement of the fluid medium c from the settling char combustion chamber 4 to the gasification chamber 1 can be adjusted according to the characteristics shown in FIG.
Note that, according to FIG. 4, when the fluidizing gas velocity on the settling char combustion chamber 4 side is changed preferably in the range of 1 Umf to 2 Umf, more preferably in the range of 1 Umf to 1.7 Umf, It can be seen that the amount of movement changes largely linearly. In this case, the amount of the fluidizing gas g4 supplied to the settling char combustion chamber 4 can be reduced and the amount of movement of the fluid medium c can be finely adjusted.
Of course, on the contrary, the flow from the sedimentation char combustion chamber 4 to the gasification chamber 1 is changed by changing the state of strong fluidization of the gasification chamber 1 while keeping the state of weak fluidization of the sedimentation char combustion chamber 4 constant. It is also possible to change the moving amount of the medium c. However, in that case, the change in the flow rate of the fluidizing gas g1 for changing the moving amount of the fluid medium c becomes large, and the conditions for the gasification reaction in the gasification chamber 1 also change, which is not preferable. That is, as will be described later, in practice, changing the layer temperature of the gasification chamber 1 is very important in controlling the properties of the product gas b. When the temperature is changed, the reaction conditions of the gasification chamber 1 change with the change of the layer temperature, and it becomes difficult to independently control only the layer temperature of the gasification chamber 1. On the other hand, in the case of controlling the movement amount of the fluidized medium c by changing the weakly fluidized state of the settled char combustion chamber 4 described above, the change in the flow rate of the fluidized gas g4 is very small. In addition, since it is possible to realize a large change in the moving amount of the fluid medium c (see FIG. 4), in addition to advantages such as good controllability and little influence on the efficiency of the entire process, the gas medium 1 is supplied to the gasification chamber 1. There is a great advantage that the layer temperature of the gasification chamber 1 can be controlled without changing the flow rate of the fluidizing gas g1.
Next, control of the gas velocity of the fluidized gas g will be described with reference to FIG. First, control of the gas velocity of the fluidized gas g1 supplied to the gasification chamber 1 will be described. As described above, the control valve 61 installed in the supply pipe 51 connected to the air diffuser 31 disposed in the furnace bottom corresponding to the weak fluidization zone 1 a of the gasification chamber 1 is controlled by the control device 6. In response to the signal i1, the valve opening is set. A fluidizing gas g 1 having a flow rate corresponding to the valve opening degree is supplied to the air diffuser 31 through the control valve 61. The fluidizing gas g1 is supplied to the weak fluidizing zone 1a at a fluidizing gas speed determined by the flow rate of the fluidizing gas supplied. The flow rate of the fluidizing gas g1 is measured by a flow rate measuring device 71 installed downstream of the control valve 61 on the supply pipe 51, and the measured flow rate is sent from the flow rate measuring device 71 to the control device 6 as a flow rate signal i2. It is done. The control device 6 compares the measured flow rate signal i2 with the target flow rate stored in the weakly fluidized zone 1a, and sets the value of the control signal i1 to the control valve 61 so that the flow rate signal i2 approaches the target value. The changed control signal i1 is sent from the control device 6 to the control valve 61.
The control of the gas velocity of the fluidized gas g1 in the weakly fluidized zone 1a of the gasification chamber 1 has been described above, but the strong fluidized zone 1b of the gasification chamber 1, the weakly fluidized zone 2a of the char combustion chamber 2, and the strong The same applies to the fluidization zone 2b, the weak fluidization zone 4a, and the weak fluidization zone 3a of the heat recovery chamber 3.
The target value of the flow rate of the fluidizing gas g1 supplied to the weak fluidization zone 1a of the gasification chamber 1 and the target value of the flow rate of the fluidizing gas g1 supplied to the strong fluidization zone 1b are the target gasification chamber. 1 the strength of the fluidized state inside, the amount of movement of the fluid medium c moving from the weak fluidization zone 1a of the gasification chamber 1 to the weak fluidization zone 1a of the char combustion chamber main body 5 through the opening 21; The amount of movement of the fluid medium c moving from the settling char combustion chamber 4 to the strong fluidization zone 1b of the gasification chamber 1, the bed temperature of the gasification chamber 1 measured by the temperature measuring device 42, and the gas composition measuring device 46 are measured. Considering the gas composition of the generated gas b comprehensively, the layer temperature of the gasification chamber 1 becomes a predetermined value (for example, 600 to 800 ° C.), or the gas composition has a predetermined content (for example, H 2 The / CO molar ratio may be determined to be 2.6 to 5.8).
The target value of the flow rate of the fluidized gas g2 supplied to the weakly fluidized zone 2a of the char combustion chamber 2 and the target value of the flow rate of the fluidized gas g2 supplied to the strong fluidized zone 2b are The target value of the flow rate of the fluidized gas g4 to be supplied is the strength of the fluidized state in the target char combustion chamber main body 5, the strength of the fluidized state in the target settling char combustion chamber 4, The amount of movement of the fluid medium c that moves from the strong fluidization zone 2 b of the char combustion chamber body 5 to the sedimentation char combustion chamber 4 beyond the upper end of the partition wall 14, and gasification from the sedimentation char combustion chamber 4 through the opening 25. The amount of movement of the fluid medium c that moves to the strong fluidization zone 2b of the chamber 1 and the amount of movement of the fluid medium c that moves from the heat recovery chamber 3 to the strong fluidization zone 2b of the char combustion chamber body 5 through the opening 22 , Beyond the upper end of the partition wall 12 from the strong fluidization zone 2b of the char combustion chamber body 5 The total amount of the moving medium c moving to the heat recovery chamber 3 and the bed temperature of the char combustion chamber main body 5 measured by the temperature measuring device 43 are comprehensively taken into consideration, and the bed temperature of the char combustion chamber main body 5 is predetermined. The gasification residue (char, tar, etc.) supplied from the gasification chamber 1 may be determined to be completely combusted at a value (for example, 850 to 950 ° C.).
When the heat recovery chamber 3 is provided, the layer temperature of the char combustion chamber main body 5 is affected by the amount of heat recovered in the heat recovery chamber 3, and if the amount of heat recovery increases, the layer temperature of the char combustion chamber main body 5 is increased. If the heat recovery amount decreases, the bed temperature of the char combustion chamber main body 5 increases.
Next, a control method for increasing or decreasing the heat recovery amount in the heat recovery chamber 3 will be described. The amount of heat recovered in the heat recovery chamber 3 is determined by the heat transfer coefficient between the fluid medium c and the in-layer heat transfer tube 41A. This heat transfer coefficient is closely related to the strength of fluidization in the heat recovery chamber 3. The stronger the fluidization, the larger the heat transfer coefficient, and the more the heat transfer tube in the layer takes heat from the fluid medium. Therefore, in order to keep the bed temperature of the char combustion chamber main body 5 constant, by controlling the flow rate of the fluidizing gas g3 supplied to the fluidized bed of the heat recovery chamber 3, fluidization in the heat recovery chamber 3 is controlled. What is necessary is just to change strength.
The control valve 66 installed in the supply pipe 56 for introducing the fluidized gas g3 supplied to the heat recovery chamber 3 receives the control signal i1 from the control device 6 and sets the valve opening. A fluidizing gas g3 having a flow rate corresponding to the valve opening degree is supplied to the fluidized bed of the heat recovery chamber 3 through the control valve 66. The flow rate of the fluidizing gas g3 is measured by a flow rate measuring device 76 installed downstream of the control valve 66, and the measured flow rate is sent to the control device 6 as a control signal i2. As described above, the greater the flow rate of the fluidized gas g3, the stronger the fluidization of the heat recovery chamber 3, and the greater the amount of heat recovery. Therefore, when the bed temperature of the char combustion chamber body 5 is higher than the target value, The control device 6 may be configured to change the value of the control signal i1 to the control valve 66 so that the bed temperature of the char combustion chamber body 5 approaches the target value and increase the flow rate of the fluidized gas g3. . When the layer temperature of the char combustion chamber body 5 is lower than the target value, the control device 6 sets the value of the control signal i1 to the control valve 66 so that the layer temperature of the char combustion chamber body 5 approaches the target value. What is necessary is just to change and to comprise so that the flow volume of fluidization gas g3 may be decreased.
On the other hand, for the steam, the control valve 67 installed in the introduction part 41B of the in-layer heat transfer tube 41 receives the control signal i1 from the control device 6 and sets the valve opening. Steam s1 having a flow rate corresponding to the valve opening degree is supplied to the in-layer heat transfer tube main body 41A via the control valve 67. The steam s1 introduced into the in-layer heat transfer tube main body 41A receives heat from the fluid medium c as a heat transfer coefficient determined by the fluidization state of the heat recovery chamber 3 and is heated to become superheated steam s2, which is discharged from the discharge unit 41C. The The flow rate of the steam s1 is measured by a flow rate measuring device 77 installed on the downstream side of the control valve 67 on the introduction part 41B, and the measured flow rate is sent from the flow rate measuring device 77 to the control device 6 as a flow rate signal i2. . The temperature of the steam s1 before overheating is measured by a temperature measuring device 44 installed in the introduction part 41B, and the measured temperature is sent to the control device 6 as a temperature signal i3. The temperature of the steam s2 after overheating is measured by a temperature measuring device 45 installed in the discharge unit 41C, and the measured temperature is sent to the control device 6 as a temperature signal i3.
For example, when the heat recovery amount is increased by increasing the strength of fluidization in the heat recovery chamber 3, assuming that the flow rate of the steam s1 supplied to the in-layer heat transfer tube 41 is kept constant, the obtained superheated steam s2 Temperature rises. When it is not preferable that the temperature rises due to the usage form of the superheated steam s2, the increase in the heat recovery amount is reflected in the increase in the flow rate of the recovered superheated steam s2 by increasing the flow rate of the supplied steam s1. Can be made. In this case, when the temperature signal i3 of the steam s2 after overheating is higher than the target temperature of the steam s2, the control device 6 changes the value of the control signal i1 to the control valve 67 and increases the flow rate of the steam s1. What is necessary is just to comprise. Conversely, when the temperature signal i3 of the steam s2 after overheating is lower than the target temperature of the steam s2, the value of the control signal i1 to the control valve 67 may be changed to reduce the flow rate of the steam s1. .
A relatively large incombustible material contained in the waste or the fuel a is discharged from an incombustible material discharge port (not shown) provided at the furnace bottom of the gasification chamber 1. Further, the bottom surface of the furnace in each chamber may be horizontal, but the bottom of the furnace may be inclined according to the flow of the fluid medium c in the vicinity of the furnace bottom so as not to form a staying part of the fluid medium c. The incombustible discharge port (not shown) may be provided not only at the furnace bottom of the gasification chamber 1 but also at the furnace bottom of the char combustion chamber body 5, the sedimentation char combustion chamber 4, or the heat recovery chamber 3.
The most preferable fluidizing gas g1 in the gasification chamber 1 is to boost the generated gas b for recycling. In this way, the product gas b exiting from the gasification chamber 1 is only the product gas b generated purely from the fuel, and a very high quality product gas b can be obtained. If this is not possible, a gas (oxygen-free gas) containing as little oxygen as possible, such as water vapor, carbon dioxide (CO2), or combustion exhaust gas obtained from the char combustion chamber 2, may be used as the fluidizing gas g1. When the bed temperature of the fluidized medium c decreases due to the endothermic reaction during gasification, if necessary, supply flue gas having a temperature higher than the thermal decomposition temperature, or add oxygen or oxygen in addition to the oxygen-free gas. A part of the product gas b may be burned by supplying a gas, for example, air. The fluidizing gases g2 and g4 supplied to the char combustion chamber 2 supply a gas containing oxygen necessary for char combustion, for example, air, a mixed gas of oxygen and steam. When the calorific value (calorie) of the fuel a is low, it is preferable to increase the amount of oxygen, and oxygen is supplied as it is. The fluidizing gas g3 supplied to the heat recovery chamber 3 uses air, water vapor, combustion exhaust gas, or the like.
A portion above the upper surface of the fluidized bed (the upper surface of the splash zone) of the gasification chamber 1 and the char combustion chamber 2, that is, the free board portion, is completely partitioned by the partition walls 11 and 15. Furthermore, since the part above the upper surface of the dense bed of the fluidized bed, that is, the splash zone and the freeboard part, are completely partitioned by the partition walls, the free board part of each of the char combustion chamber 2 and the gasification chamber 1 Even if the pressure balance is somewhat disturbed, the disturbance can be absorbed by only a slight change in the difference in the position of the interface between the two fluidized beds or the difference in the position of the upper surface of the dense layer, that is, the fluidized bed height difference. That is, since the gasification chamber 1 and the char combustion chamber 2 are partitioned by the partition walls 11 and 15, even if the pressure in each chamber fluctuates, this pressure difference can be absorbed by the fluidized bed height difference. Such a layer can be absorbed until it falls to the upper ends of the openings 21 and 25. Therefore, the upper limit value of the pressure difference between the free boards of the char combustion chamber 2 and the gasification chamber 1 that can be absorbed by the fluidized bed height difference is the gas from the upper ends of the openings 21 and 25 below the partition walls 11 and 15 that partition each other. It is approximately equal to the head difference between the head of the fluidizing chamber fluidized bed and the head of the char combustion chamber fluidized bed.
However, in the above case, when a slight disturbance in the pressure balance is absorbed by the fluidized bed height difference, the amount of movement of the fluidized medium c between the chambers changes according to the change in the fluidized bed height. Therefore, in order to keep the moving amount of the fluid medium c between the chambers constant, it is important to add a control mechanism that minimizes the disturbance of the pressure balance.
With reference to FIG. 1, a control method for suppressing disturbance in pressure balance will be described below. The product gas b exhausted from the gasification chamber 1 and the char combustion gas e exhausted from the char combustion chamber 2 are exhausted via a pressure control valve 78 or a control valve 79 installed in the subsequent stage, respectively. Used.
Here, in FIG. 1, the control valve 78 and the control valve 79 are depicted as being installed immediately after the gas is exhausted from the gasification chamber 1 or the char combustion chamber 2, but it passes through other devices. Even if the control valve 78 or the control valve 79 is installed after that, by adjusting the opening degree of the control valve 78 or the control valve 79, the resistance of gas discharge from the corresponding gasification chamber 1 or char combustion chamber 2 can be reduced. Any change is possible as long as the pressure in the gasification chamber 1 or the char combustion chamber 2 can be changed. Pressure measuring devices 81 and 82 as pressure measuring devices are respectively installed in the free board portion of the gasification chamber 1 and the free board portion of the char combustion chamber 2, and the pressures in the respective chambers 1 and 2 are detected. The pressure signal i5 is sent to the control device 6. The control device 6 compares the pressure signal i5 of the free board portion of the gasification chamber 1 with the pressure signal i5 of the free board portion of the char combustion chamber 2, and the difference is the amount of movement between the chambers of the fluid medium c. Within a certain range that does not affect, preferably the pressure difference between the two chambers 1 and 2 is ± 10% or less, more preferably ± 5% or less of the pressure loss of the fluidized bed in the gasification chamber 1 or the char combustion chamber 2. Preferably, the control signal i1 is sent to the control valve 78 or the control valve 79 so that the pressures in the two chambers 1 and 2 are equal, and the opening degree of the control valve 78 or the control valve 79 is changed.
In the integrated gasification furnace 101 described above, three gasification chambers, 1, a char combustion chamber 2, and a heat recovery chamber are provided in each fluidized bed furnace via a partition wall, and further, a char combustion chamber. 2, the gasification chamber 1, the char combustion chamber 2, and the heat recovery chamber 3 are provided adjacent to each other. Since this integrated gasification furnace 101 enables the circulation of a large amount of fluid medium c between the char combustion chamber 2 and the gasification chamber 1, a sufficient amount of heat for gasification can be obtained only by sensible heat of the fluid medium c. Can supply.
Further, in the integrated gasification furnace 101 described above, since the seal between the char combustion gas e and the product gas b is perfected, the pressure balance control between the gasification chamber 1 and the char combustion chamber 2 is performed well, and the combustion gas e And the product gas b are not mixed, and the properties of the product gas b are not deteriorated.
Further, the fluid medium c and char h as the heat medium flow from the gasification chamber 1 side to the char combustion chamber 2 side, and the same amount of fluid medium c from the char combustion chamber 2 side to the gasification chamber. Since it is configured to return to the 1 side, it is necessary to transport the fluid medium c mechanically using a conveyor or the like in order to naturally balance the mass and return the fluid medium c from the char combustion chamber 2 side to the gasification chamber 1 side. In addition, there are no problems such as difficulty in handling high-temperature particles and large sensible heat loss.
Next, control of the gas composition of the product gas b of the integrated gasifier 101 will be described with reference to FIG.
In the present invention, the fluidized bed temperatures of the gasification chamber 1 and the char combustion chamber 2 are adjusted by adjusting the moving amount of the fluid medium c between the gasification chamber 1 and the char combustion chamber 2, that is, the internal circulation amount as described above. Is intended to be arbitrarily controlled in practice, or to change the composition of the product gas b generated from the gasification chamber 1. For this reason, in the operation of the integrated gasifier 101, the control device 6 is instructed to give a change in the fluidized gas amount. That is, a control signal i1 for controlling the flow rate is sent from the control device 6 to the control valves 61 to 67, and the control valves 61 to 67 adjust the fluidizing gas flow rate. Adjusting the fluidizing gas flow rate is adjusting the fluidizing gas velocity. When the fluidizing gas velocity is adjusted, the amount of internal circulation is adjusted, whereby the fluidized bed temperature of the gasification chamber 1 and the char combustion chamber 2 and the composition of the product gas b generated from the gasification chamber 1 are changed. It is preferable to configure the control logic in the control device 6 so as to measure how it changes and to adjust the amount of fluidized gas based on the result.
For example, the case where the amount of internal circulation is adjusted for the purpose of changing the fluidized bed temperature of the gasification chamber 1 will be described below.
Specifically, when the fluidization gas velocity of the sedimentation char combustion chamber 4 is in a weak fluidization state in the range of about 1 Umf to 2 Umf, the measured value of the temperature measuring device 42 of the fluidized bed temperature of the gasification chamber 1 is the target. Let us consider a case where the temperature is lower than the fluidized bed temperature of the gasification chamber 1. In this case, as already explained, by increasing the amount of fluidized gas in the sedimentation char combustion chamber 4 within the range of 1 Umf to 2 Umf, the fluidized bed viscosity of the sedimentation char combustion chamber 4 is lowered (see FIG. 3), and sedimentation is performed. The moving amount of the fluid medium c from the char combustion chamber 4 to the gasification chamber 1 can be increased (see FIG. 4).
As described above, when the amount of movement of the fluid medium c from the settling char combustion chamber 4 to the gasification chamber 1 increases at this time, the bed height of the gasification chamber 1 temporarily rises, whereby the gasification chamber The moving amount of the fluid medium c from 1 to the char combustion chamber 2 increases, and the bed height of the char combustion chamber 2 also increases slightly. Then, the amount of the flow medium c jumped from the char combustion chamber 2 to the settling char combustion chamber 4 also increases. As a result, the gasification chamber 1 to the char combustion chamber 2, the char combustion chamber 2 to the settling char combustion chamber 4, and the settling char combustion The moving amount of all the fluid mediums c from the chamber 4 to the gasification chamber 1 is stabilized in a state where it is increased from the initial state. At this time, the temperature difference between the gasification chamber 1 and the char combustion chamber 2 decreases due to an increase in the amount of movement of the fluid medium c between the gasification chamber 1 and the char combustion chamber 2. That is, the fluidized bed temperature in the gasification chamber 1 rises and the fluidized bed temperature in the char combustion chamber 2 falls. In the following description, the moving amounts of all the fluid media c from the gasification chamber 1 to the char combustion chamber 2, from the char combustion chamber 2 to the settling char combustion chamber 4, and from the settling char combustion chamber 4 to the gasification chamber 1 are stabilized to the same value. In this state, the moving amount of the fluid medium c between the gasification chamber 1 and the char combustion chamber 2 is referred to as an “internal circulation amount”.
If the fluidized bed temperature in the gasification chamber 1 is stable after a certain period of time and the stable temperature is still lower than the target fluidized bed temperature, the amount of fluidized gas in the settling char combustion chamber 4 is reduced. What is necessary is just to increase further. If the stable temperature is higher than the target fluidized bed temperature, the amount of fluidized gas in the settling char combustion chamber 4 may be reduced somewhat.
The above operation is performed by inputting the measured value and the target value of the fluidized bed temperature of the gasification chamber 1 to the control device 6 including the arithmetic device by the configuration as shown in FIG. It is easy by changing the control signal i1 to the control valve 65 and changing the opening of the control valve 65 so as to change the supply amount of the fluidized gas g4 to the sedimentation char combustion chamber 4 based on the size. Can be realized.
In the above description, the weak fluidization zones 1a, 2a, 3a, 4a, and the strong fluidization zones 1b, 2b have been described as having the air diffusers 31-36 to which the respective control valves 61-66 are connected.
However, as shown in FIG. 5 (a part of the integrated gasification furnace 101 is omitted), for example, the weak fluidization zone 1a and the strong fluidization zone 2b sandwiching the opening 21 are directly adjacent to the opening 21, respectively. Separating the neighborhood areas 1ax and 2bx into the remote areas 1ay and 2by other than the neighborhood areas 1ax and 2bx, the diffuser devices 31 and 34 are connected to the neighborhood areas 31x and 34x corresponding to the neighborhood areas 1ax and 2bx, respectively, You may comprise so that it may isolate | separate into the remote parts 31y and 34y corresponding to 1ay and 2by.
The supply pipes 51 and 54 are connected to the remote portions 31y and 34y of the air diffusers 31 and 34, respectively, and the flow rate measuring devices 71x and 74x and the control valve 61x are connected to the vicinity portions 31x and 34x of the air diffusers 31 and 34, respectively. You may make it connect the supply piping 51x and 54x in which 64x was installed. Instead of controlling the speeds of the fluidizing gases g1 and g2 supplied to control the amount of movement of the fluid medium c through the opening 21 over the entire weak fluidizing zone 1a and strong fluidizing zone 2b, respectively. In addition, the gas flow rates of the fluidized gases g1 and g2 supplied from the neighboring areas 1ax and 2bx may be controlled. This control is performed by controlling the control valves 61x and 64x by the control device 6 (see FIG. 1) as described above.
Similarly, the weak fluidizing zone 4a, the strong fluidizing zone 1b, and the weak fluidizing zone 3a and the strong fluidizing zone 2b that sandwich the opening 22 are adjacent to the openings 25 and 22 (not shown). The velocity of the fluidized gas supplied to control the amount of movement of the fluidized medium c through the openings 25 and 22 is reduced to a weakly fluidized region. 4a, 3a, strong fluidization zones 1b, 2b, instead of controlling over the entire region, the gas flow rate of the fluidized gas supplied from the neighborhood may be controlled respectively.
The phenomenon that occurs when the amount of internal circulation is changed from one stable operating state of the integrated gasification furnace 101, and the obtained effects will be described below. First, a change in the bed temperature of the gasification chamber 1 or the char combustion chamber 2 occurs in response to a change in the internal circulation amount. When the amount of internal circulation is increased, the bed temperature of the gasification chamber 1 increases and the bed temperature of the char combustion chamber 2 decreases. Conversely, when the amount of internal circulation is reduced, the layer temperature of the gasification chamber 1 decreases and the layer temperature of the char combustion chamber 2 increases.
Further, in both the gasification chamber 1 and the char combustion chamber 2, the residence time of the fluid medium c in the chambers 1 and 2 changes. For example, when the internal circulation amount is reduced to ½, the residence time of the fluid medium c in each of the chambers 1 and 2 is doubled. On the contrary, when the internal circulation amount is doubled, the residence time of the fluid medium c in each of the chambers 1 and 2 is halved.
In addition, the amount of char h generated in the gasification chamber 1 changes. For example, when the amount of internal circulation is decreased, the amount of char h generated in the gasification chamber 1 increases, reflecting the decrease in the layer temperature of the gasification chamber 1. In general, the amount of char h generated increases as the layer temperature decreases. When the amount of internal circulation is increased, the amount of char h generated decreases due to an increase in the bed temperature of the gasification chamber 1. In general, the amount of char h generated decreases as the layer temperature of the gasification chamber 1 increases.
Reflecting the change in the amount of char h generated and the change in the bed temperature of the gasification chamber 1, the gas composition of the product gas b generated in the gasification chamber 1 changes. This is due to the change in the element balance (molar ratio (%) of carbon, hydrogen, oxygen, etc.) due to the change in the amount of char h generated (the amount of combustibles moving from the gasification chamber 1 to the char combustion chamber 2). Due to changes in the equilibrium state of the gas component with temperature.
Due to the change in the composition of the product gas, the H 2 / CO ratio, gas heating value, etc. change. The H2 / CO ratio is an important factor related to the production efficiency of hydrogen, liquid fuel, etc. from the product gas b. The calorific value of gas is an important factor when the produced gas b is used by combustion.
From the above, by changing the amount of internal circulation, the layer temperature of the gasification chamber 1 is arbitrarily controlled in practice, and thereby the composition of the product gas b (H 2 , CO, CO 2 , CH 4 , H 2 In addition to mol% such as O, the concept includes factors determined by the product gas composition, such as H2 / CO ratio and gas heating value. ) Can be changed.
In this case, for example, when the control is performed so that the layer temperature of the gasification chamber 1 is lowered, the layer temperature of the char combustion chamber 2 is correspondingly increased. Conversely, if the control is performed to increase the layer temperature of the gasification chamber 1, the layer temperature of the char combustion chamber 2 correspondingly decreases. Since the operating temperature of the char combustion chamber is preferably maintained within the optimum temperature range, preferably 850 to 950 ° C., for completely burning the char h and tar that have moved from the gasification chamber 1, the internal circulation amount is changed. Thus, when the layer temperature of the gasification chamber 1 is changed, it is necessary to adjust the temperature of the char combustion chamber 2 by another method so that the temperature does not deviate from the optimum range.
For this purpose, as described above, when the heat recovery chamber 3 is provided, the heat recovery amount in the heat recovery chamber 3 is controlled so as to keep the bed temperature of the char combustion chamber main body 5 constant. be able to. Moreover, even if control is performed so that the combustion amount of the combustible component in the char combustion chamber is directly changed by supplying a part of the raw material used directly to the char combustion chamber or changing the supply amount thereof. Good. Further, when the temperature of the char combustion chamber 2 becomes very high, control is performed such that water is supplied to the fluidized bed portion or the temperature of the fluidized bed is directly cooled by changing the supply amount. May be performed.
Below, an example of the trial calculation result supposing the integrated gasification furnace 101 (FIG. 1) is shown (FIGS. 11, 13 to 15). The raw material a was made of woody biomass, the gasification chamber 1 was gasified with steam at 200 ° C., and the char combustion chamber 2 burned char h with air. The layer temperature of the char combustion chamber 2 is kept constant at 900 ° C. by controlling the heat recovery amount of the heat recovery chamber 3, and how the layer temperature of the gasification chamber 1 changes when the internal circulation amount is changed. Along with this, it was estimated how the composition of the generated gas b and the calorific value change. The internal circulation amount is organized by a dimensionless number (hereinafter referred to as “circulation ratio”) obtained by dividing the circulation amount (kg / h) of the medium particles by the input amount (kg / h) of the raw material a.
FIG. 11 shows the relationship between the amount of internal circulation (circulation ratio) and gasification chamber layer temperature (unit: ° C.) in case 1, and FIG. 12 shows the amount of internal circulation (circulation ratio) and gasification chamber layer temperature (unit: unit 2) in case 2. ° C) relationship. 11 and 12 show the calculation results. Although the absolute value of the gasification chamber layer temperature to be lowered varies depending on the scale of the gasification furnace 1, the raw material a, and the process conditions (fluidized steam, air, etc.), as shown in FIG. 11 and FIG. As the (circulation ratio) decreases, the layer temperature of the gasification chamber 1 decreases, and as the internal circulation amount (circulation ratio) increases, the layer temperature of the gasification chamber 1 increases. For example, in FIG. 11 (Case 1), the internal circulation amount for maintaining 700 ° C. is about 44% (20/45) based on the internal circulation amount for maintaining the layer temperature of the gasification chamber 1 at 800 ° C. The circulation rate for maintaining the temperature at 600 ° C. is about 22% (10/45). From the above, in order to be able to control the layer temperature of the gasification chamber 1 in the range of 600 to 800 ° C., the internal circulation amount of the fluid medium c is practically arbitrary in the range of about 20% of the maximum value to the maximum value. It is preferable to be configured so that it can be changed. Typically, the amount of internal circulation is controlled so that the bed temperature of the gasification chamber 1 is constant.
FIG. 13 shows the relationship between the internal circulation rate (circulation ratio) and the product gas composition. This figure is a calculation result when it is assumed that the gas residence time in the gasification chamber 1 is sufficiently long, or when the reaction proceeds to a state close to the equilibrium composition by a catalyst or the like.
As shown in the figure, the lower the internal circulation rate (circulation ratio), the lower the layer temperature of the gasification chamber 1, so that the composition of the product gas b is H 2 CO decreases, CO 2 , H 2 O increases. Especially when the amount of internal circulation (circulation ratio) is small and the temperature of the gasification chamber 1 is low, CH 4 Significantly increases the amount of H 2 CO decreases correspondingly. By changing the internal circulation amount (circulation ratio), it is possible to control to obtain a gas composition shown in a desired diagram.
Fig. 14 shows the amount of internal circulation (circulation ratio) and H of the product gas. 2 The relationship of / CO ratio is shown. This figure is a calculation result when it is assumed that the gas residence time in the gasification chamber 1 is sufficiently long, or when the reaction proceeds to a state close to the equilibrium composition by a catalyst or the like.
As shown in the figure, the smaller the internal circulation amount (circulation ratio) is, the more H 2 / CO ratio increases. Therefore, by controlling the internal circulation amount (circulation ratio), H 2 It is possible to control / CO to a desired value between the ratios 2.6 and 5.7.
FIG. 15 shows the relationship between the internal circulation amount (circulation ratio) and the generated gas heat generation amount. This figure is a calculation result when it is assumed that the gas residence time in the gasification chamber 1 (FIG. 1) is sufficiently long, or when the reaction proceeds to a state close to the equilibrium composition by a catalyst or the like.
As shown in the figure, as a whole, the CO concentration decreases as the internal circulation amount (circulation ratio) decreases in response to the change in the product gas composition, so that the generated gas heat generation amount tends to decrease. In particular, when the amount of internal circulation (circulation ratio) is small and the layer temperature of the gasification chamber 1 is low, CH 4 Since the concentration increases, the calorific value increases. By changing the internal circulation rate (circulation ratio), about 10,600 to about 10,900 (HHV DB) kJ / m 3 It can be controlled to a desired value between NTP.
When the gas residence time in the gasification chamber 1 is short and the gas composition is different from the equilibrium composition, the following phenomenon occurs.
The first control of gas properties of the gasification furnace 101 (FIG. 1) will be described. FIG. 16 shows the relationship between the gasification chamber layer temperature (unit: ° C.) and the gasification chamber (GC) outlet gas calorific rate (tar is counted as the calorific value) (unit%) when the gasification raw material a is biomass. Indicates. When the gasification chamber layer temperature is low, there is little sensible heat loss, so the amount of heat generated from the gasification chamber outlet gas is high, and when the gasification chamber layer temperature is high, there is much sensible heat loss. Outlet gas heat generation is reduced. Since there is a dependency relationship between the gasification chamber layer temperature and the circulation rate, the heat generation amount of the gasification chamber outlet gas can be increased by reducing the circulation rate. Gasification chamber outlet calorific value is the percentage of the calorific value of gas (including tar) generated from unit weight gasification raw material at the gasification chamber outlet divided by the calorific value due to combustion of gasification raw material of unit weight. Say.
FIG. 17 shows the gasification chamber layer temperature (unit ° C.) and cold gas efficiency (unit%) when the gasification raw material a is biomass (determined based on the calorific value of combustible gas excluding tar at the gasification chamber outlet). The relationship is shown. When the gasification chamber layer temperature is low, tar generation increases, so that the cold gas efficiency decreases. When the gasification chamber layer temperature is high, tar generation decreases, and thus the cold gas efficiency increases. The cold gas efficiency refers to a percentage obtained by dividing the calorific value of gas (not including tar) generated from a unit weight of gasified raw material at the gasification chamber outlet by the calorific value due to combustion of the unit weight of gasified raw material.
FIG. 18 shows the internal circulation amount (circulation ratio) and the generated gas calorific value (excluding tar) (HHV DB) (unit KJ / m) when the gasification raw material a is biomass. 3 -NPT) relationship. If the amount of internal circulation (circulation ratio) is small, the gasification chamber layer temperature becomes low, and tar generation increases, so the amount of heat generation decreases, and if the amount of internal circulation (circulation ratio) is large, the gasification chamber layer temperature becomes high. This reduces tar generation and increases the amount of heat generated.
FIG. 19 shows the relationship between the gasification chamber layer temperature (unit: ° C.) and the ratio (unit%) at which carbon (C) in the raw material a is transferred to tar when the gasification raw material a is biomass. The figure shows that the lower the gasification chamber layer temperature, the greater the amount of tar generation, and the higher the gasification chamber layer temperature, the smaller the amount of tar generation.
Therefore, in order to increase the cold gas efficiency in the raw material a having a large tar generation amount such as biomass and a low calorific value, (1) reducing the sensible heat loss by lowering the gasification chamber layer temperature, and There are methods of decomposing (reducing molecular weight) the tar generated at that time, or (2) increasing the circulation amount to increase the gasification chamber layer temperature to suppress the amount of tar generation.
Next, the second gas property control of the gasification furnace 101 (FIG. 1) will be described.
By controlling the amount of circulation, the amount of volatile matter released from the gasification raw material a can be controlled, and the amount of carbon in the raw material a transferred to the char combustion chamber 2 can be controlled.
FIG. 20 shows the amount of circulation (unit kg / h) when the gasified raw material a is biomass, and the rate of transfer of carbon in the raw material a supplied to the gasification chamber 1 to the char combustion chamber 2 (unit%). ). The figure shows that when the amount of circulation increases, the proportion of unreleased carbon transferred to the char combustion chamber 2 increases as the volatile content increases, and when the amount of circulation decreases, carbon that has not been released as volatile content enters the char combustion chamber 2. It shows that the rate of migration becomes smaller.
In FIG. 21, when the gasification raw material a is biomass, the gasification chamber layer temperature (unit: ° C.) and the ratio of transition to the char burning chamber 2 of carbon in the gasification raw material a supplied to the gasification chamber 1 The relationship with (unit%) is shown. When the layer temperature is high, the amount of volatile matter released is large (the remaining amount of volatile matter is small) and the volatile matter release rate is fast, so the proportion of carbon in the raw material a transferred to the char combustion chamber 2 is considered to be small. However, the opposite is true in the figure. That is, when the gasification chamber layer temperature is high, the rate at which carbon in the raw material a is transferred to the char combustion chamber 2 increases, and when the gasification chamber layer temperature is low, the carbon in the raw material a is the char combustion chamber 2. The rate of transition to becomes smaller. This means that the gasification chamber layer temperature is high, that is, the circulation amount is large, and the gasified raw material a (here, biomass) that has not released volatile matter is char-combusted along with the fluidized medium. It is shown that the transition to chamber 2 is dominant.
From the above, since it is possible to control the combustion amount in the char combustion chamber 2 by controlling the circulation amount, the combustion amount in the char combustion chamber 2 is changed according to the fluctuation of the gasification raw material a. It can be controlled optimally.
It should be noted that the illustrated embodiment is merely an example, and is not intended to limit the technical scope of the present invention.

本発明に係るガス化炉は、ガス化室と、チャー燃焼室と、制御装置とを備えるので、弱い流動化状態の流動の強弱を調節することにより、ガス化室とチャー燃焼室の間で流通する流動媒体の量を制御して、ガス化室より発生するガスの組成を制御することができ、制御特性をさらに向上させることができる。  The gasification furnace according to the present invention includes a gasification chamber, a char combustion chamber, and a control device. Therefore, by adjusting the strength of the weak fluidized state, the gasification furnace is provided between the gasification chamber and the char combustion chamber. The composition of the gas generated from the gasification chamber can be controlled by controlling the amount of the fluid medium that circulates, and the control characteristics can be further improved.

Claims (4)

高温の流動媒体を内部で流動させ、第1の界面を有するガス化室流動床を形成し、前記ガス化室流動床内で被処理物をガス化するガス化室と;
高温の流動媒体を内部で流動させ、第2の界面を有するチャー燃焼室流動床を形成し、前記ガス化室でのガス化に伴い発生するチャーを前記チャー燃焼室流動床内で燃焼させ前記流動媒体を加熱するチャー燃焼室とを備えるガス化炉であって
該ガス化炉へ流動媒体を供給する流動媒体供給装置と;
前記ガス化炉から流動媒体を抜き出す流動媒体抜出装置とを備え
前記ガス化室と前記チャー燃焼室とは、前記それぞれの流動床の界面より鉛直方向上方においてはガスの流通がないように仕切壁により仕切られ、前記仕切壁の下部には前記ガス化室と前記チャー燃焼室とを連通する連通口であって、該連通口の上端の高さは前記第1の界面及び第2の界面以下である連通口が形成され、該連通口を挟む前記ガス化室と前記チャー燃焼室のうち一方の室の前記連通口近傍における前記流動媒体の流動化状態が、他方の室の前記連通口近傍における前記流動媒体の流動化状態よりも強く、該連通口を通じて、前記弱い流動化状態の方から強い流動化状態の方に流動媒体が循環するように構成され;
さらに、前記流動媒体供給装置により前記流動媒体の供給を行い及び前記流動媒体抜出装置により前記流動媒体の抜き出しを行うことにより、前記ガス化室及び前記チャー燃焼室の少なくとも一方の流動床の層高を変化させて流動媒体の循環量を制御する制御装置を備える;
ガス化炉。
A gasification chamber in which a high-temperature fluid medium is caused to flow inside to form a gasification chamber fluidized bed having a first interface, and an object to be treated is gasified in the gasification chamber fluidized bed;
A high-temperature fluid medium is caused to flow inside to form a char combustion chamber fluidized bed having a second interface, and char generated by gasification in the gasification chamber is combusted in the char combustion chamber fluidized bed. a gasifier Ru and a char combustion chamber for heating the flowing medium;
A fluid medium supply device for supplying a fluid medium to the gasifier;
A fluid medium extraction device for extracting the fluid medium from the gasification furnace ;
The gasification chamber and the char combustion chamber are partitioned by a partition wall so that there is no gas flow vertically above the interface between the fluidized beds, and the gasification chamber and the char combustion chamber are disposed below the partition wall. The communication port that communicates with the char combustion chamber, wherein the communication port is formed with a communication port whose upper end height is equal to or lower than the first interface and the second interface, and sandwiches the communication port. The fluidized state of the fluidized medium in the vicinity of the communication port of one of the chamber and the char combustion chamber is stronger than the fluidized state of the fluidized medium in the vicinity of the communication port of the other chamber, and through the communication port. A fluid medium is circulated from the weak fluidized state to the strong fluidized state;
Further, by supplying the fluid medium by the fluid medium supply device and extracting the fluid medium by the fluid medium extraction device, at least one fluidized bed layer of the gasification chamber and the char combustion chamber. Provided with a control device for controlling the circulating amount of the fluid medium by changing the height ;
Gasification furnace.
前記少なくとも一方の流動床中の上下の2点での圧力を測定する圧力測定装置が設けられ、当該2点での圧力の差から前記流動床の層高を求めるようにした;A pressure measuring device for measuring pressure at two upper and lower points in the at least one fluidized bed is provided, and a bed height of the fluidized bed is obtained from a difference in pressure at the two points;
請求項1に記載のガス化炉。  The gasifier according to claim 1.
高温の流動媒体を流動させ、第1の界面を有するガス化流動床を形成する工程と;Flowing a hot fluid medium to form a gasified fluidized bed having a first interface;
前記ガス化流動床内で被処理物をガス化するガス化工程と;  A gasification step of gasifying the workpiece in the gasification fluidized bed;
高温の流動媒体を流動させ、第2の界面を有するチャー燃焼流動床を形成する工程と; 前記ガス化工程でのガス化に伴い発生するチャーを前記チャー燃焼流動床内で燃焼させ前記流動媒体を加熱するチャー燃焼工程と;  Flowing a high-temperature fluidized medium to form a char-combusted fluidized bed having a second interface; and burning the char generated by gasification in the gasification step in the char-combusted fluidized bed A char combustion process for heating
該ガス化流動床及び前記チャー燃焼流動床の外部から前記ガス化流動床及び前記チャー燃焼流動床の少なくとも一方へ流動媒体を供給する流動媒体供給工程と;  A fluidized medium supply step of supplying a fluidized medium from outside the gasified fluidized bed and the char combustion fluidized bed to at least one of the gasified fluidized bed and the char combustion fluidized bed;
前記少なくとも一方から前記ガス化流動床及び前記チャー燃焼流動床の外部へ流動媒体を抜き出す流動媒体抜出工程とを備え;  A fluid medium extraction step for extracting the fluid medium from the at least one to the outside of the gasification fluidized bed and the char combustion fluidized bed;
前記ガス化流動床と前記チャー燃焼流動床とは、前記それぞれの流動床の界面より鉛直方向上方においてはガスの流通がないように仕切壁により仕切られ、前記仕切壁の下部には前記ガス化流動床と前記チャー燃焼流動床とを連通する連通口であって、該連通口の上端の高さは前記第1の界面及び第2の界面以下である連通口が形成され、該連通口を挟む前記ガス化流動床と前記チャー燃焼流動床のうち一方の流動床の前記連通口近傍における前記流動媒体の流動化状態が、他方の流動床の前記連通口近傍における前記流動媒体の流動化状態よりも強く、該連通口を通じて、前記弱い流動化状態の方から強い流動化状態の方に流動媒体が循環するように構成され;  The gasified fluidized bed and the char combustion fluidized bed are partitioned by a partition wall so that there is no gas flow vertically above the interface between the fluidized beds, and the gasification fluidized bed is disposed below the partition wall. A communication port that communicates the fluidized bed with the char combustion fluidized bed, wherein a communication port having a height at an upper end of the communication port equal to or lower than the first interface and the second interface is formed. The fluidized state of the fluidized medium in the vicinity of the communicating port of one fluidized bed of the gasified fluidized bed and the char combustion fluidized bed sandwiched between the fluidized state of the fluidized medium in the vicinity of the communicating port of the other fluidized bed Stronger, configured to circulate the fluid medium through the communication port from the weak fluidized state to the strong fluidized state;
さらに、前記流動媒体供給工程及び流動媒体抜出工程を行うことにより、前記少なくとも一方の層高を変化させて流動媒体の循環量を制御する制御工程を備える;  And a control step of controlling the circulation amount of the fluid medium by changing the at least one bed height by performing the fluid medium supply step and the fluid medium extraction step;
ガス化方法。  Gasification method.
前記少なくとも一方の中の上下の2点での圧力を測定する圧力測定工程が行われ、当該2点での圧力の差から前記流動床の層高を求めるようにした;A pressure measuring step of measuring pressure at two upper and lower points in the at least one is performed, and a bed height of the fluidized bed is obtained from a difference in pressure at the two points;
請求項3に記載のガス化方法。  The gasification method according to claim 3.
JP2004528865A 2002-08-15 2003-08-12 Gasification furnace and gasification method Expired - Lifetime JP4283222B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002236997 2002-08-15
JP2002236997 2002-08-15
PCT/JP2003/010267 WO2004016716A1 (en) 2002-08-15 2003-08-12 Gasification furnace

Publications (2)

Publication Number Publication Date
JPWO2004016716A1 JPWO2004016716A1 (en) 2005-12-02
JP4283222B2 true JP4283222B2 (en) 2009-06-24

Family

ID=31884427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004528865A Expired - Lifetime JP4283222B2 (en) 2002-08-15 2003-08-12 Gasification furnace and gasification method

Country Status (3)

Country Link
JP (1) JP4283222B2 (en)
AU (1) AU2003255009A1 (en)
WO (1) WO2004016716A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131634A1 (en) * 2019-12-27 2021-07-01 荏原環境プラント株式会社 Thermal decomposition apparatus and thermal decomposition method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005021686A1 (en) * 2003-08-29 2005-03-10 Ebara Corporation Recycling method and system
JP4528145B2 (en) * 2005-01-31 2010-08-18 新日鉄エンジニアリング株式会社 Integrated gasifier and method of operation thereof
JP4520872B2 (en) * 2005-01-31 2010-08-11 新日鉄エンジニアリング株式会社 Integrated gasifier and method of operation thereof
AU2006254672A1 (en) * 2005-06-03 2006-12-07 Plasco Energy Group Inc. A system for the conversion of carbonaceous feedstocks to a gas of a specified composition
JP2007024492A (en) * 2005-07-14 2007-02-01 Ebara Corp Fluidized bed gasification furnace, and pyrolizing gasification method
AU2007247893B2 (en) * 2006-05-05 2013-02-21 Plascoenergy Ip Holdings, S.L., Bilbao, Schaffhausen Branch A gas reformulating system using plasma torch heat
JP5261931B2 (en) * 2006-12-26 2013-08-14 株式会社Ihi Fluidized bed gasification method and apparatus
JP2011042768A (en) * 2009-08-24 2011-03-03 Ihi Corp Circulating fluidized bed type gasification method and apparatus
JP6600988B2 (en) * 2015-05-22 2019-11-06 株式会社Ihi Gasification gas generator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU734203B2 (en) * 1997-12-18 2001-06-07 Ebara Corporation Fuel gasification system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131634A1 (en) * 2019-12-27 2021-07-01 荏原環境プラント株式会社 Thermal decomposition apparatus and thermal decomposition method
JP2021107471A (en) * 2019-12-27 2021-07-29 荏原環境プラント株式会社 Thermal decomposition apparatus and thermal decomposition method
CN114846123A (en) * 2019-12-27 2022-08-02 荏原环境工程株式会社 Thermal decomposition apparatus and thermal decomposition method
CN114846123B (en) * 2019-12-27 2024-07-05 荏原环境工程株式会社 Thermal decomposition device and thermal decomposition method

Also Published As

Publication number Publication date
AU2003255009A1 (en) 2004-03-03
WO2004016716A1 (en) 2004-02-26
JPWO2004016716A1 (en) 2005-12-02

Similar Documents

Publication Publication Date Title
Basu et al. Circulating fluidized bed boilers
JP4283222B2 (en) Gasification furnace and gasification method
Bi et al. High density and high solids flux CFB risers for steam gasification of solids fuels
EP2948658B1 (en) Method and device for gasifying feedstock
JP2004517169A (en) Fluidized bed gasification method and apparatus
JP2007024492A (en) Fluidized bed gasification furnace, and pyrolizing gasification method
Gordillo et al. A bubbling fluidized bed solar reactor model of biomass char high temperature steam-only gasification
Foscolo et al. Design and cold model testing of a biomass gasifier consisting of two interconnected fluidized beds
Boukis et al. CFB air-blown flash pyrolysis. Part I: Engineering design and cold model performance
JP5256662B2 (en) Fluidized bed gasification method and equipment
JPS63176912A (en) Method of generating heat
de Souza-Santos A new version of CSFB, comprehensive simulator for fluidised bed equipment
JP2007112873A (en) Method and system for gasification of gasification fuel
SE457661B (en) SEAT AND REACTOR FOR FLUIDIZED BOTTOM
Li et al. Simulation of catalytic coal gasification in a pressurized jetting fluidized bed: Effects of operating conditions
Shrestha et al. Hydrodynamic properties of a cold model of dual fluidized bed gasifier: A modeling and experimental investigation
WO2009153949A1 (en) Fluidized-bed gasification method and facility therefor
KR101066187B1 (en) Syngas production and tar reduction system by using air and steam at fluidized bed
Pitkäoja et al. Simulation of sorption-enhanced gasification: H2O staging to a circulating fluidised bed gasifier to tailor the producer gas composition
JP5321785B2 (en) Circulating fluidized bed gasifier and its air flow rate control method and apparatus
WO2021131634A1 (en) Thermal decomposition apparatus and thermal decomposition method
EP1021499B1 (en) Method and apparatus for gasification of solid carbonaceous material
KR100999470B1 (en) Rectangular dual circulating fluidized bed reactor
JP4102167B2 (en) Gasifier
JP2005300077A (en) Circulating fluidized bed furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090318

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4283222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term